1
|
Gao CY, Pan YJ, Su WS, Wu CY, Chang TY, Yang FY. Abdominal ultrasound stimulation alleviates DSS-induced colitis and behavioral disorders in mice by mediating the microbiota-gut-brain axis balance. Neurotherapeutics 2025; 22:e00494. [PMID: 39580323 PMCID: PMC12014354 DOI: 10.1016/j.neurot.2024.e00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) has the potential to induce neuroinflammation, which may increase the risk of developing neurodegenerative disorders. Ultrasound stimulation to the abdomen is a potential treatment for dextran sulfate sodium (DSS)-induced acute colitis. The present study aimed to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) can alleviate DSS-induced neuroinflammation through the microbiota-gut-brain axis. Male mice were fed DSS to induce ulcerative colitis. LIPUS stimulation was then applied to the abdomen at intensities of 0.5 and 1.0 W/cm2. Mouse biological samples were analyzed, and behavior was evaluated. [18F]FEPPA PET/CT imaging was employed to track and quantify inflammation in the abdomen and brain. Changes in the gut microbiota composition were analyzed using 16S rRNA sequencing. Abdominal LIPUS significantly inhibited the DSS-induced inflammatory response, repaired destroyed crypts, and partially preserved the epithelial barrier. [18F]FEPPA accumulation in the colitis-induced neuroinflammation in the abdomen and specific brain regions significantly decreased after LIPUS treatment. LIPUS maintained intestinal integrity by increasing zonula occludens and occludin levels, reduced lipopolysaccharide-binding protein and lipopolysaccharide levels in the serum, and improved behavioral dysfunctions. Moreover, LIPUS, at an intensity of 0.5 W/cm2, reshaped the gut microbiota in colitis-induced mice by increasing the relative abundance of the Firmicutes and decreasing the relative abundance of the Bacteroidota. Our findings demonstrated that abdominal LIPUS stimulation has the potential to be a novel therapeutic strategy to improve colitis-induced behavioral disorders through microbiota-gut-brain axis signaling.
Collapse
Affiliation(s)
- Cong-Yong Gao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, Taiwan
| | - Wei-Shen Su
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yu Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Rameshrad M, Memariani Z, Naraki K, Hosseinzadeh H. Investigating the protective properties of Panax ginseng and its constituents against biotoxins and metal toxicity: a mechanistic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1215-1242. [PMID: 39287674 DOI: 10.1007/s00210-024-03410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Natural toxins are toxic substances produced by living microorganisms and cause harmful effects to other creatures, but not the organisms themselves. Based on the sources, they are classified into fungal, microbial, herbal, algae, and animal biotoxins. Metals, the oldest toxicants, are not created or destroyed by human industry as elements, just concentrated in the biosphere. An antidote can counteract the toxic effects of a drug or toxin or mitigate the adverse effects of a harmful substance. The potential antidote effects of Panax ginseng in organ toxicity have been proved by many scientific research projects. Herein, we are going to gather a comprehensive mechanistic review of the antidotal effects of ginseng and its main constituents against natural toxins and metal toxicity. In this regard, a literate search has been done in PubMed/Medline, Science Direct, and Scopus from 2000 until 2024. The gathered data showed the protective impacts of this golden plant and its secondary metabolites against aflatoxin, deoxynivalenol, three-nitro propionic acid, ochratoxin A, lipopolysaccharide, nicotine, aconite, domoic acid, α-synuclein, amyloid β, and glutamate as well as aluminum, cadmium, chrome, copper, iron, and lead. These antidotal effects occur by multi-functional mechanisms. It may be attributed to antioxidant, anti-inflammatory, and anti-apoptotic effects. Future research directions on the antidotal effects of ginseng against natural toxins and metal toxicity involve broadening the scope of studies to include a wider range of toxins and metals, exploring synergistic interactions with other natural compounds, and conducting more human clinical trials to validate the efficacy and safety of ginseng-based treatments.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tiwari AK, Mohanty B. Neurotensin via Type I Receptor Modulates the Endotoxemia Induced Oxido-Inflammatory Stress on the Sympathetic Adrenomedullary System of Mice Regulating NF-κβ/Nor-Epinephrine Pathway. Cell Biochem Biophys 2025:10.1007/s12013-025-01679-5. [PMID: 39881060 DOI: 10.1007/s12013-025-01679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2025] [Indexed: 01/31/2025]
Abstract
The present study investigated the role of the neurotensin/NTS in the modulation of the lipopolysaccharide/LPS induced dysfunction of the sympatho-adrenal-medullary system/SAM using both the NTS receptor 1/NTSR1 agonist PD149163/PD and antagonist SR48692 /SR. Forty eight mice were maintained in eight groups; Group I/control, Groups II, III, IV, and VII received LPS for 5 days further Group III/IV/VII received PD low dose/PDL, PD high dose /PDH and SR for 28 days respectively. Group V/VI received similar only PDL and PDH dose respectively whereas Group VIII was exposed to only SR for 28 days. Adrenal tissues histopathology examined through hematoxylin-eosin staining. The plasma levels of pro-inflammatory mediators (NF-kβ, TNF-α, IL-6), IL-10, corticosterone/CORT, nor-epinephrine/NE and NTS were assessed through ELISA. Biochemical detection was adopted to check the level of oxidative stress, assessed by measuring the thiobarbituric acid reactive substance/TBARS, superoxide dismutase/SOD and catalase/CAT in adrenal tissue to determine the therapeutic effect of NTS receptor 1 analogs. Compared with LPS group, PD ameliorated the adrenal medulla histopathology by significantly decreasing pro-inflammatory mediators, CORT and NE as well as enhancing IL-10, normalizing NTS level via down-regulating NF-κβ level. PD inhibited the oxidative stress in SAM system of adrenal by reducing TBARS, while enhancing SOD and CAT activity via regulating the CORT and NE levels. Conversely, SR administration could not normalize the deleterious effect caused by the LPS due to up-regulation of NF-κβ level. Therefore, PD ameliorates the inflammation and oxidative stress of SAM system by inhibiting NF-kβ/NE signaling pathway. Thus, PD could be used as a biological tool in SAM dysfunction for therapeutic evaluation of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Asheesh Kumar Tiwari
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
4
|
Lu J, Jiang M, Chai D, Sun Y, Wu L. Integrative analysis of intestinal flora and untargeted metabolomics in attention-deficit/hyperactivity disorder. Front Microbiol 2025; 16:1452423. [PMID: 39944648 PMCID: PMC11817268 DOI: 10.3389/fmicb.2025.1452423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a clinically common neurodevelopmental disorder of the brain. In addition to genetic factors, an imbalance in gut flora may also play a role in the development of ADHD. Currently, it is critical to investigate the function of gut flora and related metabolites, which may form the fundamental basis of bidirectional cross-linking between the brain and the gut, in addition to focusing on the changed gut flora in ADHD. This study aimed to investigate the possible relationship between changes in gut flora and metabolites and ADHD by analyzing metagenome and untargeted metabolomics of fecal samples from ADHD patients. Specifically, we attempted to identify key metabolites and the metabolic pathways they are involved in, as well as analyze in detail the structure and composition of the gut flora of ADHD patients. In order to further investigate the relationship between gut flora and ADHD symptoms, some behavioral studies were conducted following the transplantation of gut flora from ADHD patients into rats. The results of the metagenome analysis revealed several distinct strains, including Bacteroides cellulosilyticus, which could be important for diagnosing ADHD. Additionally, the ADHD group showed modifications in several metabolic pathways and metabolites, including the nicotinamide and nicotinic acid metabolic pathways and the metabolite nicotinamide in this pathway. The behavioral results demonstrated that rats with ADHD gut flora transplants displayed increased locomotor activity and interest, indicating that the onset of behaviors such as ADHD could be facilitated by the flora associated with ADHD. This research verified the alterations in gut flora and metabolism observed in ADHD patients and provided a list of metabolites and flora that were significantly altered in ADHD. Simultaneously, our findings revealed that modifications to the microbiome could potentially trigger behavioral changes in animals, providing an experimental basis for comprehending the function and influence of gut flora on ADHD. These results might provide new perspectives for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Jiamin Lu
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Maoying Jiang
- Behavioral Pediatric Department and Child Primary Care Department, Hangzhou Children’s Hospital, Hangzhou, China
| | - Dingyue Chai
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yuzi Sun
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lihui Wu
- Departments of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Wankhede NL, Kale MB, Kyada A, M RM, Chaudhary K, Naidu KS, Rahangdale S, Shende PV, Taksande BG, Khalid M, Gulati M, Umekar MJ, Fareed M, Kopalli SR, Koppula S. Sleep deprivation-induced shifts in gut microbiota: Implications for neurological disorders. Neuroscience 2025; 565:99-116. [PMID: 39622383 DOI: 10.1016/j.neuroscience.2024.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sleep deprivation is a prevalent issue in contemporary society, with significant ramifications for both physical and mental well-being. Emerging scientific evidence illuminates its intricate interplay with the gut-brain axis, a vital determinant of neurological function. Disruptions in sleep patterns disturb the delicate equilibrium of the gut microbiota, resulting in dysbiosis characterized by alterations in microbial composition and function. This dysbiosis contributes to the exacerbation of neurological disorders such as depression, anxiety, and cognitive decline through multifaceted mechanisms, including heightened neuroinflammation, disturbances in neurotransmitter signalling, and compromised integrity of the gut barrier. In response to these challenges, there is a burgeoning interest in therapeutic interventions aimed at restoring gut microbial balance and alleviating neurological symptoms precipitated by sleep deprivation. Probiotics, dietary modifications, and behavioural strategies represent promising avenues for modulating the gut microbiota and mitigating the adverse effects of sleep disturbances on neurological health. Moreover, the advent of personalized interventions guided by advanced omics technologies holds considerable potential for tailoring treatments to individualized needs and optimizing therapeutic outcomes. Interdisciplinary collaboration and concerted research efforts are imperative for elucidating the underlying mechanisms linking sleep, gut microbiota, and neurological function. Longitudinal studies, translational research endeavours, and advancements in technology are pivotal for unravelling the complex interplay between these intricate systems.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences Marwadi University, Rajkot 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Sandip Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
6
|
Ghannadzadeh Kermani Pour R, Kamali Zounouzi S, Farshbafnadi M, Rezaei N. The interplay between gut microbiota composition and dementia. Rev Neurosci 2025:revneuro-2024-0113. [PMID: 39829047 DOI: 10.1515/revneuro-2024-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Recently, researchers have been interested in the potential connection between gut microbiota composition and various neuropsychological disorders. Dementia significantly affects the socioeconomics of families. Gut microbiota is considered as a probable factor in its pathogenesis. Multiple bacterial metabolites such as short-chain fatty acids, lipopolysaccharides, and various neurotransmitters that are responsible for the incidence and progression of dementia can be produced by gut microbiota. Various bacterial species such as Bifidobacterium breve, Akkermansia muciniphila, Streptococcus thermophilus, Escherichia coli, Blautia hydrogenotrophica, etc. are implicated in the pathogenesis of dementia. Gut microbiota can be a great target for imitating or inhibiting their metabolites as an adjunctive therapy based on their role in its pathogenesis. Therefore, some diets can prevent or decelerate dementia by altering the gut microbiota composition. Moreover, probiotics can modulate gut microbiota composition by increasing beneficial bacteria and reducing detrimental species. These therapeutic modalities are considered novel methods that are probably safe and effective. They can enhance the efficacy of traditional medications and improve cognitive function.
