1
|
Shiraki H, Segi-Nishida E, Suzuki K. Effect of chronic corticosterone administration on acute stress-mediated gene expression in the cortex and hippocampus of male mice. Biochem Biophys Res Commun 2025; 762:151729. [PMID: 40199127 DOI: 10.1016/j.bbrc.2025.151729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Corticosterone plays an important role in the stress response, physiological regulation, and development of stress-related psychiatric disorders. Although several studies have demonstrated that chronic corticosterone induces anxiety- or depressive-related behaviors in mice, it remains unclear whether chronic corticosterone administration affects gene expression in the brain during the stress response. This study investigated whether chronic corticosterone administration has a significant effect on stress-related gene expression in the brain. Therefore, mice were chronically treated with corticosterone in drinking water and gene expression was analyzed by quantitative PCR (qPCR). Moreover, restraint stress was acutely applied as a novel stressor in mice chronically treated with corticosterone in the cortex and hippocampus. We initially found that chronic corticosterone administration altered glucocorticoid signaling-mediated gene expression, such as FK506 binding protein 5 (Fkbp5) and glucocorticoid-inducible kinase 1 (Sgk1), in the cortex and hippocampus of mice. Next, we found that restraint stress exposure elevated Fkbp5 expression in the vehicle group; however, chronic corticosterone administration occluded further induction of Fkbp5 expression after restraint stress exposure. In addition, pro-inflammatory cytokines tumor necrosis factor α (Tnfa) and interleukin-1β (Il1b) mRNA expression in the cortex and hippocampus were remarkably enhanced by restraint stress in corticosterone-treated mice, but not in the vehicle group. Collectively, our results demonstrated that chronic corticosterone administration modulates glucocorticoid signaling and uncovered the robust induction of pro-inflammatory cytokines after restraint stress exposure in chronically corticosterone-treated mice. These mechanisms may be involved in the molecular basis for the onset of stress-related mental illnesses.
Collapse
Affiliation(s)
- Hirono Shiraki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan.
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
2
|
Geertsema J, Juncker HG, Wilmes L, Burchell GL, de Rooij SR, van Goudoever JB, O'Riordan KJ, Clarke G, Cryan JF, Korosi A. Nutritional interventions to counteract the detrimental consequences of early-life stress. Mol Psychiatry 2025:10.1038/s41380-025-03020-1. [PMID: 40289212 DOI: 10.1038/s41380-025-03020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Exposure to stress during sensitive developmental periods comes with long term consequences for neurobehavioral outcomes and increases vulnerability to psychopathology later in life. While we have advanced our understanding of the mechanisms underlying the programming effects of early-life stress (ES), these are not yet fully understood and often hard to target, making the development of effective interventions challenging. In recent years, we and others have suggested that nutrition might be instrumental in modulating and possibly combatting the ES-induced increased risk to psychopathologies and neurobehavioral impairments. Nutritional strategies are very promising as they might be relatively safe, cheap and easy to implement. Here, we set out to comprehensively review the existing literature on nutritional interventions aimed at counteracting the effects of ES on neurobehavioral outcomes in preclinical and clinical settings. We identified eighty six rodent and ten human studies investigating a nutritional intervention to ameliorate ES-induced impairments. The human evidence to date, is too few and heterogeneous in terms of interventions, thus not allowing hard conclusions, however the preclinical studies, despite their heterogeneity in terms of designs, interventions used, and outcomes measured, showed nutritional interventions to be promising in combatting ES-induced impairments. Furthermore, we discuss the possible mechanisms involved in the beneficial effects of nutrition on the brain after ES, including neuroinflammation, oxidative stress, hypothalamus-pituitary-adrenal axis regulation and the microbiome-gut-brain axis. Lastly, we highlight the critical gaps in our current knowledge and make recommendations for future research to move the field forward.
Collapse
Affiliation(s)
- Jorine Geertsema
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Hannah G Juncker
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susanne R de Rooij
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health research institute, Aging and Later Life, Health Behaviors and Chronic Diseases, Amsterdam, The Netherlands
| | - J B van Goudoever
- Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Aniko Korosi
- Brain Plasticity group, Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Hajjeh O, Rajab I, Bdair M, Saife S, Zahran A, Nazzal I, AbuZahra MI, Jallad H, Abukhalil MM, Hallak M, Al-Said OS, Al-Braik R, Sawaftah Z, Milhem F, Almur O, Saife S, Aburemaileh M, Abuhilal A. Enteric nervous system dysfunction as a driver of central nervous system disorders: The Forgotten brain in neurological disease. Neuroscience 2025; 572:232-247. [PMID: 40088964 DOI: 10.1016/j.neuroscience.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
The Enteric Nervous System (ENS), often called the "second brain," is a complex network of neurons and glial cells within the gastrointestinal (GI) tract. It functions autonomously while maintaining close communication with the central nervous system (CNS) via the gut-brain axis (GBA). ENS dysfunction plays a crucial role in neurodegenerative and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder. Disruptions such as altered neurotransmission, gut microbiota imbalance, and neuroinflammation contribute to disease pathogenesis. The GBA enables bidirectional communication through the vagus nerve, gut hormones, immune signaling, and microbial metabolites, linking gut health to neurological function. ENS dysregulation is implicated in conditions like irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), influencing systemic and CNS pathology through neuroinflammation and impaired barrier integrity. This review highlights emerging therapeutic strategies targeting ENS dysfunction, including prebiotics, probiotics, fecal microbiota transplantation (FMT), and vagus nerve stimulation, which offer novel ways to modulate gut-brain interactions. Unlike previous perspectives that view the ENS as a passive disease marker, this review repositions it as an active driver of neurological disorders. By integrating advances in ENS biomarkers, therapeutic targets, and GBA modulation, this article presents a paradigm shift-emphasizing ENS dysfunction as a fundamental mechanism in neurodegeneration and neurodevelopmental disorders. This perspective paves the way for innovative diagnostics, personalized gut-targeted therapies, and a deeper understanding of the ENS's role in brain health and disease.
Collapse
Affiliation(s)
- Orabi Hajjeh
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Islam Rajab
- Internal Medicine Department, St. Joseph's University Medical Center, 703 Main St, Paterson, NJ 07503, USA
| | - Mohammad Bdair
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sarah Saife
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anwar Zahran
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Iyad Nazzal
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Ibrahem AbuZahra
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Hammam Jallad
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Maram M Abukhalil
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mira Hallak
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Osama S Al-Said
- Department Of Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rama Al-Braik
- Department Of Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Sawaftah
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Fathi Milhem
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Omar Almur
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sakeena Saife
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Aburemaileh
- Department Of Medicine, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anfal Abuhilal
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| |
Collapse
|
4
|
Lee HJ, Jeon YH. The Effect of Environmental Factors, Health Behaviors, and Psychosocial Aspects on Allergic Diseases in Korean Adolescents. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:727. [PMID: 40283018 PMCID: PMC12028523 DOI: 10.3390/medicina61040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Adolescence is a critical period of physical and mental development, yet allergic diseases are often poorly managed. Factors such as sleep deprivation, obesity, smoking, and mental stress can worsen allergic conditions and complicate treatment. This study examines the environmental, behavioral, and psychosocial factors influencing allergic diseases in Korean adolescents using data from the Korean National Health and Nutrition Examination Survey (KNHNES). Materials and Methods: From the 25,534 participants in the Fifth KNHNES, 1630 adolescents (aged 13-18 years) were selected. We analyzed demographic and lifestyle factors, including gender, age, housing type, family size, economic status, obesity, tobacco and alcohol use, sleep duration, and physical activity. Psychosocial factors such as stress perception, suicidal ideation, depressive symptoms, mental health counseling, and self-rated health were also examined. Results: The prevalence rates of allergic diseases were 23% for allergic rhinitis (AR), 11% for atopic dermatitis (AD), and 9.8% for asthma (AS), with 35.8% of adolescents having at least one allergic condition. Smoking was significantly associated with AS (odds ratio [OR] 1.753, p = 0.006), while shorter sleep durations increased AR risk (p = 0.000). Male adolescents had a lower risk of AD (OR 0.706, p = 0.046), and high economic status was inversely correlated with AD (OR 0.445, p = 0.006). Positive self-rated health was linked to lower AS risk (OR 0.447, p = 0.000). AR was significantly associated with male gender (OR 1.391, p = 0.045), high economic status (OR 1.784, p = 0.026), and high stress perception (OR 1.479, p = 0.013). Conclusions: Low self-rated health and high stress perception have been identified as risk factors for allergic diseases during adolescence. Integrating psychosocial counseling with medical treatment may improve management and outcomes.
Collapse
Affiliation(s)
- Hwa-jin Lee
- Department of Nursing Science, College of Medicine, Kyungbuk College, Yeongju 36133, Republic of Korea;
| | - You Hoon Jeon
- Department of Pediatrics, Hallym University Dongtan Sacred Heart Hospital, Hwaseong 18450, Republic of Korea
| |
Collapse
|
5
|
Stenger S, Vorobyev A, Bieber K, Lange T, Ludwig RJ, Hundt JE. Insomnia increases the risk for specific autoimmune diseases: a large-scale retrospective cohort study. FRONTIERS IN NETWORK PHYSIOLOGY 2025; 5:1499297. [PMID: 40276126 PMCID: PMC12018472 DOI: 10.3389/fnetp.2025.1499297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Objective The global rise of autoimmune diseases presents a significant medical challenge, with inadequate treatment options, high morbidity risks, and escalating healthcare costs. While the underlying mechanisms of autoimmune disease development are not fully understood, both genetic predispositions and lifestyle factors, particularly sleep, play critical roles. Insomnia and circadian rhythm sleep disorders not only impair sleep but also disrupt multi-organ interactions by dysregulating sympathetic nervous system activity, altering immune responses, and influencing neuroendocrine function. These disruptions can contribute to immune system dysregulation, increasing the risk of autoimmune disease development. Methods To assess the impact of impaired sleep on the risk of developing autoimmune diseases, a global population-based retrospective cohort study was conducted using electronic health records from the TriNetX US Global Collaborative Network, including 351,366 subjects in each propensity score matched group. Twenty autoimmune diseases were examined, and propensity score matching was employed to reduce bias. Three sensitivity analyses were conducted to test the robustness of the results. Results The study identified significantly increased risks for several autoimmune diseases associated with impaired sleep, likely mediated by dysregulated neuroimmune and autonomic interactions. Specifically, cutaneous lupus erythematosus [hazard ratio (HR) = 2.119; confidence interval (CI) 1.674-2.682; p < 0.0001], rheumatoid arthritis (HR = 1.404; CI 1.313-1.501; p < 0.0001), Sjögren syndrome (HR = 1.84; CI 1.64-2.066; p < 0.0001), and autoimmune thyroiditis (HR = 1.348; CI 1.246-1.458; p < 0.0001) showed significantly increased risks. No diseases demonstrated reduced risks, and 4 out of 20 tested diseases did not show significant HR increases in any analysis. Conclusion This study highlights the integral role of sleep in maintaining immune homeostasis through multi-organ interactions involving the autonomic nervous system, immune signalling pathways, and endocrine regulation. Disruptions in these systems due to chronic sleep impairment may predispose individuals to autoimmune diseases by altering inflammatory responses and immune tolerance. These findings underscore the necessity of recognizing and treating sleep disorders not only for general wellbeing but also as a potential strategy to mitigate the long-term risk of autoimmune disease development.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Department of Dermatology, University Hospital Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, University Hospital Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Jennifer E. Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Rodriguez-Jimenez S, Horst EA, Mayorga EJ, Abeyta MA, Goetz BM, Baumgard LH. Intermittent and increasing intravenous lipopolysaccharide effect on metabolism, inflammation, and production in lactating dairy cows. J Dairy Sci 2025; 108:4283-4298. [PMID: 39824498 DOI: 10.3168/jds.2024-26010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Experimental objectives were to create a chronic inflammatory model to evaluate the effects of persistent immune activation on metabolism, inflammation, and productivity in lactating dairy cows. Twelve lactating Holstein cows (631 ± 16 kg BW; 124 ± 15 DIM) were enrolled in a study with 2 experimental periods; during period 1 (P1; 5 d), cows were fed ad libitum and baseline data were obtained. At the initiation of period 2 (P2; 7 d), cows were assigned to 1 of 2 treatments: (1) saline infused and pair-fed (PF; 5 mL i.v. sterile saline on d 1, 3, and 5; n = 6) or (2) LPS infused and ad libitum fed (LPS; 0.2, 0.8, and 1.6 µg LPS/kg BW i.v. on d 1, 3, and 5, respectively; n = 6). Blood samples were collected on d 3 and 5 of P1, and d 1, 3, 5, and 7 of P2. Administering LPS induced a febrile response (∼6 h duration) following each bolus (+0.6, 0.6, and 0.8°C, for d 1, 3, and 5, respectively). Lipopolysaccharide binding protein, serum amyloid A, and haptoglobin concentrations increased in LPS-administered cows relative to baseline and PF animals. Cholesterol and albumin concentrations decreased in LPS relative to PF cows and effects were most prominent from d 3 to 7 of P2. Circulating cortisol in LPS-infused cows progressively increased during P2 (63% on d 7) relative to PF cows. Overall, during P2, LPS administration induced a sawtooth pattern in DMI and the negative consequences on DMI ameliorated as P2 progressed. By design, the DMI pattern in PF cows was similar to their LPS counterparts. Administering LPS also created a reciprocating response in milk yield that lessened as P2 progressed. Overall, milk yield was decreased in LPS and PF cows compared with P1 (29% and 10%, respectively). Circulating insulin decreased in both treatments relative to P1, but the decrease was more severe in PF (61%) compared with LPS-infused cows (27%). Relative to PF cows, nonesterified fatty acids (NEFA) remained similar to P1 in LPS-administered cows, but increased (3.2-fold) in PF cows. Ionized calcium decreased in LPS cows compared with PF controls. In summary, alternating and increasing LPS doses caused chronic inflammation, markedly altered metabolism, and temporarily decreased DMI and milk synthesis. However, although the acute phase proteins remained elevated throughout P2, the effect on production lessened with time.
