1
|
Mishra N, Mohs M, Wittmann N, Gross S, Thompson PR, Bossaller L. PLC and PAD2 Regulate Extracellular Calcium-Triggered Release of Macrophage Extracellular DNA Traps. Eur J Immunol 2025; 55:e202350942. [PMID: 40170382 PMCID: PMC11962252 DOI: 10.1002/eji.202350942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2024] [Accepted: 01/20/2025] [Indexed: 04/03/2025]
Abstract
Macrophages can respond to infection or cellular stress by forming inflammasomes or by releasing extracellular traps (ETs) of DNA through METosis. While ETs have been extensively studied in neutrophils, there are fewer studies on METosis. We show that extracellular calcium and LPS enable human monocyte-derived macrophages (hMDM) to release extracellular DNA decorated with myeloperoxidase (MPO) and citrullinated histone, alongside ASC aggregation and IL-1ß maturation, indicating NLRP3 inflammasome activation. Compared with m-CSF differentiated macrophages only gm-CSF differentiated macrophages expressed macrophage elastase (MMP12) and METs released by the latter had significantly more bactericidal activity toward E. coli. Mechanistically, phospholipase C and peptidyl arginine deiminase-2 inhibition attenuate MET release. Interestingly, NLRP3 inflammasome blockade by MCC950 had a significant effect on MET release. Finally, MET release was completely blocked by plasma membrane stabilization by punicalagin. Altogether, we demonstrate that extracellular calcium-activated hMDM extrude DNA, containing citrullinated histones, MPO, MMP12, and ASC specks and released METs kill bacteria independent of hMDM phagocytotic activity. We believe that calcium-activated hMDM adds a physiologically relevant condition to calcium ionophore induced cell death that may be important in autoimmunity.
Collapse
Affiliation(s)
- Neha Mishra
- Section of Rheumatology, Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| | - Magdalena Mohs
- Section of Rheumatology, Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| | - Nico Wittmann
- Section of Pediatric Rheumatology, Department of Pediatric and Adolescent MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Stefan Gross
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
| | - Paul R. Thompson
- Department of Biochemistry and Molecular BiotechnologyUniversity of Massachusetts Medical SchoolWorcesterUSA
| | - Lukas Bossaller
- Section of Rheumatology, Department of Medicine AUniversity Medicine GreifswaldGreifswaldGermany
| |
Collapse
|
2
|
Varjú I, Tanka-Salamon A, Kolev K. Neutrophil Extracellular Traps: At the Interface of Thrombosis and Comorbidities. Semin Thromb Hemost 2025. [PMID: 40020757 DOI: 10.1055/a-2548-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Since their discovery in 2004, neutrophil extracellular traps (NETs) have been at the center of multidisciplinary attention. Although a key tool in neutrophil-mediated immunity, these filamentous, enzyme-enriched DNA-histone complexes can be detrimental to tissues and have been identified as an underlying factor in a range of pathological conditions. Building on more than 20 years of research into NETs, this review places thrombosis, the pathological formation of blood clots, in the spotlight. From this point of view, we discuss the structure and formation of NETs, as well as the interaction of their components with the hemostatic system, dissecting the pathways through which NETs exert their marked effect on formation and the dissolution of thrombi. We pay distinct attention to the latest developments in the research of a key player in NET formation, peptidyl-arginine-deiminase (PAD) enzymes: their types, sources, and potential cross-play with the hemostatic machinery. Besides these molecular details, we elaborate on the link between pathological thrombosis, NETs, and widespread conditions that represent a debilitating public health burden worldwide, such as sepsis and neoplasms. Finally, future implications on the treatment of thrombosis-related conditions will be discussed.
Collapse
Affiliation(s)
- Imre Varjú
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Anna Tanka-Salamon
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Krasimir Kolev
- Department of Biochemistry, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Sanapalli V, Sigalapalli DK, Shaik AB, Bhandare RR, Sanapalli BKR. Computational Elucidation of Human β-Defensin-2 as a Dual Inhibitor of MMP-9 and PKC-βII for Diabetic Wound Management. ACS OMEGA 2025; 10:3575-3584. [PMID: 39926537 PMCID: PMC11800154 DOI: 10.1021/acsomega.4c08292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025]
Abstract
Diabetic wounds (DWs) are the most devastating complication, resulting in significant mortality and morbidity in diabetic patients. Although the pathophysiology of DWs is multifaceted, evidence has revealed that prolonged inflammation with infections, extracellular matrix (ECM) degradation, and unnecessary NETosis impair DW healing. This theoretical problem highlights the necessity of developing a novel strategy focused on targeting the "specific" molecular modalities of DWs. The primary culprits, matrix metalloproteinase (MMP)-9 and protein kinase C (PKC)-βII, are responsible for impaired angiogenesis, NETosis, and ECM degradation. Thus, interest in identifying selective inhibitors for the effective management of DW has increased. The current study exemplified human β-defensin-2 (HBD-2), a biological macromolecule that functions as a dual inhibitor of MMP-9 and PKC-βII, via protein-protein docking and molecular dynamics simulation studies. Overall, the data analysis revealed that HBD-2 possesses strong binding affinity and stability against MMP-9 and PKC-βII, suggesting that HBD-2 may be an ideal therapeutic for the accelerated healing of DW. Our findings suggest HBD-2's potential as an innovative therapeutic for accelerated DW healing, offering valuable insights into its molecular mechanisms. However, in vitro and in vivo studies are required to bridge the gap between computational modeling and clinical application.
Collapse
Affiliation(s)
- Vidyasrilekha Sanapalli
- Department
of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management
Studies (NMIMS) Deemed to be University, Jadcherla, Telangana 509301, India
| | - Dilep Kumar Sigalapalli
- Department
of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Guntur, Andhra Pradesh 522213, India
| | - Afzal B. Shaik
- Department
of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical
Sciences, Vignan’s Foundation for
Science, Technology & Research, Guntur, Andhra Pradesh 522212, India
- Center for
Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Richie R. Bhandare
- Department
of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Ajman 340, UAE
- Center of
Medical and Bioallied Health Sciences Research, Ajman University, Ajman 340, UAE
| | - Bharat Kumar Reddy Sanapalli
- Department
of Pharmacology, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management
Studies (NMIMS) Deemed to be University, Jadcherla, Telangana 509301, India
| |
Collapse
|
4
|
Shen Y, Shi R, Lu S, Wang Y, Zhou Z, Wu C, You Q, Fan H, Wu J. Role of Peptidyl Arginine Deiminase 4-Dependent Macrophage Extracellular Trap Formation in Type 1 Diabetes Pathogenesis. Diabetes 2024; 73:1862-1874. [PMID: 39137121 DOI: 10.2337/db23-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Excessive formation of macrophage extracellular trap (MET) has been implicated in several autoimmune disease pathogeneses; however, its impact on type 1 diabetes (T1D) and related mechanisms remains enigmatic. We demonstrated the pivotal role of peptidyl arginine deiminase 4 (PAD4) in driving profuse MET formation and macrophage M1 polarization in intestinal inflammation in NOD mice. Genetic knockout of PAD4 or adoptive transfer of METs altered the proportion of proinflammatory T cells in the intestine, subsequently influencing their migration to the pancreas. Combining RNA sequencing and CUT&Tag analysis, we found activated PAD4 transcriptionally regulated CXCL10 expression. This study comprehensively investigated how excessive PAD4-mediated MET formation in the colon increases the aggravation of intestinal inflammation and proinflammatory T-cell migration and finally is involved in T1D progression, suggesting that inhibition of MET formation may be a potential therapeutic target in T1D. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yiming Shen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ruiya Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - ShiPing Lu
- Center for Translational Research in Infection and Inflammation, Tulane University, New Orleans, LA
| | - Yan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ziqi Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chenhua Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongye Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Perveen K, Ferrante A. Protein Kinase C Isozyme Immaturity/Deficiency in Cord Blood Monocytes and Neutrophils. Int J Mol Sci 2024; 25:11665. [PMID: 39519215 PMCID: PMC11546585 DOI: 10.3390/ijms252111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Reduced/deficient expression of Protein Kinase C (PKC)ζ in Cord blood (CB) T cells is associated with allergy development in children and a propensity to maintain an immature T-helper (Th)2 cytokine profile. In addition, other PKC isozymes are also low in CBTCs. Since previous studies have reported that cord blood/neonatal monocyte and neutrophil functions are significantly lower than cells from adults, it was of interest to see if the CBTC PKC levels were reflected in CB monocytes and neutrophils. Compared to adult blood, CB expresses low levels of PKCα, β2, ε, θ, μ, ζ and λ/ι in monocytes and PKCα, β2, η, θ, μ, ζ and λ/ι in neutrophils. The T-cell PKCζ levels were positively correlated with levels in CB monocytes but not in neutrophils. However, neither the monocytes nor the neutrophil PKCζ were associated with T-cell development towards a Th1 or Th2 cytokine propensity, based on the production of interferon-gamma and interleukin-4 in response to phytohemagglutinin and phorbol myristate acetate. The results demonstrate that some newborn babies display a deficiency in PKC isozymes in monocytes and neutrophils, as reported for T cells. However, unlike T cells, the PKCζ levels of the phagocytes did not correlate with regulation of development towards a Th1 or Th2 cytokine phenotype.
