1
|
Aranda AJ, Aguilar-Tipacamú G, Perez DR, Bañuelos-Hernandez B, Girgis G, Hernandez-Velasco X, Escorcia-Martinez SM, Castellanos-Huerta I, Petrone-Garcia VM. Emergence, migration and spreading of the high pathogenicity avian influenza virus H5NX of the Gs/Gd lineage into America. J Gen Virol 2025; 106:002081. [PMID: 40279164 PMCID: PMC12032427 DOI: 10.1099/jgv.0.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 04/26/2025] Open
Abstract
The high pathogenicity avian influenza virus H5N1, which first emerged in the winter of 2021, has resulted in multiple outbreaks across the American continent through the summer of 2023 and they continue based on early 2025 records, presenting significant challenges for global health and food security. The viruses causing the outbreaks belong to clade 2.3.4.4b, which are descendants of the lineage A/Goose/Guangdong/1/1996 (Gs/Gd) through genetic reassortments with several low pathogenicity avian influenza viruses present in populations of Anseriformes and Charadriiformes orders. This review addresses these issues by thoroughly analysing available epidemiological databases and specialized literature reviews. This project explores the mechanisms behind the resurgence of the H5N1 virus. It provides a comprehensive overview of the origin, timeline and factors contributing to its prevalence among wild bird populations on the American continent.
Collapse
Affiliation(s)
- Alejandro J. Aranda
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Gabriela Aguilar-Tipacamú
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Licenciatura en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bernardo Bañuelos-Hernandez
- Facultad de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, León, México
| | - George Girgis
- Nevysta Laboratory, Iowa State University Research Park, Ames, Lowa, USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | - Socorro M. Escorcia-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | | | - Victor M. Petrone-Garcia
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores de Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| |
Collapse
|
2
|
Harada R, Hiono T, Igarashi M, Kobayashi D, Ban H, Isoda N, Sakoda Y. Altered receptor-binding specificity of gull-adapted H13 avian influenza viruses corresponds to their unique host preferences. Virology 2025; 605:110460. [PMID: 39999586 DOI: 10.1016/j.virol.2025.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Avian influenza viruses (AIVs) recognize α2-3 sialosides as receptors. Previous studies showed that the structural diversity within α2-3 sialosides is related to the host specificity of AIVs. H13 AIVs are primarily isolated from gulls, although almost all AIV subtypes have been isolated from ducks, the natural hosts of AIVs. To elucidate the molecular basis of the host specificity of H13 viruses to gulls, the receptor-binding specificity of H13 hemagglutinins (HAs) and the distribution of viral receptors in gulls were investigated. The results revealed that recombinant HA (rHA) of H13 viruses had a binding preference for fucosylated α2-3 sialosides, which were distributed widely in the respiratory tract and intestines of gulls but not in the colon of ducks. Moreover, the receptor-binding specificity of mutant rHAs revealed that amino acids in the 130-loop and at position 227 of H13 HA were critical for the preference for fucosylated α2-3 sialosides. The results of the present study suggest that the binding specificity of H13 HA to fucosylated α2-3 sialosides is a key factor for the host susceptibility of H13 viruses to gulls.
Collapse
Affiliation(s)
- Rio Harada
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan; Institute for Vaccine Research and Development, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
| | - Manabu Igarashi
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan; Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Daiki Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Hinako Ban
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan; Institute for Vaccine Research and Development, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; One Health Research Center, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan; Institute for Vaccine Research and Development, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
3
|
Damodaran L, Jaeger A, Moncla LH. Intensive transmission in wild, migratory birds drove rapid geographic dissemination and repeated spillovers of H5N1 into agriculture in North America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628739. [PMID: 39763879 PMCID: PMC11702765 DOI: 10.1101/2024.12.16.628739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Since late 2021, a panzootic of highly pathogenic H5N1 avian influenza virus has driven significant morbidity and mortality in wild birds, domestic poultry, and mammals. In North America, infections in novel avian and mammalian species suggest the potential for changing ecology and establishment of new animal reservoirs. Outbreaks among domestic birds have persisted despite aggressive culling, necessitating a re-examination of how these outbreaks were sparked and maintained. To recover how these viruses were introduced and disseminated in North America, we analyzed 1,818 Hemagglutinin (HA) gene sequences sampled from North American wild birds, domestic birds and mammals from November 2021-September 2023 using Bayesian phylodynamic approaches. Using HA, we infer that the North American panzootic was driven by ~8 independent introductions into North America via the Atlantic and Pacific Flyways, followed by rapid dissemination westward via wild, migratory birds. Transmission was primarily driven by Anseriformes, shorebirds, and Galliformes, while species such as songbirds, raptors, and owls mostly acted as dead-end hosts. Unlike the epizootic of 2015, outbreaks in domestic birds were driven by ~46-113 independent introductions from wild birds, with some onward transmission. Backyard birds were infected ~10 days earlier on average than birds in commercial poultry production settings, suggesting that they could act as "early warning signals" for transmission upticks in a given area. Our findings support wild birds as an emerging reservoir for HPAI transmission in North America and suggest continuous surveillance of wild Anseriformes and shorebirds as crucial for outbreak inference. Future prevention of agricultural outbreaks may require investment in strategies that reduce transmission at the wild bird/agriculture interface, and investigation of backyard birds as putative early warning signs.