Collapse
Affiliation(s)
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
7
|
Cheng M, Jiang Z, Yang J, Sun X, Song N, Du C, Luo Z, Zhang Z. The role of the neuroinflammation and stressors in premenstrual syndrome/premenstrual dysphoric disorder: a review. Front Endocrinol (Lausanne) 2025; 16:1561848. [PMID: 40225329 PMCID: PMC11985436 DOI: 10.3389/fendo.2025.1561848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD) are prevalent emotional disorders in females, characterized by cyclic variations in physiological stress responses and emotional symptoms that correspond with the menstrual cycle. Despite extensive research, the underlying causes of these disorders remain elusive. This review delves into the neurobiological mechanisms connecting stress-induced neuroinflammation with PMS/PMDD. Additionally, it traces the conceptual development and historical context of PMS/PMDD. The review further evaluates clinical evidence on the association between PMS/PMDD and stress, along with findings from both clinical and animal studies that link these disorders to inflammatory processes. Additionally, the neurobiological pathways by which inflammatory responses may play a role in the pathogenesis of PMS/PMDD were elucidated, including their interactions with the hypothalamic-pituitary-ovary (HPO) axis, serotonin-kynurenine (5-HT-KYN) system, GABAergic system, brain-derived neurotrophic factor (BDNF), hypothalamic-pituitary-adrena(HPA)axis and. Future research is encouraged to further investigate the pathogenesis of PMS/PMDD through the perspective of neuroinflammatory responses.
Collapse
Affiliation(s)
- Ming Cheng
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhaoshu Jiang
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jie Yang
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xu Sun
- Research and Development Department, Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei, China
| | - Nan Song
- Research and Development Department, Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei, China
| | - Chunyu Du
- Research and Development Department, Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei, China
| | - Zhenliang Luo
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhen Zhang
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Research and Development Department, Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei, China
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Tan X, Zhang J, Chen W, Chen T, Cui G, Liu Z, Hu R. Progress on Direct Regulation of Systemic Immunity by the Central Nervous System. World Neurosurg 2025; 196:123814. [PMID: 39983990 DOI: 10.1016/j.wneu.2025.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
This article reviews the research progress on the direct regulation of the immune system by the central nervous system (CNS). The traditional "neuro-endocrine-immune" network model has confirmed the close connection between the CNS and the immune system. However, due to the complex mediating role of the endocrine system, its application in clinical treatment is limited. In recent years, the direct regulation of the peripheral immune system through the CNS has provided new methods for the clinical treatment of neuroimmune-related diseases. This article analyzes the changes in the peripheral immune system after CNS injury and summarizes the effects of various stimulation methods, including transcranial magnetic stimulation, transcranial electrical stimulation, deep brain stimulation, spinal cord stimulation, and vagus nerve stimulation, on the peripheral immune system. Additionally, it explores the clinical research progress and future development directions of these stimulation methods. It is proposed that these neural regulation techniques exhibit positive effects in reducing peripheral inflammation, protecting immune cells and organ functions, and improving immunosuppressive states, providing new perspectives and therapeutic potential for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junming Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weiming Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoyu Cui
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Liu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
9
|
Van Den Noortgate M, Van Den Eede F, Coppens V, Giltay EJ, De Picker L, Morrens M. Immune-neuroendocrine crosstalk in mood and psychotic disorders: A meta-analysis and systematic review. Brain Behav Immun Health 2025; 44:100965. [PMID: 40040865 PMCID: PMC11879693 DOI: 10.1016/j.bbih.2025.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Background Bidirectional interactions between immune and neuroendocrine mechanisms are involved in mood and psychotic disorders, although individual studies report inconsistent and even contradictory findings on the nature of this crosstalk. Our objective was to perform an up to date systematic review and meta-analysis of the association between hypothalamic-pituitary-adrenal (HPA) axis and immune system functioning in mood and psychotic disorders. Methods We searched the Pubmed, Web of Science and Embase databases for studies reporting correlations between one or more HPA- and immune markers (IM) in patients with mood or psychotic disorders. We analyzed unchallenged correlations as well as challenge studies investigating the HPA-immune interaction through dexamethasone (DEX) and/or CRH suppression, HPA-mediated challenge of immune cell proliferation, immune challenges, or psychological stressors. Finally, genetic studies focusing on HPA x immune interrelation were evaluated. For meta-analyzable data, three primary outcome measures were defined for immune functioning, namely the pro-inflammatory index (PII) and anti-inflammatory index (AII) for the molecular IM and a composite cellular immune marker score (CCIM) for the cellular IM. Secondary analyses were performed for the individual molecular and cellular IM. Heterogeneity was evaluated with the I2 statistic. Meta-regression analyses were performed to evaluate the impact of potential covariates (publication year, gender, age, symptom severity) on the primary outcome analyses. Results 93 studies (n = 8226) were included, of which 50 (n = 5649) contained meta-analyzable data. The majority of the included studies (k = 72) investigated major depressive disorder (MDD) patients, nineteen schizophrenia spectrum disorders (SSD) and six bipolar disorder (BD). Under physiological conditions, a poor association was found between cortisol and the PII only in the unmedicated subsample of MDD (k = 8; n = 425; r = .205; z = 2.151; p = .031) and the medicated subsample of SSD (k = 4; n = 152; r = .0.237; z = 2.314; p = .021). No significant correlation was found in MDD between the AII and cortisol (k = 3; n = 1243; r = .005; z = .188; p = .851). Similar results were found for the association between immune cell numbers and cortisol in both MDD (k = 10; n = 773; r = -.005; z = -.113; p = .894) and SSD (k = 4; n = 99; r = .167; z = 1.356; p = .175). A total of 42 studies discussed post-challenge associations between immune alterations and HPA disturbances, of which 12 (n = 389; all MDD) contained meta-analyzable data and 37 entered the systematic review (n = 1783). No post-DEX correlations were found between cortisol and PII (k = 3; n = 105; r = .074; z = .355; p = .722) or CCIM (k = 5; n = 259; r = -.153; z = -1.294; p = .196). However, a significant association was found between post-DEX cortisol/ACTH and PII produced by stimulated blood cells in vitro (k = 3; n = 61; r = .508; z = 4.042; p < .001) as well as for cortisol and CCIM score in MDD after in vitro mitogen stimulation (k = 4; n = 90; r = -.309; z = -2498; p = .012). Following a psychological stressor (k = 6; n = 121), cortisol responses tended to be blunted in all included pathologies, while immune activation was comparable to healthy controls. Genetic studies (k = 7; n = 464) demonstrate altered gene expression of glucocorticoid receptors (GR) in peripheral immune cells in MDD. Heterogeneity over studies tended to be moderate to high. Discussion The main limitations are the heterogeneity of outcome measures (both HPA and IM) and small sample sizes of the included studies. We conclude that, in physiological conditions, associations between HPA-axis and molecular or cellular IM are absent or poor in both MDD and SSD and psychotropic medication may influence this crosstalk differently in both patient groups. Studies using challenge paradigms in MDD populations did reveal differences in the HPA-immune crosstalk. The normally expected decrease in lymphocytes after DEX distribution tended to be less pronounced in MDD, especially in glucocorticoid-insensitive non-suppressors. It is recommended that future studies should be properly powered and assess HPA functioning using multiple cortisol assessments. Challenge studies are probably more useful than baseline biomarker studies and cellular IM are more informative than molecular IM. It is recommended to broadly assess leucocyte function and, when possible, perform subgroup analyses based on HPA- and/or immune function.
Collapse
Affiliation(s)
- Minne Van Den Noortgate
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Filip Van Den Eede
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Antwerp University Hospital, Edegem, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Erik J. Giltay
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Health Campus the Hague, Leiden University Medical Center, The Hague, the Netherlands
| | - Livia De Picker
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium
| |
Collapse
|
10
|
Hua K, Cummings M, Bernatik M, Brinkhaus B, Usichenko T, Willich SN, Scheibenbogen C, Dietzel J. Effects of Auricular Stimulation on Inflammatory Parameters: Results of a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Neuromodulation 2025:S1094-7159(25)00008-X. [PMID: 39998453 DOI: 10.1016/j.neurom.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND The number of randomized controlled trials (RCTs) using auricular stimulation (AS) techniques, such as transauricular vagus nerve stimulation, auricular electrostimulation, auricular acupuncture, and acupressure in experimental and clinical settings has increased markedly over the last three decades. This systematic review evaluates the effects of AS on biomarkers of inflammation and stress responses. MATERIALS AND METHODS The following data bases were searched: MEDLINE (PubMed), EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), ISI Web of Science, and Scopus Data base. Data collection and analysis were conducted independently by two reviewers. Quality and risk assessments of the included studies were performed, and a meta-analysis of the effects of the most frequently assessed biomarkers was conducted using RevMan statistical software. RESULTS A total of 1122 patients and healthy volunteers from 27 RCTs were included in this systematic review; 81% of the participants were female, with a median age of 51 years. Pooled data of 18 studies showed a significant effect of AS regarding a reduction of serum C-reactive protein, tumor necrosis factor-α, interleukin (IL)-6, and IL-10. Although IL-4, IL1β, cortisol, substance P and calcitonin gene-related peptide, and adrenocorticotropic hormone did not show any changes, salivary amylase increased under AS. CONCLUSIONS The influence of inflammatory cytokines seems to be mediated by AS. More research is needed to investigate the effects of AS on the immunologic system in addition to its clinical significance in high-quality RCT.