Collapse
Affiliation(s)
- Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia;
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia;
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Geng X, Wang DW, Li H. The pivotal role of neutrophil extracellular traps in cardiovascular diseases: Mechanisms and therapeutic implications. Biomed Pharmacother 2024; 179:117289. [PMID: 39151311 DOI: 10.1016/j.biopha.2024.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.
Collapse
Affiliation(s)
- Xinyu Geng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
7
|
Manoharan RR, Zachová K, Buzáš M, Pospíšil P, Křupka M, Prasad A. NADPH oxidase-dependent free radical generation and protein adduct formation in neutrophils. RSC Adv 2024; 14:24765-24780. [PMID: 39114440 PMCID: PMC11305404 DOI: 10.1039/d4ra02739f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Neutrophils mediate the early innate immune response through extracellular traps comprising intracellular protein and DNA. These traps play a pivotal role in both immunity against invading pathogens and the development of immunopathological reactions through the production of reactive oxygen species (ROS). Proteins serve as the main target for ROS, resulting in the formation of protein adducts. Herein, we report that the superoxide anion radical (O2˙-) plays a vital role in neutrophil function through sequential events involving 5-lipoxygenase (5-LOX) and NADPH oxidase (NOX). More specifically, differences in NOX homologs expression were observed post-stimulation with PMA and LPS. Differentiation conditions and O2˙- generation were confirmed using flow cytometry. Immunoblotting analysis confirmed the time-dependent expression of NOX underlying its requirement and 5-LOX-mediated lipid peroxidation events in neutrophil function. Protein-malondialdehyde (MDA) adducts formed were detected using immunoblotting, and quercetin was evaluated for its ability to scavenge free radicals through electron paramagnetic resonance (EPR) spin-trapping spectroscopy and results were confirmed with blotting analysis. Free radical-mediated protein oxidation events influence neutrophil function and protein adducts formed serve as markers of neutrophil activation upon infection and inflammation. The study warrants further corroboration and the study of specific proteins involved in neutrophil activation and their role in inflammation.
Collapse
Affiliation(s)
- Renuka Ramalingam Manoharan
- Department of Biophysics, Faculty of Science, Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic +420 585225737 +420 585634752
| | - Kateřina Zachová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Marek Buzáš
- Department of Biophysics, Faculty of Science, Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic +420 585225737 +420 585634752
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic +420 585225737 +420 585634752
| | - Michal Křupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic +420 585225737 +420 585634752
| |
Collapse
|
8
|
Ma Y, Wei J, He W, Ren J. Neutrophil extracellular traps in cancer. MedComm (Beijing) 2024; 5:e647. [PMID: 39015554 PMCID: PMC11247337 DOI: 10.1002/mco2.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Neutrophil extracellular traps (NETs), which consist of chromatin DNA studded with granule proteins, are released by neutrophils in response to both infectious and sterile inflammation. Beyond the canonical role in defense against pathogens, the extrusion of NETs also contributes to the initiation, metastasis, and therapeutic response of malignant diseases. Recently, NETs have been implicated in the development and therapeutic responses of various types of tumors. Although extensive work regarding inflammation in tumors has been reported, a comprehensive summary of how these web-like extracellular structures initiate and propagate tumor progression under the specific microenvironment is lacking. In this review, we demonstrate the initiators and related signaling pathways that trigger NETs formation in cancers. Additionally, this review will outline the current molecular mechanisms and regulatory networks of NETs during dormant cancer cells awakening, circulating tumor cells (CTCs) extravasation, and metastatic recurrence of cancer. This is followed by a perspective on the current and potential clinical potential of NETs as therapeutic targets in the treatment of both local and metastatic disease, including the improvement of the efficacy of existing therapies.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Jielin Wei
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| | - Wenshan He
- Department of Breast and Thyroid SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinghua Ren
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
| |
Collapse
|
9
|
Main EN, Huang JC, Bowlin GL. Methyl Syringate: A Primary Driving Factor in Manuka Honeys Ability to Ameliorate Neutrophil Intracellular ROS Activity and NETosis. FRONT BIOSCI-LANDMRK 2024; 29:255. [PMID: 39082351 PMCID: PMC11973827 DOI: 10.31083/j.fbl2907255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Neutrophils use both the production of reactive oxygen species (ROS) and a specialized process called NETosis to defend the body from material deemed foreign. While these neutrophil behaviors are critical in preventing infection, a dysregulated response can lead to tissue damage and fibrosis at host-biomaterial interfaces. It was hypothesized that applying the flavonoids found in Manuka honey: chrysin, pinocembrin, and pinobanksin, and the phenolic compound methyl syringate to neutrophils exhibiting pro-inflammatory behavior will reduce ROS activity and prevent NETosis in primary human neutrophils. METHODS Using primary human neutrophils isolated from donor (n = 5) peripheral blood, concentrations between 1 nM and 10 µM of each flavonoid, 10 µM and 2 mM of methyl syringate, 0.1% v/v and 10% v/v Manuka honey, and combinations of both 1 nM-10 µM of each flavonoid and 10 µM-2 mM of methyl syringate were assayed for reductions in NETosis using Sytox orange extracellular DNA staining and reduction in intracellular ROS activity via standard dichloro-dihydro-fluorescein diacetate (DCFH-DA) oxidation assay. RESULTS Compared to positive control levels, individual flavonoids showed moderate effect sizes. Higher concentrations of flavonoids, especially in combination, stimulated ROS activity by up to 105%. Whole Manuka honey reduced neutrophil extracellular trap (NET) levels by up to 91% but only reduced ROS activity by 36%. However, methyl syringate reduced NET levels by up to 68% and ROS activity by 66%. CONCLUSIONS Methyl syringate and whole Manuka honey are potent inhibitors of neutrophil intracellular ROS activity and NET formation. Methyl syringate potentially drives the anti-inflammatory capabilities of Manuka honey demonstrated by previous studies.
Collapse
Affiliation(s)
- Evan N. Main
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - James C. Huang
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Gary L. Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
10
|
Kim TS, Moutsopoulos NM. Neutrophils and neutrophil extracellular traps in oral health and disease. Exp Mol Med 2024; 56:1055-1065. [PMID: 38689085 PMCID: PMC11148164 DOI: 10.1038/s12276-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
Zhang L, Hu Z, Yang L, Liu T, Xun J, Zhang Q, Wang X, Gao H, Jin Z. Saikosaponin a promotes neutrophil extracellular trap formation and bactericidal activity. Nat Prod Res 2024:1-8. [PMID: 38635418 DOI: 10.1080/14786419.2024.2343918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to investigate the effects of SSa, one of the major triterpenoid saponins extracted from Radix bupleuri, on neutrophil extracellular trap (NET) formation and the mechanism associated with this process. Using Sytox green and immunofluorescence assays, we found SSa rapidly induced NET formation, which depended on NADPH oxidase (NOX)-independent ROS production and autophagy. Pharmacologic inhibitor studies indicated that ERK and PI3K/AKT signalling were also required for SSa-induced NET formation, whereas protein arginine deiminase 4 (PAD4) was not required. Furthermore, we found that SSa promoted neutrophil bactericidal activity mainly through NET formation. Based on flow cytometry and the Cell Counting Kit-8 (CCK-8) assays, the results demonstrated that SSa-induced NET formation occurred without neutrophil death. Taken together, these findings indicated that SSa could be a potential natural product to boost innate immune defense against pathogen attack via NET formation.
