1
|
Xue X, Guo C, Fan C, Lei D. The causal role of circulating immunity-inflammation in preeclampsia: A Mendelian randomization. J Clin Hypertens (Greenwich) 2024; 26:474-482. [PMID: 38476059 PMCID: PMC11088432 DOI: 10.1111/jch.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 03/14/2024]
Abstract
Patients with systemic autoimmune diseases, such as systemic lupus erythematosus, were at a higher risk for preeclampsia. The causal relationship between immunological inflammation and preeclampsia (PE) remains uncertain. We aimed to investigate the causal relationship between circulating immune inflammation and PE. Genetically predicted blood immune cells and circulating inflammatory proteins were identified using two genome-wide association studies (GWAS). We used a two-sample Mendelian randomization (MR) method to determine whether circulating immunological inflammation causes PE. Our findings indicated that ten immunophenotypes were identified to be significantly associated with PE risk: CD62L- Dendritic Cell Absolute Count, CD86+ myeloid Dendritic Cell %Dendritic Cell, CD62L- myeloid Dendritic Cell Absolute Count, CD86+ myeloid Dendritic Cell Absolute Count, CD62L- myeloid Dendritic Cell %Dendritic Cell, CD62L- CD86+ myeloid Dendritic Cell %Dendritic Cell, CD62L- CD86+ myeloid Dendritic Cell Absolute Count, CD16 on CD14+ CD16+ monocyte, HLA DR+ Natural Killer Absolute Count, and T cell Absolute Count. Ninety-one inflammation-related proteins had no statistically significant effect on PE following false discovery rate (FDR) correction. Certain proteins exhibited unadjusted low p-values that merited mention. These proteins include interleukin-10 (OR = 0.76, 95%CI = 0.63-0.93, p = .006), fibroblast growth factor 21 (OR = 1.23, 95%CI = 1.01-1.47, p = .035), and Caspase 8 (OR = 0.65, 95%CI = 0.50-0.85, p = .001). The ELISA analysis demonstrated elevated levels of FGF-21 and decreased levels of IL-10 and Caspase-8 in the plasma of patients with PE. These findings reveal that immunophenotypes and circulating inflammatory proteins may induce PE, confirming the importance of peripheral Immunity-Inflammation in PE. The discovery has the potential to lead to earlier detection and more effective treatment techniques.
Collapse
Affiliation(s)
- Xiaolei Xue
- Department of ObstetricsThe Fifth Affiliated Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Chuanhui Guo
- State Key Laboratory of Animal Biotech BreedingCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Cuifang Fan
- Department of ObstetricsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Di Lei
- Department of ObstetricsRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Elesela S, Arzola-Martínez L, Rasky A, Ptaschinski C, Hogan SP, Lukacs NW. Mucosal IgA immune complex induces immunomodulatory responses in allergic airway and intestinal T H2 disease. J Allergy Clin Immunol 2023; 152:1607-1618.e1. [PMID: 37604310 DOI: 10.1016/j.jaci.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND IgA is the most abundant immunoglobulin at the mucosal surface and although its role in regulating mucosal immunity is not fully understood, its presence is associated with protection from developing allergic disease. OBJECTIVE We sought to determine the role of IgA immune complexes for therapeutic application to mucosal allergic responses. METHODS Trinitrophenol (TNP)-specific IgA immune complexes were applied, using TNP-coupled ovalbumin (OVA), to airway and gut mucosal surfaces in systemically sensitized allergic animals to regulate allergen challenge responses. Animals were assessed for both pathologic and immune-mediated responses in the lung and gut, respectively, using established mouse models. RESULTS The mucosal application of IgA immune complexes in the lung and gut with TNP-OVA regulated TH2-driven allergic response in the lung and gut, reducing TH2 cytokines and mucus (lung) as well as diarrhea and temperature loss (gut), but increasing IL-10 and the number of regulatory T cells. The IgA-OVA immune complex did not alter peanut-induced anaphylaxis, indicating antigen specificity. Using OVA-specific DO.11-green fluorescent protein IL-4 reporter mouse-derived TH2-skewed cells in a transfer model demonstrated that mucosal IgA immune complex treatment reduced TH2-cell expansion and increased the number of regulatory T cells. To address a potential mechanism of action, TGF-β and IL-10 were induced in bone marrow-derived dendritic cells when they were exposed to IgA immune complex, suggesting a regulatory phenotype induced in dendritic cells that also led to an altered primary T-cell-mediated response in in vitro OVA-specific assays. CONCLUSIONS These studies highlight one possible mechanism of how allergen-specific IgA may provide a regulatory signal to reduce the development of allergic responses in the lung and gut.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Llilian Arzola-Martínez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Andrew Rasky
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Simon P Hogan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich.
| |
Collapse
|
3
|
Shao T, Ji JF, Zheng JY, Li C, Zhu LY, Fan DD, Lin AF, Xiang LX, Shao JZ. Zbtb46 Controls Dendritic Cell Activation by Reprogramming Epigenetic Regulation of cd80/86 and cd40 Costimulatory Signals in a Zebrafish Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2686-2701. [PMID: 35675955 DOI: 10.4049/jimmunol.2100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
The establishment of an appropriate costimulatory phenotype is crucial for dendritic cells (DCs) to maintain a homeostatic state with optimal immune surveillance and immunogenic activities. The upregulation of CD80/86 and CD40 is a hallmark costimulatory phenotypic switch of DCs from a steady state to an activated one for T cell activation. However, knowledge of the regulatory mechanisms underlying this process remains limited. In this study, we identified a Zbtb46 homolog from a zebrafish model. Zbtb46 deficiency resulted in upregulated cd80/86 and cd40 expression in kidney marrow-derived DCs (KMDCs) of zebrafish, which was accompanied with a remarkable expansion of CD4+/CD8+ T cells and accumulation of KMDCs in spleen of naive fish. Zbtb46 -/- splenic KMDCs exhibited strong stimulatory activity for CD4+ T cell activation. Chromatin immunoprecipitation-quantitative PCR and mass spectrometry assays showed that Zbtb46 was associated with promoters of cd80/86 and cd40 genes by binding to a 5'-TGACGT-3' motif in resting KMDCs, wherein it helped establish a repressive histone epigenetic modification pattern (H3K4me0/H3K9me3/H3K27me3) by organizing Mdb3/organizing nucleosome remodeling and deacetylase and Hdac3/nuclear receptor corepressor 1 corepressor complexes through the recruitment of Hdac1/2 and Hdac3. On stimulation with infection signs, Zbtb46 disassociated from the promoters via E3 ubiquitin ligase Cullin1/Fbxw11-mediated degradation, and this reaction can be triggered by the TLR9 signaling pathway. Thereafter, cd80/86 and cd40 promoters underwent epigenetic reprogramming from the repressed histone modification pattern to an activated pattern (H3K4me3/H3K9ac/H3K27ac), leading to cd80/86 and cd40 expression and DC activation. These findings revealed the essential role of Zbtb46 in maintaining DC homeostasis by suppressing cd80/86 and cd40 expression through epigenetic mechanisms.
Collapse
Affiliation(s)
- Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Fei Ji
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jia-Yu Zheng
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Chen Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Lv-Yun Zhu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; and
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Saini S, Vanherwegen AS, Liang S, Verbeke R, Korf H, Lentacker I, De Smedt SC, Gysemans C, Himmelreich U. Fluorine MR Imaging Probes Dynamic Migratory Profiles of Perfluorocarbon-Loaded Dendritic Cells After Streptozotocin-Induced Inflammation. Mol Imaging Biol 2022; 24:321-332. [PMID: 35060024 DOI: 10.1007/s11307-021-01701-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The pathogenesis of type 1 diabetes (T1D) involves presentation of islet-specific self-antigens by dendritic cells (DCs) to autoreactive T cells, resulting in the destruction of insulin-producing pancreatic beta cells. We aimed to study the dynamic homing of diabetes-prone DCs to the pancreas and nearby organs with and without induction of pancreatic stress in a T1D susceptible model of repeated streptozotocin (STZ) injection. PROCEDURES In vitro labeling of activated bone marrow-derived DCs (BMDCs) from NOD (Nonobese diabetes) mice was performed using zonyl perfluoro-15-crown-5-ether nanoparticles (ZPFCE-NPs). Internalization of particles was confirmed by confocal microscopy. Two groups of NOD.SCID (nonobese diabetic/severe combined immunodeficiency) mice with (induced by low dose STZ administration) or without pancreatic stress were compared. Diabetogenic BMDCs loaded with BDC2.5 mimotope were pre-labeled with ZPFCE-NPs and adoptively transferred into mice. Longitudinal in vivo fluorine MRI (19F MRI) was performed 24 h, 36 h and 48 h after transfer of BMDCs. For ex vivo quantification of labeled cells, 19F NMR and flow cytometry were performed on dissected tissues to validate in vivo 19F MRI data. RESULTS In vitro flow cytometry and confocal microscopy confirmed high uptake of nanoparticles in BMDCs during the process of maturation. Migration/homing of activated and ZPFCE-NP- labeled BMDCs to different organs was monitored and quantified longitudinally, showing highest cell density in pancreas at 48-h time-point. Based on 19F MRI, STZ induced mild inflammation in the pancreatic region, as indicated by high accumulation of ZPFCE-NP-labeled BMDCs in the pancreas when compared to the vehicle group. Pancreatic draining lymph nodes showed elevated homing of labeled BMDCs in the vehicle groups in contrast to the STZ group after 72 h. The effect of STZ was confirmed by increased blood glucose levels. CONCLUSION We showed the potential of 19F MRI for the non-invasive visualization and quantification of migrating immune cells in models for pancreatic inflammation after STZ administration. Without any intrinsic background signal, 19F MRI serves as a highly specific imaging tool to study the migration of diabetic-prone BMDCs in T1D models in vivo. This approach could particularly be of interest for the longitudinal assessment of established or novel anti-inflammatory therapeutic approaches in preclinical models.