Collapse
Affiliation(s)
- Kevin Hua
- Institute for Social Medicine, Epidemiology and Health Economics, Charité-University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Benno Brinkhaus
- Institute for Social Medicine, Epidemiology and Health Economics, Charité-University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Taras Usichenko
- Department for Anaesthesiology, University Hospital Greifswald, Greifswald, Germany; Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - Stefan N Willich
- Institute for Social Medicine, Epidemiology and Health Economics, Charité-University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Joanna Dietzel
- Institute for Social Medicine, Epidemiology and Health Economics, Charité-University Medicine, Corporate Member of Freie Universität Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
11
|
Rus CP. Disruptions in serotonin- and kynurenine pathway metabolism in post-COVID: biomarkers and treatment. Front Neurol 2025; 16:1532383. [PMID: 40027165 PMCID: PMC11869386 DOI: 10.3389/fneur.2025.1532383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
|
12
|
Ejiohuo O, Bilska K, Narożna B, Skibińska M, Kapelski P, Dmitrzak-Węglarz M, Szczepankiewicz A, Pawlak J. The implication of ADRA2A and AVPRIB gene variants in the aetiology of stress-related bipolar disorder. J Affect Disord 2025; 368:249-257. [PMID: 39278467 DOI: 10.1016/j.jad.2024.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE Bipolar disorder is a complex and severe mental illness characterised by manic and depressive episodes that can be triggered and exacerbated by psychosocial, environmental, and biological stressors. Genetic variations are a risk factor for bipolar disorder. However, the identification of the exact gene variants and genotypes remains complex. This study, therefore, aims to identify the potential association between genotypes of analysed single nucleotide polymorphisms and the presence of a stressor in bipolar disorder patients. METHOD We analysed 114 single nucleotide polymorphisms (SNPs) from bipolar and stress-related candidate genes in 550 patients with bipolar disorders (60.36 % females and 39.64 % male). We compared SNPs of patients reporting the presence (40.73 %) or absence of stressors (59.27 %) before the first episode using the Persons Chi-square test and Bayes Factor t-test. The genotyping of 114 SNPs was done using TaqMan assays. Statistical analysis was done using Statistica 13.3 software (StatSoft Poland, Krakow, Poland), R programming, and G*Power statistics. RESULT We found significant differences in genotype distribution (p < 0.05) in 6 polymorphisms (AVPRIB/rs28536160, FKBP4/rs2968909, ADRA2A/rs3750625, 5HTR2A/rs6311, 5HTR2A/rs6313, and GLCCI1/rs37972) when comparing BD patient with and without stressor with a small effect of d = 0.2. Of these, two gene variants (ADRA2A/rs3750625/AC and AVPRIB/rs28536160/CT) with minor alleles formed an association with the presence of a stressor prior to the disease onset and favoured the alternative hypothesis using Bayes Factor Analysis t-test for hypothesis testing. CONCLUSION This study presents a novel association of ADRA2A/rs3750625/AC and AVPR1B/rs28536160/CT gene variants in stress-related bipolar disorder with the AC genotype of ADRA2A/rs3750625 constituting a risk genotype and CT of AVPR1B/rs28536160 constituting a protective genotype. However, further functional analysis is required to fully understand their clinical and biological significance and interaction.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
13
|
Feng LS, Wang YM, Liu H, Ning B, Yu HB, Li SL, Wang YT, Zhao MJ, Ma J. Hyperactivity in the Hypothalamic-Pituitary-Adrenal Axis: An Invisible Killer for Anxiety and/or Depression in Coronary Artherosclerotic Heart Disease. J Integr Neurosci 2024; 23:222. [PMID: 39735967 DOI: 10.31083/j.jin2312222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 12/31/2024] Open
Abstract
The coexistence of anxiety or depression with coronary heart disease (CHD) is a significant clinical challenge in cardiovascular medicine. Recent studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activity could be a promising focus in understanding and addressing the development of treatments for comorbid CHD and anxiety or depression. The HPA axis helps to regulate the levels of inflammatory factors, thereby reducing oxidative stress damage, promoting platelet activation, and stabilizing gut microbiota, which enhance the survival and regeneration of neurons, endothelial cells, and other cell types, leading to neuroprotective and cardioprotective benefits. This review addresses the relevance of the HPA axis to the cardiovascular and nervous systems, as well as the latest research advancements regarding its mechanisms of action. The discussion includes a detailed function of the HPA axis in regulating the processes mentioned. Above all, it summarizes the therapeutic potential of HPA axis function as a biomarker for coronary atherosclerotic heart disease combined with anxiety or depression.
Collapse
Affiliation(s)
- Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huan Liu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- The Department of Traditional Chinese Medicine, the First Affiliated Hospital of the Air Force Military Medical University, 710038 Xi'an, Shaanxi, China
| | - Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Hu-Bin Yu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Shi-Lin Li
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Yu-Ting Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Ming-Jun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, 712000 Xianyang, Shaanxi, China
| | - Jing Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
- The Department of Traditional Chinese Medicine, the First Affiliated Hospital of the Air Force Military Medical University, 710038 Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
15
|
Costa TA, Menezes MDPN. The biological and psychological impact of the Coronavirus disease-19 pandemic on the characteristics of the menstrual cycle. J Turk Ger Gynecol Assoc 2024; 25:259-265. [PMID: 39658940 PMCID: PMC11632643 DOI: 10.4274/jtgga.galenos.2024.2023-6-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/05/2024] [Indexed: 12/12/2024] Open
Abstract
The Coronavirus disease-19 (COVID-19) pandemic was declared in March 2020 by the World Health Organization. The severe acute respiratory syndrome-coronavirus-2 virus enters host cells through angiotensin-converting enzyme 2 receptors and transmembrane serine protease type II that are expressed in pulmonary alveoli, as well as in hepatocytes, endothelium, ovaries, uterus, vagina, thyroid, and other tissues. In addition to viral injury, the COVID-19 pandemic, through protective measures such as social isolation and lockdown, has promoted a scenario of psychosocial stress, especially in women. In this context of isolation, anxiety, fear, and mental distress, there is dysregulation of the hypothalamic-pituitary-adrenal axis and subsequent gonadal side effects. Furthermore, studies report an association between COVID-19 and temporary menstrual cycle alterations such, as increased cycle duration, decreased cycle duration, increased menstrual flow, dysmenorrhea, and amenorrhea. Regarding COVID-19 vaccination, menstrual irregularities have been observed in about half of the women, predominantly with a decrease in cycle duration and increased menstrual flow, but without fertility sequelae. The aim of this study was to review the most up-to-date information on the relationship between the COVID-19 pandemic and menstrual irregularities.
Collapse
Affiliation(s)
- Tiago Almeida Costa
- Department of Obstetrics and Gynecology, 8 COREME of the São Paulo Municipal Health Department, São Paulo, Brazil
| | | |
Collapse
|
16
|
Müller L, Di Benedetto S. The impact of COVID-19 on accelerating of immunosenescence and brain aging. Front Cell Neurosci 2024; 18:1471192. [PMID: 39720706 PMCID: PMC11666534 DOI: 10.3389/fncel.2024.1471192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global health, affecting not only the immediate morbidity and mortality rates but also long-term health outcomes across various populations. Although the acute effects of COVID-19 on the respiratory system have initially been the primary focus, it is increasingly evident that the virus can have significant impacts on multiple physiological systems, including the nervous and immune systems. The pandemic has highlighted the complex interplay between viral infection, immune aging, and brain health, that can potentially accelerate neuroimmune aging and contribute to the persistence of long COVID conditions. By inducing chronic inflammation, immunosenescence, and neuroinflammation, COVID-19 may exacerbate the processes of neuroimmune aging, leading to increased risks of cognitive decline, neurodegenerative diseases, and impaired immune function. Key factors include chronic immune dysregulation, oxidative stress, neuroinflammation, and the disruption of cellular processes. These overlapping mechanisms between aging and COVID-19 illustrate how the virus can induce and accelerate aging-related processes, leading to an increased risk of neurodegenerative diseases and other age-related conditions. This mini-review examines key features and possible mechanisms of COVID-19-induced neuroimmune aging that may contribute to the persistence and severity of long COVID. Understanding these interactions is crucial for developing effective interventions. Anti-inflammatory therapies, neuroprotective agents, immunomodulatory treatments, and lifestyle interventions all hold potential for mitigating the long-term effects of the virus. By addressing these challenges, we can improve health outcomes and quality of life for millions affected by the pandemic.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
17
|
Wang I, Buffington SA, Salas R. Microbiota-Gut-Brain Axis in Psychiatry: Focus on Depressive Disorders. CURR EPIDEMIOL REP 2024; 11:222-232. [PMID: 40130013 PMCID: PMC11932714 DOI: 10.1007/s40471-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 03/26/2025]
Abstract
Purpose of Review Gut microbiota contribute to several physiological processes in the host. The composition of the gut microbiome is associated with different neurological and neurodevelopmental diseases. In psychiatric disease, stress may be a major factor leading to gut microbiota alterations. Depressive disorders are the most prevalent mental health issues worldwide and patients often report gastrointestinal symptoms. Accordingly, evidence of gut microbial alterations in depressive disorders has been growing. Here we review current literature revealing links between the gut microbiome and brain function in the context of depression. Recent Findings The gut-brain axis could impact the behavioral manifestation of depression and the underlying neuropathology via multiple routes: the HPA axis, immune function, the enteric nervous system, and the vagus nerve. Furthermore, we explore possible therapeutic interventions including fecal microbiota transplant or probiotic supplementation in alleviating depressive symptoms. Summary Understanding the mechanisms by which bidirectional communication along the gut-brain axis can be dysregulated in patients with depression could lead to the development of personalized, microbiome-targeted therapies for the treatment of this disorder.