Collapse
Affiliation(s)
- Lanqiu Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Zhengwei Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jing Xun
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Haihe Hospital, Tianjin University, Tianjin, China
| | - Hejun Gao
- Department of Anesthesiology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhongkui Jin
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Ibrahim N, Eilenberg W, Neumayer C, Brostjan C. Neutrophil Extracellular Traps in Cardiovascular and Aortic Disease: A Narrative Review on Molecular Mechanisms and Therapeutic Targeting. Int J Mol Sci 2024; 25:3983. [PMID: 38612791 PMCID: PMC11012109 DOI: 10.3390/ijms25073983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, are released by neutrophils in response to pathogens but are also recognized for their involvement in a range of pathological processes, including autoimmune diseases, cancer, and cardiovascular diseases. This review explores the intricate roles of NETs in different cardiovascular conditions such as thrombosis, atherosclerosis, myocardial infarction, COVID-19, and particularly in the pathogenesis of abdominal aortic aneurysms. We elucidate the mechanisms underlying NET formation and function, provide a foundational understanding of their biological significance, and highlight the contribution of NETs to inflammation, thrombosis, and tissue remodeling in vascular disease. Therapeutic strategies for preventing NET release are compared with approaches targeting components of formed NETs in cardiovascular disease. Current limitations and potential avenues for clinical translation of anti-NET treatments are discussed.
Collapse
Affiliation(s)
| | | | | | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, 1090 Vienna, Austria; (N.I.); (W.E.); (C.N.)
| |
Collapse
|
13
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
14
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
15
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
16
|
Pan T, Lee JW. A crucial role of neutrophil extracellular traps in pulmonary infectious diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:34-41. [PMID: 39170960 PMCID: PMC11332830 DOI: 10.1016/j.pccm.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 08/23/2024]
Abstract
Neutrophil extracellular traps (NETs), extrusions of intracellular DNA with attached granular material that exert an antibacterial effect through entangling, isolating, and immobilizing microorganisms, have been extensively studied in recent decades. The primary role of NETs is to entrap and facilitate the killing of bacteria, fungi, viruses, and parasites, preventing bacterial and fungal dissemination. NET formation has been described in many pulmonary diseases, including both infectious and non-infectious. NETs are considered a double-edged sword. As innate immune cells, neutrophils release NETs to kill pathogens and remove cellular debris. However, the deleterious effects of excessive NET release in lung disease are particularly important because NETs and by-products of NETosis can directly induce epithelial and endothelial cell death while simultaneously inducing inflammatory cytokine secretion and immune-mediated thrombosis. Thus, NET formation must be tightly regulated to preserve the anti-microbial capability of NETs while minimizing damage to the host. In this review, we summarized the recent updates on the mechanism of NETs formation and pathophysiology associated with excessive NETs, aiming to provide insights for research and treatment of pulmonary infectious diseases.
Collapse
Affiliation(s)
- Ting Pan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jae Woo Lee
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA 90230, USA
| |
Collapse
|
17
|
Zhang Y, Chen K, Wang M, Wang Z, Wang D, Niu J, Yang E, Li Y, Sun Y, Zhao P, Liu W, Lv Y, Hu X. Activated PRKCD-mediated neutrophil extracellular traps pathway may be the prothrombotic mechanism of neutrophils in polycythemia vera patients based on clinical retrospective analysis and bioinformatics study. Int Immunopharmacol 2024; 127:111366. [PMID: 38128308 DOI: 10.1016/j.intimp.2023.111366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Thrombosis is a major cause of morbimortality in patients with polycythemia vera (PV). Furthermore, neutrophils play a significant role in thrombosis, but their role in the pathogenetic mechanisms of PV is not well characterized. Therefore, we investigated the role and mechanisms by which neutrophils regulate thrombosis in PV patients. Univariate and multivariate logistic regression analysis of clinicopathological factors was performed to determine the independent risk factors of thrombosis in PV. Pearson's correlation analysis was performed to determine the relationship between absolute neutrophil count (ANC) and the hypercoagulable state in PV patients. Bioinformatics analysis of the GSE54644 dataset was used to identify hemostasis-related pathways in neutrophils of PV patients. Weighted gene co-expression network analysis (WGCNA) of the integrated dataset (GSE57793, GSE26049 and GSE61629) was used to identify neutrophils-related genes and pathways associated with thrombosis in PV. Ingenuity pathway analysis (IPA) was performed to identify the differentially activated pathways in PV patients with or without thrombosis using GSE47018 dataset. Our data showed increased ANC in PV patients. Multivariate logistic regression analysis showed that ANC was an independent risk factor for the thrombotic events in PV patients before or at diagnosis. ANC correlated with the hypercoagulable state in PV patients. Neutrophil extracellular traps (NETs) pathway was significantly enriched in the neutrophils of PV patients. IPA results demonstrated that PRKCD-mediated NETs pathway was hyperactivated in PV patients with thrombosis. In summary, ANC was an independent risk factor for the thrombotic events in PV patients before or at diagnosis, and PRKCD-mediated NETs pathway was aberrantly activated in the neutrophils of PV patients and was associated with the thrombotic events.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Chen
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjing Wang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziqing Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Dehao Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jicong Niu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Erpeng Yang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yumeng Li
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Pei Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weiyi Liu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Lv
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaomei Hu
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
18
|
Ishqi HM, Ali M, Dawra R. Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Clin Exp Med 2023; 23:4107-4122. [PMID: 37725239 DOI: 10.1007/s10238-023-01180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Pancreatitis is an inflammatory disease, which is triggered by adverse events in acinar cells of the pancreas. After the initial injury, infiltration of neutrophils in pancreas is observed. In the initial stages of pancreatitis, the inflammation is sterile. It has been shown that the presence of neutrophils at the injury site can modulate the disease. Their depletion in experimental animal models of the acute pancreatitis has been shown to be protective. But information on mechanism of contribution to inflammation by neutrophils at the injury site is not clear. Once at injury site, activated neutrophils release azurophilic granules containing proteolytic enzymes and generate hypochlorous acid which is a strong microbicidal agent. Additionally, emerging evidence shows that neutrophil extracellular traps (NETs) are formed which consist of decondensed DNA decorated with histones, proteases and granular and cytosolic proteins. NETs are considered mechanical traps for microbes, but there is preliminary evidence to indicate that NETs, which constitute a special mechanism of the neutrophil defence system, play an adverse role in pancreatitis by contributing to the pancreatic inflammation and distant organ injury. This review presents the overall current information about neutrophils and their role including NETs in acute pancreatitis (AP). It also highlights current gaps in knowledge which should be explored to fully elucidate the role of neutrophils in AP and for therapeutic gains.
Collapse
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Misha Ali
- Department of Radiation Oncology and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
19
|
Unger L, Skoluda S, Backman E, Amulic B, Ponce‐Garcia FM, Etiaba CNC, Yellagunda S, Krüger R, von Bernuth H, Bylund J, Hube B, Naglik JR, Urban CF. Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin. EMBO Rep 2023; 24:e57571. [PMID: 37795769 PMCID: PMC10626426 DOI: 10.15252/embr.202357571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
The peptide toxin candidalysin, secreted by Candida albicans hyphae, promotes stimulation of neutrophil extracellular traps (NETs). However, candidalysin alone triggers a distinct mechanism for NET-like structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin activates NADPH oxidase and calcium influx, with both processes contributing to morphological changes in neutrophils resulting in NLS formation. NLS are induced by leucotoxic hypercitrullination, which is governed by calcium-induced protein arginine deaminase 4 activation and initiation of intracellular signalling events in a dose- and time-dependent manner. However, activation of signalling by candidalysin does not suffice to trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET release. Candidalysin-triggered NLS demonstrate anti-Candida activity, which is resistant to nuclease treatment and dependent on the deprivation of Zn2+ . This study reveals that C. albicans hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together form a fibrous sticky network that entangles C. albicans hyphae and efficiently inhibits their growth.
Collapse
Affiliation(s)
- Lucas Unger
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Samuel Skoluda
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Emelie Backman
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Borko Amulic
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | | | - Chinelo NC Etiaba
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | - Sujan Yellagunda
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care MedicineCharité – Universitätsmedizin BerlinBerlinGermany
- Department of ImmunologyLabor Berlin Labor Berlin – Charité Vivantes GmbHBerlinGermany
- Berlin Institute of Health at Charité – Universitätsmedizin BerlinBerlinGermany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health (BIH)Berlin‐Brandenburg Center for Regenerative Therapies (BCRT)BerlinGermany
| | - Johan Bylund
- Department of Oral Microbiology & Immunology, Institute of OdontologySahlgrenska Academy at University of GothenburgGothenburgSweden
| | - Bernhard Hube
- Department of Microbial Pathogenicity MechanismsLeibniz Institute for Natural Product Research and Infection Biology ‐ Hans‐Knoell‐InstituteJenaGermany
- Friedrich Schiller UniversityJenaGermany
| | - Julian R Naglik
- Centre for Host‐Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - Constantin F Urban
- Department of Clinical MicrobiologyUmeå UniversityUmeåSweden
- Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
| |
Collapse
|
20
|
Liu Y, Ma YH, Yang JW, Man JW, Wang HB, Li Y, Liang C, Cao JL, Chen SY, Li KP, Yang L. Rethinking neutrophil extracellular traps. Int Immunopharmacol 2023; 124:110834. [PMID: 37625368 DOI: 10.1016/j.intimp.2023.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Neutrophils are a major subset of leukocytes in human circulating blood. In some circumstances, neutrophils release neutrophil extracellular traps (NETs). lnitially, NETs were considered to have a strong antibacterial capacity. However, currently, NETs have been shown to have a pivotal impact on various diseases. Different stimulators induce the production of different types of NETs, and their biological functions and modes of clearance do not appear to be the same. In this review, we will discuss several important issues related to NETs in order to better understand the relationship between NETs and diseases, as well as how to utilize the characteristics of NETs for disease treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Yu-Hua Ma
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jian-Wei Yang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jiang-Wei Man
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Hua-Bin Wang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Yi Li
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Cheng Liang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China.