Collapse
Affiliation(s)
| | - Sara Kamali Zounouzi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| | - Melina Farshbafnadi
- School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Tehran, 1416634793, Iran
| |
Collapse
|
7
|
Takasugi S, Iimura S, Yasuda M, Saito Y, Morifuji M. Key Taxa of the Gut Microbiome Associated with the Relationship Between Environmental Sensitivity and Inflammation-Related Biomarkers. Microorganisms 2025; 13:185. [PMID: 39858953 PMCID: PMC11767568 DOI: 10.3390/microorganisms13010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Individual differences in environmental sensitivity are linked to stress-related psychiatric symptoms. In previous research, we found that high environmental sensitivity can be a risk factor for increased inflammation and gut permeability, particularly when gut microbiome diversity is low. However, the specific gut bacterial taxa involved in this interaction remain unclear. As a preliminary study, this research aimed to identify the key gut microbiome taxa associated with this relationship. Environmental sensitivity, gut microbiome composition, gut permeability (lipopolysaccharide-binding protein, LBP), and inflammation (C-reactive protein, CRP) biomarkers were evaluated in 88 participants. The interaction between environmental sensitivity and the relative abundance of the family Marinifilaceae (genus Butyricimonas) was a predictor of CRP levels. Similarly, the interaction between environmental sensitivity and relative abundance of the family Barnesiellaceae (genus Coprobacter), the family Akkermansiaceae (genus Akkermansia), the genus Family XIII AD3011 group, the genus GCA-900066225, or the genus Ruminiclostridium 1 predicted LBP levels. Individuals with high environmental sensitivity exhibited elevated CRP or LBP levels when the relative abundance of these taxa was low. Conversely, highly sensitive individuals had lower CRP or LBP levels when the relative abundance of these taxa was high. This study suggests that specific taxa serve as one of the protective factors against inflammation and gut permeability in individuals with high environmental sensitivity. Further in-depth studies are needed to confirm these associations and understand the underlying mechanisms.
Collapse
Affiliation(s)
- Satoshi Takasugi
- R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji 192-0919, Japan
| | - Shuhei Iimura
- Faculty of Education, Soka University; 1-236 Tangi-machi, Hachioji 192-8577, Japan;
| | - Miyabi Yasuda
- Wellness Science Labs, Meiji Holdings Co., Ltd., 1-29-1 Nanakuni, Hachioji 192-0919, Japan; (M.Y.); (Y.S.); (M.M.)
| | - Yoshie Saito
- Wellness Science Labs, Meiji Holdings Co., Ltd., 1-29-1 Nanakuni, Hachioji 192-0919, Japan; (M.Y.); (Y.S.); (M.M.)
| | - Masashi Morifuji
- Wellness Science Labs, Meiji Holdings Co., Ltd., 1-29-1 Nanakuni, Hachioji 192-0919, Japan; (M.Y.); (Y.S.); (M.M.)
| |
Collapse
|
8
|
Liu M, Fan G, Meng L, Yang K, Liu H. New perspectives on microbiome-dependent gut-brain pathways for the treatment of depression with gastrointestinal symptoms: from bench to bedside. J Zhejiang Univ Sci B 2025; 26:1-25. [PMID: 39428337 PMCID: PMC11735910 DOI: 10.1631/jzus.b2300343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2024]
Abstract
Patients with depression are more likely to have chronic gastrointestinal (GI) symptoms than the general population, but such symptoms are considered only somatic symptoms of depression and lack special attention. There is a chronic lack of appropriate diagnosis and effective treatment for patients with depression accompanied by GI symptoms, and studying the association between depression and GI disorders (GIDs) is extremely important for clinical management. There is growing evidence that depression is closely related to the microbiota present in the GI tract, and the microbiota-gut-brain axis (MGBA) is creating a new perspective on the association between depression and GIDs. Identifying and treating GIDs would provide a key opportunity to prevent episodes of depression and may also improve the outcome of refractory depression. Current studies on depression and the microbially related gut-brain axis (GBA) lack a focus on GI function. In this review, we combine preclinical and clinical evidence to summarize the roles of the microbially regulated GBA in emotions and GI function, and summarize potential therapeutic strategies to provide a reference for the study of the pathomechanism and treatment of depression in combination with GI symptoms.
Collapse
Affiliation(s)
- Menglin Liu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Brain Disease Regional Diagnosis and Treatment Center, Zhengzhou 450000, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
| | - Genhao Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301600, China
- The First Affiliated Hospital of Zhengzhou University, Department of Geriatrics, Zhengzhou 450052, China
| | - Lingkai Meng
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
| | - Kuo Yang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China
| | - Huayi Liu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300131, China.
| |
Collapse
|
9
|
Sacchettino L, Costanzo M, Veneruso I, D’Argenio V, Mayer M, Napolitano F, d’Angelo D. Altered microbiome and metabolome profiling in fearful companion dogs: An exploratory study. PLoS One 2025; 20:e0315374. [PMID: 39813205 PMCID: PMC11734960 DOI: 10.1371/journal.pone.0315374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
Behavioral dysfunctions in dogs represent one of the main social concerns, since they can endanger animals and human-dog relationship. Together with the trigger stimulus (human, animal, place, scent, auditory stimuli, objects), dogs can experience stressful conditions, either in multiple settings or unique situations, more often turning into generalized fear. Such a dysfunctional behavior can be associated with genetic susceptibility, environmental factors, traumatic experiences, and medical conditions. The available therapy, based on behavior approaches, environmental management, and neurochemical manipulation, through nutrition, supplements, medicines, and pheromones, represent the mainstays of the treatments currently accessible. Growing evidence in humans and animals highlight the importance of the gut-brain axis in the modulation of the brain physiology and behavior as well. Here, taking advantage of the next generation sequencing approach, we sought to investigate the potential connection between gut microbiota and microbiome in dogs suffering from generalized fear (n = 8), when compared to healthy subjects (n = 8), who all lived in different families. Faecal microbiota evaluation showed a differential abundance of taxa related to Proteobacteria and Firmicutes Phyla, between case and control dogs. Moreover, serum metabolomics documented significant alterations of molecules associated to GABA and glutamate neurotransmission in the patients, as well as bile acids metabolism. Overall, our preliminary and integrated investigations highlighted an intriguing role for the microbiome-metabolome network, allowing to further unveil the potential pathophysiology of relational issues in companion animals and paving the way for more effective therapeutical approaches.
Collapse
Affiliation(s)
- Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Maria Mayer
- Independent Researcher, Small Animal Nutrition Consultation (FNOVI), Rome, Italy
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Danila d’Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Mazarati A. Gut-microbiota-brain Axis and post-traumatic epilepsy. Epilepsia Open 2024. [PMID: 39688879 DOI: 10.1002/epi4.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
There has been growing evidence that perturbations in gut-microbiota-brain axis (GMBA) are involved in mechanisms of chronic sequelae of traumatic brain injury (TBI). This review discusses the connection between GMBA and post-traumatic epilepsy (PTE), the latter being a common outcome of TBI. The focus is on two aspects of post-TBI GMBA dysfunction that are relevant to epilepsy. First are impairments in intestinal permeability with subsequent translocation of gut bacteria into the bloodstream. Specifically, endotoxemia following TBI may have a serendipitous protective effect against PTE through lipopolysaccharide conditioning, which may be leveraged for the development of therapeutic interventions. Second are changes in microbial composition (i.e., dysbiosis). Here, the GMBA-PTE connection is explored from predictive biomarker perspective, whereby the risk of PTE can be stratified based on specific microbial profiles. Finally, microbiota transplantation is discussed both as a tool to examine the role of gut microbiota in PTE and as a prelude to novel approaches for PTE therapy and prevention.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics and Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| |
Collapse
|
11
|
Granados-Martinez C, Alfageme-Lopez N, Navarro-Oviedo M, Nieto-Vaquero C, Cuartero MI, Diaz-Benito B, Moro MA, Lizasoain I, Hernandez-Jimenez M, Pradillo JM. Gut Microbiota, Bacterial Translocation, and Stroke: Current Knowledge and Future Directions. Biomedicines 2024; 12:2781. [PMID: 39767686 PMCID: PMC11673227 DOI: 10.3390/biomedicines12122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Stroke is one of the most devastating pathologies in terms of mortality, cause of dementia, major adult disability, and socioeconomic burden worldwide. Despite its severity, treatment options remain limited, with no pharmacological therapies available for hemorrhagic stroke (HS) and only fibrinolytic therapy or mechanical thrombectomy for ischemic stroke (IS). In the pathophysiology of stroke, after the acute phase, many patients develop systemic immunosuppression, which, combined with neurological dysfunction and hospital management, leads to the onset of stroke-associated infections (SAIs). These infections worsen prognosis and increase mortality. Recent evidence, particularly from experimental studies, has highlighted alterations in the microbiota-gut-brain axis (MGBA) following stroke, which ultimately disrupts the gut flora and increases intestinal permeability. These changes can result in bacterial translocation (BT) from the gut to sterile organs, further contributing to the development of SAIs. Given the novelty and significance of these processes, especially the role of BT in the development of SAIs, this review summarizes the latest advances in understanding these phenomena and discusses potential therapeutic strategies to mitigate them, ultimately reducing post-stroke complications and improving treatment outcomes.