Collapse
Affiliation(s)
- I–Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research On Inflammatory Diseases, Michael E DeBakey VA Medical, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| |
Collapse
|
18
|
Mithaiwala MN, Phillips NS, Nguyen DH, Beehler MS, Ballard HS, Vincent AS, Lovallo WR, Kochunov P, Hong LE, O'Connor JC, Cole S, Acheson A. Increased white blood cell in young adults with family histories of alcohol and other substance use disorders. Addict Biol 2024; 29:e70000. [PMID: 39558659 PMCID: PMC11574109 DOI: 10.1111/adb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
Individuals with a family history of alcohol or other substance use disorders (FH+) are at increased risk for developing alcohol and other substance use disorders (AUD/SUD) compared to individuals with no such family histories (FH-). FH+ young adults have blunted stress reactivity, lower cognitive performance and altered frontal white matter microstructure compared to FH- controls. We hypothesized that family history of AUD/SUD disrupts neuroendocrine regulation of the immune system in FH+ individuals, resulting in altered blood immune cell composition, inflammation and neurocognitive alterations that, ultimately, increases risk for AUD/SUD and associated psychopathology. We examined white blood cell (WBC) parameters derived from complete blood counts in FH+ (n = 37) and FH- (n = 77) young adults without AUD/SUD to test if immune system dysregulation is present in FH+ individuals. The total WBC count, number of neutrophils and number of monocytes and associated systemic inflammatory response index (SIRI) were significantly increased in the FH+ group. Further, WBC, neutrophil, monocyte counts and SIRI values were all positively correlated with FH density (number of biological parents and grandparents with AUD/SUD). These novel data are the first to identify an association between family history of AUD/SUD and increased circulating leukocytes, which is likely indicative of immune dysregulation in FH+ young adults prior to onset of AUD/SUD. Additional studies are warranted to characterize the functional relevance of the observed immune cell composition in FH+ individuals, but the notion that inexpensive and widely available blood tests may help identify addiction risk could be transformative.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Department of Psychiatry and Behavioral SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Nikki S. Phillips
- Department of Psychiatry and Behavioral SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Dylan H. Nguyen
- Department of Psychiatry and Behavioral SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Melanie S. Beehler
- Department of Psychiatry and Behavioral SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Harrison S. Ballard
- Department of Psychiatry and Behavioral SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | | | - William R. Lovallo
- University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- VA Medical Center HospitalOklahoma CityOklahomaUSA
| | - Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolUT Health HoustonHoustonTexasUSA
| | - L. Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolUT Health HoustonHoustonTexasUSA
| | - Jason C. O'Connor
- Audie L. Murphy VA HospitalSouth Texas Veterans Health SystemSan AntonioTexasUSA
- Department of PharmacologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Center for Biomedical NeuroscienceUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Steve Cole
- Department of Psychiatry and Biobehavioral SciencesUniversity of California School of MedicineLos AngelesCaliforniaUSA
| | - Ashley Acheson
- Department of Psychiatry and Behavioral SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
19
|
Sun Y, Fan C, Lei D. Association between gut microbiota and postpartum depression: A bidirectional Mendelian randomization study. J Affect Disord 2024; 362:615-622. [PMID: 39029663 DOI: 10.1016/j.jad.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUNDS Empirical investigations have shown an association between gut microbiota and postpartum depression (PPD); nevertheless, the precise cause-and-effect relationship between these two variables remains ambiguous. This research aimed to examine the possible reciprocal causal relationship between the gut microbiota and PPD. METHODS In this work, we used Mendelian randomization (MR) to analyze the relationship between the gut microbiota (n = 18,340) and PPD (n = 67,205). We obtained the relevant SNPs from publicly accessible genome-wide association studies (GWAS). The SNP estimations were combined by the inverse-variance weighted (IVW) method, including sensitivity analyses such as weighted median, MR Egger, and MR Pleiotropy Residual Sum and Outlier (PRESSO). RESULTS We have identified strong correlations between six bacterial characteristics and the likelihood of developing PPD. Our research revealed that the genus Ruminococcaceae UCG010, the family Veillonellaceae, and the class Clostridia had a beneficial effect on preventing PPD. The class Alphaproteobacteria, genus Slackia, and order NB1n were found to have a significant negative impact on PPD. The sensitivity studies conducted on these bacterial features consistently confirmed these finding. LIMITATIONS It is crucial to acknowledge that our study was conducted just within a European society, which may restrict its applicability to other groups. CONCLUSIONS The findings from our MR investigation indicate a potential causal relationship between certain kinds of gut bacteria and PPD. Additional investigation is required to elucidate the influence of gut microbiota on the advancement of PPD.
Collapse
Affiliation(s)
- Yonghao Sun
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| | - Di Lei
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
20
|
Frank MG, Ball JB, Hopkins S, Kelley T, Kuzma AJ, Thompson RS, Fleshner M, Maier SF. SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory, physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids. Brain Behav Immun 2024; 121:87-103. [PMID: 39043345 DOI: 10.1016/j.bbi.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Long COVID is a major public health consequence of COVID-19 and is characterized by multiple neurological and neuropsychatric symptoms. SARS-CoV-2 antigens (e.g., spike S1 subunit) are found in the circulation of Long COVID patients, have been detected in post-mortem brain of COVID patients, and exhibit neuroinflammatory properties. Considering recent observations of chronic neuroinflammation in Long COVID patients, the present study explores the idea that antigens derived from SARS-CoV-2 might produce a long-term priming or sensitization of neuroinflammatory processes, thereby potentiating the magnitude and/or duration of the neuroinflammatory response to future inflammatory insults. Rats were administered S1 or vehicle intra-cisterna magna and 7d later challenged with vehicle or LPS. The neuroinflammatory, physiological, and behavioral responses to LPS were measured at various time points post-LPS. We found that prior S1 treatment potentiated many of these responses to LPS suggesting that S1 produces a protracted priming of these processes. Further, S1 produced a protracted reduction in basal brain corticosteroids. Considering the anti-inflammatory properties of corticosteroids, these findings suggest that S1 might disinhibit innate immune processes in brain by reducing anti-inflammatory drive, thereby priming neuroinflammatory processes. Given that hypocortisolism is observed in Long COVID, we propose that similar S1-induced innate immune priming processes might play role in the pathophysiology of Long COVID.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA.
| | - Jayson B Ball
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Shelby Hopkins
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Tel Kelley
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Angelina J Kuzma
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Robert S Thompson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| |
Collapse
|
21
|
Chen M, Yang C, Chen Y, Nie K, Wang T, Qu Y. Research hotspots and trends of non-invasive vagus nerve stimulation: a bibliometric analysis from 2004 to 2023. Front Neurol 2024; 15:1429506. [PMID: 39381073 PMCID: PMC11460548 DOI: 10.3389/fneur.2024.1429506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Objectives Non-invasive vagus nerve stimulation (nVNS) is an emerging neuromodulation technique in recent years, which plays a role in nervous system diseases, psychiatric diseases, and autoimmune diseases. However, there is currently no comprehensive analysis of all the literature published in this field. Therefore, in this article, a bibliometric analysis will be conducted on all the literature published in the field of nVNS in the past 20 years. Methods All articles and reviews published in this field from 2004 to 2023 were extracted from the WOS core database. VOSviewer 1.6.18.0, Scimago Graphica, CiteSpace 6.2.R2, and Excel 2021 were used to analyze the number of publications, participating countries, institutions, authors, references, and research hotspots in this field. Results A total of 843 articles were included in the bibliometric analysis of nVNS. Over the past 20 years, the number of publications in this field has gradually increased, reaching a peak in 2023. The United States and China ranked top two in terms of publication volume, and institutions from these two countries also ranked high in terms of publication volume, citation count, and collaboration intensity. Rong Peijing is the author with the most publications, while Bashar W Badran is the most cited author. Articles in the field of nVNS were most frequently published in Frontiers in Neuroscience, while Brain Stimulation had the most citations. Currently, research hotspots in nVNS mainly focus on its application in diseases and related mechanisms. Conclusion We conducted a comprehensive analysis of the field of nVNS, clarifying the previous research directions, which is helpful to expand its indications and promote clinical application.
Collapse
Affiliation(s)
- Mingyue Chen
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yin Chen
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Kailu Nie
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tingting Wang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- College of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Sichuan Provincial Key Laboratory of Rehabilitation Medicine, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Napoli N, Schwarz Q. Impacts beyond the brain: Unraveling molecular mechanisms linking psychiatric, metabolic, and inflammatory conditions. Neuron 2024; 112:2827-2829. [PMID: 39236676 DOI: 10.1016/j.neuron.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
By establishing semaphorin 6D expression in the amygdala as a central coordinator of brain, metabolic, and immunologic function, the Neuron publication by Nakanishi et al.1 provides new insight to how primary brain deficiency impacts physiological systems beyond the brain.
Collapse
Affiliation(s)
- Nathaniel Napoli
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide SA 5005, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide SA 5005, Australia.
| |
Collapse
|
23
|
Cai M, Park HR, Yang EJ. Hominis Placenta modulates PTSD-like behaviors in SPSS-induced PTSD mice: Regulating energy metabolism and neuronal activity. Biomed Pharmacother 2024; 178:117243. [PMID: 39121588 DOI: 10.1016/j.biopha.2024.117243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The symptoms of post-traumatic stress disorder (PTSD) include re-experiencing trauma, avoidance behaviors, negative alterations in cognition and mood. However, the underlying molecular mechanisms are unclear. Dysfunction of hypothalamic-pituitary-adrenal axis (HPA-axis) and dysregulation of glutamatergic and GABAergic systems were shown during PTSD. Therefore, regulating hormonal change or glutamate energy metabolism are considered as a therapeutic approach to alleviate this condition. Herbal medicine may be effective in treating PTSD due to its ability to target multiple underlying mechanisms with various compounds. Hominis placenta (HP) is a traditional medicine widely used in East Asia for various conditions. However, the effect on PTSD has not been clarified. We aimed to investigate the effects of HP treatment in single-prolonged stress with shock (SPSS)-induced PTSD mice and explore its possible mechanisms. HP treatment at ST36 acupoints, combined with herbal medicine and acupuncture point stimulation, was applied three times/week for 2 weeks. HP treatment effectively alleviated anxiety and cognitive decline in SPSS-induced PTSD mice, as detected by Open field and the Y-maze test. Additionally, HP decreased the corticosterone levels and proinflammatory cytokines in the serum, modulated brain energy metabolism, and inhibited glutamate excitotoxicity, while regulating neuronal activity through modulating brain-derived neurotrophic factor (BDNF) levels, as demonstrated by western blot and immunohistochemistry, and flow cytometry analyses. These findings reveal that HP treatment effectively alleviates PTSD-like behaviors by regulating energy metabolism and neuronal activity though modulation of the HPA-axis and BDNF levels in PTSD mice, indicating that HP treatment is a promising therapeutic approach for PTSD.
Collapse
Affiliation(s)
- Mudan Cai
- Department of KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, South Korea
| | - Hee Ra Park
- Department of KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, South Korea
| | - Eun Jin Yang
- Department of KM Science Research Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, South Korea.