| |
Collapse
|
21
|
Kurano M, Uranbileg B, Yatomi Y. Apolipoprotein M bound sphingosine 1-phosphate suppresses NETosis through activating S1P1 and S1P4. Biomed Pharmacother 2023; 166:115400. [PMID: 37657263 DOI: 10.1016/j.biopha.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
The pleiotropic effects of high-density lipoprotein (HDL), including its protective properties against sepsis, are attributed to the sphingosine 1-phosphate and apolipoprotein M (ApoM) that are carried on the lipoproteins. In this study, we attempted to elucidate the possible mechanisms underlying the sepsis coagulopathic state by considering the modulation of NETosis. Our results revealed that in a lipopolysaccharide-induced sepsis mouse model, the levels of NETosis markers, such as plasma DNA and histone, were elevated in ApoM-knockout (KO) mice and attenuated in ApoM-overexpressing mice. In ApoM-KO mice, the survival rate decreased and the occurrence rates of coagulopathy and organ injury increased following the administration of histone. Treatment with a conditioned medium of ApoM-overexpressing cells attenuated the observed NETosis in HL-60S cells that differentiated into neutrophils and were inhibited through the suppression of S1P1 or S1P4. The attenuation of PKCδ and PKCα/β by S1P1 and S1P4 activation may also be involved. In ApoM-overexpressing mice, coagulopathy and organ injuries were attenuated following an injection of histone; these effects were partially inhibited by S1P1, 3, S1P4, or S1P1 antagonists. Furthermore, the exogenous administration of ApoM protected ApoM-KO mice that were challenged with histone from developing NETosis. In conclusion, the ApoM/S1P axis protects against NETosis through the attenuation of PKC activation by S1P1 and S1P4. The development of drugs targeting the ApoM/S1P axis may be beneficial for the treatment of pathological conditions involving uncontrolled NETosis, such as sepsis.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Sergunova V, Inozemtsev V, Vorobjeva N, Kozlova E, Sherstyukova E, Lyapunova S, Chernysh A. Morphology of Neutrophils during Their Activation and NETosis: Atomic Force Microscopy Study. Cells 2023; 12:2199. [PMID: 37681931 PMCID: PMC10486724 DOI: 10.3390/cells12172199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Confocal microscopy and fluorescence staining of cellular structures are commonly used to study neutrophil activation and NETosis. However, they do not reveal the specific characteristics of the neutrophil membrane surface, its nanostructure, and morphology. The aim of this study was to reveal the topography and nanosurface characteristics of neutrophils during activation and NETosis using atomic force microscopy (AFM). We showed the main stages of neutrophil activation and NETosis, which include control cell spreading, cell fragment formation, fusion of nuclear segments, membrane disruption, release of neutrophil extracellular traps (NETs), and final cell disintegration. Changes in neutrophil membrane nanosurface parameters during activation and NETosis were quantified. It was shown that with increasing activation time there was a decrease in the spectral intensity of the spatial periods. Exposure to the activator A23187 resulted in an increase in the number and average size of cell fragments over time. Exposure to the activators A23187 and PMA (phorbol 12-myristate 13-acetate) caused the same pattern of cell transformation from spherical cells with segmented nuclei to disrupted cells with NET release. A23187 induced NETosis earlier than PMA, but PMA resulted in more cells with NETosis at the end of the specified time interval (180 min). In our study, we used AFM as the main research tool. Confocal laser-scanning microscopy (CLSM) images are provided for identification and detailed analysis of the phenomena studied. In this way, we exploited the advantages of both techniques.
Collapse
Affiliation(s)
- Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nina Vorobjeva
- Department of Immunology, Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Elena Kozlova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
- Department of Medical and Biological Physics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Snezhanna Lyapunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| | - Aleksandr Chernysh
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (V.I.); (E.K.); (E.S.); (S.L.); (A.C.)
| |
Collapse
|
23
|
Zhang Z, Niu R, Zhao L, Wang Y, Liu G. Mechanisms of Neutrophil Extracellular Trap Formation and Regulation in Cancers. Int J Mol Sci 2023; 24:10265. [PMID: 37373412 DOI: 10.3390/ijms241210265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
As one of the most important components of the innate immune system, neutrophils are always at the forefront of the response to diseases. The immune functions of neutrophils include phagocytosis, degranulation, production of reactive oxygen species, and the production of neutrophil extracellular traps (NETs). NETs are composed of deconcentrated chromatin DNA, histones, myeloperoxidase (MPO) and neutrophil elastase (NE), playing an important role in the resistance to some pathogenic microbial invasions. Until recent years, when NETs were found to play a critical role in cancer. NETs play bidirectional regulation both positive and negative roles in the development and progression of cancer. Targeted NETs may provide new therapeutic strategies for the treatment of cancer. However, the molecular and cellular regulatory mechanisms underlying the formation and role of NET in cancer remain unclear. This review just summarizes the recent progress in regulatory mechanisms about the formation of NETs and their role in cancers.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yufei Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Wang H, Liu X, Jia Z, Liu L, Qi Y, Zhou Q, Xu F, Zhang Y. Mapping current status and emerging trends in NETosis: A bibliometric study. Medicine (Baltimore) 2023; 102:e33806. [PMID: 37233403 PMCID: PMC10219726 DOI: 10.1097/md.0000000000033806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND NETosis is a critical innate immune mechanism of neutrophils that contributes to the accelerated progression of autoimmune diseases, thrombosis, cancer, and coronavirus disease 2019 (COVID-19). This study qualitatively and quantitatively analyzed the relevant literature by bibliometric methods in order to provide a more comprehensive and objective view of the knowledge dynamics in the field. METHODS The literature on NETosis was downloaded from the Web of Science Core Collection, analyzed with VOSviewer, CiteSpace, and Microsoft for co-authorship, co-occurrence, and co-citation analysis. RESULTS In the field of NETosis, the United States was the most influential countries. Harvard University was the most active institutions. Mariana J. Kaplan and Brinkmann V were, respectively, the most prolific and most co-cited authors. Frontiers in Immunology, Journal of Immunology, Plos One, Blood, Science, Journal of Cell Biology, and Nature Medicine were the most influential journals. The top 15 keywords are associated with immunological and NETosis formation mechanisms. The keywords with the strongest burst detection were mainly related to COVID-19 (coronavirus, ACE2, SARS coronavirus, cytokine storm, pneumonia, neutrophil to lymphocyte ratio), and cancer (circulating tumor cell). CONCLUSION Research on NETosis is currently booming. The mechanism of NETosis and its role in innate immunity, autoimmune diseases, especially systemic lupus erythematosus and rheumatoid arthritis, and thrombosis are the focus of research in the field of NETosis. A future study will concentrate on the function of NETosis in COVID-19 and recurrent metastasis of cancer.