Collapse
Affiliation(s)
- Shweta Saini
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | | | - Sayuan Liang
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
- Philips Research China, Shanghai, China
| | - Rein Verbeke
- General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA, KU Leuven, Leuven, Belgium
| | - Ine Lentacker
- General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, Belgium
| | - Stefaan C De Smedt
- General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, CHROMETA, KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Machcińska M, Kotur M, Jankowska A, Maruszewska-Cheruiyot M, Łaski A, Kotkowska Z, Bocian K, Korczak-Kowalska G. Cyclosporine A, in Contrast to Rapamycin, Affects the Ability of Dendritic Cells to Induce Immune Tolerance Mechanisms. Arch Immunol Ther Exp (Warsz) 2021; 69:27. [PMID: 34632525 PMCID: PMC8502748 DOI: 10.1007/s00005-021-00632-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022]
Abstract
Following organ transplantation, it is essential that immune tolerance is induced in the graft recipient to reduce the risk of rejection and avoid complications associated with the long-term use of immunosuppressive drugs. Immature dendritic cells (DCs) are considered to promote transplant tolerance and may minimize the risk of graft rejection. The aim of the study was to evaluate the effects of immunosuppressive agents: rapamycin (Rapa) and cyclosporine A (CsA) on generation of human tolerogenic DCs (tolDCs) and also to evaluate the ability of these cells to induce mechanisms of immune tolerance. tolDCs were generated in the environment of Rapa or CsA. Next, we evaluated the effects of these agents on surface phenotypes (CD11c, MHC II, CD40, CD80, CD83, CD86, CCR7, TLR2, TLR4), cytokine production (IL-4, IL-6, IL-10, IL-12p70, TGF-β), phagocytic capacity and resistant to lipopolysaccharide activation of these DCs. Moreover, we assessed ability of such tolDCs to induce T cell activation and apoptosis, Treg differentiation and production of Th1- and Th2-characteristic cytokine profile. Data obtained in this study demonstrate that rapamycin is effective at generating maturation-resistant tolDCs, however, does not change the ability of these cells to induce mechanisms of immune tolerance. In contrast, CsA affects the ability of these cells to induce mechanisms of immune tolerance, but is not efficient at generating maturation-resistant tolDCs.
Collapse
Affiliation(s)
- Maja Machcińska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | - Monika Kotur
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Jankowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Artur Łaski
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zuzanna Kotkowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Korczak-Kowalska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Lutz MB, Backer RA, Clausen BE. Revisiting Current Concepts on the Tolerogenicity of Steady-State Dendritic Cell Subsets and Their Maturation Stages. THE JOURNAL OF IMMUNOLOGY 2021; 206:1681-1689. [PMID: 33820829 DOI: 10.4049/jimmunol.2001315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The original concept stated that immature dendritic cells (DC) act tolerogenically whereas mature DC behave strictly immunogenically. Meanwhile, it is also accepted that phenotypically mature stages of all conventional DC subsets can promote tolerance as steady-state migratory DC by transporting self-antigens to lymph nodes to exert unique functions on regulatory T cells. We propose that in vivo 1) there is little evidence for a tolerogenic function of immature DC during steady state such as CD4 T cell anergy induction, 2) all tolerance as steady-state migratory DC undergo common as well as subset-specific molecular changes, and 3) these changes differ by quantitative and qualitative markers from immunogenic DC, which allows one to clearly distinguish tolerogenic from immunogenic migratory DC.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, 97070 Würzburg, Germany; and
| | - Ronald A Backer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
| |
Collapse
|
7
|
Thomann AS, Schneider T, Cyran L, Eckert IN, Kerstan A, Lutz MB. Conversion of Anergic T Cells Into Foxp3 - IL-10 + Regulatory T Cells by a Second Antigen Stimulus In Vivo. Front Immunol 2021; 12:704578. [PMID: 34249012 PMCID: PMC8267912 DOI: 10.3389/fimmu.2021.704578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
T cell anergy is a common mechanism of T cell tolerance. However, although anergic T cells are retained for longer time periods in their hosts, they remain functionally passive. Here, we describe the induction of anergic CD4+ T cells in vivo by intravenous application of high doses of antigen and their subsequent conversion into suppressive Foxp3- IL-10+ Tr1 cells but not Foxp3+ Tregs. We describe the kinetics of up-regulation of several memory-, anergy- and suppression-related markers such as CD44, CD73, FR4, CD25, CD28, PD-1, Egr-2, Foxp3 and CTLA-4 in this process. The conversion into suppressive Tr1 cells correlates with the transient intracellular CTLA-4 expression and required the restimulation of anergic cells in a short-term time window. Restimulation after longer time periods, when CTLA-4 is down-regulated again retains the anergic state but does not lead to the induction of suppressor function. Our data require further functional investigations but at this stage may suggest a role for anergic T cells as a circulating pool of passive cells that may be re-activated into Tr1 cells upon short-term restimulation with high and systemic doses of antigen. It is tentative to speculate that such a scenario may represent cases of allergen responses in non-allergic individuals.
Collapse
Affiliation(s)
- Anna Sophie Thomann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Theresa Schneider
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Laura Cyran
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ina Nathalie Eckert
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Ashour L, Al Habashneh RA, Al-Mrahelh MM, Abuarqoub D, Khader YS, Jafar H, Awidi AS. The modulation of mature dendritic cells from patients with type 1 diabetes using human periodontal ligament stem cells. An in-vitro study. J Diabetes Metab Disord 2021; 19:1037-1044. [PMID: 33520821 DOI: 10.1007/s40200-020-00602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Objective This in vitro study aimed to investigate whether human periodontal ligament stem cells isolated from impacted third molars can modify the maturation and phenotype of monocyte-derived dendritic cells pulsed with GAD-65 obtained from patients with type 1 diabetes. Background Human periodontal ligament stem cells (PDLSCs) have been found to display cell surface marker characteristics similar to bone marrow stromal stem cells (BMSSCs). The immunosuppressive effects on dendritic cells (DCs), T and B cells as well as their low immunogenicity allow the use of PDLSCs in stem cell therapies for autoimmune diseases including type 1 diabetes (T1D). Studies on the immunomodulatory potential of PDLSCs in the context type 1 diabetes are lacking but are therefore worth pursuing. Methods CD14 + monocytes isolated from peripheral blood mononuclear cells (PBMNCs) of type 1 diabetic patients were differentiated into immature Dendritic Cells (iDCs) and then maturation was induced to generate Mature Dendritic Cells (mDCs). The mDCs were pulsed with human recombinant GAD-65 and then co-cultured with PDLSCs that were isolated from impacted third molars and characterized. The changes in the levels of differentiation and maturation surface markers on the dendritic cells were analyzed by flow cytometry at the immature state, mature state and after the co-culture experiment. The levels of the secreted cytokines; IL-6, IL-10, and TGF-β were measured by ELISA in cell-free culture supernatant. Results PDLSCs exerted an immunosuppressive effect on fully mature dendritic cells from patients with type 1 diabetes. This immunoregulatory property of was apparent by the reduction of all maturation markers including CD80, CD83, CD86, CD40, CD1a, CD209 and HLA-DR. Moreover, there was a detection of high levels of anti-inflammatory cytokines in the co-culture supernatant media including a significant increase in the concentration of IL-6 and TGF-β. Conclusions The current in vitro study provides strong evidence that PDLSCs seem to be a very promising source for overcoming the autoimmune destruction seen in T1D as they exerted an immunosuppressive effect on monocyte derived mDCs from patients with T1D. Additional studies should be conducted to further reveal the immunomodulatory and suppressive properties of PDLSCs and their potential use in immunotherapy for this disease.
Collapse
Affiliation(s)
- L Ashour
- Preventive Department, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - R A Al Habashneh
- Preventive Department, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - M M Al-Mrahelh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - D Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Biomedical Sciences and Pharmacology, The University of Petra, Amman, Jordan
| | - Y S Khader
- Departments of Public Health, Community Medicine and Family Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - H Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
9
|
Dinh TTH, Tummamunkong P, Padungros P, Ponpakdee P, Boonprakong L, Saisorn W, Leelahavanichkul A, Kueanjinda P, Ritprajak P. Interaction Between Dendritic Cells and Candida krusei β-Glucan Partially Depends on Dectin-1 and It Promotes High IL-10 Production by T Cells. Front Cell Infect Microbiol 2021; 10:566661. [PMID: 33552998 PMCID: PMC7862133 DOI: 10.3389/fcimb.2020.566661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Host-Candida interaction has been broadly studied during Candida albicans infection, with a progressive shift in focus toward non-albicans Candida species. C. krusei is an emerging multidrug resistant pathogen causing rising morbidity and mortality worldwide. Therefore, understanding the interplay between the host immune system and C. krusei is critically important. Candia cell wall β-glucans play significant roles in the induction of host protective immune responses. However, it remains unclear how C. krusei β-glucan impacts dendritic cell (DC) responses. In this study, we investigated DC maturation and function in response to β-glucans isolated from the cell walls of C. albicans, C. tropicalis, and C. krusei. These three distinct Candida β-glucans had differential effects on expression of the DC marker, CD11c, and on DC maturation. Furthermore, bone-marrow derived DCs (BMDCs) showed enhanced cytokine responses characterized by substantial interleukin (IL)-10 production following C. krusei β-glucan stimulation. BMDCs stimulated with C. krusei β-glucan augmented IL-10 production by T cells in tandem with increased IL-10 production by BMDCs. Inhibition of dectin-1 ligation demonstrated that the interactions between dectin-1 on DCs and cell wall β-glucans varied depending on the Candida species. The effects of C. krusei β-glucan were partially dependent on dectin-1, and this dependence, in part, led to distinct DC responses. Our study provides new insights into immune regulation by C. krusei cell wall components. These data may be of use in the development of new clinical approaches for treatment of patients with C. krusei infection.