Collapse
Affiliation(s)
- Cristina Granados-Martinez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Nuria Alfageme-Lopez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
| | - Manuel Navarro-Oviedo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Carmen Nieto-Vaquero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Maria Isabel Cuartero
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Blanca Diaz-Benito
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Maria Angeles Moro
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- Neurovascular Pathophysiology, Cardiovascular Risk Factor and Brain Health Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Ignacio Lizasoain
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Macarena Hernandez-Jimenez
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
- AptaTargets S.L. Avda. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Jesus Miguel Pradillo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (C.G.-M.); (N.A.-L.); (M.N.-O.); (C.N.-V.); (M.I.C.); (B.D.-B.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain;
| |
Collapse
|
12
|
McDonnell SC, Graham-Engeland JE, Sliwinski MJ, Engeland CG, Knight EL. Cognotoxemia: endotoxemia and gender predict changes in working memory performance in healthy adults. Front Neurosci 2024; 18:1453325. [PMID: 39568668 PMCID: PMC11577790 DOI: 10.3389/fnins.2024.1453325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Examining the contribution of peripheral systems to cognitive function under healthy circumstances may improve our understanding of the systems that confer risk or resilience in diseased states. Endotoxemia-a pro-inflammatory response to the translocation of bacteria that reside in the gut on other sources (e.g., respiratory tract; infection) into the blood-was hypothesized to relate to worsened cognitive functioning. Gender was explored as a moderator. Methods A sample of 162 healthy adults (25-65 years old) provided plasma, from which a measure of endotoxemia was determined [i.e., the ratio of lipopolysaccharide binding protein (LBP) to soluble cluster of differentiation 14 receptors (sCD14)]. Participants performed an array of laboratory and ambulatory cognitive tasks at three timepoints, each separated by 9 months. Two sets of multilevel models were used: Prospective models, linking endotoxemia at baseline with changes in cognition across time, and coupling models, which examine correlations of endotoxemia with cognition across time. Results A prospective model indicated lower levels of endotoxemia at baseline predicted improvements in working memory across the three timepoints; higher levels were associated with no change in cognitive performance. Gender was not found to modulate this finding. Interestingly, a coupling analysis of endotoxemia and gender across time showed that in men, those with higher endotoxemia performed better at the working memory task overall; in women, working memory performance was similar regardless of endotoxemia level. Conclusion This work provides initial evidence that endotoxemia may be associated with a dampening of improvement in working memory, improvement consistent with practice effects, which should be expected in a sample of healthy, relatively young adults. The findings also provide preliminary evidence that, at least for men, higher degrees of endotoxemia are not inherently negative, and may link with short term positive outcomes for working memory.
Collapse
Affiliation(s)
- Sally C McDonnell
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Jennifer E Graham-Engeland
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
| | - Martin J Sliwinski
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, PA, United States
| | - Christopher G Engeland
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
- Center for Healthy Aging, Pennsylvania State University, University Park, PA, United States
- Ross and Carol Nese College of Nursing, Pennsylvania State University, University Park, PA, United States
| | - Erik L Knight
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
13
|
Zein L, Grossmann J, Swoboda H, Borgel C, Wilke B, Awe S, Nist A, Stiewe T, Stehling O, Freibert SA, Adhikary T, Chung HR. Haptoglobin buffers lipopolysaccharides to delay activation of NFκB. Front Immunol 2024; 15:1401527. [PMID: 39416789 PMCID: PMC11479958 DOI: 10.3389/fimmu.2024.1401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
It has remained yet unclear which soluble factors regulate the anti-inflammatory macrophage phenotype observed in both homeostasis and tumourigenesis. We show here that haptoglobin, a major serum protein with elusive immunoregulatory properties, binds and buffers bacterial lipopolysaccharides to attenuate activation of NFκB in macrophages. Haptoglobin binds different lipopolysaccharides with low micromolar affinities. Given its abundance, haptoglobin constitutes a buffer for serum-borne lipopolysaccharides, shielding them to safeguard against aberrant inflammatory reactions by reducing the amount of free lipopolysaccharides available for binding to TLR4. Concordantly, NFκB activation by haptoglobin-associated lipopolysaccharides was markedly delayed relative to stimulation with pure lipopolysaccharide. Our findings warrant evaluation of therapeutic benefits of haptoglobin for inflammatory conditions and re-evaluation of purification strategies. Finally, they allow to elucidate mechanisms of enhanced immunosuppression by oncofetal haptoglobin.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Josina Grossmann
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Helena Swoboda
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Christina Borgel
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Bernhard Wilke
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Stephan Awe
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Oliver Stehling
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
15
|
Murack M, Kadamani AK, Guindon-Riopel A, Traynor OH, Iqbal UH, Bronner S, Messier C, Ismail N. The effect of probiotic supplementation on sleep, depression-like behaviour, and central glucose and lactate metabolism in male and female pubertal mice exposed to chronic sleep disruption. Psychoneuroendocrinology 2024; 168:107146. [PMID: 39079447 DOI: 10.1016/j.psyneuen.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The prevalence of depression significantly increases during puberty and adolescence. Puberty is the period during which sexual maturity is attained, while adolescence persists beyond puberty and includes physiological, social, emotional, and cognitive maturation. A stressor that has been shown previously to induce depression is chronic sleep disruption. Probiotics can prevent stress-induced depression. However, it was unclear whether probiotics could prevent depression following chronic sleep disruption and what mechanism may be involved. Therefore, we investigated whether pubertal probiotic treatment could prevent depression-like behavior in mice following chronic sleep disruption. We also examined whether probiotic treatment could improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in chronically sleep-disrupted mice. We hypothesized that probiotic treatment would prevent depression-like behavior, improve sleep quality, and increase serotonin, tryptophan, glucose, and L-lactate concentrations in sleep-disrupted mice. Male and female mice (N=120) received cannula and electroencephalogram (EEG) electrode implants at postnatal day (PND) 26. Mice received Lacidofil® or Cerebiome® probiotics (PND 33-51) and were sleep-disrupted for the first 4 hours of the light phase (sleep period) (PND 40-51). Hippocampal L-lactate and glucose concentrations and sleep were measured over a 24-h period (PND 48-49). Depression-like behaviour was evaluated using tail suspension (PND 49) and forced swim tests (PND 50). Chronic sleep disruption increased depression-like behaviour and NREM duration in the dark phase, and reduced all metabolites and neuromodulating biomolecules measured within the brain. However, mice treated with probiotics did not display depression-like behaviour or decreased hippocampal L-lactate following chronic sleep disruption. Cerebiome prevented decreases to prefrontal serotonin and hippocampal glucose concentrations, while Lacidofil increased NREM duration in the latter half of the light phase. The current study not only replicates previous findings linking chronic sleep disruption to depression, but also demonstrates that pubertal probiotic treatment can mitigate the effects of chronic sleep disruption on depression-like behaviour and on the neural mechanisms underlying depression in a strain-dependent manner.
Collapse
Affiliation(s)
- Michael Murack
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada
| | - Anthony K Kadamani
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada
| | - Alexi Guindon-Riopel
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada
| | - Olivia H Traynor
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada
| | - Umar Haris Iqbal
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmont Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmont Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Claude Messier
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
16
|
Flori L, Benedetti G, Martelli A, Calderone V. Microbiota alterations associated with vascular diseases: postbiotics as a next-generation magic bullet for gut-vascular axis. Pharmacol Res 2024; 207:107334. [PMID: 39103131 DOI: 10.1016/j.phrs.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The intestinal microbiota represents a key element in maintaining the homeostasis and health conditions of the host. Vascular pathologies and other risk factors such as aging have been recently associated with dysbiosis. The qualitative and quantitative alteration of the intestinal microbiota hinders correct metabolic homeostasis, causing structural and functional changes of the intestinal wall itself. Impairment of the intestinal microbiota, combined with the reduction of the barrier function, worsen the pathological scenarios of peripheral tissues over time, including the vascular one. Several experimental evidence, collected in this review, describes in detail the changes of the intestinal microbiota in dysbiosis associated with vascular alterations, such as atherosclerosis, hypertension, and endothelial dysfunction, the resulting metabolic disorders and how these can impact on vascular health. In this context, the gut-vascular axis is considered, for the first time, as a merged unit involved in the development and progression of vascular pathologies and as a promising target. Current approaches for the management of dysbiosis such as probiotics, prebiotics and dietary modifications act mainly on the intestinal district. Postbiotics, described as preparation of inanimate microorganisms and/or their components that confers health benefits on the host, represent an innovative strategy for a dual management of intestinal dysbiosis and vascular pathologies. In this context, this review has the further purpose of defining the positive effects of the supplementation of bacterial strains metabolites (short‑chain fatty acids, exopolysaccharides, lipoteichoic acids, gallic acid, and protocatechuic acid) restoring intestinal homeostasis and acting directly on the vascular district through the gut-vascular axis.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy.
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, Pisa 6-56120, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa 56120, Italy; Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa 56120, Italy.
| |
Collapse
|
17
|
Shi M, Li Z, Tang Z, Zhou H, Huang X, Wei Y, Li X, Li X, Shi H, Qin D. Exploring the pathogenesis and treatment of PSD from the perspective of gut microbiota. Brain Res Bull 2024; 215:111022. [PMID: 38936669 DOI: 10.1016/j.brainresbull.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Post-stroke depression (PSD) is a psychological disease that can occur following a stroke and is associated with serious consequences. Research on the pathogenesis and treatment of PSD is still in the infancy stage. Patients with PSD often exhibit gastrointestinal symptoms; therefore the role of gut microbiota in the pathophysiology and potential treatment effects of PSD has become a hot topic of research. In this review, describe the research on the pathogenesis and therapy of PSD. We also describe how the gut microbiota influences neurotransmitters, the endocrine system, energy metabolism, and the immune system. It was proposed that the gut microbiota is involved in the pathogenesis and treatment of PSD through the regulation of neurotransmitter levels, vagal signaling, hypothalamic-pituitary-adrenal axis activation and inhibition, hormone secretion and release, in addition to immunity and inflammation.
Collapse
Affiliation(s)
- Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Zhengxiu Tang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Haimei Zhou
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xinyao Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| | - Xiahuang Li
- The People's Hospital of Mengzi, The Affiliated Hospital of Yunnan University of Chinese Medicine, Mengzi Honghe, China.
| | - Hongling Shi
- Department of Rehabilitation Medicine, The Third People's Hospital of Yunnan Province, Kunming Yunnan, China.
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming Yunnan, China.
| |
Collapse
|
18
|
Anaya-Prado R, Cárdenas-Fregoso AP, Reyes-Perez AM, Ortiz-Hernandez DM, Quijano-Ortiz M, Delgado-Martinez MV, Pelayo-Romo AS, Anaya-Fernandez R, Anaya-Fernandez MM, Azcona-Ramirez CC, Garcia-Ramirez IF, Guerrero-Palomera MA, Gonzalez-Martinez D, Guerrero-Palomera CS, Paredes-Paredes K, Garcia-Perez C. The Biomolecular Basis of Gut Microbiome on Neurological Diseases. OBM NEUROBIOLOGY 2024; 08:1-40. [DOI: 10.21926/obm.neurobiol.2403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The human gastrointestinal (GI) tract harbors many microorganisms, including viruses, protozoa, archaea, fungi, and bacteria. Altogether, these microbes constitute what we know as the gut microbiome (GM). These commensal communities have important implications for human health. They influence physiological processes through different mechanisms, including synthesizing neurotransmitters, regulating enzymatic pathways, and releasing molecules responsible for different signal pathways. The interaction between GM and brain function has been associated with the development and pathogenesis of neuropsychiatric diseases. This review discusses current studies targeting the regulation and modulation of GM in nerve, neuroendocrine, and immune pathways. Thus, we analyze current evidence on transcription, changes in composition, and specific interactions between the gut and brain from a biomolecular perspective. Special attention is paid to mood disorders and neurodegenerative diseases.