Collapse
Affiliation(s)
- Hongqin Wang
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Liu
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zijun Jia
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Li Liu
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Qi
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingbing Zhou
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Abstract
Neutrophils or polymorphonuclear neutrophils (PMNs) are an important component of innate host defense. These phagocytic leukocytes are recruited to infected tissues and kill invading microbes. There are several general characteristics of neutrophils that make them highly effective as antimicrobial cells. First, there is tremendous daily production and turnover of granulocytes in healthy adults-typically 1011 per day. The vast majority (~95%) of these cells are neutrophils. In addition, neutrophils are mobilized rapidly in response to chemotactic factors and are among the first leukocytes recruited to infected tissues. Most notably, neutrophils contain and/or produce an abundance of antimicrobial molecules. Many of these antimicrobial molecules are toxic to host cells and can destroy host tissues. Thus, neutrophil activation and turnover are highly regulated processes. To that end, aged neutrophils undergo apoptosis constitutively, a process that contains antimicrobial function and proinflammatory capacity. Importantly, apoptosis facilitates nonphlogistic turnover of neutrophils and removal by macrophages. This homeostatic process is altered by interaction with microbes and their products, as well as host proinflammatory molecules. Microbial pathogens can delay neutrophil apoptosis, accelerate apoptosis following phagocytosis, or cause neutrophil cytolysis. Here, we review these processes and provide perspective on recent studies that have potential to impact this paradigm.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mark T Quinn
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
26
|
Putative Role of Neutrophil Extracellular Trap Formation in Chronic Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:ijms24054497. [PMID: 36901933 PMCID: PMC10003516 DOI: 10.3390/ijms24054497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematologic malignancies characterized by gene mutations that promote myeloproliferation and resistance to apoptosis via constitutively active signaling pathways, with Janus kinase 2-signal transducers and the activators of transcription (JAK-STAT) axis as a core part. Chronic inflammation has been described as a pivot for the development and advancement of MPNs from early stage cancer to pronounced bone marrow fibrosis, but there are still unresolved questions regarding this issue. The MPN neutrophils are characterized by upregulation of JAK target genes, they are in a state of activation and with deregulated apoptotic machinery. Deregulated neutrophil apoptotic cell death supports inflammation and steers them towards secondary necrosis or neutrophil extracellular trap (NET) formation, a trigger of inflammation both ways. NETs in proinflammatory bone marrow microenvironment induce hematopoietic precursor proliferation, which has an impact on hematopoietic disorders. In MPNs, neutrophils are primed for NET formation, and even though it seems obvious for NETs to intervene in the disease progression by supporting inflammation, no reliable data are available. We discuss in this review the potential pathophysiological relevance of NET formation in MPNs, with the intention of contributing to a better understanding of how neutrophils and neutrophil clonality can orchestrate the evolution of a pathological microenvironment in MPNs.
Collapse
|
27
|
van der Linden M, Kumari S, Montizaan D, van Dalen S, Kip A, Foster M, Reinieren-Beeren I, Neubert E, Erpenbeck L, Waaijenberg K, Bruurmijn T, Te Poele R, van Zandvoort P, Vink P, Meldrum E, van Es H, Chirivi RGS. Anti-citrullinated histone monoclonal antibody CIT-013, a dual action therapeutic for neutrophil extracellular trap-associated autoimmune diseases. MAbs 2023; 15:2281763. [PMID: 38031350 DOI: 10.1080/19420862.2023.2281763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) contribute to the pathophysiology of multiple inflammatory and autoimmune diseases. Targeting the NETosis pathway has demonstrated significant therapeutic potency in various disease models. Here, we describe a first-in-class monoclonal antibody (CIT-013) with high affinity for citrullinated histones H2A and H4, which inhibits NETosis and reduces tissue NET burden in vivo with significant anti-inflammatory consequences. We provide a detailed understanding of the epitope selectivity of CIT-013. Detection of CIT-013 epitopes in rheumatoid arthritis (RA) synovium provides evidence that RA is an autoimmune disease with excessive citrullinated NETs that can be targeted by CIT-013. We show that CIT-013 acts upon the final stage of NETosis, binding to its chromatin epitopes when plasma membrane integrity is compromised to prevent NET release. Bivalency of CIT-013 is necessary for NETosis inhibition. In addition, we show that CIT-013 binding to NETs and netting neutrophils enhance their phagocytosis by macrophages in an Fc-dependent manner. This is confirmed using a murine neutrophilic airway inflammation model where a mouse variant of CIT-013 reduced tissue NET burden with significant anti-inflammatory consequences. CIT-013's therapeutic activity provides new insights for the development of NET antagonists and indicates the importance of a new emerging therapy for NET-driven diseases with unmet therapeutic needs.
Collapse
Affiliation(s)
| | | | | | | | - Annemarie Kip
- Research and Development, Citryll B.V, Oss, The Netherlands
| | - Martyn Foster
- Pathology, Experimental Pathology Consultancy, Benfleet, Essex, UK
| | | | - Elsa Neubert
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, Göttingen, Germany
- Department of General Dermatology and Venereology, Clinic of Skin Diseases, University Medical Center Münster, Münster, Germany
| | | | | | - Rezie Te Poele
- Research and Development, Citryll B.V, Oss, The Netherlands
| | | | - Paul Vink
- Research and Development, Citryll B.V, Oss, The Netherlands
| | - Eric Meldrum
- Research and Development, Citryll B.V, Oss, The Netherlands
| | - Helmuth van Es
- Research and Development, Citryll B.V, Oss, The Netherlands
| | | |
Collapse
|
28
|
Vorobjeva N, Dagil Y, Pashenkov M, Pinegin B, Chernyak B. Protein kinase C isoforms mediate the formation of neutrophil extracellular traps. Int Immunopharmacol 2023; 114:109448. [PMID: 36436472 DOI: 10.1016/j.intimp.2022.109448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Neutrophils release extracellular traps (NETs) in response to numerous pathogenic microbes as the last suicidal resource (NETosis) in the fight against infection. Apart from the host defense function, NETs play an essential role in the pathogenesis of various autoimmune, inflammatory and malignant diseases. Therefore, understanding the molecular mechanisms of NETosis is important for regulating the aberrant or excessive NET release. Protein kinase C (PKC) is a serine/threonine kinase which is involved in various neutrophil functions, however, little is known about its implication in NETosis activated by various physiological and pharmacological stimuli. Since there are conventional, novel and atypical PKC isoforms (α, βI, βII, δ, and ζ) found in human neutrophils, we investigated their impact in NETosis, oxidative burst and spreading applying pharmacological approach. Using specific inhibitors of PKC isoforms, we showed that PKCβ, PKCδ, and PKCζ are involved in the oxidative burst, spreading and NETosis activated by calcium ionophore A23187, while only PKCβ is implicated in these functions activated by phorbol 12-myristate 13-acetate (PMA). The data obtained in our study might help in the development of new drugs useful for the treatment of autoimmune and inflammatory diseases associated with NETs.
Collapse
Affiliation(s)
- Nina Vorobjeva
- Dept. Immunology, Biology Faculty, Lomonosov Moscow State University, 119192 Moscow, Russia.
| | | | - Mikhail Pashenkov
- National Research Center Institute of Immunology of the Federal Medical-Biological Agency, Kashirskoe shosse 24, 115522 Moscow, Russia
| | - Boris Pinegin
- National Research Center Institute of Immunology of the Federal Medical-Biological Agency, Kashirskoe shosse 24, 115522 Moscow, Russia
| | - Boris Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
29
|
Fidan K, Koçak S, Söylemezoğlu O, Atak Yücel A, Atak Yucel A. A Well-Intentioned Enemy in Autoimmune and Autoinflammatory Diseases: NETosis. Turk Arch Pediatr 2023; 58:10-19. [PMID: 36598206 PMCID: PMC9885828 DOI: 10.5152/turkarchpediatr.2022.22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neutrophils are an essential member of the innate immune system derived from the myeloid stem cell series and develop in the bone marrow. The action of neutrophils defined in immune response includes phagocytosis, degranulation, cytokine production, and neutrophil extracellular traps. The success of the host immune defense depends on effective neutrophil activation. Recent studies have shown that neutrophils that have completed their task in the field of inflammation rejoin circulation. Uncontrolled inflammatory response and dysregulated immune responses to the host are important factors in the development of acute and chronic diseases. Neutrophils are the first cells to be drawn into the field at the time of inflammation. They have developed response strategies that produce proinflammatory cytokines and are known as neutrophil extracellular traps since they create mesh-like structures with their DNA contents into the external environment and release their granular proteins in this way. This article summarizes numerous recent studies and reviews the role of neutrophil extracellular traps in autoimmune and autoinflammatory diseases in the hope, that this will lead to the development of more effective treatments. In addition, in this review, the role of neutrophil extracellular trap formation in some pediatric autoimmune diseases is emphasized.