Collapse
Affiliation(s)
- Truc Thi Huong Dinh
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Phawida Tummamunkong
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pranpariya Ponpakdee
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Emerging role of microbiota in immunomodulation and cancer immunotherapy. Semin Cancer Biol 2020; 70:37-52. [PMID: 32580024 DOI: 10.1016/j.semcancer.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
Gut microbiota is emerging as a key modulator of the immune system. Alteration of gut microbiota impacts functioning of the immune system and pathophysiology of several diseases, including cancer. Growing evidence indicates that gut microbiota is not only involved in carcinogenesis but also has an impact on the efficacy and toxicity of cancer therapy. Recently, several pre-clinical and clinical studies across diverse cancer types reported the influence of gut microbiota on the host immune response to immunotherapy. Advancement in our understanding of the mechanism behind microbiota-mediated modulation of immune response is paramount for their utilization as cancer therapeutics. These microbial therapies in combination with conventional immunotherapeutic methods have the potential to transform the pre-existing treatment strategies to personalized cancer therapy. In this review, we have summarized the current status of research in the field and discussed the role of microbiota as an immune system modulator in context of cancer and their impact on immunotherapy.
Collapse
|
11
|
Lecoeur H, Rosazza T, Kokou K, Varet H, Coppée JY, Lari A, Commère PH, Weil R, Meng G, Milon G, Späth GF, Prina E. Leishmania amazonensis Subverts the Transcription Factor Landscape in Dendritic Cells to Avoid Inflammasome Activation and Stall Maturation. Front Immunol 2020; 11:1098. [PMID: 32582184 PMCID: PMC7295916 DOI: 10.3389/fimmu.2020.01098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania parasites are the causative agents of human leishmaniases. They infect professional phagocytes of their mammalian hosts, including dendritic cells (DCs) that are essential for the initiation of adaptive immune responses. These immune functions strictly depend on the DC's capacity to differentiate from immature, antigen-capturing cells to mature, antigen-presenting cells—a process accompanied by profound changes in cellular phenotype and expression profile. Only little is known on how intracellular Leishmania affects this important process and DC transcriptional regulation. Here, we investigate these important open questions analyzing phenotypic, cytokine profile and transcriptomic changes in murine, immature bone marrow-derived DCs (iBMDCs) infected with antibody-opsonized and non-opsonized Leishmania amazonensis (L.am) amastigotes. DCs infected by non-opsonized amastigotes remained phenotypically immature whereas those infected by opsonized parasites displayed a semi-mature phenotype. The low frequency of infected DCs in culture led us to use DsRed2-transgenic parasites allowing for the enrichment of infected BMDCs by FACS. Sorted infected DCs were then subjected to transcriptomic analyses using Affymetrix GeneChip technology. Independent of parasite opsonization, Leishmania infection induced expression of genes related to key DC processes involved in MHC Class I-restricted antigen presentation and alternative NF-κB activation. DCs infected by non-opsonized parasites maintained an immature phenotype and showed a small but significant down-regulation of gene expression related to pro-inflammatory TLR signaling, the canonical NF-kB pathway and the NLRP3 inflammasome. This transcriptomic profile was further enhanced in DCs infected with opsonized parasites that displayed a semi-mature phenotype despite absence of inflammasome activation. This paradoxical DC phenotype represents a Leishmania-specific signature, which to our knowledge has not been observed with other opsonized infectious agents. In conclusion, systems-analyses of our transcriptomics data uncovered important and previously unappreciated changes in the DC transcription factor landscape, thus revealing a novel Leishmania immune subversion strategy directly acting on transcriptional control of gene expression. Our data raise important questions on the dynamic and reciprocal interplay between trans-acting and epigenetic regulators in establishing permissive conditions for intracellular Leishmania infection and polarization of the immune response.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Thibault Rosazza
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Kossiwa Kokou
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur - Transcriptome and Epigenome Platform - Biomics Pole - C2RT, Paris, France
| | - Arezou Lari
- Systems Biomedicine Unit, Institut Pasteur of Iran, Teheran, Iran
| | | | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Guangxun Meng
- Pasteur Institute of Shanghai, Innate Immunity Unit, Key Laboratory of Molecular Virology and Immunology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Genevieve Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département des Parasites et Insectes Vecteurs, Paris, France
| | - Gerald F Späth
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| | - Eric Prina
- Institut Pasteur, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Département des Parasites et Insectes Vecteurs, Paris, France.,Pasteur International Unit "Inflammation and Leishmania Infection", Paris, France
| |
Collapse
|
12
|
Ashour D, Arampatzi P, Pavlovic V, Förstner KU, Kaisho T, Beilhack A, Erhard F, Lutz MB. IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction. JCI Insight 2020; 5:135143. [PMID: 32434994 PMCID: PMC7259537 DOI: 10.1172/jci.insight.135143] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Success of DC vaccines relies on the quality of antigen presentation, costimulation, lymph node migration, and the release of IL-12, in case of Th1 priming. Here, we provide evidence for interaction between the injected vaccine DCs with endogenous lymph node–resident DCs for Th1 induction. While migration of the injected DCs was essential for antigen delivery to the lymph node, the injected DCs contributed only partially to Th0 priming and were unable to instruct Th1 generation. Instead, we provide evidence that the lymph node–resident XCR1+ DCs are activated by the injected DCs to present the cognate antigen and release IL-12 for Th1 polarization. The timing of interactions in the draining lymph nodes appeared step-wise as (a) injected DCs with cognate T cells, (b) injected DCs with bystander DCs, and (c) bystander DCs with T cells. The transcriptome of the bystander DCs showed a downregulation of Treg- and Th2/Th9-inducing genes and self-antigen presentation, as well as upregulation of MHC class II and genes required for Th1 instruction. Together, these data show that injected mature lymph node migratory DCs direct T cell priming and bystander DC activation, but not Th1 polarization, which is mediated by endogenous IL-12p70+XCR1+ resident bystander DCs. Our results are of importance for clinical DC-based vaccinations against tumors where endogenous DCs may be functionally impaired by chemotherapy. Successful Th1 priming by DC vaccines in mice depends on IL-12 from endogenous and XCR1+ cDC1 population.
Collapse
Affiliation(s)
| | | | | | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Institute of Information Science, Cologne, Germany
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
13
|
Liu J, Zhong X, He Z, Zhang J, Bai J, Liu G, Liang Y, Ya L, Qin X. Erythromycin Suppresses the Cigarette Smoke Extract-Exposed Dendritic Cell-Mediated Polarization of CD4 + T Cells into Th17 Cells. J Immunol Res 2020; 2020:1387952. [PMID: 32411785 PMCID: PMC7201779 DOI: 10.1155/2020/1387952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/24/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022] Open
Abstract
Cigarette smoke is a major effector of chronic obstructive pulmonary disease (COPD), and Th17 cells and dendritic cells (DCs) involve in the pathogenesis of COPD. Previous studies have demonstrated the anti-inflammatory effects of macrolides. However, the effects of macrolides on the cigarette smoke extract- (CSE-) induced immune response are unclear. Accordingly, in this study, we evaluated the effects of erythromycin (EM) on CSE-exposed DCs polarizing naïve CD4+ T cells into Th17 cells. DCs were generated from bone marrow-derived mononuclear cells isolated from male BALB/c mice and divided into five groups: control DC group, CSE-exposed DC group, CD40-antibody-blocked CSE-exposed DC group, and EM-treated CSE-exposed DC group. The function of polarizing CD4+ T cells into Th17 cells induced by all four groups of DCs was assayed based on the mixed lymphocyte reaction (MLR) of naïve CD4+ T cells. CD40 expression in DCs in the CSE-exposed group increased significantly compared with that in the control group (P < 0.05). The Th17 cells in the CSE-exposed DC/MLR group increased significantly compared with those in the control DC/MLR group (P < 0.05). Moreover, Th17 cells in the CD40-blocked CSE-exposed DC/MLR group and EM-treated CSE-exposed DC/MLR group were reduced compared with those in the CSE-exposed DC/MLR group (P < 0.05). Thus, these findings suggested that EM suppressed the CSE-exposed DC-mediated polarization of CD4+ T cells into Th17 cells and that this effect may be mediated through inhibition of the CD40/CD40L pathway.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoning Zhong
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhiyi He
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jianquan Zhang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jing Bai
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guangnan Liu
- Department of Respiratory Disease, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Yi Liang
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Leilei Ya
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xianglin Qin
- Department of Respiratory Disease, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
14
|
Gudi RR, Karumuthil-Melethil S, Perez N, Li G, Vasu C. Engineered Dendritic Cell-Directed Concurrent Activation of Multiple T cell Inhibitory Pathways Induces Robust Immune Tolerance. Sci Rep 2019; 9:12065. [PMID: 31427630 PMCID: PMC6700167 DOI: 10.1038/s41598-019-48464-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023] Open
Abstract
Inhibitory/repressor-receptors are upregulated significantly on activated T cells, and have been the molecules of attention as targets for inducing immune tolerance. Induction of effective antigen specific tolerance depends on concurrent engagement of the TCR and one or more of these inhibitory receptors. Here, we show, for the first time that dendritic cells (DCs) can be efficiently engineered to express multiple T cell inhibitory ligands, and enhanced engagement of T cell inhibitory receptors, upon antigen presentation, by these DCs can induce effective CD4+ T cell tolerance and suppress autoimmunity. Compared to control DCs, antigen presentation by DCs that ectopically express CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1, and HVEM-CRD1 respectively) individually (mono-ligand DCs) or in combination (multi-ligand DCs) causes an inhibition of CD4+ T cell proliferation and pro-inflammatory cytokine response, as well as increase in Foxp3+ Treg frequency and immune regulatory cytokine production. Administration of self-antigen (mouse thyroglobulin; mTg) loaded multi-ligand DCs caused hyporesponsiveness to mTg challenge, suppression of autoantibody production, and amelioration of experimental autoimmune thyroiditis. Overall, this study shows that engineered DC-directed enhanced concurrent activation of multiple T cell coinhibitory pathways is an effective way to induce self-antigen specific T cell tolerance to suppress ongoing autoimmunity.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Nicolas Perez
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Gongbo Li
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
Wculek SK, Sancho D. LKB1 restrains dendritic cell function. Cell Res 2019; 29:429-431. [PMID: 31024168 PMCID: PMC6796839 DOI: 10.1038/s41422-019-0169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Stefanie K Wculek
- Immunobiology laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III" (CNIC), Madrid, Spain.