Collapse
|
19
|
Guy A, McAuliffe S, Cross R, Zhang Y, Kennedy RE, Estes NR, Giordano-Mooga S, Loyd C. Pilot study assessing gut microbial diversity among sexual and gender minority young adults. PLoS One 2024; 19:e0306638. [PMID: 38959280 PMCID: PMC11221641 DOI: 10.1371/journal.pone.0306638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Evidence supports that people identifying as a sexual or gender minority (SGMs) experience minority-related stress resulting from discrimination or expectations of prejudice, and that this is associated with increased mental and physical health problems compared to cisgender heterosexuals. However, the biological mechanisms driving minority-related stress impacts remain unknown, including the role of the gut microbiome. Thus, the aim of this study was to determine the relationship between SGM status and gut microbiome health among young adults attending a 4-year university. To this end, a prospective pilot study was completed in the fall and spring semesters of 2021-22. Self-identified SGMs (N = 22) and cisgender-heterosexuals (CIS-HET, N = 43) completed in-person interviews to provide mental health data and demographic information. Nail and saliva samples were collected at the time of interview to quantify chronic and acute cortisol. Stool samples were collected within 48 hours of interview for microbiome analysis. Assessment of the gut microbiota identified a significant reduction in alpha diversity among the SGM group, even when adjusting for mental health outcome. SGM group showed trends for higher abundance of microbes in phylum Bacteroidetes and lower abundance of microbes in phyla Firmicutes, Actinobacteria, and Proteobacteria compared to the CIS-HET group. These findings support that the gut microbiome could be contributing to negative health effects among the SGM community.
Collapse
Affiliation(s)
- Ashley Guy
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shannon McAuliffe
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robbie Cross
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yue Zhang
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Richard E. Kennedy
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Norman R. Estes
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Samantha Giordano-Mooga
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Christine Loyd
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
20
|
Henningsen K, Martinez I, Costa RJS. Exertional Stress-induced Pathogenic Luminal Content Translocation - Friend or Foe? Int J Sports Med 2024; 45:559-571. [PMID: 38286406 DOI: 10.1055/a-2235-1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The incidence of perturbed gastrointestinal integrity, as well as resulting systemic immune responses and gastrointestinal symptoms, otherwise known as exercised-induced gastrointestinal syndrome (EIGS), is common among individuals who partake in prolonged exercise. EIGS may cause the translocation of pathogenic material, including whole bacteria and bacterial endotoxins, from the lumen into circulation, which may progress into clinical consequences such as sepsis, and potentially subsequent fatality. However, further investigation is warranted to assess the possibility of food allergen and/or digestive enzyme luminal to circulatory translocation in response to exercise, and the clinical consequences. Findings from this narrative literature review demonstrate evidence that whole bacteria and bacterial endotoxins translocation from the gastrointestinal lumen to systemic circulation occurs in response to exercise stress, with a greater propensity of translocation occurring with accompanying heat exposure. It has also been demonstrated that food allergens can translocate from the lumen to systemic circulation in response to exercise stress and initiate anaphylaxis. To date, no research investigating the effect of exercise on the translocation of digestive enzymes from the lumen into systemic circulation exists. It is evident that EIGS and consequential pathogenic translocation presents life-threatening clinical implications, warranting the development and implementation of effective management strategies in at-risk populations.
Collapse
Affiliation(s)
- Kayla Henningsen
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| | - Isabel Martinez
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| | - Ricardo J S Costa
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| |
Collapse
|
21
|
Chmielarz M, Sobieszczańska B, Środa-Pomianek K. Metabolic Endotoxemia: From the Gut to Neurodegeneration. Int J Mol Sci 2024; 25:7006. [PMID: 39000116 PMCID: PMC11241432 DOI: 10.3390/ijms25137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Metabolic endotoxemia is a severe health problem for residents in developed countries who follow a Western diet, disrupting intestinal microbiota and the whole organism's homeostasis. Although the effect of endotoxin on the human immune system is well known, its long-term impact on the human body, lasting many months or even years, is unknown. This is due to the difficulty of conducting in vitro and in vivo studies on the prolonged effect of endotoxin on the central nervous system. In this article, based on the available literature, we traced the path of endotoxin from the intestines to the blood through the intestinal epithelium and factors promoting the development of metabolic endotoxemia. The presence of endotoxin in the bloodstream and the inflammation it induces may contribute to lowering the blood-brain barrier, potentially allowing its penetration into the central nervous system; although, the theory is still controversial. Microglia, guarding the central nervous system, are the first line of defense and respond to endotoxin with activation, which may contribute to the development of neurodegenerative diseases. We traced the pro-inflammatory role of endotoxin in neurodegenerative diseases and its impact on the epigenetic regulation of microglial phenotypes.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Wroclaw University of Medicine, Chalubinskiego 4 Street, 50-368 Wroclaw, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw University of Medicine, Chalubinskiego 3a, 50-368 Wroclaw, Poland
| |
Collapse
|
22
|
Zhang L, Lu W. Necrotizing enterocolitis in a term newborn after spontaneous cerebral parenchymal hemorrhage: a case report. BMC Pediatr 2024; 24:387. [PMID: 38851677 PMCID: PMC11162010 DOI: 10.1186/s12887-024-04866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) and intracranial hemorrhage are severe emergencies in the neonatal period. The two do not appear to be correlated. However, our report suggests that parenchymal brain hemorrhage in full-term newborns may put patients at risk for NEC by altering intestinal function through the brain-gut axis. CASE PRESENTATION We present a case of spontaneous parenchymal cerebral hemorrhage in a full-term newborn who developed early-stage NEC on Day 15. CONCLUSIONS It is possible to consider brain parenchymal hemorrhage as a risk factor for the appearance of NEC. Clinicians should be highly cautious about NEC in infants who have experienced parenchymal hemorrhage. This article is the first to discuss the relationship between parenchymal hemorrhage and NEC in full-term newborns.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, China
| | - Weifeng Lu
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, No.72 Guangzhou Road, Nanjing, Jiangsu Province, 210008, China.
| |
Collapse
|
23
|
Osei F, Wippert PM, Block A. Allostatic Load and Metabolic Syndrome in Depressed Patients: A Cross-Sectional Analysis. Depress Anxiety 2024; 2024:1355340. [PMID: 40226750 PMCID: PMC11918874 DOI: 10.1155/2024/1355340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/15/2025] Open
Abstract
Allostatic load (AL) is the cumulative wear and tear on the body due to the chronic adverse physical or psychosocial situations. The acute stress response activates the primary mediators of AL, which include cortisol, epinephrine (EPI), norepinephrine (NE), and dehydroepiandrosterone sulfate (DHEA-S). Secondary outcomes, such as metabolic syndrome (MetS), cardiovascular, and immune system changes, can result from long-term stress responses. Given these complex reactions to an acute stressor, a multidimensional stress assessment is required when investigating individual stress reactivity in an experimental setting. This study is aimed at examining the association between the primary mediators of AL and MetS in major depressive disorder (MDD) patients. MDD patients (n = 164, age = 18-65 years old) with MetS+ (n = 46, weight = 93.10 ± 16.43 kg) and without MetS- (n = 118, weight = 73.08 ± 15.22 kg) were analyzed cross-sectionally. Stepwise binary regression and Welch's t-test were used to find the associations and differences between the two groups. The regression analysis was fully adjusted for age, sex, and the Beck Depression Inventory-II score. In unadjusted model, cortisol (b = -0.003, p = 0.034) was inversely associated with MetS. In fully adjusted model, EPI (b = -0.006, p = 0.007) was inversely associated with MetS. However, significant differences (p = 0.005) were observed for cortisol between MDD patients without MetS- (410.13 ± 144.63 nmol/l) and MDD patients with MetS+ (340.90 ± 132.98 nmol/l) with a small effect size (Cohen's d of 0.489). Significant differences (p = 0.001) were observed for EPI between MDD patients without MetS- (185.67 ± 124.44 pg/ml) and MDD patients with MetS+ (124.95 ± 84.38 pg/ml) with a moderate effect size (Cohen's d of 0.530). These observations are of clinical importance for the management of MDD patients.
Collapse
Affiliation(s)
- Francis Osei
- Professorship for Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, Potsdam 14469, Germany
| | - Pia-Maria Wippert
- Professorship for Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, Potsdam 14469, Germany
- Faculty of Health Sciences, joint Faculty of the University of Potsdam, The Brandenburg Medical School Theodor Fontane, and the Brandenburg University of Technology Cottbus – Senftenberg, Am Mühlenberg 9 14476, Potsdam, Germany
| | - Andrea Block
- Professorship for Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, Potsdam 14469, Germany
| |
Collapse
|
24
|
Tong R, Li Y, Yu X, Zhang N, Liao Q, Pan L. Mechanisms of neurocentral-eyestalk-intestinal immunotoxicity in whiteleg shrimp Litopenaeus vannamei under ammonia nitrogen exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123956. [PMID: 38626866 DOI: 10.1016/j.envpol.2024.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Ammonia-N, as the most toxic nitrogenous waste, has high toxicity to marine animals. However, the interplay between ammonia-induced neuroendocrine toxicity and intestinal immune homeostasis has been largely overlooked. Here, a significant concordance of metabolome and transcriptome-based "cholinergic synapse" supports that plasma metabolites acetylcholine (ACh) plays an important role during NH4Cl exposure. After blocking the ACh signal transduction, the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) in the cerebral ganglia increased, while the release of NPF in the thoracic ganglia and NE in the abdominal ganglia, and crustacean hyperglycemic hormone (CHH) and neuropeptide F (NPF) in the eyestalk decreased, finally the intestinal immunity was enhanced. After bilateral eyestalk ablation, the neuroendocrine system of shrimp was disturbed, more neuroendocrine factors, such as corticotropin releasing hormone (CRH), adrenocorticotropic-hormone (ACTH), ACh, DA, 5-HT, and norepinephrine (NE) were released into the plasma, and further decreased intestinal immunity. Subsequently, these neuroendocrine factors reach the intestine through endocrine or neural pathways and bind to their receptors to affect downstream signaling pathway factors to regulate intestinal immune homeostasis. Combined with different doses of ammonia-N exposure experiment, these findings suggest that NH4Cl may exert intestinal toxicity on shrimp by disrupting the cerebral ganglion-eyestalk axis and the cerebral ganglion-thoracic ganglion-abdominal ganglion axis, thereby damaging intestinal barrier function and inducing inflammatory response.