Collapse
Affiliation(s)
- Kibriya Fidan
- Department of Pediatric Nephrology, Gazi University, Faculty of Medicine, Ankara, Turkey,Corresponding author:Kibriya Fidan✉
| | - Senem Koçak
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Oğuz Söylemezoğlu
- Department of Pediatric Nephrology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Ayşegül Atak Yücel
- Department of Immunology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | | | | | | | | |
Collapse
|
30
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Zhu D, Lu Y, Wang Y, Wang Y. PAD4 and Its Inhibitors in Cancer Progression and Prognosis. Pharmaceutics 2022; 14:2414. [PMID: 36365233 PMCID: PMC9699117 DOI: 10.3390/pharmaceutics14112414] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 07/24/2023] Open
Abstract
The systemic spread of malignancies and the risk of cancer-associated thrombosis are major clinical challenges in cancer therapy worldwide. As an important post-translational modification enzyme, peptidyl arginine deiminase 4 (PAD4) could mediate the citrullination of protein in different components (including nucleus and cytoplasm, etc.) of a variety of cells (tumor cells, neutrophils, macrophages, etc.), thus participating in gene regulation, neutrophil extracellular trap (NET) and macrophage extracellular trap (MET). Thereby, PAD4 plays an important role in enhancing the growth of primary tumors and facilitating the distant metastasis of cancer cells. In addition, it is related to the formation of cancer-associated thrombosis. Therefore, the development of PAD4-specific inhibitors may be a promising strategy for treating cancer, and it may improve patient prognosis. In this review, we describe PAD4 involvement in gene regulation, protein citrullination, and NET formation. We also discuss its potential role in cancer and cancer-associated thrombosis, and we summarize the development and application of PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
32
|
Thompson-Souza GA, Vasconcelos CRI, Neves JS. Eosinophils: Focus on DNA extracellular traps. Life Sci 2022; 311:121191. [DOI: 10.1016/j.lfs.2022.121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
33
|
Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res 2022; 118:2737-2753. [PMID: 34648022 PMCID: PMC9586562 DOI: 10.1093/cvr/cvab329] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
At the frontline of the host defence response, neutrophil antimicrobial functions have adapted to combat infections and injuries of different origins and magnitude. The release of web-like DNA structures named neutrophil extracellular traps (NETs) constitutes an important mechanism by which neutrophils prevent pathogen dissemination or deal with microorganisms of a bigger size. At the same time, nuclear and granule proteins with microbicidal activity bind to these DNA structures promoting the elimination of entrapped pathogens. However, these toxic properties may produce unwanted effects in the host, when neutrophils uncontrollably release NETs upon persistent inflammation. As a consequence, NET accumulation can produce vessel occlusion, tissue damage, and prolonged inflammation associated with the progression and exacerbation of multiple pathologic conditions. This review outlines recent advances in understanding the mechanisms of NET release and functions in sterile disease. We also discuss mechanisms of physiological regulation and the importance of neutrophil heterogeneity in NET formation and composition.
Collapse
Affiliation(s)
- Andres Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Oliver Soehnlein
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Straße 56, 48149, Münster, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institute, Solnavägen 1, 171 77, Stockholm, Sweden
| | - Iker Valle Aramburu
- Laboratory of Antimicrobial Defence, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Carlos Silvestre-Roig
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Straße 56, 48149, Münster, Germany
| |
Collapse
|
34
|
Damascena HL, Silveira WAA, Castro MS, Fontes W. Neutrophil Activated by the Famous and Potent PMA (Phorbol Myristate Acetate). Cells 2022; 11:2889. [PMID: 36139464 PMCID: PMC9496763 DOI: 10.3390/cells11182889] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
This review will briefly outline the major signaling pathways in PMA-activated neutrophils. PMA is widely used to understand neutrophil pathways and formation of NETs. PMA activates PKC; however, we highlight some isoforms that contribute to specific functions. PKC α, β and δ contribute to ROS production while PKC βII and PKC ζ are involved in cytoskeleton remodeling. Actin polymerization is important for the chemotaxis of neutrophils and its remodeling is connected to ROS balance. We suggest that, although ROS and production of NETs are usually observed together in PMA-activated neutrophils, there might be a regulatory mechanism balancing both. Interestingly, we suggest that serine proteases might determine the PAD4 action. PAD4 could be responsible for the activation of the NF-κB pathway that leads to IL-1β release, triggering the cleavage of gasdermin D by serine proteases such as elastase, leading to pore formation contributing to release of NETs. On the other hand, when serine proteases are inhibited, NETs are formed by citrullination through the PAD4 pathway. This review puts together results from the last 31 years of research on the effects of PMA on the neutrophil and proposes new insights on their interpretation.
Collapse
Affiliation(s)
| | | | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Federal District, Brasilia 70910-900, Brazil
| |
Collapse
|
35
|
Li H, Zhao L, Wang Y, Zhang MC, Qiao C. Roles, detection, and visualization of neutrophil extracellular traps in acute pancreatitis. Front Immunol 2022; 13:974821. [PMID: 36032164 PMCID: PMC9414080 DOI: 10.3389/fimmu.2022.974821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are produced in large quantities at the site of inflammation, and they locally capture and eliminate various pathogens. Thus, NETs quickly control the infection of pathogens in the body and play vital roles in immunity and antibacterial effects. However, evidence is accumulating that NET formation can exacerbate pancreatic tissue damage during acute pancreatitis (AP). In this review, we describe the research progress on NETs in AP and discuss the possibility of NETs as potential therapeutic targets. In addition, since the current detection and visualization methods of NET formation are not uniform and the selection of markers is still controversial, a synopsis of these issues is provided in this review.
Collapse
Affiliation(s)
- Hongxuan Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingyu Zhao
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yueying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng-Chun Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Cong Qiao
- Department of Pathology, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Czerwińska J, Kasprowicz-Furmańczyk M, Placek W, Owczarczyk-Saczonek A. Changes in Tumor Necrosis Factor α (TNFα) and Peptidyl Arginine Deiminase 4 (PAD-4) Levels in Serum of General Treated Psoriatic Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148723. [PMID: 35886575 PMCID: PMC9324472 DOI: 10.3390/ijerph19148723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023]
Abstract
Psoriasis is an autoimmune disease in which the disturbed dependencies between lymphocytes, dendritic cells, keratinocytes and neutrophils play the most important role. One of them is the overproduction of neutrophil extracellular traps (NETs). The release of NETs can be induced by pathogens, as well as antibodies and immune complexes, cytokines and chemokines, including TNFα. The first step of the NET creation is the activation of peptidyl arginine deiminase 4 (PAD-4). PAD-4 seems to be responsible for citrullination of histones and chromatin decondensation, but the data on PAD-4 in NETs is inconclusive. Thus, the current study aimed to determine PAD-4 and TNFα levels in the serum of psoriatic patients by ELISA and observe the response of these factors to systemic (anti-17a, anti-TNFα and methotrexate) therapies. Increased levels of both PAD-4 and its main stimulus factor TNFα in pre-treatment patients have been reported along with the concentrations of proteins correlated with disease severity (PASI, BSA). Before treatment, the irregularities in the case of anti-nuclear antibodies level (ANA) were also observed. All of the applied therapies led to a decrease in PAD-4 and TNFα levels after 12 weeks. The most significant changes, both in protein concentrations as well as in scale scores, were noted with anti-TNFα therapy (adalimumab and infliximab). This phenomenon may be associated with the inhibition of TNFα production at different stages of psoriasis development, including NET creation. The obtained data suggest the participation of PAD-4 in the activation of neutrophils to produce NETs in psoriasis, which may create opportunities for modern therapies with PAD inhibitors. However, further exploration of gene and protein expression in psoriatic skin is needed.
Collapse
|
37
|
Chen F, Liu Y, Shi Y, Zhang J, Liu X, Liu Z, Lv J, Leng Y. The emerging role of neutrophilic extracellular traps in intestinal disease. Gut Pathog 2022; 14:27. [PMID: 35733158 PMCID: PMC9214684 DOI: 10.1186/s13099-022-00497-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular reticular fibrillar structures composed of DNA, histones, granulins and cytoplasmic proteins that are delivered externally by neutrophils in response to stimulation with various types of microorganisms, cytokines and host molecules, etc. NET formation has been extensively demonstrated to trap, immobilize, inactivate and kill invading microorganisms and acts as a form of innate response against pathogenic invasion. However, NETs are a double-edged sword. In the event of imbalance between NET formation and clearance, excessive NETs not only directly inflict tissue lesions, but also recruit pro-inflammatory cells or proteins that promote the release of inflammatory factors and magnify the inflammatory response further, driving the progression of many human diseases. The deleterious effects of excessive release of NETs on gut diseases are particularly crucial as NETs are more likely to be disrupted by neutrophils infiltrating the intestinal epithelium during intestinal disorders, leading to intestinal injury, and in addition, NETs and their relevant molecules are capable of directly triggering the death of intestinal epithelial cells. Within this context, a large number of NETs have been reported in several intestinal diseases, including intestinal infections, inflammatory bowel disease, intestinal ischemia–reperfusion injury, sepsis, necrotizing enterocolitis, and colorectal cancer. Therefore, the formation of NET would have to be strictly monitored to prevent their mediated tissue damage. In this review, we summarize the latest knowledge on the formation mechanisms of NETs and their pathophysiological roles in a variety of intestinal diseases, with the aim of providing an essential directional guidance and theoretical basis for clinical interventions in the exploration of mechanisms underlying NETs and targeted therapies.