| |
Collapse
|
24
|
Lai W, Huang S, Liu J, Zhou B, Yu Z, Brown J, Hong G. Toll-like receptor 4-dependent innate immune responses are mediated by intracrine corticosteroids and activation of glycogen synthase kinase-3β in astrocytes. FASEB J 2024; 38:e23781. [PMID: 38941212 DOI: 10.1096/fj.202301923rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Reactive astrocytes are important pathophysiologically and synthesize neurosteroids. We observed that LPS increased immunoreactive TLR4 and key steroidogenic enzymes in cortical astrocytes of rats and investigated whether corticosteroids are produced and mediate astrocytic TLR4-dependent innate immune responses. We found that LPS increased steroidogenic acute regulatory protein (StAR) and StAR-dependent aldosterone production in purified astrocytes. Both increases were blocked by the TLR4 antagonist TAK242. LPS also increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and corticosterone production, and both were prevented by TAK242 and by siRNAs against 11β-HSD1, StAR, or aldosterone synthase (CYP11B2). Knockdown of 11β-HSD1, StAR, or CYP11B2 or blocking either mineralocorticoid receptors (MR) or glucocorticoid receptors (GR) prevented dephosphorylation of p-Ser9GSK-3β, activation of NF-κB, and the GSK-3β-dependent increases of C3, IL-1β, and TNF-α caused by LPS. Exogenous aldosterone mimicked the MR- and GSK-3β-dependent pro-inflammatory effects of LPS in astrocytes, but corticosterone did not. Supernatants from astrocytes treated with LPS reduced MAP2 and viability of cultured neurons except when astrocytic StAR or MR was inhibited. In adrenalectomized rats, intracerebroventricular injection of LPS increased astrocytic TLR4, StAR, CYP11B2, and 11β-HSD1, NF-κB, C3 and IL-1β, decreased astrocytic p-Ser9GSK-3β in the cortex and was neurotoxic, except when spironolactone was co-injected, consistent with the in vitro results. LPS also activated NF-κB in some NeuN+ and CD11b+ cells in the cortex, and these effects were prevented by spironolactone. We conclude that intracrine aldosterone may be involved in the TLR4-dependent innate immune responses of astrocytes and can trigger paracrine effects by activating astrocytic MR/GSK-3β/NF-κB signaling.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Siying Huang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Junjie Liu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, China
| |
Collapse
|
25
|
Retallick-Townsley KG, Lee S, Cartwright S, Cohen S, Sen A, Jia M, Young H, Dobbyn L, Deans M, Fernandez-Garcia M, Huckins LM, Brennand KJ. Dynamic stress- and inflammatory-based regulation of psychiatric risk loci in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602755. [PMID: 39026810 PMCID: PMC11257632 DOI: 10.1101/2024.07.09.602755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The prenatal environment can alter neurodevelopmental and clinical trajectories, markedly increasing risk for psychiatric disorders in childhood and adolescence. To understand if and how fetal exposures to stress and inflammation exacerbate manifestation of genetic risk for complex brain disorders, we report a large-scale context-dependent massively parallel reporter assay (MPRA) in human neurons designed to catalogue genotype x environment (GxE) interactions. Across 240 genome-wide association study (GWAS) loci linked to ten brain traits/disorders, the impact of hydrocortisone, interleukin 6, and interferon alpha on transcriptional activity is empirically evaluated in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons. Of ~3,500 candidate regulatory risk elements (CREs), 11% of variants are active at baseline, whereas cue-specific CRE regulatory activity range from a high of 23% (hydrocortisone) to a low of 6% (IL-6). Cue-specific regulatory activity is driven, at least in part, by differences in transcription factor binding activity, the gene targets of which show unique enrichments for brain disorders as well as co-morbid metabolic and immune syndromes. The dynamic nature of genetic regulation informs the influence of environmental factors, reveals a mechanism underlying pleiotropy and variable penetrance, and identifies specific risk variants that confer greater disorder susceptibility after exposure to stress or inflammation. Understanding neurodevelopmental GxE interactions will inform mental health trajectories and uncover novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kayla G. Retallick-Townsley
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Seoyeon Lee
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sam Cartwright
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sophie Cohen
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Annabel Sen
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meng Jia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Hannah Young
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee Dobbyn
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Deans
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meilin Fernandez-Garcia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Laura M. Huckins
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen J. Brennand
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
26
|
Martel-Duguech L, Poirier J, Bourdeau I, Lacroix A. Diagnosis and management of secondary adrenal crisis. Rev Endocr Metab Disord 2024; 25:619-637. [PMID: 38411891 DOI: 10.1007/s11154-024-09877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Adrenal crisis (AC) is a life threatening acute adrenal insufficiency (AI) episode which can occur in patients with primary AI but also secondary AI (SAI), tertiary AI (TAI) and iatrogenic AI (IAI). In SAI, TAI and IAI, AC may develop when the HPA axis is unable to mount an adequate glucocorticoid response to severe stress due to pituitary or hypothalamic disruption. It manifests as an acute deterioration in multi-organ homeostasis that, if untreated, leads to shock and death. Despite the availability of effective preventive strategies, its prevalence is increasing in patients with SAI, TAI and IAI due to more frequent exogenous steroid administration, pituitary immune-related effects of immune checkpoint inhibitors and opioid use in pain management. The delayed diagnosis of acute AI which remains infrequently suspected increases the risk of AC. Its main precipitating factors are infections, emotional distress, surgery, cessation or reduction in GC doses, pituitary infarction or surgical cure of endogenous Cushing's syndrome. In patients not known previously to have SAI/TAI/IAI, recognition of its symptoms, signs, and biochemical abnormalities can be challenging and cause delay in proper diagnosis and therapy. Effective therapy of AC is rapid intravenous administration of hydrocortisone (initial bolus of 100 mg followed by 200 mg/24 h as continuous infusion or bolus of 50 mg every 6 h) and 0.9% saline. In diagnosed patients, preventive education in sick-day rules adjustment of glucocorticoid replacement and hydrocortisone parenteral self-administration must be performed repeatedly by trained health care providers. Strategies to improve the adequate preventive education in patients at risk for secondary AI should be promoted in collaboration with various medical specialist societies and patients support associations.
Collapse
Affiliation(s)
- Luciana Martel-Duguech
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - Jonathan Poirier
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), 900 Saint-Denis Street, Montréal, QC H2X 0A9, Québec, Canada.
| |
Collapse
|
27
|
Wang X, Wen X, Yuan S, Zhang J. Gut-brain axis in the pathogenesis of sepsis-associated encephalopathy. Neurobiol Dis 2024; 195:106499. [PMID: 38588753 DOI: 10.1016/j.nbd.2024.106499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-brain axis is a bidirectional communication network linking the gut and the brain, overseeing digestive functions, emotional responses, body immunity, brain development, and overall health. Substantial research highlights a connection between disruptions of the gut-brain axis and various psychiatric and neurological conditions, including depression and Alzheimer's disease. Given the impact of the gut-brain axis on behavior, cognition, and brain diseases, some studies have started to pay attention to the role of the axis in sepsis-associated encephalopathy (SAE), where cognitive impairment is the primary manifestation. SAE emerges as the primary and earliest form of organ dysfunction following sepsis, potentially leading to acute cognitive impairment and long-term cognitive decline in patients. Notably, the neuronal damage in SAE does not stem directly from the central nervous system (CNS) infection but rather from an infection occurring outside the brain. The gut-brain axis is posited as a pivotal factor in this process. This review will delve into the gut-brain axis, exploring four crucial pathways through which inflammatory signals are transmitted and elevate the incidence of SAE. These pathways encompass the vagus nerve pathway, the neuroendocrine pathway involving the hypothalamic-pituitary-adrenal (HPA) axis and serotonin (5-HT) regulation, the neuroimmune pathway, and the microbial regulation. These pathways can operate independently or collaboratively on the CNS to modulate brain activity. Understanding how the gut affects and regulates the CNS could offer the potential to identify novel targets for preventing and treating this condition, ultimately enhancing the prognosis for individuals with SAE.
Collapse
Affiliation(s)
- Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
28
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
29
|
Hassan MAE, Ragab MA, Shazly SA, Ahmed ME, El-Kholany ME, El-Raghi AA. Feasible feeding strategies for sustainable management of serve heat stress conditions: Effect of Milk Thistle extract on growth performance and health status of newly weaned rabbits. J Anim Physiol Anim Nutr (Berl) 2024; 108:778-791. [PMID: 38311824 DOI: 10.1111/jpn.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The trail aimed to explore the effect of dietary supplementation of Milk Thistle (MT) extract on growth performance and health status of growing rabbits exposed to serve heat stress condition, considering the economic efficiency of supplementation. A total of 96 weaned male rabbits were divided into 4 groups (24 rabbits/group). The first group received the basal diet without any supplementation and served as a control (MT0), while 2nd, 3rd and 4th groups supplemented with MT at levels of 5 (MT5), 10 (MT10) and 15 (MT15) g/kg diet, respectively, for 10 consecutive weeks. Both of growth performance and feed utilisation were significantly enhanced by the dietary treatment, the optimum dose of MT was 12 g/kg diet for average daily gain, specific growth rate and performance index. However, it was 13 g/kg diet for feed conversation ratio. The polynomial regression analysis showed that the lowest values of rectal temperature and respiration rate were observed at doses of 11 and 13 g/kg diet respectively. The dressing percentage and the relative weights of liver and total edible giblets were significantly improved by the treatment (p = 0.0416, 0.0112 and 0.0032, respectively), maximising in the MT10 group. The MT10 and MT15 groups showed higher erythrocytes and leucocytes counts and lower levels of urea, creatinine and total cholesterol compared to the control (p < 0.05). Liver functions significantly enhanced in aforementioned two treated groups, the liver ultrastructure represented normal cytoplasmic organelles, and nucleus and mitochondria in MT10 group, while the MT15 group showed hepatocytes with dilated nucleus with most cytoplasmic organelles appeared well organised and normal except few small cytoplasms vacuolated. The levels glutathione, superoxide dismutase, catalase and total antioxidant capacity as well as immunoglobulin M, and immunoglobulin G significant improved in the MT-Treated groups compared to the control (p < 0.05). Economically, MT supplemented diets improved the net revenue of fattened rabbits during the summer season. In conclusion, the supplementation of MT extract at levels of 10 or 15 g/kg diet enhanced growth performance, feed utilisation, dressing percentage, hemato-biochemical attributes, immunity and redox balance of heat stressed growing rabbits during the hot season.
Collapse
Affiliation(s)
- Mahmoud A E Hassan
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mona A Ragab
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Soheir A Shazly
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mohamed E Ahmed
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Mohamed E El-Kholany
- Agriculture Research Center, Animal Production Research Institute (APRI), Ministry of Agriculture, Dokki, Giza, Egypt
| | - Ali Ali El-Raghi
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| |
Collapse
|
30
|
Chen HJC, Spiers JG, Lerskiatiphanich T, Parker SE, Lavidis NA, Fung JN, Woodruff TM, Lee JD. Complement C5a Receptor Signaling Alters Stress Responsiveness and Modulates Microglia Following Chronic Stress Exposure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100306. [PMID: 38628385 PMCID: PMC11019103 DOI: 10.1016/j.bpsgos.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Background Accumulating evidence underscores the pivotal role of heightened inflammation in the pathophysiology of stress-related diseases, but the underlying mechanisms remain elusive. The complement system, a key effector of the innate immune system, produces the C5-cleaved activation product C5a upon activation, initiating inflammatory responses through the canonical C5a receptor 1 (C5aR1). While C5aR1 is expressed in stress-responsive brain regions, its role in stress responsiveness remains unknown. Methods To investigate C5a-C5aR1 signaling in stress responses, mice underwent acute and chronic stress paradigms. Circulating C5a levels and messenger RNA expression of C5aR1 in the hippocampus and adrenal gland were measured. C5aR1-deficient mice were used to elucidate the effects of disrupted C5a-C5aR1 signaling across behavioral, hormonal, metabolic, and inflammation parameters. Results Chronic restraint stress elevated circulating C5a levels while reducing C5aR1 messenger RNA expression in the hippocampus and adrenal gland. Notably, the absence of C5aR1 signaling enhanced adrenal sensitivity to adrenocorticotropic hormone, concurrently reducing pituitary adrenocorticotropic hormone production and enhancing the response to acute stress. C5aR1-deficient mice exhibited attenuated reductions in locomotor activity and body weight under chronic stress. Additionally, these mice displayed increased glucocorticoid receptor sensitivity and disrupted glucose and insulin homeostasis. Chronic stress induced an increase in C5aR1-expressing microglia in the hippocampus, a response mitigated in C5aR1-deficient mice. Conclusions C5a-C5aR1 signaling emerges as a key metabolic regulator during stress, suggesting that complement activation and dysfunctional C5aR1 signaling may contribute to neuroinflammatory phenotypes in stress-related disorders. The results advocate for further exploration of complement C5aR1 as a potential therapeutic target for stress-related conditions.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Jereme G. Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
- Clear Vision Research, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and Medicine, the Australian National University, Acton, Australian Capital Territory, Australia
- School of Medicine and Psychology, College of Health and Medicine, the Australian National University, Australian Capital Territory, Australia
| | - Titaya Lerskiatiphanich
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Sandra E. Parker
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Nickolas A. Lavidis
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Jenny N. Fung
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Queensland Brain Institute, the University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - John D. Lee
- School of Biomedical Sciences, the University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Ryznar R, LaPorta A, Cooper S, Maher N, Clodfelder C, Edwards J, Towne F, Gubler KD. A distinct immune cytokine profile is associated with morning cortisol and repeated stress. Am J Disaster Med 2024; 19:33-43. [PMID: 38597645 DOI: 10.5055/ajdm.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
OBJECTIVE The objective of this study was to investigate possible immune cytokine trends throughout a week-long surgical simulation mass-casualty training session in order to determine the effects of stress inoculation on the immune system. METHODS Thirty-seven military medical students participated in a hyper-realistic surgical simulation training event conducted at Strategic Operations site in San Diego, California. Salivary samples were collected every morning of the stress training exercise for 4 consecutive days. Cortisol, along with a panel of 42 immune cytokines, was measured using multiplex enzyme-linked immunosorbent assays from Eve Technologies. The determined concentrations were averaged and plotted on a scatter plot, and then points were fit to a second-order polynomial trendline of best fit to measure. RESULTS The cytokines epidermal growth factor, growth-related oncogene-α, interleukin (IL)-1α, and platelet-derived growth factor-AA followed a noted pattern of cortisol decrease throughout the week. In addition, cytokines IL-27, granulocyte colony stimulating factor, IL-10, and IL-13 demonstrated a late peak, followed by a return to baseline at the conclusion of training. Finally, the cytokine monocyte chemoattractant protein-1 displayed a decline throughout the week followed by an increase on the last day of stress training. CONCLUSIONS Altogether, these results help to identify important biomarkers that may help to improve long-term stress adaptation and prevent post-traumatic stress disorder following exposure to repeated stress.
