1
|
Jingjie W, Jun S. Gut vascular barrier in the pathogenesis and resolution of Crohn's disease: A novel link from origination to therapy. Clin Immunol 2023; 253:109683. [PMID: 37406981 DOI: 10.1016/j.clim.2023.109683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The gut vascular barrier (GVB) is the deepest layer of the gut barrier. It mainly comprised gut vascular endothelial cells, enteric glial cells, and pericytes. The GVB facilitates nutrient absorption and blocks bacterial translocation through its size-restricted permeability. Accumulating evidence suggests that dysfunction of this barrier correlates with several clinical pathologies including Crohn's disease (CD). Significant progress has been made to elucidate the mechanism of GVB dysfunction and to confirm the participation of disrupted GVB in the course of CD. However, further analyses are required to pinpoint the specific roles of GVB in CD pathogenesis. Many preclinical models and clinical trials have demonstrated that various agents are effective in protecting the GVB integrity and thus providing a potential CD treatment strategy. Through this review, we established a systemic understanding of the role of GVB in CD pathogenesis and provided novel insights for GVB-targeting strategies in CD treatment.
Collapse
Affiliation(s)
- Wang Jingjie
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 160# Pu Jian Ave, Shanghai 200127, China
| | - Shen Jun
- Division of Gastroenterology and Hepatology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center; Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; 160# Pu Jian Ave, Shanghai 200127, China.
| |
Collapse
|
2
|
Postoak JL, Song W, Yang G, Guo X, Xiao S, Saffold CE, Zhang J, Joyce S, Manley NR, Wu L, Van Kaer L. Thymic epithelial cells require lipid kinase Vps34 for CD4 but not CD8 T cell selection. J Exp Med 2022; 219:e20212554. [PMID: 35997680 PMCID: PMC9402993 DOI: 10.1084/jem.20212554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/22/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
The generation of a functional, self-tolerant T cell receptor (TCR) repertoire depends on interactions between developing thymocytes and antigen-presenting thymic epithelial cells (TECs). Cortical TECs (cTECs) rely on unique antigen-processing machinery to generate self-peptides specialized for T cell positive selection. In our current study, we focus on the lipid kinase Vps34, which has been implicated in autophagy and endocytic vesicle trafficking. We show that loss of Vps34 in TECs causes profound defects in the positive selection of the CD4 T cell lineage but not the CD8 T cell lineage. Utilizing TCR sequencing, we show that T cell selection in conditional mutants causes altered repertoire properties including reduced clonal sharing. cTECs from mutant mice display an increased abundance of invariant chain intermediates bound to surface MHC class II molecules, indicating altered antigen processing. Collectively, these studies identify lipid kinase Vps34 as an important contributor to the repertoire of selecting ligands processed and presented by TECs to developing CD4 T cells.
Collapse
Affiliation(s)
- J. Luke Postoak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Wenqiang Song
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Guan Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Xingyi Guo
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN
| | - Shiyun Xiao
- Department of Genetics, University of Georgia, Athens, GA
| | - Cherie E. Saffold
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | | | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
3
|
Eggert J, Au-Yeung BB. Functional heterogeneity and adaptation of naive T cells in response to tonic TCR signals. Curr Opin Immunol 2021; 73:43-49. [PMID: 34653787 DOI: 10.1016/j.coi.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
Mature CD4+ and CD8+ T cells constitutively experience weak T cell receptor (TCR) stimulation in response to self-antigens, termed tonic (or basal) signaling. How tonic TCR signal strength impacts T cell responses to foreign antigens is an active area of investigation. Such studies rely on surrogate markers of tonic signal strength, including CD5, Ly6C, and transgenic reporters of Nr4a genes. Recent research indicates that strong tonic TCR signal strength influences basal T cell metabolism, effector differentiation, and TCR signal transduction. T cells that experience the strongest tonic TCR signaling exhibit features of T cell activation and negative regulation. These data suggest a model whereby adaptation to tonic signaling has lasting effects that alter T cell activation and differentiation.
Collapse
Affiliation(s)
- Joel Eggert
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, United States
| | - Byron B Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, United States.
| |
Collapse
|
4
|
Pons S, Arrii E, Arnaud M, Loiselle M, Ferry J, Nouacer M, Lion J, Cohen S, Mooney N, Zafrani L. Immunomodulation of endothelial cells induced by macrolide therapy in a model of septic stimulation. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1656-1669. [PMID: 34636179 PMCID: PMC8589380 DOI: 10.1002/iid3.518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023]
Abstract
Objectives Sepsis is defined as the host's inflammatory response to a life‐threatening infection. The endothelium is implicated in immunoregulation during sepsis. Macrolides have been proposed to display immunomodulatory properties. The goal of this study was to analyze whether macrolides can exert immunomodulation of endothelial cells (ECs) in an experimental model of sepsis. Methods Human ECs were stimulated by proinflammatory cytokines and lipopolysaccharide before exposure to macrolides. ECs phenotypes were analyzed by flow cytometry. Cocultures of ECs and peripheral blood mononuclear cells (PBMCs) were performed to study the ECs ability to alter T‐cell viability and differentiation in the presence of macrolides. Soluble factor production was assessed. Results ECs act as non‐professional antigen presenting cells and expressed human leukocyte antigen (HLA) antigens, the adhesion molecules CD54, CD106, and the coinhibitory molecule CD274 after septic stimulation. Incubation with macrolides induced a significant decrease of HLA class I and HLA class II HLA‐DR on septic‐stimulated ECs, but did not alter either CD54, CD106, nor CD274 expression. Interleukin‐6 (IL‐6) and IL‐8 production by stimulated ECs were unaltered by incubation with macrolides, whereas Clarithromycin exposure significantly decreased IL‐6 gene expression. In cocultures of septic ECs with PBMCs, neither the proportion of CD4 + , CD8 + T nor their viability was altered by macrolides. T‐helper lymphocyte subsets Th1, Th17, and Treg polarization by stimulated ECs were unaltered by macrolides. Conclusion This study reports phenotypic and gene expression changes in septic‐stimulated ECs exposed to macrolides, without resulting in altered immunogenicity of ECs in co‐cultures with PBMCs. In vivo studies may help to further understand the impact of macrolide therapy on ECs immune homeostasis during sepsis.