Collapse
Affiliation(s)
- Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Xin Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
25
|
Costa CFFA, Ferreira-Gomes J, Barbosa F, Sampaio-Maia B, Burnet PWJ. Importance of good hosting: reviewing the bi-directionality of the microbiome-gut-brain-axis. Front Neurosci 2024; 18:1386866. [PMID: 38812976 PMCID: PMC11133738 DOI: 10.3389/fnins.2024.1386866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Gut microorganisms have been shown to significantly impact on central function and studies that have associated brain disorders with specific bacterial genera have advocated an anomalous gut microbiome as the pathophysiological basis of several psychiatric and neurological conditions. Thus, our knowledge of brain-to-gut-to microbiome communication in this bidirectional axis seems to have been overlooked. This review examines the known mechanisms of the microbiome-to-gut-to-brain axis, highlighting how brain-to-gut-to-microbiome signaling may be key to understanding the cause of disrupted gut microbial communities. We show that brain disorders can alter the function of the brain-to-gut-to-microbiome axis, which will in turn contribute to disease progression, while the microbiome-to gut-to brain direction presents as a more versatile therapeutic axis, since current psychotropic/neurosurgical interventions may have unwanted side effects that further cause disruption to the gut microbiome. A consideration of the brain-to-gut-to-microbiome axis is imperative to better understand how the microbiome-gut-brain axis overall is involved in brain illnesses, and how it may be utilized as a preventive and therapeutic tool.
Collapse
Affiliation(s)
- Carolina F. F. A. Costa
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- NanoBiomaterials for Targeted Therapies, INEB-Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Ferreira-Gomes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute for Molecular and Cell Biology, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Benedita Sampaio-Maia
- NanoBiomaterials for Targeted Therapies, INEB-Institute of Biomedical Engineering, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
26
|
Forder RE, Willson NL, Angove JA, McWhorter TJ, McQueen MA, Cadogan DJ. Dietary inclusion of a Saccharomyces cerevisiae metabolite improved reproductive performance but did not affect intestinal permeability in two chicken meat breeder lines. Poult Sci 2024; 103:103595. [PMID: 38471229 PMCID: PMC11067777 DOI: 10.1016/j.psj.2024.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Gastrointestinal dysbiosis is a disturbance in mucosal homeostasis, producing low-grade chronic intestinal inflammation and impaired intestinal barrier function. It is induced by several factors, including nutrition and stress, which are both significant factors when considering current broiler breeder practices. A great grandparent (GGP) chicken meat line was identified displaying clinical signs characteristic of potential dysbiosis, including wet droppings and litter, in addition to reduced reproductive performance when compared to a consistently high performing line. This study aimed to determine whether the reduced reproductive performance observed in these hens was a result of dysbiosis and whether dietary supplementation with a Saccharomyces cerevisiae (SC) fermentation product would alleviate clinical signs. Dietary inclusion of SC did not influence intestinal permeability, WBC differentials, or corticosterone concentration in either the wet litter (WL) or high-performing (HP) breeder lines. Compared to hens from the HP line, WL line hens had a significant increase in intestinal permeability at 26 wk (onset of lay). WL hen heterophil counts were increased markedly at week 26 before declining. At weeks 26, 32, and 37 there were also significant increases in monocytes. Higher plasma corticosterone was also observed in WL hens at 37 wk. No significant differences in heterophil to lymphocyte (H:L) ratios or feather corticosterone were observed between lines. Dietary inclusion of SC supplementation to breeder diets had some benefit in regards to reducing hen mortality, improving egg production and hatchability but only in the WL line. Results from this study did not indicate that hens from the wet litter line were experiencing gut dysbiosis. Chronic intestinal inflammation may be a possible reason for the increase in intestinal permeability. These results do indicate that both breeder lines may be exhibiting physiological stress. Future investigation into the physiology and behavior around point of lay is required to find novel strategies to alleviate this stress and in turn, potentially improve welfare and production outcomes.
Collapse
Affiliation(s)
- Rebecca Ea Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia; Feedworks Pty. Ltd. Romsey, Victoria, 3434, Australia.
| | - Nicky-Lee Willson
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | - Joshua A Angove
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | - Todd J McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | - Matthew A McQueen
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | | |
Collapse
|
27
|
Lee BJ, Flood TR, Galan-Lopez N, McCormick JJ, King KE, Fujii N, Kenny GP. Changes in surrogate markers of intestinal epithelial injury and microbial translocation in young and older men during prolonged occupational heat stress in temperate and hot conditions. Eur J Appl Physiol 2024; 124:1049-1062. [PMID: 37815618 DOI: 10.1007/s00421-023-05329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/16/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Exertional heat stress can cause damage to the intestinal epithelium and disrupt gastrointestinal barrier integrity, leading to microbial translocation (MT) linked to the development of heat stroke. This study aimed to assess age-related differences in markers of intestinal epithelial injury and MT following non-heat stress and high-heat stress exercise in healthy young and older men. METHODS Markers of intestinal epithelial injury (intestinal fatty acid-binding protein-'IFABP') and MT (soluble cluster of differentiation 14-'sCD14'; and lipopolysaccharide-binding protein-'LBP') were assessed in healthy young (18-30 y, n = 13) and older (50-70 y) men (n = 12). Blood samples were collected before, after 180 min of moderate-intensity (metabolic rate: 200 W/m2) walking and following 60 min recovery in either a non-heat stress [temperate: 21.9 °C, 35% relative humidity (RH)] or high-heat stress (hot: 41.4 °C, 35% RH) environment. RESULTS There were no differences in IFABP and sCD14 between the young and older groups in the temperate condition, while LBP was greater in the older group (+ 0.66 ug/mL; + 0.08 to + 1.24 ug/mL). In the hot condition, the older group experienced greater increases in IFABP compared to the young group (+ 712 pg/mL/hr; + 269 to + 1154 pg/mL/hr). However, there were no clear between-group differences for sCD14 (+ 0.24 ug/mL/hr, - 0.22 to + 0.70 ug/mL/hr) or LBP (+ 0.86 ug/mL/hr, - 0.73 to + 2.46 ug/mL/hr). CONCLUSION While older men may experience greater intestinal epithelial injury following exercise in the heat; this did not lead to a greater magnitude of microbial translocation relative to their younger counterparts.
Collapse
Affiliation(s)
- Ben J Lee
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, UK
| | - Tessa R Flood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Natalia Galan-Lopez
- Occupational and Environmental Physiology Group, Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada
| | - Naoto Fujii
- Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Ave., Room 367, Montpetit Hall, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
28
|
Pan Y, Bu T, Deng X, Jia J, Yuan G. Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis. Endocrine 2024; 84:1-15. [PMID: 38227168 DOI: 10.1007/s12020-023-03640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most serious public healthcare challenges, contributing to increased mortality and disability. In the past decades, significant progress has been made in understanding the pathogenesis of T2DM. Mounting evidence suggested that gut microbiota (GM) plays a significant role in the development of T2DM. Communication between the GM and the brain is a complex bidirectional connection, known as the "gut-brain axis," via the nervous, neuroendocrine, and immune systems. Gut-brain axis has an essential impact on various physiological processes, including glucose metabolism, food intake, gut motility, etc. In this review, we provide an outline of the gut-brain axis. We also highlight how the dysbiosis of the gut-brain axis affects glucose homeostasis and even results in T2DM.
Collapse
Affiliation(s)
- Yi Pan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tong Bu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
29
|
Navarro-Ledesma S, Hamed-Hamed D, Pruimboom L. A new perspective of frozen shoulder pathology; the interplay between the brain and the immune system. Front Physiol 2024; 15:1248612. [PMID: 38617059 PMCID: PMC11009429 DOI: 10.3389/fphys.2024.1248612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Frozen shoulder (FS), also known as adhesive capsulitis of the shoulder (FS), is a fibrotic inflammatory process of unknown etiology whose main symptoms are pain, stiffness and the loss of joint mobility. These symptoms may be associated with pathologies such as diabetes, Dupuytren's syndrome and the prevalence of today's sedentary lifestyle. This literature review provides an overview of the epidemiology and pathogenesis of this pathology, as well as the mechanisms of lowgrade chronic inflammation and infection, insulin resistance, and omics-science associated with it. We also propose a new hypothesis related to the possibility that the GABAergic system could play a decisive role in the development of frozen shoulder and that therefore diabetes type 1, endocrinological autoimmune disorders and frozen shoulder are connected by the same pathophysiological mechanisms. If that is true, the combined presence of psycho-emotional stress factors and pathogenic immune challenges could be the main causes of frozen shoulder syndrome. Finally, we propose a series of possible intervention strategies based on a multifactorial etiological and mechanistic concept.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Melilla, Spain
- University Chair in Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Melilla, Spain
| | - Dina Hamed-Hamed
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Melilla, Spain
| |
Collapse
|
30
|
Pluta M, Karny K, Lipińska M, Mańdziuk J, Podsiadły E, Kuchar E, Pokorska-Śpiewak M, Okarska-Napierała M. Ukrainian War Refugee Children With Particularly Severe Viral Infections: A Case Series Report. Pediatr Infect Dis J 2024; 43:e30-e36. [PMID: 37922510 DOI: 10.1097/inf.0000000000004162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The humanitarian crisis in Ukraine in 2022 led to a massive migration of refugees to Poland. Immigrant children, living in overcrowded humanitarian hubs, were exposed to multiple stressful factors likely affecting their immune systems. This case series study aimed to describe a particularly severe course of common viral infections, in Ukrainian refugee children. We present 2 case series of Ukrainian refugee children: 5 hospitalized due to either adenovirus (AdV) and 8 with rotavirus (RV) infection, admitted within 3 months in each case series, recruited retrospectively. Most patients lived in humanitarian hubs and were neglected on admission (dehydrated, with poor hygiene and anxious). All RV infection cases had symptoms of severe gastroenteritis requiring intravenous rehydration. Metabolic acidosis was present in 6 children, and hypoglycemia in 4 participants. None of them were vaccinated against RV. All children with AdV infection had prolonged fever, dyspnea requiring oxygen therapy and hyperinflammation. In 2 AdV infection cases with no clinical improvement and increasing inflammatory markers, intravenous immunoglobulins and glucocorticosteroids were used. The combination of stressful factors and living in overcrowded hubs during the high prevalence of viral infections led to a particularly severe course of viral infections in Ukrainian refugee children.