Collapse
Affiliation(s)
- Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yongqiang Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yajing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jianmin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhenzhen Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jipeng Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China. .,Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
38
|
Kwak SB, Kim SJ, Kim J, Kang YL, Ko CW, Kim I, Park JW. Tumor regionalization after surgery: Roles of the tumor microenvironment and neutrophil extracellular traps. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:720-729. [PMID: 35764882 PMCID: PMC9256747 DOI: 10.1038/s12276-022-00784-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
Surgery is unanimously regarded as the primary strategy to cure solid tumors in the early stages but is not always used in advanced cases. However, tumor surgery must be carefully considered because the risk of metastasis could be increased by the surgical procedure. Tumor surgery may result in a deep wound, which induces many biological responses favoring tumor metastasis. In particular, NETosis, which is the process of forming neutrophil extracellular traps (NETs), has received attention as a risk factor for surgery-induced metastasis. To reduce cancer mortality, researchers have made efforts to prevent secondary metastasis after resection of the primary tumor. From this point of view, a better understanding of surgery-induced metastasis might provide new strategies for more effective and safer surgical approaches. In this paper, recent insights into the surgical effects on metastasis will be reviewed. Moreover, in-depth opinions about the effects of NETs on metastasis will be discussed. Therapies that limit the formation of web-like structures formed by white cells known as neutrophils may lower the risk of cancer spread (metastasis) following surgical tumor removal. Removing solid tumors remains a key cancer treatment, but in some cases surgery itself increases the risk of metastasis. Jong-Wan Park at Seoul National University, South Korea, and co-workers reviewed current understanding of metastasis following surgery. Surgical removal destroys the architecture supporting cancer cells but this can release tumor cells into blood vessels. The stress of deep wounds also affects immune responses, most notably neutrophil extracellular traps (NETs), web-like structures formed by neutrophils to trap and kill pathogens. NETs have previously been implicated in metastasis. In a post-surgical environment enriched in neutrophils and pro-inflammatory cytokines, NET formation may help cancer cells thrive, promoting metastasis.
Collapse
Affiliation(s)
- Su-Bin Kwak
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sang Jin Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jiyoung Kim
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Ye-Lim Kang
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Woo Ko
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Inha-ro, Michuhol-gu, Incheon, 22212, Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea. .,Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
39
|
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease. Int J Mol Sci 2022; 23:ijms23105626. [PMID: 35628437 PMCID: PMC9147606 DOI: 10.3390/ijms23105626] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Collapse
|
40
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
41
|
Complement C5a induces the generation of neutrophil extracellular traps by inhibiting mitochondrial STAT3 to promote the development of arterial thrombosis. Thromb J 2022; 20:24. [PMID: 35488279 PMCID: PMC9051782 DOI: 10.1186/s12959-022-00384-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Thrombotic events cannot be completely prevented by antithrombotics, implicating a therapeutic gap due to inflammation, a not yet sufficiently addressed mechanism. Neutrophil extracellular traps (NETs) are an essential interface between inflammation and thrombosis, but exactly how the NETotic process is initiated and maintained during arterial thrombosis remains incompletely understood. Methods and results We found that the plasma concentrations of C5a were higher in patients with ST-elevation myocardial infarction (STEMI) than in patients with angina and higher in mice with left common carotid artery (LCCA) thrombosis induced by FeCl3 than in control mice. We observed that the thrombus area and weight were decreased and that NET formation in the thrombi was reduced in the group treated with the selective C5aR1 receptor inhibitor PMX53 compared with the NaCl group. In vitro, NETosis was observed when C5a was added to neutrophil cultures, and this effect was reversed by PMX53. In addition, our data showed that C5a increased the production of mitochondrial reactive oxygen species (ROS) and that the promotion of NET formation by C5a was mitochondrial ROS (Mito-ROS) dependent. Furthermore, we found that C5a induced the production of Mito-ROS by inhibiting mitochondrial STAT3 activity. Conclusions By inhibiting mitochondrial STAT3 to elicit Mito-ROS generation, C5a triggers the generation of NETs to promote the development of arterial thrombosis. Hence, our study identifies complement C5a as a potential new target for the treatment and prevention of thrombosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12959-022-00384-0.
Collapse
|
42
|
Nappi F, Bellomo F, Avtaar Singh SS. Insights into the Role of Neutrophils and Neutrophil Extracellular Traps in Causing Cardiovascular Complications in Patients with COVID-19: A Systematic Review. Biomedicines 2022; 11:2460. [PMID: 35566589 PMCID: PMC9855935 DOI: 10.3390/biomedicines11010113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has resulted in significant mortality and burdening of healthcare resources. While initially noted as a pulmonary pathology, subsequent studies later identified cardiovascular involvement with high mortalities reported in specific cohorts of patients. While cardiovascular comorbidities were identified early on, the exact manifestation and etiopathology of the infection remained elusive. This systematic review aims to investigate the role of inflammatory pathways, highlighting several culprits including neutrophil extracellular traps (NETs) which have since been extensively investigated. METHOD A search was conducted using three databases (MEDLINE; MEDLINE In-Process & Other Non-Indexed Citations and EMBASE). Data from randomized controlled trials (RCT), prospective series, meta-analyses, and unmatched observational studies were considered for the processing of the algorithm and treatment of inflammatory response during SARS-CoV-2 infection. Studies without the SARS-CoV-2 Infection period and case reports were excluded. RESULTS A total of 47 studies were included in this study. The role of the acute inflammatory response in the propagation of the systemic inflammatory sequelae of the disease plays a major part in determining outcomes. Some of the mechanisms of activation of these pathways have been highlighted in previous studies and are highlighted. CONCLUSION NETs play a pivotal role in the pathogenesis of the inflammatory response. Despite moving into the endemic phase of the disease in most countries, COVID-19 remains an entity that has not been fully understood with long-term effects remaining uncertain and requiring ongoing monitoring and research.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord of Saint-Denis, 93200 Saint-Denis, France
| | - Francesca Bellomo
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | | |
Collapse
|
43
|
Mycobacterium avium-intracellulare complex promote release of pro-inflammatory enzymes matrix metalloproteinases by inducing neutrophil extracellular trap formation. Sci Rep 2022; 12:5181. [PMID: 35410994 PMCID: PMC9001666 DOI: 10.1038/s41598-022-09017-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe prevalence of and mortality from non-tuberculous mycobacteria (NTM) infections have been steadily increasing worldwide. Most NTM infections are caused by Mycobacterium avium-intracellulare complex (MAC). MAC can escape from killing by neutrophils, which are professional phagocytes. However, the involvement of neutrophils in the pathogenesis of MAC infection is poorly understood. The present study assessed the roles of neutrophil extracellular trap (NET) formation in neutrophil defense mechanisms against infection with MAC strains, including M. avium isolated from patients with severe or mild lung tissue destruction. Although all MAC induced NET formation, non-pathogenic mycobacteria (M. gordonae and M. smegmatis) slightly but not significantly induced NET formation. Peptidylarginine deiminase 4 (PAD4) inhibitor reduced MAC-induced NET formation but did not affect MAC escape from neutrophils. PAD4 inhibition attenuated the MAC-induced matrix metalloproteinase (MMP)-8 and 9 release to the levels of MMPs from non-pathogenic mycobacteria. MAC also induced interleukin (IL)-8 release by neutrophils, a process independent of MAC-induced NET formation. Taken together, these findings suggest that MAC induce NET formation, IL-8 release and NETs-dependent release of MMP-8 and -9 from neutrophils, leading to neutrophil accumulation and further inflammation, thereby enhancing the progression of infection in the lungs.
Collapse
|
44
|
Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int J Mol Sci 2022; 23:ijms23073868. [PMID: 35409226 PMCID: PMC8998935 DOI: 10.3390/ijms23073868] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet-neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet-monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.
Collapse
Affiliation(s)
- Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Maria Stepanyan
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Physics Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Alexey Martyanov
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS (IBCP RAS), 119334 Moscow, Russia
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Correspondence:
| |
Collapse
|
45
|
Schwäbe FV, Happonen L, Ekestubbe S, Neumann A. Host Defense Peptides LL-37 and Lactoferrin Trigger ET Release from Blood-Derived Circulating Monocytes. Biomedicines 2022; 10:biomedicines10020469. [PMID: 35203676 PMCID: PMC8962388 DOI: 10.3390/biomedicines10020469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Neutrophils are commonly regarded as the first line of immune response during infection or in tissue injury-induced inflammation. The rapid influx of these cells results in the release of host defense proteins (HDPs) or formation of neutrophil extracellular traps (NETs). As a second wave during inflammation or infection, circulating monocytes arrive at the site. Earlier studies showed that HDPs LL-37 and Lactoferrin (LTF) activate monocytes while neutrophil elastase facilitates the formation of extracellular traps (ETs) in monocytes. However, the knowledge about the impact of HDPs on monocytes remains sparse. In the present study, we investigated the effect of LL-37 and LTF on blood-derived CD14+ monocytes. Both HDPs triggered a significant release of TNFα, nucleosomes, and monocyte ETs. Microscopic analysis indicated that ET formation by LL-37 depends on storage-operated calcium entry (SOCE), mitogen-activated protein kinase (MAPK), and ERK1/2, whereas the LTF-mediated ET release is not affected by any of the here used inhibitors. Quantitative proteomics mass spectrometry analysis of the neutrophil granular content (NGC) revealed a high abundance of Lactoferrin. The stimulation of CD14+ monocytes with NGC resulted in a significant secretion of TNFα and nucleosomes, and the formation of monocyte ETs. The findings of this study provide new insight into the complex interaction of HDPs, neutrophils, and monocytes during inflammation.