Collapse
Affiliation(s)
- Lambodhar Damodaran
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| | - Anna Jaeger
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| | - Louise H. Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| |
Collapse
|
4
|
Haman KH, Pearson SF, Brown J, Frisbie LA, Penhallegon S, Falghoush AM, Wolking RM, Torrevillas BK, Taylor KR, Snekvik KR, Tanedo SA, Keren IN, Ashley EA, Clark CT, Lambourn DM, Eckstrand CD, Edmonds SE, Rovani-Rhoades ER, Oltean H, Wilkinson K, Fauquier D, Black A, Waltzek TB. A comprehensive epidemiological approach documenting an outbreak of H5N1 highly pathogenic avian influenza virus clade 2.3.4.4b among gulls, terns, and harbor seals in the Northeastern Pacific. Front Vet Sci 2024; 11:1483922. [PMID: 39553196 PMCID: PMC11565051 DOI: 10.3389/fvets.2024.1483922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) H5N1 clade 2.3.4.4b continue to have unprecedented global impacts on wild birds and mammals, with especially significant mortality observed in colonial surface-nesting seabirds and in some marine mammal species. In July of 2023 H5N1 HPAIV 2.3.4.4b was detected in Caspian terns nesting on Rat Island, Washington USA. An estimated 1,800-1,900 adult terns populated the breeding colony, based on aerial photographs taken at the start of the outbreak. On a near-weekly basis throughout July and August, we counted and removed carcasses, euthanized moribund birds, and collected swab and tissue samples for diagnostic testing and next-generation sequencing. We directly counted 1,101 dead Caspian tern adults and 520 dead chicks, indicating a minimum 56% loss of the adult colony population and potential impacts to reproductive success. Combining the observed mortality on Rat Island with HPAI-related Caspian tern deaths recorded elsewhere in Washington and Oregon, we estimate that 10-14% of the Pacific Flyway population was lost in the summer of 2023. Comparatively few adult Glaucous-winged gulls (hybrids) nesting on Rat Island died (~3% of the local population), although gull chick mortality was high. Sixteen harbor seals in the immediate or nearby area stranded during the outbreak, and H5N1 HPAIV was detected in brain and/or lung tissue of five seals. These cases are the first known detections of HPAIV in a marine mammal on the Pacific coast of North America. Phylogenetic analyses support the occurrence of at least three independent avian-mammalian virus spillover events (tern or gull to harbor seal). Whole genome sequencing indicated that H5N1 HPAIV may have been introduced to Washington from Caspian terns in Oregon. Ongoing monitoring and surveillance for H5N1 HPAIV in the marine environment is necessary to understand the epidemiology of this virus, assess conservation impacts to susceptible species, and provide support for data-driven management and response actions.