Collapse
Affiliation(s)
- Magdalena Pluta
- From the Department of Children's Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
- Hospital of Infectious Diseases, Warsaw, Poland
| | | | | | | | - Edyta Podsiadły
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Ernest Kuchar
- Department of Pediatrics With Clinical Assessment Unit
| | - Maria Pokorska-Śpiewak
- From the Department of Children's Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
- Hospital of Infectious Diseases, Warsaw, Poland
| | | |
Collapse
|
31
|
Wen C, Wang J, Sun Z, Zhong R, Li M, Shen X, Ye Q, Qin K, Peng X. Dietary Zinc Ameliorates TNBS-Induced Colitis in Mice Associated with Regulation of Th1/Th2/Th17 Balance and NF-κB/NLRP3 Signaling Pathway. Biol Trace Elem Res 2024; 202:659-670. [PMID: 37249802 DOI: 10.1007/s12011-023-03715-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are chronic relapsing inflammatory gastrointestinal tract diseases of uncertain origin, which are frequently associated with zinc deficiency. Animal models have a considerable value in elucidating the process of IBD. In this study, 50 male C57BL/6 J mice were randomly assigned to five groups: control group (Con), 2,4,6-trinitrobenzenesulfonic acid (TNBS) group, and three zinc supplementation groups, namely 160 ppm group, 400 ppm group, and 1000 ppm group. The results showed that supplementation of dietary zinc with zinc oxide could effectively relieve the severity of ulcerative colitis induced by TNBS in mice. We demonstrate that the protective mechanism involves the immunomodulation of dietary zinc by increasing CD3+, CD3+CD8+, and Th2 cells, suppressing Th1 and Th17 cells, and decreasing the production of serum IL-1β and IL-18. The dietary zinc oxide seems to be able to suppress the NF-κB/NLRP3 signaling pathway by downregulating the mRNA and protein expression of NIK, IKK, NF-κB, and NLRP3. The results suggest that dietary supplementation of zinc oxide may protect against colitis, and proper daily zinc supplementation may reduce the risk of IBD.
Collapse
Affiliation(s)
- Changlin Wen
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Jiayu Wang
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Zhenhua Sun
- Department of Technology, Sichuan Youngster Technology Co., Ltd., No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Rao Zhong
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China
| | - Mengjie Li
- Department of Technology, Sichuan Youngster Technology Co., Ltd., No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xuemei Shen
- Department of Technology, Sichuan Youngster Technology Co., Ltd., No. 733, Furong Avenue, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Qiaobo Ye
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Kaihua Qin
- School of Basic Medicine Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Xi Peng
- School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
32
|
Goudman L, Demuyser T, Pilitsis JG, Billot M, Roulaud M, Rigoard P, Moens M. Gut dysbiosis in patients with chronic pain: a systematic review and meta-analysis. Front Immunol 2024; 15:1342833. [PMID: 38352865 PMCID: PMC10862364 DOI: 10.3389/fimmu.2024.1342833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Recent evidence supports the contribution of gut microbiota dysbiosis to the pathophysiology of rheumatic diseases, neuropathic pain, and neurodegenerative disorders. The bidirectional gut-brain communication network and the occurrence of chronic pain both involve contributions of the autonomic nervous system and the hypothalamic pituitary adrenal axis. Nevertheless, the current understanding of the association between gut microbiota and chronic pain is still not clear. Therefore, the aim of this study is to systematically evaluate the existing knowledge about gut microbiota alterations in chronic pain conditions. Methods Four databases were consulted for this systematic literature review: PubMed, Web of Science, Scopus, and Embase. The Newcastle-Ottawa Scale was used to assess the risk of bias. The study protocol was prospectively registered at the International prospective register of systematic reviews (PROSPERO, CRD42023430115). Alpha-diversity, β-diversity, and relative abundance at different taxonomic levels were summarized qualitatively, and quantitatively if possible. Results The initial database search identified a total of 3544 unique studies, of which 21 studies were eventually included in the systematic review and 11 in the meta-analysis. Decreases in alpha-diversity were revealed in chronic pain patients compared to controls for several metrics: observed species (SMD= -0.201, 95% CI from -0.04 to -0.36, p=0.01), Shannon index (SMD= -0.27, 95% CI from -0.11 to -0.43, p<0.001), and faith phylogenetic diversity (SMD -0.35, 95% CI from -0.08 to -0.61, p=0.01). Inconsistent results were revealed for beta-diversity. A decrease in the relative abundance of the Lachnospiraceae family, genus Faecalibacterium and Roseburia, and species of Faecalibacterium prausnitzii and Odoribacter splanchnicus, as well as an increase in Eggerthella spp., was revealed in chronic pain patients compared to controls. Discussion Indications for gut microbiota dysbiosis were revealed in chronic pain patients, with non-specific disease alterations of microbes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023430115.
Collapse
Affiliation(s)
- Lisa Goudman
- STIMULUS (Research and Teaching Neuromodulation Uz Brussel) Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation—Flanders (FWO), Brussels, Belgium
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Thomas Demuyser
- Department Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Brussels, Belgium
- AIMS Lab, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie G. Pilitsis
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, Poitiers, France
- Department of Spine Surgery and Neuromodulation, Poitiers University Hospital, Poitiers, France
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Chasseneuil-du-Poitou, France
| | - Maarten Moens
- STIMULUS (Research and Teaching Neuromodulation Uz Brussel) Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
33
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
34
|
Khaledi M, Poureslamfar B, Alsaab HO, Tafaghodi S, Hjazi A, Singh R, Alawadi AH, Alsaalamy A, Qasim QA, Sameni F. The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. ANN MICROBIOL 2024; 74:1. [DOI: 10.1186/s13213-023-01744-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
The gut microbiota plays a crucial role in regulating the host’s immune responses during aging, which was characterized by a different abundance of bacteria in several age groups.
Main body
Gut microbiota dysbiosis is associated with aging, antibiotic exposure, underlying diseases, infections, hormonal variations, circadian rhythm, and malnutrition, either singularly or in combination. The appropriate use of prebiotics and probiotics may be able to prevent or reduce this disruption.
Conclusion
The current review focuses on the gut microbiota composition across the life cycle, factors affecting gut microbiota changes with aging, and interventions to modulate gut microbiota.
Collapse
|
35
|
Khan R, Di Gesù CM, Lee J, McCullough LD. The contribution of age-related changes in the gut-brain axis to neurological disorders. Gut Microbes 2024; 16:2302801. [PMID: 38237031 PMCID: PMC10798364 DOI: 10.1080/19490976.2024.2302801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Trillions of microbes live symbiotically in the host, specifically in mucosal tissues such as the gut. Recent advances in metagenomics and metabolomics have revealed that the gut microbiota plays a critical role in the regulation of host immunity and metabolism, communicating through bidirectional interactions in the microbiota-gut-brain axis (MGBA). The gut microbiota regulates both gut and systemic immunity and contributes to the neurodevelopment and behaviors of the host. With aging, the composition of the microbiota changes, and emerging studies have linked these shifts in microbial populations to age-related neurological diseases (NDs). Preclinical studies have demonstrated that gut microbiota-targeted therapies can improve behavioral outcomes in the host by modulating microbial, metabolomic, and immunological profiles. In this review, we discuss the pathways of brain-to-gut or gut-to-brain signaling and summarize the role of gut microbiota and microbial metabolites across the lifespan and in disease. We highlight recent studies investigating 1) microbial changes with aging; 2) how aging of the maternal microbiome can affect offspring health; and 3) the contribution of the microbiome to both chronic age-related diseases (e.g., Parkinson's disease, Alzheimer's disease and cerebral amyloidosis), and acute brain injury, including ischemic stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Romeesa Khan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Claudia M. Di Gesù
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
36
|
Montagnani M, Potenza MA, Corsalini M, Barile G, Charitos IA, De Giacomo A, Jirillo E, Colella M, Santacroce L. Current View on How Human Gut Microbiota Mediate Metabolic and Pharmacological Activity of Panax ginseng. A Scoping Review. Endocr Metab Immune Disord Drug Targets 2024; 24:1756-1773. [PMID: 38504564 DOI: 10.2174/0118715303270923240307120117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 01/05/2024] [Indexed: 03/21/2024]
Abstract
Panax ginseng is one of the most important remedies in ancient Eastern medicine. In the modern Western world, its reputation started to grow towards the end of the XIX century, but the rather approximate understanding of action mechanisms did not provide sufficient information for an appropriate use. Nowadays, Panax ginseng is frequently used in some pathological conditions, but the comprehension of its potential beneficial effects is still incomplete. The purpose of this study is to highlight the most recent knowledge on mechanisms and effects of ginseng active ingredients on the intestinal microbiota. The human microbiota takes part in the immune and metabolic balance and serves as the most important regulator for the control of local pathogens. This delicate role requires a complex interaction and reflects the interconnection with the brainand the liver-axes. Thus, by exerting their beneficial effects through the intestinal microbiota, the active ingredients of Panax ginseng (glycosides and their metabolites) might help to ameliorate both specific intestinal conditions as well as the whole organism's homeostasis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision Medicine and Ionian Area, Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro," Policlinico University Hospital of Bari, Bari, Italy
| | - Massimo Corsalini
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppe Barile
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, Bari, Italy
| | - Andrea De Giacomo
- Department of Neurological and Psychiatric Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
- Doctoral School, eCampus University, Novedrate, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
37
|
de Souza PB, de Araujo Borba L, Castro de Jesus L, Valverde AP, Gil-Mohapel J, Rodrigues ALS. Major Depressive Disorder and Gut Microbiota: Role of Physical Exercise. Int J Mol Sci 2023; 24:16870. [PMID: 38069198 PMCID: PMC10706777 DOI: 10.3390/ijms242316870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Major depressive disorder (MDD) has a high prevalence and is a major contributor to the global burden of disease. This psychiatric disorder results from a complex interaction between environmental and genetic factors. In recent years, the role of the gut microbiota in brain health has received particular attention, and compelling evidence has shown that patients suffering from depression have gut dysbiosis. Several studies have reported that gut dysbiosis-induced inflammation may cause and/or contribute to the development of depression through dysregulation of the gut-brain axis. Indeed, as a consequence of gut dysbiosis, neuroinflammatory alterations caused by microglial activation together with impairments in neuroplasticity may contribute to the development of depressive symptoms. The modulation of the gut microbiota has been recognized as a potential therapeutic strategy for the management of MMD. In this regard, physical exercise has been shown to positively change microbiota composition and diversity, and this can underlie, at least in part, its antidepressant effects. Given this, the present review will explore the relationship between physical exercise, gut microbiota and depression, with an emphasis on the potential of physical exercise as a non-invasive strategy for modulating the gut microbiota and, through this, regulating the gut-brain axis and alleviating MDD-related symptoms.