Collapse
Affiliation(s)
- Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Parker, Colorado. ORCID: https://orcid.org/0000-0001-9695-712X
| | - Anthony LaPorta
- Military Medicine Program; Professor, Clinical Surgery, Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | - Spencer Cooper
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | - Nicholas Maher
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | | | - Jeffrey Edwards
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | - Francina Towne
- Master of Science in Biomedical Sciences Program; Associate Professor of Immunology, Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| | - K Dean Gubler
- Surgery and Military Medicine; Director, Military Medicine Program, Rocky Vista University College of Osteopathic Medicine, Parker, Colorado
| |
Collapse
|
32
|
MacConnachie L, Zhang YS, Farina M, Gutierrez C, Hoover A, He Y, Aiello AE, Noppert GA. The association between incarceration and housing insecurity and advanced immune age during late life. Soc Sci Med 2024; 347:116698. [PMID: 38461610 PMCID: PMC11164318 DOI: 10.1016/j.socscimed.2024.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Emerging evidence suggests that psychosocial stress ages the immune system. Accordingly, immune aging may be an important potential mechanism linking psychosocial stress to aging-related decline and disease. Incarceration and housing insecurity represent severe and complex experiences of a multitude of psychosocial stressors, including discrimination, violence, and poverty. In this study, we investigated the association between incarceration and/or housing insecurity and advanced immune age in adults aged 55 and older. Our sample was derived from the Health and Retirement Survey (HRS), with n = 7003 individuals with valid housing insecurity data and n = 7523 with valid incarceration data. From 2016 Venous Blood Study data, we assessed immune aging using a comprehensive set of immune markers including inflammatory markers (IL-6, CRP, s-TNFR1), markers of viral control (CMV IgG antibodies), and ratios of T cell phenotypes (CD8+:CD4+, CD+ Memory: Naïve, CD4+ Memory: Naïve, CD8+ Memory: Naïve ratios). We found that both incarceration and housing insecurity were strongly associated with more advanced immune aging as indicated by increased inflammation, reduced viral control, and reduction in naïve T cells relative to memory T cells. Given that those who experienced incarceration, housing insecurity, and/or are racialized minorities were less likely to be included in this study, our results likely underestimated these associations. Despite these limitations, our study provided strong evidence that experiencing incarceration and/or housing insecurity may accelerate the aging of the immune system.
Collapse
Affiliation(s)
- Lauren MacConnachie
- Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48103, USA.
| | - Yuan S Zhang
- Department of Sociomedical Sciences and Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Mateo Farina
- Department of Human Development and Family Sciences, Population Research Center, University of Texas at Austin, Austin, TX, USA.
| | - Carmen Gutierrez
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Public Policy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Andrew Hoover
- Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48103, USA.
| | - Yuelin He
- Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48103, USA.
| | - Allison E Aiello
- Department of Epidemiology and Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Grace A Noppert
- Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI, 48103, USA.
| |
Collapse
|
33
|
Lee J, Chung YM, Curtin L, Silver DJ, Hao Y, Li C, Volovetz J, Hong ES, Jarmula J, Wang SZ, Kay KE, Berens M, Nicosia M, Swanson KR, Sharifi N, Lathia JD. Androgen loss weakens anti-tumor immunity and accelerates brain tumor growth. RESEARCH SQUARE 2024:rs.3.rs-4014556. [PMID: 38585839 PMCID: PMC10996802 DOI: 10.21203/rs.3.rs-4014556/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Many cancers, including glioblastoma (GBM), have a male-biased sex difference in incidence and outcome. The underlying reasons for this sex bias are unclear but likely involve differences in tumor cell state and immune response. This effect is further amplified by sex hormones, including androgens, which have been shown to inhibit anti-tumor T cell immunity. Here, we show that androgens drive anti-tumor immunity in brain tumors, in contrast to its effect in other tumor types. Upon castration, tumor growth was accelerated with attenuated T cell function in GBM and brain tumor models, but the opposite was observed when tumors were located outside the brain. Activity of the hypothalamus-pituitary-adrenal gland (HPA) axis was increased in castrated mice, particularly in those with brain tumors. Blockade of glucocorticoid receptors reversed the accelerated tumor growth in castrated mice, indicating that the effect of castration was mediated by elevated glucocorticoid signaling. Furthermore, this mechanism was not GBM specific, but brain specific, as hyperactivation of the HPA axis was observed with intracranial implantation of non-GBM tumors in the brain. Together, our findings establish that brain tumors drive distinct endocrine-mediated mechanisms in the androgen-deprived setting and highlight the importance of organ-specific effects on anti-tumor immunity.
Collapse
Affiliation(s)
- Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yoon-Mi Chung
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami
| | - Lee Curtin
- Mayo Clinic, Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, AZ, USA
- Department of Neurosurgery, Mayo Clinic, AZ, USA
| | - Daniel J. Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yue Hao
- TGen, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Cathy Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Josephine Volovetz
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ellen S. Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Medical Scientist Training Program, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jakub Jarmula
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sabrina Z. Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Medical Scientist Training Program, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kristen E. Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Michael Nicosia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kristin R. Swanson
- Sylvester Comprehensive Cancer Center, University of Miami
- Mayo Clinic, Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, AZ, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Medical Scientist Training Program, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Rose Ella Burkhardt Brain Tumor Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
34
|
Tanaka Y, Ohki I, Murakami K, Ozawa S, Wang Y, Murakami M. The gateway reflex regulates tissue-specific autoimmune diseases. Inflamm Regen 2024; 44:12. [PMID: 38449060 PMCID: PMC10919025 DOI: 10.1186/s41232-024-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
The dynamic interaction and movement of substances and cells between the central nervous system (CNS) and peripheral organs are meticulously controlled by a specialized vascular structure, the blood-brain barrier (BBB). Experimental and clinical research has shown that disruptions in the BBB are characteristic of various neuroinflammatory disorders, including multiple sclerosis. We have been elucidating a mechanism termed the "gateway reflex" that details the entry of immune cells, notably autoreactive T cells, into the CNS at the onset of such diseases. This process is initiated through local neural responses to a range of environmental stimuli, such as gravity, electricity, pain, stress, light, and joint inflammation. These stimuli specifically activate neural pathways to open gateways at targeted blood vessels for blood immune cell entry. The gateway reflex is pivotal in managing tissue-specific inflammatory diseases, and its improper activation is linked to disease progression. In this review, we present a comprehensive examination of the gateway reflex mechanism.
Collapse
Affiliation(s)
- Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Izuru Ohki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Ozawa
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yaze Wang
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
35
|
Balasubramanian R, Schneider E, Gunnigle E, Cotter PD, Cryan JF. Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci Biobehav Rev 2024; 158:105562. [PMID: 38278378 DOI: 10.1016/j.neubiorev.2024.105562] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Over the past two decades, whole food supplementation strategies have been leveraged to target mental health. In addition, there has been increasing attention on the ability of gut microbes, so called psychobiotics, to positively impact behaviour though the microbiota-gut-brain axis. Fermented foods offer themselves as a combined whole food microbiota modulating intervention. Indeed, they contain potentially beneficial microbes, microbial metabolites and other bioactives, which are being harnessed to target the microbiota-gut-brain axis for positive benefits. This review highlights the diverse nature of fermented foods in terms of the raw materials used and type of fermentation employed, and summarises their potential to shape composition of the gut microbiota, the gut to brain communication pathways including the immune system and, ultimately, modulate the microbiota-gut-brain axis. Throughout, we identify knowledge gaps and challenges faced in designing human studies for investigating the mental health-promoting potential of individual fermented foods or components thereof. Importantly, we also suggest solutions that can advance understanding of the therapeutic merit of fermented foods to modulate the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ramya Balasubramanian
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland
| | | | - Eoin Gunnigle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61C996, County Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
36
|
Yiallouris A, Filippou C, Themistocleous SC, Menelaou K, Kalodimou V, Michaeloudes C, Johnson EO. Aging of the adrenal gland and its impact on the stress response. VITAMINS AND HORMONES 2024; 124:341-366. [PMID: 38408802 DOI: 10.1016/bs.vh.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This article discusses the physiological and anatomical changes of adrenal gland with age and the effects this has overall on how the organ responds to stress. Physiological changes entail a decrease in adrenocorticoid hormone secretion however cortisol levels remain intact leading to a disruptive stress response. Additionally, loss of zonation of the organ also occurs. Both characteristics in combination with chronic stress affect overall health. Complex interplay between adrenal aging and stress responsiveness is confounded further by the impact they expel on other systems, such as the thyroid hormone. The body undergoes age-related transformations modifying rate of cellular growth, differentiation, senescence, and hormone production. Given the multiplicity and complexity of hormones, their production must be considered to develop appropriate interventions to mitigate its effect on age related diseases in health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Charalampos Filippou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Sophia C Themistocleous
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Katerina Menelaou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Vasiliki Kalodimou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Charalambos Michaeloudes
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Elizabeth O Johnson
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus.
| |
Collapse
|
37
|
Seiler A, Milliken A, Leiter RE, Blum D, Slavich GM. The Psychoneuroimmunological Model of Moral Distress and Health in Healthcare Workers: Toward Individual and System-Level Solutions. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 17:100226. [PMID: 38482488 PMCID: PMC10935511 DOI: 10.1016/j.cpnec.2024.100226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 11/02/2024] Open
Abstract
Healthcare is presently experiencing a global workforce crisis, marked by the inability of hospitals to retain qualified healthcare workers. Indeed, poor working conditions and staff shortages have contributed to structural collapse and placed a heavy toll on healthcare workers' (HCWs) well-being, with many suffering from stress, exhaustion, demoralization, and burnout. An additional factor driving qualified HCWs away is the repeated experience of moral distress, or the inability to act according to internally held moral values and perceived ethical obligations due to internal and external constraints. Despite general awareness of this crisis, we currently lack an organized understanding of how stress leads to poor health, wellbeing, and performance in healthcare workers. To address this critical issue, we first review the literature on moral distress, stress, and health in HCWs. Second, we summarize the biobehavioral pathways linking occupational and interpersonal stressors to health in this population, focusing on neuroendocrine, immune, genetic, and epigenetic processes. Third, we propose a novel Psychoneuroimmunological Model of Moral Distress and Health in HCWs based on this literature. Finally, we discuss evidence-based individual- and system-level interventions for preventing stress and promoting resilience at work. Throughout this review, we underscore that stress levels in HCWs are a major public health concern, and that a combination of system-level and individual-level interventions are necessary to address preventable health care harm and foster resilience in this population, including new health policies, mental health initiatives, and additional translational research.