| |
Collapse
|
16
|
Wang Y, Du X, Wei J, Long L, Tan H, Guy C, Dhungana Y, Qian C, Neale G, Fu YX, Yu J, Peng J, Chi H. LKB1 orchestrates dendritic cell metabolic quiescence and anti-tumor immunity. Cell Res 2019; 29:391-405. [PMID: 30911060 DOI: 10.1038/s41422-019-0157-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) play a pivotal role in priming adaptive immunity. However, the involvement of DCs in controlling excessive and deleterious T cell responses remains poorly defined. Moreover, the metabolic dependence and regulation of DC function are unclear. Here we show that LKB1 signaling in DCs functions as a brake to restrain excessive tumor-promoting regulatory T cell (Treg) and Th17 cell responses, thereby promoting protective anti-tumor immunity and maintaining proper immune homeostasis. LKB1 deficiency results in dysregulated metabolism and mTOR activation of DCs. Loss of LKB1 also leads to aberrant DC maturation and production of cytokines and immunoregulatory molecules. Blocking mTOR signaling in LKB1-deficient DCs partially rectifies the abnormal phenotypes of DC activation and Treg expansion, whereas uncontrolled Th17 responses depend upon IL-6-STAT3 signaling. By coordinating metabolic and immune quiescence of DCs, LKB1 acts as a crucial signaling hub in DCs to enforce protective anti-tumor immunity and normal immune homeostasis.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xingrong Du
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun Wei
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chenxi Qian
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.,Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
17
|
Raw Cow's Milk and Its Protective Effect on Allergies and Asthma. Nutrients 2019; 11:nu11020469. [PMID: 30813365 PMCID: PMC6413174 DOI: 10.3390/nu11020469] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Living on a farm and having contact with rural exposures have been proposed as one of the most promising ways to be protected against allergy and asthma development. There is a significant body of epidemiological evidence that consumption of raw milk in childhood and adulthood in farm but also nonfarm populations can be one of the most effective protective factors. The observation is even more intriguing when considering the fact that milk is one of the most common food allergens in childhood. The exact mechanisms underlying this association are still not well understood, but the role of raw milk ingredients such as proteins, fat and fatty acids, and bacterial components has been recently studied and its influence on the immune function has been documented. In this review, we present the current understanding of the protective effect of raw milk on allergies and asthma.
Collapse
|
18
|
Richardson JR, Armbruster NS, Günter M, Henes J, Autenrieth SE. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol 2018; 9:2603. [PMID: 30555457 PMCID: PMC6282063 DOI: 10.3389/fimmu.2018.02603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus (Sa), as one of the major human pathogens, has very effective strategies to subvert the human immune system. Virulence of the emerging community-associated methicillin-resistant Sa (CA-MRSA) depends on the secretion of phenol-soluble modulin (PSM) peptide toxins e.g., by binding to and modulation of innate immune cells. Previously, by using mouse bone marrow-derived dendritic cells we demonstrated that PSMs in combination with various Toll-like receptor (TLR) ligands induce a tolerogenic DC phenotype (tDC) characterized by the production of IL-10 and impaired secretion of pro-inflammatory cytokines. Consequently, PSM-induced tDCs favored priming of CD4+CD25+FoxP3+ Tregs with suppressor function while impairing the Th1 response. However, the relevance of these findings for the human system remained elusive. Here, we analyzed the impact of PSMα3 on the maturation, cytokine production, antigen uptake, and T cell stimulatory capacity of human monocyte-derived DCs (moDCs) treated simultaneously with either LPS (TLR4 ligand) or Sa cell lysate (TLR2 ligand). Herein, we demonstrate that PSMs indeed modulate human moDCs upon treatment with TLR2/4 ligands via multiple mechanisms, such as transient pore formation, impaired DC maturation, inhibited pro- and anti-inflammatory cytokine secretion, as well as reduced antigen uptake. As a result, the adaptive immune response was altered shown by an increased differentiation of naïve and even CD4+ T cells from patients with Th1/Th17-induced diseases (spondyloarthritis and rheumatoid arthritis) into CD4+CD127−CD25hiCD45RA−FoxP3hi regulatory T cells (Tregs) with suppressor function. This Treg induction was mediated most predominantly by direct DC-T-cell interaction. Thus, PSMs from highly virulent Sa strains affect DC functions not only in the mouse, but also in the human system, thereby modulating the adaptive immune response and probably increasing the tolerance toward the bacteria. Moreover, PSMα3 might be a novel peptide for tolerogenic DC induction that may be used for DC vaccination strategies.
Collapse
Affiliation(s)
| | - Nicole S Armbruster
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Manina Günter
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Jörg Henes
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| | - Stella E Autenrieth
- Department of Internal Medicine II, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Abbring S, Hols G, Garssen J, van Esch BCAM. Raw cow's milk consumption and allergic diseases - The potential role of bioactive whey proteins. Eur J Pharmacol 2018; 843:55-65. [PMID: 30439365 DOI: 10.1016/j.ejphar.2018.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
Abstract
The prevalence of allergic diseases has increased significantly in Western countries in the last decades. This increase is often explained by the loss of rural living conditions and associated changes in diet and lifestyle. In line with this 'hygiene hypothesis', several epidemiological studies have shown that growing up on a farm lowers the risk of developing allergic diseases. The consumption of raw, unprocessed, cow's milk seems to be one of the factors contributing to this protective effect. Recent evidence indeed shows an inverse relation between raw cow's milk consumption and the development of asthma and allergies. However, the consumption of raw milk is not recommended due to the possible contamination with pathogens. Cow's milk used for commercial purposes is therefore processed, but this milk processing is shown to abolish the allergy-protective effects of raw milk. This emphasizes the importance of understanding the components and mechanisms underlying the allergy-protective capacity of raw cow's milk. Only then, ways to produce a safe and protective milk can be developed. Since mainly heat treatment is shown to abolish the allergy-protective effects of raw cow's milk, the heat-sensitive whey protein fraction of raw milk is an often-mentioned source of the protective components. In this review, several of these whey proteins, their potential contribution to the allergy-protective effects of raw cow's milk and the consequences of heat treatment will be discussed. A better understanding of these bioactive whey proteins might eventually contribute to the development of new nutritional approaches for allergy management.
Collapse
Affiliation(s)
- Suzanne Abbring
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Gert Hols
- Danone Nutricia Research, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Danone Nutricia Research, Utrecht, the Netherlands.
| |
Collapse
|
20
|
Silva-Vilches C, Ring S, Mahnke K. ATP and Its Metabolite Adenosine as Regulators of Dendritic Cell Activity. Front Immunol 2018; 9:2581. [PMID: 30473700 PMCID: PMC6237882 DOI: 10.3389/fimmu.2018.02581] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Adenosine (Ado) is a well-studied neurotransmitter, but it also exerts profound immune regulatory functions. Ado can (i) actively be released by various cells into the tissue environment and can (ii) be produced through the degradation of extracellular ATP by the concerted action of CD39 and CD73. In this sequence of events, the ectoenzyme CD39 degrades ATP into ADP and AMP, respectively, and CD73 catalyzes the last step leading to the production of Ado. Extracellular ATP acts as a “danger” signal and stimulates immune responses, i.e. by inflammasome activation. Its degradation product Ado on the other hand acts rather anti-inflammatory, as it down regulates functions of dendritic cells (DCs) and dampens T cell activation and cytokine secretion. Thus, the balance of proinflammatory ATP and anti-inflammatory Ado that is regulated by CD39+/CD73+ immune cells, is important for decision making on whether tolerance or immunity ensues. DCs express both ectoenzymes, enabling them to produce Ado from extracellular ATP by activity of CD73 and CD39 and thus allow dampening of the proinflammatory activity of adjacent leukocytes in the tissue. On the other hand, as most DCs express at least one out of four so far known Ado receptors (AdoR), DC derived Ado can also act back onto the DCs in an autocrine manner. This leads to suppression of DC functions that are normally involved in stimulating immune responses. Moreover, ATP and Ado production thereof acts as “find me” signal that guides cellular interactions of leukocytes during immune responses. In this review we will state the means by which Ado producing DCs are able to suppress immune responses and how extracellular Ado conditions DCs for their tolerizing properties.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| |
Collapse
|
21
|
Agent-Based Modeling of Immune Response to Study the Effects of Regulatory T Cells in Type 1 Diabetes. Processes (Basel) 2018. [DOI: 10.3390/pr6090141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) have an important role in self-tolerance. Understanding the functions of Tregs is important for preventing or slowing the progress of Type 1 Diabetes. We use a two-dimensional (2D) agent-based model to simulate immune response in mice and test the effects of Tregs in tissue protection. We compared the immune response with and without Tregs, and also tested the effects of Tregs from different sources or with different functions. The results show that Tregs can inhibit the proliferation of effector T cells by inhibiting antigens presenting via dendritic cells (DCs). Although the number and function of Tregs affect the inhibition, a small number of Tregs compared to CD4+ T cells can effectively protect islets in pancreatic tissue. Finally, we added Tregs to the system in the middle phase of the immune response. The simulation results show that Tregs can inhibit the production of effector CD8+ T cells and maintain a good environment for β cell regeneration.