Collapse
Affiliation(s)
- Pedro Borges de Souza
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Laura de Araujo Borba
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Louise Castro de Jesus
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Ana Paula Valverde
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Center of Biological Sciences, Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis 88037-000, SC, Brazil; (P.B.d.S.); (L.d.A.B.); (L.C.d.J.); (A.P.V.)
| |
Collapse
|
38
|
Sgro M, Ray J, Foster E, Mychasiuk R. Making migraine easier to stomach: the role of the gut-brain-immune axis in headache disorders. Eur J Neurol 2023; 30:3605-3621. [PMID: 37329292 DOI: 10.1111/ene.15934] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE Headache disorders place a significant burden on the healthcare system, being the leading cause of disability in those under 50 years. Novel studies have interrogated the relationship between headache disorders and gastrointestinal dysfunction, suggesting a link between the gut-brain-immune (GBI) axis and headache pathogenesis. Although the exact mechanisms driving the complex relationship between the GBI axis and headache disorders remain unclear, there is a growing appreciation that a healthy and diverse microbiome is necessary for optimal brain health. METHODS A literature search was performed through multiple reputable databases in search of Q1 journals within the field of headache disorders and gut microbiome research and were critically and appropriately evaluated to investigate and explore the following; the role of the GBI axis in dietary triggers of headache disorders and the evidence indicating that diet can be used to alleviate headache severity and frequency. The relationship between the GBI axis and post-traumatic headache is then synthesized. Finally, the scarcity of literature regarding paediatric headache disorders and the role that the GBI axis plays in mediating the relationship between sex hormones and headache disorders are highlighted. CONCLUSIONS There is potential for novel therapeutic targets for headache disorders if understanding of the GBI axis in their aetiology, pathogenesis and recovery is increased.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jason Ray
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Emma Foster
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
39
|
Mitra S, Dash R, Nishan AA, Habiba SU, Moon IS. Brain modulation by the gut microbiota: From disease to therapy. J Adv Res 2023; 53:153-173. [PMID: 36496175 PMCID: PMC10658262 DOI: 10.1016/j.jare.2022.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The gut microbiota (GM) and brain are strongly associated, which significantly affects neuronal development and disorders. GM-derived metabolites modulate neuronal function and influence many cascades in age-related neurodegenerative disorders (NDDs). Because of the dual role of GM in neuroprotection and neurodegeneration, understanding the balance between beneficial and harmful bacteria is crucial for applying this approach to clinical therapies. AIM OF THE REVIEW This review briefly discusses the role of the gut-brain relationship in promoting brain and cognitive function. Although a healthy gut environment is helpful for brain function, gut dysbiosis can disrupt the brain's environment and create a vicious cycle of degenerative cascades. The ways in which the GM population can affect brain function and the development of neurodegeneration are also discussed. In the treatment and management of NDDs, the beneficial effects of methods targeting GM populations and their derivatives, including probiotics, prebiotics, and fecal microbial transplantation (FMT) are also highlighted. KEY SCIENTIFIC CONCEPT OF THE REVIEW In this review, we aimed to provide a deeper understanding of the mechanisms of the gut microbe-brain relationship and their twin roles in neurodegeneration progression and therapeutic applications. Here, we attempted to highlight the different pathways connecting the brain and gut, together with the role of GM in neuroprotection and neuronal development. Furthermore, potential roles of GM metabolites in the pathogenesis of brain disorders and in strategies for its treatment are also investigated. By analyzing existing in vitro, in vivo and clinical studies, this review attempts to identify new and promising therapeutic strategies for central nervous system (CNS) disorders. As the connection between the gut microbe-brain relationship and responses to NDD treatments is less studied, this review will provide new insights into the global mechanisms of GM modulation in disease progression, and identify potential future perspectives for developing new therapies to treat NDDs.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Amena Al Nishan
- Department of Medicine, Chittagong Medical College, Chittagong 4203, Bangladesh
| | - Sarmin Ummey Habiba
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
40
|
Iimura S, Takasugi S, Yasuda M, Saito Y, Morifuji M. Interactions between environmental sensitivity and gut microbiota are associated with biomarkers of stress-related psychiatric symptoms. J Affect Disord 2023; 339:136-144. [PMID: 37437719 DOI: 10.1016/j.jad.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Humans vary in their sensitivity to stressful and supportive environments and experiences. Such individual differences in environmental sensitivity are associated with mechanisms of stress-related psychiatric symptoms. In recent years, researchers have focused on bidirectional interactions in the brain-gut-microbiota axis as a neurophysiological pathway contributing to the mechanisms of stress-related psychiatric symptoms, and evidence is rapidly accumulating. METHODS Data on environmental sensitivity, gut microbiota, gut permeability (lipopolysaccharide-binding protein; LBP) and inflammation (C-reactive protein; CRP) were collected from 90 adults (50 % female; Mage = 42.1; SDage = 10.0). Environmental sensitivity was measured using a self-report questionnaire. Study participants' feces were analyzed, and observed operational taxonomic units for richness, Shannon's index for evenness, and phylogenetic diversity for biodiversity were evaluated as indicators of gut microbiota. In addition, participants' serum was analyzed for CRP and LBP. We investigated whether the interaction between environmental sensitivity and gut microbiota is associated with biomarkers of inflammation and gut permeability. RESULTS The interaction between environmental sensitivity and gut microbiota (excluding the Shannon's index) explained the levels of these biomarkers. Individuals with high environmental sensitivity displayed higher levels of CRP and LBP, when the richness and diversity of the gut microbiota was low. However, even highly susceptible individuals had lower levels of CRP and LBP, when the richness and diversity of the gut microbiota was high. CONCLUSIONS Our study indicates that high environmental sensitivity can be a risk factor for inflammation and gut permeability, when the gut microbiota diversity is low, suggesting a brain-gut-microbiota axis interaction.
Collapse
|
41
|
Schrodt C, Mahavni A, McNamara GPJ, Tallman MD, Bruger BT, Schwarz L, Bhattacharyya A. The gut microbiome and depression: a review. Nutr Neurosci 2023; 26:953-959. [PMID: 36039916 DOI: 10.1080/1028415x.2022.2111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Recent explorations into the gut microbiome of humans and animals reveal implications in chronic physical and mental health disorders. Relatively little is known regarding the relationship of gut microbiome and depression. In the current review, we reviewed existing scientific data related to the gut microbiome and healthy patients versus patients with depression. Additionally, scientific literature containing the utility of microbiome interventions to improve depression symptoms was reviewed. METHODS A PubMed and Clinical Key literature search combined the key terms 'gut,' 'microbiome,' 'bacteria,' and 'depression' to identify studies investigating these relationships. RESULTS 76 relevant articles were identified. Human and animal studies reviewed examined marked alterations in the dominant bacterial phyla in the gut of individuals with depression, the connection between leaky gut and neuroinflammation in depression, brain regulatory centers impacted by changes in the gut microbiome, and the benefits of the addition of a probiotic/prebiotic for gut and mental health. CONCLUSIONS The current review confirmed the suspected direct communication between the gut microbiome, brain functioning, and depression. Additionally, studies suggest antibiotics disrupt the gut microbiome. There are important implications for psychiatrists in providing opportunities for intervention and enhancement of current treatments for individuals with depression.
Collapse
Affiliation(s)
- Clare Schrodt
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Anika Mahavni
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Griffin P J McNamara
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Morgan D Tallman
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Bryanna T Bruger
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Lauren Schwarz
- Department of Psychiatry, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
42
|
Atwater AQ, Castanon-Cervantes O. Uncovering Novel Biomarkers of Inflammation as Potential Screening Targets of Disease Risk in Healthcare Shift Workers: A Pilot Study. INTERNATIONAL JOURNAL OF NURSING AND HEALTH CARE RESEARCH 2023; 6:1466. [PMID: 37886726 PMCID: PMC10601993 DOI: 10.29011/2688-9501.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Shift work, experienced by nearly 30% of the U.S. workforce, is hazardous to health and has become a pervasive labor practice in the healthcare sector worldwide. It increases the risk of stroke, diabetes, cancer, and cardiovascular disease. Nonetheless, specific screening targets for shift workers still need to be defined. In this study, we have begun uncovering these targets as specific low-grade systemic inflammation markers and functional endotoxin-elicited responses that may foreshadow disease risk in shift workers. One hundred four participants (normothermic and normotensive) were healthy, non-smoking, and drug- and medication-free volunteers recruited from Atlanta area hospitals and medical schools. We assessed the concentration of three proteins in plasma samples from day workers and shift workers (lipopolysaccharide-binding protein, IL-10, and TNF-α), and the relationship between these baseline biomarkers and their response to an ex-vivo endotoxin challenge. We show that shift work increases low-grade systemic inflammation and disrupts discrete endotoxin responses. As shift work exposure increases, the correlation between low-grade systemic inflammation markers and their endotoxin responses was disrupted; this effect was more robust for TNF-α than for IL-10. With increased shift work exposure, these events, alone or combined, represent potential systemic and functional signals that may be harnessed to develop screening tools to identify at-risk individuals.
Collapse
Affiliation(s)
- Aisha Q Atwater
- Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine; Atlanta, GA. USA
| | - Oscar Castanon-Cervantes
- Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine; Atlanta, GA. USA
| |
Collapse
|
43
|
Li C, Zhang J, Liu H, Yuan H, Cai J, Fogaça MV, Zhang YW. The synergistic mechanism of action of Dajianzhong decoction in conjunction with ketamine in the treatment of depression. Biomed Pharmacother 2023; 165:115137. [PMID: 37453197 DOI: 10.1016/j.biopha.2023.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Depression is a multifactorial syndrome with a variety of underlying pathological mechanisms. While ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, exhibits a rapid antidepressant action in the central never system (CNS), the potential addiction and psychotomimetic adverse effects of ketamine limit its chronic use in clinical practice. Therefore, it is necessary to discover an additional agent that shows a synergistic antidepressant activity with ketamine to sustain its therapeutic action so as to reduce its use frequency in depression treatment. The present study indicated that Dajianzhong decoction (DJZT), an empirical herbal formula used for the clinical treatment of several inflammation-related intestinal disorders, sustains behavioral and synaptic action of ketamine in depressive mouse models. Additionally, ketamine was also demonstrated to exert a synergistic action with DJZT to alleviate the chronic unpredictable mild stress (CUMS)-induced abnormalities in gut barrier proteins and colonic histology, and subsequently to normalize the diversity and composition of gut microbiota. Furthermore, DJZT was shown to possess an anti-inflammatory activity to prevent activation of NF-κB from releasing proinflammatory cytokines, specifically through inhibiting Th17 cells/IL-17A pathway. Our results uncovered the mechanism of action of DJZT in conjunction with ketamine in depression treatment by which these agents target different pathological factors across biological systems and exert a synergistic activity through a bidirectional communication in the gut-brain axis, and also provided new insights into the systematic treatment of depression.