Collapse
Affiliation(s)
- Annina Seiler
- Department of Radiation Oncology and Competence Center for Palliative Care, University Hospital Zurich and University of Zurich, Switzerland
| | - Aimee Milliken
- Harvard Medical School, Boston, MA, United States
- William F. Connell School of Nursing, Boston College, Chestnut Hill, MA, United States
| | - Richard E. Leiter
- Harvard Medical School, Boston, MA, United States
- Department of Psychosocial Oncology and Palliative Care, Dana-Faber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - David Blum
- Department of Radiation Oncology and Competence Center for Palliative Care, University Hospital Zurich and University of Zurich, Switzerland
| | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
38
|
Komaru Y, Bai YZ, Kreisel D, Herrlich A. Interorgan communication networks in the kidney-lung axis. Nat Rev Nephrol 2024; 20:120-136. [PMID: 37667081 DOI: 10.1038/s41581-023-00760-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
The homeostasis and health of an organism depend on the coordinated interaction of specialized organs, which is regulated by interorgan communication networks of circulating soluble molecules and neuronal connections. Many diseases that seemingly affect one primary organ are really multiorgan diseases, with substantial secondary remote organ complications that underlie a large part of their morbidity and mortality. Acute kidney injury (AKI) frequently occurs in critically ill patients with multiorgan failure and is associated with high mortality, particularly when it occurs together with respiratory failure. Inflammatory lung lesions in patients with kidney failure that could be distinguished from pulmonary oedema due to volume overload were first reported in the 1930s, but have been largely overlooked in clinical settings. A series of studies over the past two decades have elucidated acute and chronic kidney-lung and lung-kidney interorgan communication networks involving various circulating inflammatory cytokines and chemokines, metabolites, uraemic toxins, immune cells and neuro-immune pathways. Further investigations are warranted to understand these clinical entities of high morbidity and mortality, and to develop effective treatments.
Collapse
Affiliation(s)
- Yohei Komaru
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Yun Zhu Bai
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Andreas Herrlich
- Department of Medicine, Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, USA.
| |
Collapse
|
39
|
Meyer M, Meijer O, Hunt H, Belanoff J, Lima A, de Kloet ER, Gonzalez Deniselle MC, De Nicola AF. Stress-induced Neuroinflammation of the Spinal Cord is Restrained by Cort113176 (Dazucorilant), A Specific Glucocorticoid Receptor Modulator. Mol Neurobiol 2024; 61:1-14. [PMID: 37566177 DOI: 10.1007/s12035-023-03554-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative disorders of humans and models of human diseases. ."The Wobbler mouse model of amyotrophic lateral sclerosis shows hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, P2RY12 purinergic receptor) as well as serum IL1β and corticosterone. We showed that chronic stress produced high levels of serum corticosterone and IL1β, decreased body and spleen weight, produced microgliosis and astrogliosis and increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microgliosis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component of neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - Onno Meijer
- Dept. of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, Ca, USA
| | | | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - E Ronald de Kloet
- Dept. of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Dept. of Physiology, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina.
- Dept. of Human Biochemiistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Mishra V, Yadav D, Solanki KS, Koul B, Song M. A Review on the Protective Effects of Probiotics against Alzheimer's Disease. BIOLOGY 2023; 13:8. [PMID: 38248439 PMCID: PMC10813289 DOI: 10.3390/biology13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
This review summarizes the protective effects of probiotics against Alzheimer's disease (AD), one of the most common neurodegenerative disorders affecting older adults. This disease is characterized by the deposition of tau and amyloid β peptide (Aβ) in different parts of the brain. Symptoms observed in patients with AD include struggles with writing, speech, memory, and knowledge. The gut microbiota reportedly plays an important role in brain functioning due to its bidirectional communication with the gut via the gut-brain axis. The emotional and cognitive centers in the brain are linked to the functions of the peripheral intestinal system via this gut-brain axis. Dysbiosis has been linked to neurodegenerative disorders, indicating the significance of gut homeostasis for proper brain function. Probiotics play an important role in protecting against the symptoms of AD as they restore gut-brain homeostasis to a great extent. This review summarizes the characteristics, status of gut-brain axis, and significance of gut microbiota in AD. Review and research articles related to the role of probiotics in the treatment of AD were searched in the PubMed database. Recent studies conducted using animal models were given preference. Recent clinical trials were searched for separately. Several studies conducted on animal and human models clearly explain the benefits of probiotics in improving cognition and memory in experimental subjects. Based on these studies, novel therapeutic approaches can be designed for the treatment of patients with AD.
Collapse
Affiliation(s)
- Vibhuti Mishra
- School of Studies in Biochemistry, Jiwaji University, Gwalior 474003, India;
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kavita Singh Solanki
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
41
|
Hassan FU, Liu C, Mehboob M, Bilal RM, Arain MA, Siddique F, Chen F, Li Y, Zhang J, Shi P, Lv B, Lin Q. Potential of dietary hemp and cannabinoids to modulate immune response to enhance health and performance in animals: opportunities and challenges. Front Immunol 2023; 14:1285052. [PMID: 38111585 PMCID: PMC10726122 DOI: 10.3389/fimmu.2023.1285052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Cannabinoids are a group of bioactive compounds abundantly present in Cannabis sativa plant. The active components of cannabis with therapeutic potential are known as cannabinoids. Cannabinoids are divided into three groups: plant-derived cannabinoids (phytocannabinoids), endogenous cannabinoids (endocannabinoids), and synthetic cannabinoids. These compounds play a crucial role in the regulation various physiological processes including the immune modulation by interacting with the endocannabinoid system (A complex cell-signaling system). Cannabinoid receptor type 1 (CB1) stimulates the binding of orexigenic peptides and inhibits the attachment of anorexigenic proteins to hypothalamic neurons in mammals, increasing food intake. Digestibility is unaffected by the presence of any cannabinoids in hemp stubble. Endogenous cannabinoids are also important for the peripheral control of lipid processing in adipose tissue, in addition to their role in the hypothalamus regulation of food intake. Regardless of the kind of synaptic connection or the length of the transmission, endocannabinoids play a crucial role in inhibiting synaptic transmission through a number of mechanisms. Cannabidiol (CBD) mainly influences redox equilibrium through intrinsic mechanisms. Useful effects of cannabinoids in animals have been mentioned e.g., for disorders of the cardiovascular system, pain treatment, disorders of the respiratory system or metabolic disorders. Dietary supplementation of cannabinoids has shown positive effects on health, growth and production performance of small and large animals. Animal fed diet supplemented with hemp seeds (180 g/day) or hemp seed cake (143 g/kg DM) had achieved batter performance without any detrimental effects. But the higher level of hemp or cannabinoid supplementation suppress immune functions and reduce productive performance. With an emphasis on the poultry and ruminants, this review aims to highlight the properties of cannabinoids and their derivatives as well as their significance as a potential feed additive in their diets to improve the immune status and health performance of animals.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Maryam Mehboob
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Faisal Siddique
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jingmeng Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Biguang Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
42
|
Aizpurua-Perez I, Arregi A, Labaka A, Martinez-Villar A, Perez-Tejada J. Psychological resilience and cortisol levels in adults: A systematic review. Am J Hum Biol 2023; 35:e23954. [PMID: 37395446 DOI: 10.1002/ajhb.23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Resilience or the capacity to "bend but not break" refers to the ability to maintain or regain psychobiological equilibrium during or after exposure to stressful life events. Specifically, resilience has been proposed as a potential resource for staving off pathological states that often emerge after exposure to repeated stress and that are related to alterations in circulating cortisol. The aim of this systematic review of the literature was to gather evidence related to the relationship between psychological resilience and cortisol levels in adult humans. An extensive systematic search was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method in the PubMed and Web of Science databases. In total, 1256 articles were identified and, of these, 35 peer-reviewed articles were included in the systematic review. We categorized findings according to (1) the short and long-term secretion period covered by the cortisol matrices selected by studies and also according to (2) the differentiated diurnal, phasic (acute), and tonic (basal) components of the HPA output to which they refer and their relationships with resilience. Reported relationships between psychological resilience and distinct cortisol output parameters varied widely across studies, finding positive, negative, and null associations between the two variables. Notably, several of the studies that found no relationship between resilience and cortisol used a single morning saliva or plasma sample as their assessment of HPA axis activity. Despite limitations such as the great variability of the instruments and methods used by the studies to measure both resilience and cortisol, together with their high heterogeneity and small sample sizes, the evidence found in this systematic review points to the potential of resilience as a modifiable key factor to modulate the physiological response to stress. Therefore, further exploration of the interaction between the two variables is necessary for the eventual development of future interventions aimed at promoting resilience as an essential component of health prevention.
Collapse
Affiliation(s)
- Ibane Aizpurua-Perez
- Department of Basic Psychological Processes and their Development, University of the Basque Country, San Sebastian, Spain
| | - Amaia Arregi
- Department of Basic Psychological Processes and their Development, University of the Basque Country, San Sebastian, Spain
| | - Ainitze Labaka
- Department of Nursing II, University of the Basque Country, San Sebastian, Spain
| | | | | |
Collapse
|
43
|
Li Q. Pituitary-immune bidirectional crosstalk under systemic inflammation. PLoS Biol 2023; 21:e3002440. [PMID: 38113236 PMCID: PMC10729977 DOI: 10.1371/journal.pbio.3002440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
The pituitary gland responds to and modulates immune stress through the hypothalamus-pituitary-adrenal axis. A new study in PLOS Biology reveals unconventional bidirectional communication between hormone-producing cells and the immune system upon systemic inflammation.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Neuroscience, Department of Genetics, Hope Center for Neurological Disorders, Center for Brain Immunology and Glia, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
44
|
Tanaka H, Hasebe R, Murakami K, Sugawara T, Yamasaki T, Murakami M. Gateway reflexes describe novel neuro-immune communications that establish immune cell gateways at specific vessels. Bioelectron Med 2023; 9:24. [PMID: 37936169 PMCID: PMC10631009 DOI: 10.1186/s42234-023-00126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Neuroinflammation is an important biological process induced by complex interactions between immune cells and neuronal cells in the central nervous system (CNS). Recent research on the bidirectional communication between neuronal and immunological systems has provided evidence for how immune and inflammatory processes are regulated by nerve activation. One example is the gateway reflex, in which immune cells bypass the blood brain barrier and infiltrate the CNS to cause neuroinflammation. We have found several modes of the gateway reflex in mouse models, in which gateways for immune cells are established at specific blood vessels in the spinal cords and brain in experimental autoimmune encephalomyelitis and systemic lupus erythematosus models, at retinal blood vessels in an experimental autoimmune uveitis model, and the ankle joints in an inflammatory arthritis model. Several environmental stimulations, including physical and psychological stresses, activate neurological pathways that alter immunological responses via the gateway reflex, thus contributing to the development/suppression of autoimmune diseases. In the manuscript, we describe the discovery of the gateway reflex and recent insights on how they regulate disease development. We hypothesize that artificial manipulation of specific neural pathways can establish and/or close the gateways to control the development of autoimmune diseases.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan.
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage-Ku, Chiba, 263-8555, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Nishi-11, Kita-21, Kuta-Ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
45
|
Rus CP, de Vries BEK, de Vries IEJ, Nutma I, Kooij JJS. Treatment of 95 post-Covid patients with SSRIs. Sci Rep 2023; 13:18599. [PMID: 37919310 PMCID: PMC10622561 DOI: 10.1038/s41598-023-45072-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
After Covid-19 infection, 12.5% develops post-Covid-syndrome (PCS). Symptoms indicate numerous affected organ systems. After a year, chronic fatigue, dysautonomia and neurological and neuropsychiatric complaints predominate. In this study, 95 PCS patients were treated with selective serotonin reuptake inhibitors (SSRIs). This study used an exploratory questionnaire and found that two-thirds of patients had a reasonably good to strong response on SSRIs, over a quarter of patients had moderate response, while 10% reported no response. Overall, patients experienced substantial improved well-being. Brainfog and sensory overload decreased most, followed by chronic fatigue and dysautonomia. Outcomes were measured with three different measures that correlated strongly with each other. The response to SSRIs in PCS conditions was explained by seven possible neurobiological mechanisms based on recent literature on PCS integrated with already existing knowledge. Important for understanding these mechanisms is the underlying biochemical interaction between various neurotransmitter systems and parts of the immune system, and their dysregulation in PCS. The main link appears to be with the metabolic kynurenine pathway (KP) which interacts extensively with the immune system. The KP uses the same precursor as serotonin: tryptophan. The KP is overactive in PCS which maintains inflammation and which causes a lack of tryptophan. Finally, potential avenues for future research to advance this line of clinical research are discussed.