Collapse
|
22
|
Vendelova E, Ashour D, Blank P, Erhard F, Saliba AE, Kalinke U, Lutz MB. Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells. Front Immunol 2018. [PMID: 29541071 PMCID: PMC5835767 DOI: 10.3389/fimmu.2018.00333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host’s T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.
Collapse
Affiliation(s)
- Emilia Vendelova
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Diyaaeldin Ashour
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Patrick Blank
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Perdijk O, van Splunter M, Savelkoul HFJ, Brugman S, van Neerven RJJ. Cow's Milk and Immune Function in the Respiratory Tract: Potential Mechanisms. Front Immunol 2018; 9:143. [PMID: 29483908 PMCID: PMC5816034 DOI: 10.3389/fimmu.2018.00143] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
During the last decades, the world has witnessed a dramatic increase in allergy prevalence. Epidemiological evidence shows that growing up on a farm is a protective factor, which is partly explained by the consumption of raw cow’s milk. Indeed, recent studies show inverse associations between raw cow’s milk consumption in early life and asthma, hay fever, and rhinitis. A similar association of raw cow’s milk consumption with respiratory tract infections is recently found. In line with these findings, controlled studies in infants with milk components such as lactoferrin, milk fat globule membrane, and colostrum IgG have shown to reduce respiratory infections. However, for ethical reasons, it is not possible to conduct controlled studies with raw cow’s milk in infants, so formal proof is lacking to date. Because viral respiratory tract infections and aeroallergen exposure in children may be causally linked to the development of asthma, it is of interest to investigate whether cow’s milk components can modulate human immune function in the respiratory tract and via which mechanisms. Inhaled allergens and viruses trigger local immune responses in the upper airways in both nasal and oral lymphoid tissue. The components present in raw cow’s milk are able to promote a local microenvironment in which mucosal immune responses are modified and the epithelial barrier is enforced. In addition, such responses may also be triggered in the gut after exposure to allergens and viruses in the nasal cavity that become available in the GI tract after swallowing. However, these immune cells that come into contact with cow’s milk components in the gut must recirculate into the blood and home to the (upper and lower) respiratory tract to regulate immune responses locally. Expression of the tissue homing-associated markers α4β7 and CCR9 or CCR10 on lymphocytes can be influenced by vitamin A and vitamin D3, respectively. Since both vitamins are present in milk, we speculate that raw milk may influence homing of lymphocytes to the upper respiratory tract. This review focuses on potential mechanisms via which cow’s milk or its components can influence immune function in the intestine and the upper respiratory tract. Unraveling these complex mechanisms may contribute to the development of novel dietary approaches in allergy and asthma prevention.
Collapse
Affiliation(s)
- Olaf Perdijk
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Marloes van Splunter
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - R J Joost van Neerven
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
24
|
Leffler J, Mincham KT, Mok D, Blank F, Holt PG, Stumbles PA, Strickland DH. Functional differences in airway dendritic cells determine susceptibility to IgE-sensitization. Immunol Cell Biol 2018; 96:316-329. [PMID: 29363184 DOI: 10.1111/imcb.12005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/05/2017] [Accepted: 12/23/2017] [Indexed: 01/13/2023]
Abstract
Respiratory IgE-sensitization to innocuous antigens increases the risk for developing diseases such as allergic asthma. Dendritic cells (DC) residing in the airways orchestrate the immune response following antigen exposure and their ability to sample and present antigens to naïve T cells in airway draining lymph nodes contributes to allergen-specific IgE-sensitization. In order to characterize inhaled antigen capture and presentation by DC subtypes in vivo, we used an adjuvant-free respiratory sensitization model using two genetically distinct rat strains, one of which is naturally resistant and the other naturally susceptible to allergic sensitization. Upon multiple exposures to ovalbumin (OVA), the susceptible strain developed OVA-specific IgE and airway inflammation, whereas the resistant strain did not. Using fluorescently tagged OVA and flow cytometry, we demonstrated significant differences in antigen uptake efficiency and presentation associated with either IgE-sensitization or resistance to allergen exposures in respective strains. We further identified CD4+ conventional DC (cDC) as the subset involved in airway antigen sampling in both strains, however, CD4+ cDC in the susceptible strain were less efficient in OVA sampling and displayed increased MHC-II expression compared with the resistant strain. This was associated with generation of an exaggerated Th2 response and a deficiency of airway regulatory T cells in the susceptible strain. These data suggest that subsets of cDC are able to induce either sensitization or resistance to inhaled antigens as determined by genetic background, which may provide an underlying basis for genetically determined susceptibility to respiratory allergic sensitization and IgE production in susceptible individuals.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - Kyle T Mincham
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - Fabian Blank
- Department of Clinical Research, Respiratory Medicine, Bern University Hospital, Bern, Switzerland
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - Philip A Stumbles
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Subiaco, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Subiaco, WA, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| |
Collapse
|
25
|
Zhang R, Leeper CN, Wang X, White TA, Ulery BD. Immunomodulatory vasoactive intestinal peptide amphiphile micelles. Biomater Sci 2018; 6:1717-1722. [DOI: 10.1039/c8bm00466h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two different vasoactive intestinal peptide (VIP) amphiphiles have been formulated which readily form micelles of varying shapes. Interestingly, VIP micelle structure has been found to directly correlate to anti-inflammatory behavior providing evidence that these biomaterials can serve as a promising new therapeutic modality.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
| | | | - Xiaofei Wang
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
| | - Tommi A. White
- Department of Biochemistry
- University of Missouri
- Columbia
- USA
| | - Bret D. Ulery
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
- Department of Bioengineering
| |
Collapse
|
26
|
Lutz MB, Strobl H, Schuler G, Romani N. GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family. Front Immunol 2017; 8:1388. [PMID: 29109731 PMCID: PMC5660299 DOI: 10.3389/fimmu.2017.01388] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Nikolaus Romani
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion. PLoS One 2017; 12:e0178114. [PMID: 28759565 PMCID: PMC5536293 DOI: 10.1371/journal.pone.0178114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/07/2017] [Indexed: 12/24/2022] Open
Abstract
Immature or semi-mature dendritic cells (DCs) represent tolerogenic maturation stages that can convert naive T cells into Foxp3+ induced regulatory T cells (iTreg). Here we found that murine bone marrow-derived DCs (BM-DCs) treated with cholera toxin (CT) matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CThi, CTlo) or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β). Only DCs matured under CThi conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CTlo- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3+ iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CTlo- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE) by inducing Foxp3+ Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.
Collapse
|
28
|
The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part I: Treg properties and functions. Postepy Dermatol Alergol 2017; 34:285-294. [PMID: 28951701 PMCID: PMC5560174 DOI: 10.5114/ada.2017.69305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Treg) can be divided into two types: the natural cells (tTreg), which arise in the thymus, and the induced cells (iTreg), which are produced in peripheral tissues during immune response. The most recently published studies indicate that the supervisory functions of these cells are weakened in the pathogenesis of autoimmune and neoplastic diseases of the skin. This may be a result of the domination of other immune cells in the skin, such as Th1/Th17/Th22 and Tc1 type in psoriasis and Th2 in atopic dermatitis. The excessive activity of Treg cells can lead to immunosuppression and decrease in the number of Th1 cells, which promote the development and progression of skin cancers. In the case of cutaneous T-cell lymphomas, there are suggestions that tumor progression is associated with the acquisition of the suppressor phenotype of malignant cells. There is genetic background of Treg dysfunction in skin disorders. This article describes the types and functions of Treg cells.
Collapse
|
29
|
Döhler A, Schneider T, Eckert I, Ribechini E, Andreas N, Riemann M, Reizis B, Weih F, Lutz MB. RelB + Steady-State Migratory Dendritic Cells Control the Peripheral Pool of the Natural Foxp3 + Regulatory T Cells. Front Immunol 2017; 8:726. [PMID: 28690613 PMCID: PMC5479892 DOI: 10.3389/fimmu.2017.00726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/08/2017] [Indexed: 11/18/2022] Open
Abstract
Thymus-derived natural Foxp3+ CD4+ regulatory T cells (nTregs) play a key role in maintaining immune tolerance and preventing autoimmune disease. Several studies indicate that dendritic cells (DCs) are critically involved in the maintenance and proliferation of nTregs. However, the mechanisms how DCs manage to keep the peripheral pool at constant levels remain poorly understood. Here, we describe that the NF-κB/Rel family transcription factor RelB controls the frequencies of steady-state migratory DCs (ssmDCs) in peripheral lymph nodes and their numbers control peripheral nTreg homeostasis. DC-specific RelB depletion was investigated in CD11c-Cre × RelBfl/fl mice (RelBDCko), which showed normal frequencies of resident DCs in lymph nodes and spleen while the subsets of CD103− Langerin− dermal DCs (dDCs) and Langerhans cells but not CD103+ Langerin+ dDC of the ssmDCs in skin-draining lymph nodes were increased. Enhanced frequencies and proliferation rates were also observed for nTregs and a small population of CD4+ CD44high CD25low memory-like T cells (Tml). Interestingly, only the Tml but not DCs showed an increase in IL-2-producing capacity in lymph nodes of RelBDCko mice. Blocking of IL-2 in vivo reduced the frequency of nTregs but increased the Tml frequencies, followed by a recovery of nTregs. Taken together, by employing RelBDCko mice with increased frequencies of ssmDCs our data indicate a critical role for specific ssmDC subsets for the peripheral nTreg and IL-2+ Tml frequencies during homeostasis.