Collapse
Affiliation(s)
- Chan Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hanhe Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huijie Yuan
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianxin Cai
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Manoela V Fogaça
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
45
|
Ağagündüz D, Çelik E, Cemali Ö, Bingöl FG, Özenir Ç, Özoğul F, Capasso R. Probiotics, Live Biotherapeutic Products (LBPs), and Gut-Brain Axis Related Psychological Conditions: Implications for Research and Dietetics. Probiotics Antimicrob Proteins 2023; 15:1014-1031. [PMID: 37222849 DOI: 10.1007/s12602-023-10092-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
It is well-known that probiotics have key roles in the crosstalk between the gut and brain in terms of nutrition and health. However, when investigating their role in nutrition and health, it can be important to discriminate probiotics used as foods, food supplements, or drugs. For clarification of this terminology, the Food and Drug Administration (FDA) has established a new "live biotherapeutic products" (LBP) category, expressing pharmaceutical expectations and to reduce confusion in the literature. Growing evidence advises that the community of microorganisms found in the gut microbiota is associated with psychological conditions. Hence, it is thought that LBPs may positively affect depression, anxiety, bipolar disorder, and schizophrenia by reducing inflammation, improving gut microbiota, and balancing gut neurometabolites. This review focuses on the specific position of probiotics as LBPs in psychological conditions. Condition-specific potential pathways and mechanisms of LBPs and the prominent strains are discussed in the light of novel studies for future research, dietetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey.
| | - Elif Çelik
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey
| | - Özge Cemali
- Department of Nutrition and Dietetics, Gazi University, Emek, Ankara, 06490, Turkey
| | - Feray Gençer Bingöl
- Department of Nutrition and Dietetics, Burdur Mehmet Akif Ersoy University, İstiklal Yerleşkesi, Burdur, 15030, Turkey
| | - Çiler Özenir
- Department of Nutrition and Dietetics, Kırıkkale University, Merkez, Kırıkkale, 71100, Turkey
| | - Fatih Özoğul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, Adana, 01330, Turkey
- Biotechnology Research and Application Center, Cukurova University, Adana, 01330, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, NA, Italy
| |
Collapse
|
46
|
Wei YH, Bi RT, Qiu YM, Zhang CL, Li JZ, Li YN, Hu B. The gastrointestinal-brain-microbiota axis: a promising therapeutic target for ischemic stroke. Front Immunol 2023; 14:1141387. [PMID: 37342335 PMCID: PMC10277866 DOI: 10.3389/fimmu.2023.1141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Ischemic stroke is a highly complex systemic disease characterized by intricate interactions between the brain and gastrointestinal tract. While our current understanding of these interactions primarily stems from experimental models, their relevance to human stroke outcomes is of considerable interest. After stroke, bidirectional communication between the brain and gastrointestinal tract initiates changes in the gastrointestinal microenvironment. These changes involve the activation of gastrointestinal immunity, disruption of the gastrointestinal barrier, and alterations in gastrointestinal microbiota. Importantly, experimental evidence suggests that these alterations facilitate the migration of gastrointestinal immune cells and cytokines across the damaged blood-brain barrier, ultimately infiltrating the ischemic brain. Although the characterization of these phenomena in humans is still limited, recognizing the significance of the brain-gastrointestinal crosstalk after stroke offers potential avenues for therapeutic intervention. By targeting the mutually reinforcing processes between the brain and gastrointestinal tract, it may be possible to improve the prognosis of ischemic stroke. Further investigation is warranted to elucidate the clinical relevance and translational potential of these findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- *Correspondence: Ya-nan Li, ; Bo Hu,
| | - Bo Hu
- *Correspondence: Ya-nan Li, ; Bo Hu,
| |
Collapse
|
47
|
Decker Ramirez EB, Arnold ME, McConnell KT, Solomon MG, Amico KN, Schank JR. The effects of lipopolysaccharide exposure on social interaction, cytokine expression, and alcohol consumption in male and female mice. Physiol Behav 2023; 265:114159. [PMID: 36931488 PMCID: PMC10121933 DOI: 10.1016/j.physbeh.2023.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Much recent research has demonstrated a role of inflammatory pathways in depressive-like behavior and excess alcohol consumption. Lipopolysaccharide (LPS) is a cell wall component of gram-negative bacteria that can be used to trigger a strong inflammatory response in rodents in a preclinical research setting to study the mechanisms behind this relationship. In our study, we exposed male and female mice to LPS and assessed depressive-like behavior using the social interaction (SI) test, alcohol consumption in the two-bottle choice procedure, and expression of inflammatory mediators using quantitative PCR. We found that LPS administration decreased SI in female mice but had no significant impact on male mice when assessed 24 h after injection. LPS resulted in increased proinflammatory cytokine expression in both male and female mice; however, some aspects of the cytokine upregulation observed was greater in female mice as compared to males. A separate cohort of male and female mice underwent drinking for 12 days before receiving a saline or LPS injection, which we found to increase alcohol intake in both males and females. We have previously observed a role of the neurokinin-1 receptor (NK1R) in escalated alcohol intake, and in the inflammatory and behavioral response to LPS. The NK1R is the endogenous target of the neuropeptide SP, and this system has wide ranging roles in depression, anxiety, drug/alcohol seeking, pain, and inflammation. Thus, we administered a NK1R antagonist prior to alcohol access. This treatment reduced escalated alcohol consumption in female mice treated with LPS but did not affect drinking in males. Taken together, these results indicate that females are more sensitive to some physiological and behavioral effects of LPS administration, but that LPS escalates alcohol consumption in both sexes. Furthermore, NK1R antagonism can reduce alcohol consumption that is escalated by LPS treatment, in line with our previous findings.
Collapse
Affiliation(s)
- E B Decker Ramirez
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K T McConnell
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - M G Solomon
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - K N Amico
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA
| | - J R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, 501 DW Brooks Drive, Athens, GA 30602 USA.
| |
Collapse
|
48
|
Barekatain R, Chrystal PV, Nowland T, Moss AF, Howarth GS, Hao Van TT, Moore RJ. Negative consequences of reduced protein diets supplemented with synthetic amino acids for performance, intestinal barrier function, and caecal microbiota composition of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:216-228. [PMID: 37388459 PMCID: PMC10300400 DOI: 10.1016/j.aninu.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023]
Abstract
The consequences of feeding broiler chickens with reduced protein (RP) diets for gut health and barrier function are not well understood. This study was performed to elucidate the effect of reducing dietary protein and source of protein on gut health and performance parameters. Four experimental diets included 2 control diets with standard protein levels either containing meat and bone meal (CMBM) or an all-vegetable diet (CVEG), a medium RP diet (17.5% in growers and 16.5% in finisher), and a severe RP diet (15.6% in grower and 14.6% in finisher). Off-sex Ross 308 birds were assigned to each of the 4 diets and performance measurements were taken from d 7 to 42 post-hatch. Each diet was replicated 8 times (10 birds per replicate). A challenge study was conducted on additional 96 broilers (24 birds per diet) from d 13 to 21. Half of the birds in each dietary treatment were challenged by dexamethasone (DEX) to induce a leaky gut. Feeding birds with RP diets decreased weight gain (P < 0.0001) and increased feed conversion ratio (P < 0.0001) from d 7 to 42 compared with control diets. There was no difference between CVEG and CMBM control diets for any parameter. The diet containing 15.6% protein increased (P < 0.05) intestinal permeability independent of the DEX challenge. Gene expression of claudin-3 was downregulated (P < 0.05) in birds fed 15.6% protein. There was a significant interaction between diet and DEX (P < 0.05) and both RP diets (17.5% and 15.6%) downregulated claudin-2 expression in DEX-challenged birds. The overall composition of the caecal microbiota was affected in birds fed 15.6% protein having a significantly lower richness of microbiota in both sham and DEX-injected birds. Proteobacteria was the main phylum driving the differences in birds fed 15.6% protein. At the family level, Bifidobacteriaceae, Unclassified Bifidobacteriales, Enterococcaceae, Enterobacteriaceae, and Lachnospiraceae were the main taxa in birds fed 15.6% protein. Despite supplementation of synthetic amino acids, severe reduction of dietary protein compromised performance and intestinal health parameters in broilers, evidenced by differential mRNA expression of tight junction proteins, higher permeability, and changes in caecal microbiota composition.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Peter V. Chrystal
- Complete Feed Solutions, Hornsby, NSW, Australia; Howick, New Zealand
| | - Tanya Nowland
- South Australian Research and Development Institute, Roseworthy Campus, Roseworthy, SA, Australia
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Amy F. Moss
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| |
Collapse
|
49
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
50
|
Zhang X, Xu W, Zhong W, Zhang W, Yang C, Duan L, Niu H, Dong Y, Liu T, Xia S, Wang B. Exploring the links between gut microbiome changes and irritable bowel syndrome in Han populations in the Tibetan Plateau. J Zhejiang Univ Sci B 2023; 24:823-838. [PMID: 37701958 PMCID: PMC10202748 DOI: 10.1631/jzus.b2200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 05/23/2023]
Abstract
The gut microbiome shows changes under a plateau environment, while the disbalance of intestinal microbiota plays an important role in the pathogenesis of irritable bowel syndrome (IBS); however, the relationship between the two remains unexplored. In this work, we followed up a healthy cohort for up to a year before and after living in a plateau environment and performed 16S ribosomal RNA (rRNA) sequencing analysis of their fecal samples. Through evaluating the participants' clinical symptoms, combined with an IBS questionnaire, we screened the IBS sub-population in our cohort. The sequencing results showed that a high-altitude environment could lead to changes in the diversity and composition of gut flora. In addition, we found that the longer the time volunteers spent in the plateau environment, the more similar their gut microbiota composition and abundance became compared to those before entering the plateau, and IBS symptoms were significantly alleviated. Therefore, we speculated that the plateau may be a special environment that induces IBS. The taxonomic units g_Alistipes, g_Oscillospira, and s_Ruminococcus_torques, which had been proved to play important roles in IBS pathogenesis, were also abundant in the IBS cohort at high altitudes. Overall, the disbalance of gut microbiota induced by the plateau environment contributed to the high frequency of IBS and the psychosocial abnormalities associated with IBS. Our results prompt further research to elucidate the relevant mechanism.
Collapse
Affiliation(s)
- Xingguang Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Wei Xu
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Wencheng Zhang
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Cheng Yang
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Lisa Duan
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Haiyan Niu
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Yanmei Dong
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Taotao Liu
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China
| | - Shihai Xia
- Department of Gastroenterology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fiberosis and Molecular Diagnosis & Treatment, Tianjin 300162, China. ,
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|