Collapse
|
46
|
Yang L, Yan Y. Emerging Roles of Post-Translational Modifications in Skin Diseases: Current Knowledge, Challenges and Future Perspectives. J Inflamm Res 2022; 15:965-975. [PMID: 35177923 PMCID: PMC8846607 DOI: 10.2147/jir.s339296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins represent as a key step in regulating their biological functions and dynamic interaction with other players. This process is fine-tuned by a myriad of enzymes named “writers, readers and erasers” whose actions are precisely controlled. Either the mutation, aberration in the expression of the aforementioned enzymes or their substrates have shown to participate in the pathogenesis of various skin diseases such as melanoma, vitiligo, psoriasis, eczema, atopic dermatitis and inherited dermatological diseases. It is becoming increasingly clear that key transcriptional factors, inflammation-related molecules are prone to PTMs. Despite their importance in regulating key processes including inflammation, keratinocyte apoptosis, proliferation and differentiation, PTMs have received less attention due to the challenges involved. Here in this review we summarize the role of the most common types and the newly discovered PTMs, including acetylation, glycosylation, citrullination, PARylation and sumoylation in dermatoses and surveys the recent progress in PTM-based therapeutic approaches in skin diseases.
Collapse
Affiliation(s)
- Luting Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
- Correspondence: Luting Yang; Yaping Yan, Email ;
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
47
|
Wang L, Chen H, Tang J, Guo Z, Wang Y. Peptidylarginine Deiminase and Alzheimer's Disease. J Alzheimers Dis 2021; 85:473-484. [PMID: 34842193 DOI: 10.3233/jad-215302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptidylarginine deiminases (PADs) are indispensable enzymes for post-translational modification of proteins, which can convert Arg residues on the surface of proteins to citrulline residues. The PAD family has five isozymes, PAD1, 2, 3, 4, and 6, which have been found in multiple tissues and organs. PAD2 and PAD4 were detected in cerebral cortex and hippocampus from human and rodent brain. In the central nervous system, abnormal expression and activation of PADs are involved in the pathological changes and pathogenesis of Alzheimer's disease (AD). This article reviews the classification, distribution, and function of PADs, with an emphasis on the relationship between the abnormal activation of PADs and AD pathogenesis, diagnosis, and the therapeutic potential of PADs as drug targets for AD.
Collapse
Affiliation(s)
- Lai Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Hongyang Chen
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Jing Tang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Zhengwei Guo
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| | - Yanming Wang
- Epigenetics & Translational Medicine Laboratory, School of Life Sciences, Henan University, Kaifeng, Henan Province, P.R. China
| |
Collapse
|
48
|
Zhang L, Gao H, Yang L, Liu T, Zhang Q, Xun J, Li C, Cui L, Wang X. FTY720 induces neutrophil extracellular traps via a NADPH oxidase-independent pathway. Arch Biochem Biophys 2021; 711:109015. [PMID: 34437865 DOI: 10.1016/j.abb.2021.109015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022]
Abstract
FTY720 is an immunosuppressive agent which has been approved to treat multiple sclerosis (MS). The main object of the present study is to investigate whether FTY720 has the potential to induce the formation of neutrophil extracellular traps (NETs) in vitro. Using Sytox Green assay and fluorescence microscopy, our results showed that FTY720 trigged the NET formation. In contrast to classic NET formation induced by Phorbol 12-myristate 13-acetate (PMA), FTY720-induced NETs were detected earlier and independent of NADPH oxidase (NOX) activity. Pharmacological inhibitor experiments indicated that autophagy was also required for the NET formation induced by FTY720. Moreover, p38 and AKT inhibitor significantly suppressed the NET formation by FTY720, whereas ERK inhibitor had no effect, suggesting that FTY720-induced NETs depended on the activation of p38 and AKT. We further found that citrullination of histone H3 and peptidylarginine deiminase 4 (PAD4) did not mediated FTY720-induced NET formation. Interestingly, necroptosis signaling activation was involved in the vital NET formation by FTY720, however, plasma membrane rupture resulting from necroptosis was not a major component of NET formation described here. Collectively, these findings indicated that FTY720 could be a potential antibacterial drug to protect host against pathogen infection.
Collapse
Affiliation(s)
- Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China.
| | - Hejun Gao
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Tianyu Liu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China.
| |
Collapse
|
49
|
Sollberger G. Approaching Neutrophil Pyroptosis. J Mol Biol 2021; 434:167335. [PMID: 34757055 DOI: 10.1016/j.jmb.2021.167335] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/21/2023]
Abstract
All cells must die at some point, and the dogma is that they do it either silently via apoptosis or via pro-inflammatory, lytic forms of death. Amongst these lytic cell death pathways, pyroptosis is one of the best characterized. Pyroptosis depends on inflammatory caspases which activate members of the gasdermin family of proteins, and it is associated with the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Pyroptosis is an essential component of innate immunity, it initiates and amplifies inflammation and it removes the replication niche for intracellular pathogens. Most of the literature on pyroptosis focuses on monocytes and macrophages. However, the most abundant phagocytes in humans are neutrophils. This review addresses whether neutrophils undergo pyroptosis and the underlying mechanisms. Furthermore, I discuss how and why neutrophils might be able to resist pyroptosis.
Collapse
Affiliation(s)
- Gabriel Sollberger
- University of Dundee, School of Life Sciences, Division of Cell Signalling and Immunology, Dow Street, DD1 5EH Dundee, UK; Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
50
|
Fetz AE, Radic MZ, Bowlin GL. Human neutrophil FcγRIIIb regulates neutrophil extracellular trap release in response to electrospun polydioxanone biomaterials. Acta Biomater 2021; 130:281-290. [PMID: 34116225 PMCID: PMC8316391 DOI: 10.1016/j.actbio.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
During the acute inflammatory response, the release of neutrophil extracellular traps (NETs) is a pro-inflammatory, preconditioning event on a biomaterial surface. Therefore, regulation of NET release through biomaterial design is one strategy to enhance biomaterial-guided in situ tissue regeneration. In this study, IgG adsorption on electrospun polydioxanone biomaterials with differing fiber sizes was explored as a regulator of in vitro human neutrophil NET release. The propensity to release NETs was increased and decreased by modulating adsorbed IgG, suggesting a functional link between IgG and NET formation. Fiber-size dependent NET release was reduced by blocking FcγRIIIb, but not FcγRI, FcγRIIa, or Mac-1 (CD11b/CD18), indicating a specific receptor mediated neutrophil response. Inhibition of transforming growth factor-β-activated kinase 1 (TAK1), which is activated downstream of FcγRIIIb, significantly reduced the release of NETs in a fiber size-independent manner. These results indicate that in vitro electrospun biomaterial-induced NET release is largely regulated by IgG adsorption, engagement of FcγRIIIb, and signaling through TAK1. Modulation of this pathway may have beneficial therapeutic effects for regulating neutrophil-mediated inflammation by avoiding the adverse effects of NETs and increasing the potential for in situ tissue regeneration. STATEMENT OF SIGNIFICANCE: Electrospun biomaterials have great potential for in situ tissue engineering because of their versatility and biomimetic properties. However, understanding how to design the biomaterial to regulate acute inflammation, dominated by neutrophils, remains a great challenge for successful tissue integration and regeneration. In this work, we demonstrate for the first time how protein adsorption on the biomaterial surface and engagement of a specific neutrophil receptor induces intracellular signals that regulate the pro-inflammatory release of neutrophil extracellular traps (NETs). Given the deleterious effects of NETs during the acute inflammatory response to a biomaterial, our work highlights the importance of considering biomaterial-neutrophil interactions on degradable and non-degradable biomaterials to achieve the desired biological outcome.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, 3806 Norriswood Avenue, Memphis, TN, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 3806 Norriswood Avenue, Memphis, TN, USA.
| |
Collapse
|