Collapse
Affiliation(s)
- Anja Döhler
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Theresa Schneider
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ina Eckert
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eliana Ribechini
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nico Andreas
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Marc Riemann
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Boris Reizis
- Department of Pathology, Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| | - Falk Weih
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Song L, Ma A, Dun H, Hu Y, Fujii Y, Kinugasa F, Oshima S, Higashi Y, Daloze P, Chen H. ASP2409, A Next-Generation CTLA4-Ig, Versus Belatacept in Renal Allograft Survival in Cynomolgus Monkeys. Am J Transplant 2017; 17:635-645. [PMID: 27598231 DOI: 10.1111/ajt.14039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/11/2016] [Accepted: 08/30/2016] [Indexed: 01/25/2023]
Abstract
Belatacept is the first costimulatory blockade agent approved for maintenance immunosuppression in kidney transplant recipients. Clinical results have indicated that belatacept is associated with superior renal function and improved metabolic profile; however, higher incidence of acute rejection and posttransplant lymphoproliferative disorder are the shortcomings of this agent. In this study, ASP2409, a new cytotoxic T-lymphocyte associated protein 4-immunoglobulin possessing 14-fold higher in vitro CD86 binding affinity than belatacept, was tested for renal allograft survival in cynomolgus monkeys. ASP2409 monotherapy dose-dependently prolonged renal allograft survival. Low-dose ASP2409 in combination with a subtherapeutic dose of tacrolimus showed much longer median survival time than monotherapy. Similar allograft survival results were observed in regimens based on high-dose ASP2409, belatacept, and therapeutic-dose tacrolimus. The results of renal allograft histopathology with high-dose ASP2409-based regimens were not inferior to the belatacept-based regimen. Moreover, higher frequencies of FoxP3-positive regulatory T cells in renal allografts were observed in ASP2409- and belatacept-based regimens compared with tacrolimus-based regimens. No serious side effects related to ASP2409 administration were found during the study. These data suggest that ASP2409 is a promising candidate for calcineurin inhibitor-sparing or -avoidance regimens.
Collapse
Affiliation(s)
- L Song
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Quebec, Canada
| | - A Ma
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Quebec, Canada
| | - H Dun
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Y Hu
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Y Fujii
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - F Kinugasa
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - S Oshima
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Y Higashi
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - P Daloze
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Quebec, Canada
| | - H Chen
- Department of Surgery, Research Center, CHUM, Notre-Dame Hospital, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Takiishi T, Cook DP, Korf H, Sebastiani G, Mancarella F, Cunha JPMCM, Wasserfall C, Casares N, Lasarte JJ, Steidler L, Rottiers P, Dotta F, Gysemans C, Mathieu C. Reversal of Diabetes in NOD Mice by Clinical-Grade Proinsulin and IL-10-Secreting Lactococcus lactis in Combination With Low-Dose Anti-CD3 Depends on the Induction of Foxp3-Positive T Cells. Diabetes 2017; 66:448-459. [PMID: 28108611 DOI: 10.2337/db15-1625] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 10/31/2016] [Indexed: 01/10/2023]
Abstract
The introduction of β-cell autoantigens via the gut through Lactococcus lactis (L. lactis) has been demonstrated to be a promising approach for diabetes reversal in NOD mice. Here we show that a combination therapy of low-dose anti-CD3 with a clinical-grade self-containing L. lactis, appropriate for human application, secreting human proinsulin and interleukin-10, cured 66% of mice with new-onset diabetes, which is comparable to therapy results with plasmid-driven L. lactis Initial blood glucose concentrations (<350 mg/dL) and insulin autoantibody positivity were predictors of the stable reversal of hyperglycemia, and decline in insulin autoantibody positivity was an immune biomarker of therapeutic outcome. The assessment of the immune changes induced by the L. lactis-based therapy revealed elevated frequencies of CD4+Foxp3+ T cells in the pancreas-draining lymph nodes, pancreas, and peripheral blood of all treated mice, independent of metabolic outcome. Neutralization of cytotoxic T-lymphocyte antigen 4 and transforming growth factor-β partially abrogated the suppressive function of therapy-induced regulatory T cells (Tregs). Ablation or functional impairment of Foxp3+ Tregs in vivo at the start or stop of therapy impaired immune tolerance, highlighting the dependence of the therapy-induced tolerance in mice with new-onset diabetes on the presence and functionality of CD4+Foxp3+ T cells. Biomarkers identified in this study can potentially be used in the future to tailor the L. lactis-based combination therapy for individual patients.
Collapse
Affiliation(s)
- Tatiana Takiishi
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dana Paulina Cook
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Guido Sebastiani
- Diabetes Unit, Department of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, University of Siena and Fondazione Umberto Di Mario ONLUS, Toscana Life Science Park, Siena, Italy
| | - Francesca Mancarella
- Diabetes Unit, Department of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, University of Siena and Fondazione Umberto Di Mario ONLUS, Toscana Life Science Park, Siena, Italy
| | | | - Clive Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | - Francesco Dotta
- Diabetes Unit, Department of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, University of Siena and Fondazione Umberto Di Mario ONLUS, Toscana Life Science Park, Siena, Italy
| | - Conny Gysemans
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Paiatto LN, Silva FGD, Bier J, Brochetto-Braga MR, Yamada ÁT, Tamashiro WMSC, Simioni PU. Oral Tolerance Induced by OVA Intake Ameliorates TNBS-Induced Colitis in Mice. PLoS One 2017; 12:e0170205. [PMID: 28099498 PMCID: PMC5242488 DOI: 10.1371/journal.pone.0170205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/01/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Literature data have shown that the consumption of dietary proteins may cause modulatory effects on the host immune system, process denominated oral tolerance by bystander suppression. It has been shown that the bystander suppression induced by dietary proteins can improve inflammatory diseases such as experimental arthritis. Here, we evaluated the effects of oral tolerance induced by ingestion of ovalbumin (OVA) on TNBS-induced colitis in mice, an experimental model for human Crohn's disease. METHODS AND RESULTS Colitis was induced in BALB/c mice by instilling a single dose of TNBS (100 mg/kg) in ethanol into the colon. Tolerized mice received OVA (4mg/mL) dissolved in the drinking water for seven consecutive days, prior to or concomitantly with the intrarectal instillation. Control groups received protein-free water and ethanol by intrarectal route. We observed that either the prior or concomitant induction of oral tolerance were able to reduce the severity of colitis as noted by recovery of body weight gain, improvement of clinical signs and reduction of histological abnormalities. The in vitro proliferation of spleen cells from tolerant colitic mice was lower than that of control mice, the same as the frequencies of CD4+ T cells secreting IL-17 and IFN-γ. The frequencies of regulatory T cells and T cells secreting IL-10 have increased significantly in mice orally treated with OVA. The levels of inflammatory cytokines (IL-17A, TNF-α, IL-6 and IFN-γ) were lower in supernatants of cells from tolerant colitic mice, whereas IL-10 levels were higher. CONCLUSION Our data show that the modulation of immune response induced by oral tolerance reduces the severity of experimental colitis. Such modulation may be partially attributed to the increase of Treg cells and reduction of pro-inflammatory cytokines in peripheral lymphoid organs of tolerant mice by bystander suppression.
Collapse
Affiliation(s)
- Lisiery N. Paiatto
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil
| | - Fernanda G. D. Silva
- Faculty of Food Engineering, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Julia Bier
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | | | - Áureo T. Yamada
- Department of Histology and Embryology, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Wirla M. S. C. Tamashiro
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Patricia U. Simioni
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, São Paulo, Brazil
- Department of Biomedical Science, Faculty of Americana, FAM, Americana, São Paulo, Brazil
| |
Collapse
|
33
|
Zerif E, Maalem A, Gaudreau S, Guindi C, Ramzan M, Véroneau S, Gris D, Stankova J, Rola-Pleszczynski M, Mourad W, Dupuis G, Amrani A. Constitutively active Stat5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. J Autoimmun 2017; 76:63-74. [DOI: 10.1016/j.jaut.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/30/2016] [Accepted: 09/04/2016] [Indexed: 12/23/2022]
|
34
|
Lutz MB. Induction of CD4(+) Regulatory and Polarized Effector/helper T Cells by Dendritic Cells. Immune Netw 2016; 16:13-25. [PMID: 26937228 PMCID: PMC4770096 DOI: 10.4110/in.2016.16.1.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4(+) T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4(+) T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4(+) T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4(+) T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3(-) regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3(+) Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
35
|
Czernek L, Chworos A, Duechler M. The Uptake of Extracellular Vesicles is Affected by the Differentiation Status of Myeloid Cells. Scand J Immunol 2016; 82:506-14. [PMID: 26332303 DOI: 10.1111/sji.12371] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/12/2015] [Indexed: 01/23/2023]
Abstract
Intercellular communication includes the exchange of various membrane vesicles including exosomes. Exosomes are intraluminal nanovesicles generated from multivesicular bodies, a late endosomal compartment. Cancer cells release exosomes that influence their proximate and distant environment to facilitate angiogenesis, metastatic dissemination and immune escape. Cancer-derived vesicles may also trigger an anti-tumour response by transferring tumour antigens to immune cells. We wanted to investigate whether differentiation and maturation of myeloid cells changes their capacity to take up cancer-derived extracellular vesicles (EV). We compared the efficiency of vesicle uptake by monocytes, macrophages and dendritic cells. To visualize and quantify the cellular uptake, EV were labelled with two different dyes, carboxyfluoresceine diacetate succinimidyl-ester (CFSE), or DSSN+, a water soluble distyrylstilbene oligoelectrolyte which preferentially intercalates into the cell membrane. With the help of cytokines, THP-1 monocytes were differentiated into immature or mature dendritic cells, or macrophages. EV uptake was monitored by flow cytometry and immunofluorescence microscopy. The results show that macrophages and mature dendritic cells acquired stronger fluorescence transferred by EV than monocytes or immature dendritic cells indicating that the differentiation status influences the efficiency of EV uptake.