Collapse
Affiliation(s)
- Carla P Rus
- Independent Researcher, The Hague, The Netherlands.
| | | | - Ingmar E J de Vries
- Donders Institute, Radboud University, 6525 EN, Nijmegen, The Netherlands
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, 38068, Rovereto, Italy
| | | | - J J Sandra Kooij
- Department of Psychiatry, Amsterdam UMC/VUMC, 1081 HJ, Amsterdam, The Netherlands
- PsyQ, 2593 HR, The Hague, The Netherlands
| |
Collapse
|
46
|
Mason NL, Szabo A, Kuypers KPC, Mallaroni PA, de la Torre Fornell R, Reckweg JT, Tse DHY, Hutten NRPW, Feilding A, Ramaekers JG. Psilocybin induces acute and persisting alterations in immune status in healthy volunteers: An experimental, placebo-controlled study. Brain Behav Immun 2023; 114:299-310. [PMID: 37689275 DOI: 10.1016/j.bbi.2023.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Patients characterized by stress-related disorders such as depression display elevated circulating concentrations of pro-inflammatory cytokines and a hyperactive HPA axis. Psychedelics are demonstrating promising results in treatment of such disorders, however the mechanisms of their therapeutic effects are still unknown. To date the evidence of acute and persisting effects of psychedelics on immune functioning, HPA axis activity in response to stress, and associated psychological outcomes is preliminary. To address this, we conducted a placebo-controlled, parallel group design comprising of 60 healthy participants who received either placebo (n = 30) or 0.17 mg/kg psilocybin (n = 30). Blood samples were taken to assess acute and persisting (7 day) changes in immune status. Seven days' post-administration, participants in each treatment group were further subdivided: 15 underwent a stress induction protocol, and 15 underwent a control protocol. Ultra-high field (7-Tesla) magnetic resonance spectroscopy was used to assess whether acute changes in glutamate or glial activity were associated with changes in immune functioning. Finally, questionnaires assessed persisting self-report changes in mood and social behavior. Psilocybin immediately reduced concentrations of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), while other inflammatory markers (interleukin (IL)- 1β, IL-6, and C-reactive protein (CRP)) remained unchanged. Seven days later, TNF-α concentrations returned to baseline, while IL-6 and CRP concentrations were persistently reduced in the psilocybin group. Changes in the immune profile were related to acute neurometabolic activity as acute reductions in TNF-α were linked to lower concentrations of glutamate in the hippocampus. Additionally, the more of a reduction in IL-6 and CRP seven days after psilocybin, the more persisting positive mood and social effects participants reported. Regarding the stress response, after a psychosocial stressor, psilocybin did not significantly alter the stress response. Results are discussed in regards to the psychological and therapeutic effects of psilocybin demonstrated in ongoing patient trials.
Collapse
Affiliation(s)
- N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - A Szabo
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - P A Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - R de la Torre Fornell
- Integrative Pharmacology and Systems Neurosciences Research Group. Neurosciences Program. Hospital del Mar Medical Research Institute. Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra. Dr. Aiguader 88, 08003 Barcelona, Spain
| | - J T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - D H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - N R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - A Feilding
- The Beckley Foundation, Beckley Park, Oxford, OX3 9SY, United Kingdom
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
47
|
Shi MM, Xu XF, Sun QM, Luo M, Liu DD, Guo DM, Chen L, Zhong XL, Xu Y, Cao WY. Betaine prevents cognitive dysfunction by suppressing hippocampal microglial activation in chronic social isolated male mice. Phytother Res 2023; 37:4755-4770. [PMID: 37846157 DOI: 10.1002/ptr.7944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/18/2023]
Abstract
Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.
Collapse
Affiliation(s)
- Meng Meng Shi
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Fan Xu
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiu Min Sun
- Department of Nursing, Yiyang Medical College, Yiyang, Hunan, China
| | - Mingying Luo
- Department of Anatomy and Histology and Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Dan Dan Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Dong Min Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen Yu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
48
|
Song Y, Jung YS, Park S, Park HS, Lee SJ, Maeng S, Kim H, Kim DO, Park KW, Kang H. Anti-Inflammatory Effects and Macrophage Activation Induced by Bioavailable Cinnamon Polyphenols in Mice. Mol Nutr Food Res 2023; 67:e2200768. [PMID: 37658489 DOI: 10.1002/mnfr.202200768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/02/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Cinnamon is a commonly used spice and herb that is rich in polyphenols. Due to the limited bioavailability of oral polyphenols, it remains unclear to which extent they can reach cells and exert a biological effect. This study aims to investigate the impact of bioavailable cinnamon polyphenols on lipopolysaccharide (LPS)-stimulated macrophages. METHODS AND RESULTS A polyphenol fraction is prepared from cinnamon (Cinnamomi ramulus) (CRPF) by boiling cinnamon in water and adsorbing the extract onto a hydrophobic resin. Mice are orally administered CRPF for 7 days and then subjected to three independent experiments: endotoxemia, serum collection, and macrophage isolation. Upon intraperitoneal lipopolysaccharide challenge, CRPF decreases serum levels of inflammatory cytokines, involving suppression of liver and spleen macrophages. When normal macrophages are cultured in serum obtained from CRPF-treated mice, they exhibit an anti-inflammatory phenotype. However, macrophages from CRPF-treated mice show an increased production of inflammatory cytokines when cultured in fetal bovine serum and stimulated with LPS. CONCLUSION The study provides evidence for the presence of bioavailable cinnamon polyphenols with anti-inflammatory properties and macrophage activation. These findings suggest that cinnamon polyphenols have the potential to modulate macrophage function, which could have implications for reducing inflammation and improving immune function.
Collapse
Affiliation(s)
- Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Sunghyun Park
- Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Hong Shik Park
- Department of Physical Education, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Se Jung Lee
- Department of Genetic Engineering, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, Kyung Hee University, 26, Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| |
Collapse
|
49
|
WANG K, ZHOU J, CUI S, WU X, ZHU G, WU S, ZHOU M. Electroacupuncture ameliorates cardiac dysfunction in myocardial ischemia model rats: a potential role of the hypothalamic-pituitary-adrenal axis. J TRADIT CHIN MED 2023; 43:944-954. [PMID: 37679982 PMCID: PMC10465846 DOI: 10.19852/j.cnki.jtcm.20230727.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/14/2022] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To verify the hypothesis that electroacupuncture inhibits the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis regulating the expression of glial fibrillary acidic protein (GFAP) in the hippocampus of acute myocardial ischemia (AMI) rats. METHODS Sixty-six healthy male Sprague-Dawley rats were randomly divided into five groups: Sham, AMI (Model), electroacupuncture at Shenmen (HT7)-Tongli (HT5) segment (EA), non-acupoint electroacupuncture (Control), and Model + corticosterone (Model + CORT). AMI was induced occlusion of the left anterior descending coronary artery, followed by 3 d of electroacupuncture at Shenmen (HT7)-Tongli (HT5) segment. In the Control group, electroacupuncture was applied at points lying 5 and 10 mm from the base of the tail. The AMI + CORT group was injected with CORT (20 mg/kg) in saline. Hemorheology, electrocardiography (ECG), hematoxylin and eosin staining, and expression of glycogen phosphorylase BB (GPBB) and heart-type fatty acid-binding protein (H-FABP) were used to assess cardiac function. The effects of adrenocorticotropic hormone (ACTH) and CORT were evaluated by enzyme-linked immunosorbent assay. Protein expression in the Sham and Model groups were screened by tandem mass tag-based quantitative proteomics analysis. Protein expression was evaluated by Western blotting (vimentin and GFAP) and immunofluorescence staining (GFAP). RESULTS Compared with the Sham group, the hemorheology indicators, heart rate, ECG-ST segment elevation, and GPBB and H-FABP levels were higher in Model rats. The EA group showed reductions in these indicators compared with the Model group. Similarly, in Model rats, the expression of ACTH and CORT were significantly increased compared with the Sham group. The EA group also showed reduced expression of ACTH and CORT. Importantly, proteomics analysis showed that vimentin was differentially expressed in Model rats. Compared with the Sham group, vimentin and GFAP expression in the hippocampus was increased in the Model group but decreased in the AMI + EA group. Additionally, intraperitoneal injection of CORT aggravated the expression of GPBB, H-FABP and GFAP. CONCLUSIONS Our results suggested that electroacupuncture may protect against cardiac injury induced by AMI through regulation of HPA axis hyperactivity, and that hippocampal GFAP may play an important role in the regulation.
Collapse
Affiliation(s)
- Kun WANG
- 1 Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jie ZHOU
- 2 Department of Acupuncture and Moxibustion, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuai CUI
- 3 Colleges of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xin WU
- 3 Colleges of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Guoqi ZHU
- 1 Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Shengbing WU
- 1 Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Meiqi ZHOU
- 4 Bozhou Institute of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Bozhou 236800, China
| |
Collapse
|
50
|
Sykes DL, Van der Feltz‐Cornelis CM, Holdsworth L, Hart SP, O'Halloran J, Holding S, Crooks MG. Examining the relationship between inflammatory biomarkers during COVID-19 hospitalization and subsequent long-COVID symptoms: A longitudinal and retrospective study. Immun Inflamm Dis 2023; 11:e1052. [PMID: 37904690 PMCID: PMC10614127 DOI: 10.1002/iid3.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Long-COVID is a heterogeneous condition with a litany of physical and neuropsychiatric presentations and its pathophysiology remains unclear. Little is known about the association between inflammatory biomarkers, such as interleukin-6 (IL-6) and C-reactive protein (CRP) in the acute phase, and persistent symptoms after hospitalization in COVID-19 patients. METHODS IL-6, CRP, troponin-T, and ferritin were analyzed at admission for all patients with COVID-19 between September 1, 2020 to January 10, 2021. Survivors were followed up 3-months following hospital discharge and were asked to report persistent symptoms they experienced. Admission data were retrospectively collected. Independent t-tests and Mann-Whitney U tests were performed. RESULTS In a sample of 144 patients (62.5% male, mean Age 62 years [SD = 13.6]) followed up 3 months after hospital discharge, the commonest symptoms reported were fatigue (54.2%), breathlessness (52.8%), and sleep disturbance (37.5%). In this sample, admission levels of IL-6, CRP and ferritin were elevated. However, those reporting myalgia, low mood, and anxiety at follow-up had lower admission levels of IL-6 (34.9 vs. 52.0 pg/mL, p = .043), CRP (83 vs. 105 mg/L, p = .048), and ferritin (357 vs. 568 ug/L, p = .01) respectively, compared with those who did not report these symptoms. Multivariate regression analysis showed that these associations were confounded by gender, as female patients had significantly lower levels of IL-6 and ferritin on admission (29.5 vs. 56.1, p = .03 and 421.5 vs. 589, p = .001, respectively) and were more likely to report myalgia, low mood and anxiety, when compared to males. CONCLUSIONS Our data demonstrate that female patients present more often with lower levels of inflammatory biomarkers on admission which are subsequently associated with long-term post-COVID symptoms, such as myalgia and anxiety, in those discharged from hospital with severe COVID-19. Further research is needed into the role of serum biomarkers in post-COVID prognostication.
Collapse
Affiliation(s)
| | - Christina M. Van der Feltz‐Cornelis
- Department of Health SciencesUniversity of YorkYorkUK
- Hull York Medical SchoolYorkUnited Kingdom
- Institute of Health SciencesUniversity College LondonLondonUnited Kingdom
| | | | | | | | | | | |
Collapse
|