Collapse
Affiliation(s)
- Katherine H Haman
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Scott F Pearson
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Justin Brown
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Lauren A Frisbie
- Washington State Department of Health, Shoreline, WA, United States
| | | | - Azeza M Falghoush
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
| | - Rebecca M Wolking
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
| | | | - Kyle R Taylor
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Kevin R Snekvik
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Sarah A Tanedo
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Ilai N Keren
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Elizabeth A Ashley
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Casey T Clark
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Dyanna M Lambourn
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Chrissy D Eckstrand
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Steven E Edmonds
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Emma R Rovani-Rhoades
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Hanna Oltean
- Washington State Department of Health, Shoreline, WA, United States
| | - Kristin Wilkinson
- West Coast Regional Office, National Marine Fisheries Service, Seattle, WA, United States
| | - Deborah Fauquier
- Office of Protected Resources, National Marine Fisheries Service, Silver Spring, MD, United States
| | - Allison Black
- Washington State Department of Health, Shoreline, WA, United States
| | - Thomas B Waltzek
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| |
Collapse
|
5
|
Michalska-Smith M, Clements E, Rasmussen E, Culhane MR, Craft ME. Location, Age, and Antibodies Predict Avian Influenza Virus Shedding in Ring-Billed and Franklin's Gulls in Minnesota. Animals (Basel) 2024; 14:2781. [PMID: 39409730 PMCID: PMC11475586 DOI: 10.3390/ani14192781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Influenza A virus (IAV) is a multi-host pathogen maintained in water birds and capable of spillover into humans, wildlife, and livestock. Prior research has focused on dabbling ducks as a known IAV reservoir species, yet our understanding of influenza dynamics in other water birds, including gulls, is lacking. Here, we quantify morphological and environmental drivers of serological (antibody detection by ELISA) and virological (viral RNA detection by PCR) prevalence in two gull species: ring-billed (Larus delawarensis) and Franklin's (Leucophaeus pipixcan) gulls. Across 12 months and 10 locations, we tested over 1500 gulls for influenza viral RNA, and additionally tested antibody levels in nearly 1000 of these. We find substantial virus prevalence and a large, nonoverlapping seroprevalence, with significant differences across age and species classifications. The body condition index had minimal explanatory power to predict (sero)positivity, and the effect of the surrounding environment was idiosyncratic. Our results hint at a nontrivial relationship between virus and seropositivity, highlighting serological surveillance as a valuable counterpoint to PCR. By providing indication of both past infections and susceptibility to future infections, serosurveillance can help inform the distribution of limited resources to maximize surveillance effectiveness for a disease of high human, wildlife, and livestock concern.
Collapse
Affiliation(s)
- Matthew Michalska-Smith
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA; (M.M.-S.); (M.E.C.)
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Eva Clements
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Elizabeth Rasmussen
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Marie R. Culhane
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Meggan E. Craft
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA; (M.M.-S.); (M.E.C.)
| |
Collapse
|
6
|
Goraichuk IV, Harden M, Spackman E, Suarez DL. The 28S rRNA RT-qPCR assay for host depletion evaluation to enhance avian virus detection in Illumina and Nanopore sequencing. Front Microbiol 2024; 15:1328987. [PMID: 38351914 PMCID: PMC10864109 DOI: 10.3389/fmicb.2024.1328987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Abundant host and bacterial sequences can obscure the detection of less prevalent viruses in untargeted next-generation sequencing (NGS). Efficient removal of these non-targeted sequences is vital for accurate viral detection. This study presents a novel 28S ribosomal RNA (rRNA) RT-qPCR assay designed to assess the efficiency of avian rRNA depletion before conducting costly NGS for the detection of avian RNA viruses. The comprehensive evaluation of this 28S-test focuses on substituting DNase I with alternative DNases in our established depletion protocols and finetuning essential parameters for reliable host rRNA depletion. To validate the effectiveness of the 28S-test, we compared its performance with NGS results obtained from both Illumina and Nanopore sequencing platforms. This evaluation utilized swab samples from chickens infected with highly pathogenic avian influenza virus, subjected to established and modified depletion protocols. Both methods significantly reduced host rRNA levels, but using the alternative DNase had superior performance. Additionally, utilizing the 28S-test, we explored cost- and time-effective strategies, such as reduced probe concentrations and other alternative DNase usage, assessed the impact of filtration pre-treatment, and evaluated various experimental parameters to further optimize the depletion protocol. Our findings underscore the value of the 28S-test in optimizing depletion methods for advancing improvements in avian disease research through NGS.
Collapse
Affiliation(s)
- Iryna V. Goraichuk
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - Mark Harden
- College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Erica Spackman
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - David L. Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|