Collapse
Affiliation(s)
- L Czernek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - A Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - M Duechler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
36
|
Nogueira JDS, Canto FBD, Nunes CFCG, Vianna PHO, Paiva LDS, Nóbrega A, Bellio M, Fucs R. Enhanced renewal of regulatory T cells in relation to CD4(+) conventional T lymphocytes in the peripheral compartment. Immunology 2015; 147:221-39. [PMID: 26572097 DOI: 10.1111/imm.12555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 12/16/2022] Open
Abstract
CD4(+) Foxp3(+) regulatory T (Treg) cells are necessary for the maintenance of self-tolerance and T-cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus-emigrated and resident Treg cells (either natural or post-thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4(+) Foxp3- conventional T cells (Tconv), using protocols of single or successive T-cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2(-/-)) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell-sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2(-/-) hosts. We showed that limited B-cell replenishment in the RAG2(-/-) hosts decisively contributed to the altered peripheral T-cell homeostasis. Accordingly, weekly transfers of B cells to RAG2(-/-) hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T-cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Barrozo do Canto
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Fraga Cabral Gomes Nunes
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Henrique Oliveira Vianna
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana de Souza Paiva
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Goés (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rita Fucs
- Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Raker VK, Domogalla MP, Steinbrink K. Tolerogenic Dendritic Cells for Regulatory T Cell Induction in Man. Front Immunol 2015; 6:569. [PMID: 26617604 PMCID: PMC4638142 DOI: 10.3389/fimmu.2015.00569] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are highly specialized professional antigen-presenting cells that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, the inhibition of memory T cell responses, T cell anergy, and induction of regulatory T cells (Tregs). These properties have led to the analysis of human tolerogenic DCs as a therapeutic strategy for the induction or re-establishment of tolerance. In recent years, numerous protocols for the generation of human tolerogenic DCs have been developed and their tolerogenic mechanisms, including induction of Tregs, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DCs. Therefore, the scientific rationale for the use of tolerogenic DCs therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DCs with focus on IL-10-modulated DCs as inducers of Tregs and discuss their clinical applications and challenges faced in further developing this form of immunotherapy.
Collapse
Affiliation(s)
- Verena K Raker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Matthias P Domogalla
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
38
|
Roehrich ME, Wyss JC, Kumar R, Pascual M, Golshayan D, Vassalli G. Additive effects of rapamycin and aspirin on dendritic cell allostimulatory capacity. Immunopharmacol Immunotoxicol 2015; 37:434-41. [DOI: 10.3109/08923973.2015.1081606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
TAK1 inhibition prevents the development of autoimmune diabetes in NOD mice. Sci Rep 2015; 5:14593. [PMID: 26459028 PMCID: PMC4602205 DOI: 10.1038/srep14593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 09/02/2015] [Indexed: 01/29/2023] Open
Abstract
Transforming growth factor-β activated kinase-1 (TAK1, Map3k7), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is essential in innate and adaptive immune responses. We postulated that blockade of TAK1 would affect autoimmune diabetes in non-obese diabetic (NOD) mice. Administration of 5Z-7-oxozeaenol (OZ), a TAK1 inhibitor, decreased the incidence and delayed the onset of autoimmune diabetes in both spontaneous and accelerated (cyclophosphamide-induced) experimental NOD mice. OZ also reduced insulitis, preserved islet function, increased the expression of α1- antitrypsin (AAT), and severely inhibited NF-κB and JNK/AP-1 signaling pathways in immune organs and pancreatic tissues. Importantly, TAK1 inhibition by OZ elicited a Th1 to Th2 cytokine shift, and increased TGF-β1 production in cultured T lymphocytes supernatants. Systemic TAK1 inhibition induced immature DCs with lower expressions of MHC-II and CD86, attenuated DC-mediated T cell proliferation in allogeneic MLR, and production of cytokine IL-12p70 in DCs suspensions. The results indicate that TAK1 inhibition with OZ was associated with a lower frequency of autoimmune diabetes in NOD mice. The net effect of TAK1 inhibition in NOD mice therefore appears to be protective rather than disease-enhancing. Strategies targeting TAK1 specifically in NOD mice might prove useful for the treatment of autoimmune diabetes in general.
Collapse
|
40
|
Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage. J Immunol Res 2015; 2015:856707. [PMID: 26543876 PMCID: PMC4620289 DOI: 10.1155/2015/856707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.
Collapse
|
41
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology 2015; 220:833-44. [DOI: 10.1016/j.imbio.2014.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/07/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
|
42
|
Litjens NHR, Boer K, Zuijderwijk JM, Klepper M, Peeters AMA, Prens EP, Verschoor W, Kraaijeveld R, Ozgur Z, van den Hout-van Vroonhoven MC, van IJcken WFJ, Baan CC, Betjes MGH. Allogeneic Mature Human Dendritic Cells Generate Superior Alloreactive Regulatory T Cells in the Presence of IL-15. THE JOURNAL OF IMMUNOLOGY 2015; 194:5282-93. [PMID: 25917092 DOI: 10.4049/jimmunol.1402827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
Abstract
Expansion of Ag-specific naturally occurring regulatory T cells (nTregs) is required to obtain sufficient numbers of cells for cellular immunotherapy. In this study, different allogeneic stimuli were studied for their capacity to generate functional alloantigen-specific nTregs. A highly enriched nTreg fraction (CD4(+)CD25(bright)CD127(-) T cells) was alloantigen-specific expanded using HLA-mismatched immature, mature monocyte-derived dendritic cells (moDCs), or PBMCs. The allogeneic mature moDC-expanded nTregs were fully characterized by analysis of the demethylation status within the Treg-specific demethylation region of the FOXP3 gene and the expression of both protein and mRNA of FOXP3, HELIOS, CTLA4, and cytokines. In addition, the Ag-specific suppressive capacity of these expanded nTregs was tested. Allogeneic mature moDCs and skin-derived DCs were superior in inducing nTreg expansion compared with immature moDCs or PBMCs in an HLA-DR- and CD80/CD86-dependent way. Remarkably, the presence of exogenous IL-15 without IL-2 could facilitate optimal mature moDC-induced nTreg expansion. Allogeneic mature moDC-expanded nTregs were at low ratios (<1:320), potent suppressors of alloantigen-induced proliferation without significant suppression of completely HLA-mismatched, Ag-induced proliferation. Mature moDC-expanded nTregs were highly demethylated at the Treg-specific demethylation region within the FOXP3 gene and highly expressed of FOXP3, HELIOS, and CTLA4. A minority of the expanded nTregs produced IL-10, IL-2, IFN-γ, and TNF-α, but few IL-17-producing nTregs were found. Next-generation sequencing of mRNA of moDC-expanded nTregs revealed a strong induction of Treg-associated mRNAs. Human allogeneic mature moDCs are highly efficient stimulator cells, in the presence of exogenous IL-15, for expansion of stable alloantigen-specific nTregs with superior suppressive function.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands;
| | - Karin Boer
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Joke M Zuijderwijk
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Mariska Klepper
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Annemiek M A Peeters
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Errol P Prens
- Department of Dermatology, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Rheumatology, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands; and
| | - Wenda Verschoor
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Zeliha Ozgur
- Erasmus Medical Center, Erasmus Center for Biomics, 3000 CA Rotterdam, the Netherlands
| | | | | | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
43
|
Kim YS, Sayers TJ, Colburn NH, Milner JA, Young HA. Impact of dietary components on NK and Treg cell function for cancer prevention. Mol Carcinog 2015; 54:669-78. [PMID: 25845339 DOI: 10.1002/mc.22301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023]
Abstract
An important characteristic of cancer is that the disease can overcome the surveillance of the immune system. A possible explanation for this resistance arises from the ability of tumor cells to block the tumoricidal activity of host immune cells such as natural killer (NK) cells by inducing the localized accumulation of regulatory T (Treg) cells. Evidence exists that components in commonly consumed foods including vitamins A, D, and E, water-soluble constituents of mushrooms, polyphenolics in fruits and vegetables, and n-3 fatty acids in fish oil can modulate NK cell activities, Treg cell properties, and the interactions between those two cell types. Thus, it is extremely important for cancer prevention to understand the involvement of dietary components with the early stage dynamics of interactions among these immune cells. This review addresses the potential significance of diet in supporting the function of NK cells, Treg cells, and the balance between those two cell types, which ultimately results in decreased cancer risk.
Collapse
Affiliation(s)
- Young S Kim
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Thomas J Sayers
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - Nancy H Colburn
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - John A Milner
- Human Nutrition Research Center, USDA/ARS, Beltsville, Maryland
| | - Howard A Young
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| |
Collapse
|
44
|
Bjarnadottir U, Lemarquis AL, Halldorsdottir S, Freysdottir J, Ludviksson BR. The suppressive function of human CD8(+) iTregs is inhibited by IL-1β and TNFα. Scand J Immunol 2015; 80:313-22. [PMID: 25039313 DOI: 10.1111/sji.12212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/22/2014] [Accepted: 06/25/2014] [Indexed: 12/17/2022]
Abstract
CD8(+) Tregs display an immunoregulatory activity and may play an essential role in the immunopathology of several diseases. Therefore, their therapeutic potential is exquisite and further studies on their differentiation and function are essential. The aim of this study was to evaluate the role of the innate immune system in CD8(+) iTreg differentiation and function. Naive human CD8(+) CD25(-) CD45RA(+) T cells were cultured in Treg-inducing conditions with or without IL-1β, TNFα or monocyte-derived dendritic cells (DCs). The differentiation of CD8(+) CD127(-) CD25(hi) FoxP3(hi) -induced Tregs (CD8(+) iTregs) is dependent on TGF-β1 and IL-2, which had synergistic effect upon their differentiation. CD8(+) iTregs were also induced in a coculture with allogeneic mature DCs (mDCs). The CD8(+) iTregs suppressive function was confirmed, which was diminished in the presence of IL-1β and TNFα. The IL-1β-prevented suppressive function was associated with reduced secretion of IL-10 and IFNγ, whereas the presence of TNFα did not affect their secretion. Furthermore, the presence of TNFα reduced IL-10 and TGF-β1 secretion by CD8(+) iTregs, whereas only IL-10 secretion was decreased by IL-1β. Together, these results suggest that IL-1β and TNFα prevent IL-2- and TGF-β1-driven CD8(+) iTregs suppressive function in human T cells. Such pro-inflammatory innate immune response possibly mediates its negative tolerogenic effect through reduced IFNγ-, IL-10- and TGF-β1-driven mechanism.
Collapse
Affiliation(s)
- U Bjarnadottir
- Department of Immunology, Landspitali - The National University Hospital of Iceland, Reykjavík, Iceland
| | | | | | | | | |
Collapse
|
45
|
Effects of Traditional Chinese Medicine on DCs Under Tumor Microenvironment. DENDRITIC CELLS: BIOPHYSICS, TUMOR MICROENVIRONMENT AND CHINESE TRADITIONAL MEDICINE 2015. [DOI: 10.1007/978-94-017-7405-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Pletinckx K, Vaeth M, Schneider T, Beyersdorf N, Hünig T, Berberich-Siebelt F, Lutz MB. Immature dendritic cells convert anergic nonregulatory T cells into Foxp3- IL-10+ regulatory T cells by engaging CD28 and CTLA-4. Eur J Immunol 2014; 45:480-91. [PMID: 25382658 DOI: 10.1002/eji.201444991] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022]
Abstract
Anergic T cells can survive for long time periods passively in a hyporesponsive state without obvious active functions. Thus, the immunological reason for their maintenance is unclear. Here, we induced peptide-specific anergy in T cells from mice by coculturing these cells with immature murine dendritic cells (DCs). We found that these anergic, nonsuppressive IL-10(-) Foxp3(-) CTLA-4(+) CD25(low) Egr2(+) T cells could be converted into suppressive IL-10(+) Foxp3(-) CTLA-4(+) CD25(high) Egr2(+) cells resembling type-1 Treg cells (Tr1) when stimulated a second time by immature DCs in vitro. Addition of TGF-β during anergy induction favored Foxp3(+) Treg-cell induction, while TGF-β had little effect when added to the second stimulation. Expression of both CD28 and CTLA-4 molecules on anergic T cells was required to allow their conversion into Tr1-like cells. Suppressor activity was enabled via CD28-mediated CD25 upregulation, acting as an IL-2 sink, together with a CTLA-4-mediated inhibition of NFATc1/α activation to shut down IL-2-mediated proliferation. Together, these data provide evidence and mechanistical insights into how persistent anergic T cells may serve as a resting memory pool for Tr1-like cells.
Collapse
Affiliation(s)
- Katrien Pletinckx
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Larsen SK, Ahmad SM, Idorn M, Met Ö, Martinenaite E, Svane IM, Straten PT, Andersen MH. Spontaneous presence of FOXO3-specific T cells in cancer patients. Oncoimmunology 2014; 3:e953411. [PMID: 25960934 DOI: 10.4161/21624011.2014.953411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8+ T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3 may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises a significant immunosuppressive mechanism, such that FOXO3 targeting by means of specific T cells is an attractive clinical therapy to boost anticancer immunity. In addition, the natural occurrence of FOXO3-specific CTLs in the periphery suggests that these T cells hold a function in the complex network of immune regulation in cancer patients.
Collapse
Key Words
- APC, antigen presenting cell
- CTL
- CTL, cytotoxic T lymphocyte
- CTLA4, cytotoxic T-lymphocyte associated protein 4
- DC, dendritic cell
- FOXO3
- FOXO3, forkhead box O3
- IDO, indoleamine-2,3-dioxygenase
- PBMC, peripheral blood mononuclear cell
- TADC, tumor-associated DCs
- TGFβ, tumor growth factor β
- TNFα, tumor necrosis factor α
- Tregs, regulatory T cell
- antigens
- immune regulation
- tumor-associated dendritic cells
Collapse
Affiliation(s)
- Stine Kiaer Larsen
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark ; These authors contributed equally to this work
| | - Shamaila Munir Ahmad
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark ; These authors contributed equally to this work
| | - Manja Idorn
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Özcan Met
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Evelina Martinenaite
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Per Thor Straten
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy (CCIT); Department of Hematology; Copenhagen University Hospital ; Herlev ; Herlev, Denmark
| |
Collapse
|
48
|
Zhang B, Yin Y, Lai RC, Lim SK. Immunotherapeutic potential of extracellular vesicles. Front Immunol 2014; 5:518. [PMID: 25374570 PMCID: PMC4205852 DOI: 10.3389/fimmu.2014.00518] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/04/2014] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes, the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages, and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarization to regulatory T cells, immune suppression, and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.
Collapse
Affiliation(s)
- Bin Zhang
- Exosome and Secreted Nano-vesicle Group, ASTAR Institute of Medical Biology , Singapore
| | - Yijun Yin
- Exosome and Secreted Nano-vesicle Group, ASTAR Institute of Medical Biology , Singapore
| | - Ruenn Chai Lai
- Exosome and Secreted Nano-vesicle Group, ASTAR Institute of Medical Biology , Singapore
| | - Sai Kiang Lim
- Exosome and Secreted Nano-vesicle Group, ASTAR Institute of Medical Biology , Singapore ; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
49
|
Caballé-Serrano J, Cvikl B, Bosshardt D, Buser D, Lussi A, Gruber R. Saliva Suppresses Osteoclastogenesis in Murine Bone Marrow Cultures. J Dent Res 2014; 94:192-200. [DOI: 10.1177/0022034514553977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saliva can reach mineralized surfaces in the oral cavity; however, the relationship between saliva and bone resorption is unclear. Herein, we examined whether saliva affects the process of osteoclastogenesis in vitro. We used murine bone marrow cultures to study osteoclast formation. The addition of fresh sterile saliva eliminated the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase (TRAP). In line with the histochemical staining, saliva substantially reduced gene expression of cathepsin K, calcitonin receptor, and TRAP. Addition of saliva led to considerably decreased gene expression of receptor activator of nuclear factor kappa-B (RANK) and, to a lesser extent, that of c-fms. The respective master regulators of osteoclastogenesis (c-fos and NFATc1) and the downstream cell fusion genes (DC-STAMP and Atp6v0d2) showed decreased expression after the addition of saliva. Among the costimulatory molecules for osteoclastogenesis, only OSCAR showed decreased expression. In contrast, CD40, CD80, and CD86—all costimulatory molecules of phagocytic cells—were increasingly expressed with saliva. The phagocytic capacity of the cells was confirmed by latex bead ingestion. Based on these in vitro results, it can be concluded that saliva suppresses osteoclastogenesis and leads to the development of a phagocytic cell phenotype.
Collapse
Affiliation(s)
- J. Caballé-Serrano
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - B. Cvikl
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Switzerland
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
- Department of Conservative Dentistry and Periodontology, Medical University of Vienna, Austria
| | - D.D. Bosshardt
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Switzerland
| | - D. Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland
| | - A. Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
| | - R. Gruber
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Switzerland
- Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, Switzerland
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland
| |
Collapse
|
50
|
Li H, Shi B. Tolerogenic dendritic cells and their applications in transplantation. Cell Mol Immunol 2014; 12:24-30. [PMID: 25109681 DOI: 10.1038/cmi.2014.52] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 02/08/2023] Open
Abstract
In transplantation immunology, the ultimate goal is always to successfully and specifically induce immune tolerance of allografts. Tolerogenic dendritic cells (tol-DCs) with immunoregulatory functions have attracted much attention as they play important roles in inducing and maintaining immune tolerance. Here, we focused on tol-DCs that have the potential to promote immune tolerance after solid-organ transplantation. We focus on their development and interactions with other regulatory cells, and we also explore various tol-DC engineering protocols. Harnessing tol-DCs represents a promising cellular therapy for promoting long-term graft functional survival in transplant recipients that will most likely be achieved in the future.
Collapse
|