Collapse
Affiliation(s)
- Stéphanie Pons
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France.,Department of Anesthesiology and Critical Care, Pitié-Salpêtrière Hospital, GRC 29, AP-HP, DMU DREAM, Sorbonne University, Paris, France
| | - Eden Arrii
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France
| | - Marine Arnaud
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France
| | - Maud Loiselle
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France
| | - Juliette Ferry
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France
| | - Manel Nouacer
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France
| | - Julien Lion
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France
| | - Shannon Cohen
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France
| | - Nuala Mooney
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France
| | - Lara Zafrani
- Human Immunology, Pathophysiology, Immunotherapy (HIPI), INSERM U976, Université de Paris, Paris, France.,Medical Intensive Care Unit, AP-HP, Saint-Louis Teaching Hospital, Paris, France
| |
Collapse
|
5
|
Sibi JM, Mohan V, Munisankar S, Babu S, Aravindhan V. Augmented Innate and Adaptive Immune Responses Under Conditions of Diabetes-Filariasis Comorbidity. Front Immunol 2021; 12:716515. [PMID: 34566972 PMCID: PMC8462934 DOI: 10.3389/fimmu.2021.716515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Metainflammation, as seen in chronic diabetes subjects, impairs immunity and increases the susceptibility to infections. In the present study, the effect of diabetes on immune response against filariasis was studied. Both toll-like receptor (TLR)-mediated and crude antigen-induced immune responses were quantified, in whole blood cultures from filariasis-infected subjects (LF+), with and without diabetes. Blood cultures were stimulated with TLR ligands (TLR2 and TLR4) or filarial antigen or were left unstimulated (control) for 18 h. Cytokine, chemokine, and defensin secretion was quantified by ELISA. Expression of HLA-DR, B7-1, B7-2, activation marker (CD69), and Th (Th1, Th2, Th17, and Th9) phenotypes was quantified by flow cytometry. Expression of immunomodulatory effectors (Cox-2, HO-1, IDO-1, and p47Phox) and Th-polarizing transcription factors (T-bet, GATA3, and ROR-γt) was quantified by quantitative PCR. Secretion of IL-27, IL-1Ra, IL-12, IL-33, IL-9, and SDF-1 was increased under diabetes conditions with increased Th9 polarization and increased expression of Cox-2 and IDO. Overall, diabetes was found to augment both TLR-mediated and antigen-induced inflammation, which can promote chronic pathology in LF+ subjects.
Collapse
Affiliation(s)
- Joy Manohar Sibi
- Department of Genetics, Dr A. L. Mudaliar Post Graduate Institute of Basic Medical Sciences (ALM PG IBMS), University of Madras, Chennai, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialties Centre, Chennai, India
| | - Saravanan Munisankar
- National Institute of Health-International Centre for Excellence in Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institute of Health-International Centre for Excellence in Research, National Institute for Research in Tuberculosis, Chennai, India
| | - Vivekanandhan Aravindhan
- Department of Genetics, Dr A. L. Mudaliar Post Graduate Institute of Basic Medical Sciences (ALM PG IBMS), University of Madras, Chennai, India
| |
Collapse
|
6
|
Reporters of TCR signaling identify arthritogenic T cells in murine and human autoimmune arthritis. Proc Natl Acad Sci U S A 2019; 116:18517-18527. [PMID: 31455730 PMCID: PMC6744919 DOI: 10.1073/pnas.1904271116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
How arthritis-causing T cells trigger rheumatoid arthritis (RA) is not understood since it is difficult to differentiate T cells activated by inflammation in arthritic joints from those activated through their T cell antigen receptor (TCR) by self-antigens. We developed a model to identify and study antigen-specific T cell responses in arthritis. Nur77—a specific marker of TCR signaling—was used to identify antigen-activated T cells in the SKG arthritis model and in patients with RA. Nur77 could distinguish highly arthritogenic and autoreactive T cells in SKG mice. The enhanced autoreactivity was associated with increased interleukin-6 (IL-6) receptor signaling, likely contributing to their arthritogenicity. These data highlight a functional correlate between Nur77 expression, arthritogenic T cell populations, and heightened IL-6 sensitivity in SKG mice with translatable implications for human RA. How pathogenic cluster of differentiation 4 (CD4) T cells in rheumatoid arthritis (RA) develop remains poorly understood. We used Nur77—a marker of T cell antigen receptor (TCR) signaling—to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into interleukin-17 (IL-17)–producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic autoantigen exposure in vivo. The enhanced autoreactivity was associated with up-regulation of IL-6 cytokine signaling machinery, which might be attributable, in part, to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)—a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyperresponsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly down-regulated in RA synovium. This suggests that despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6, which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA.
Collapse
|
7
|
Adaptation by naïve CD4 + T cells to self-antigen-dependent TCR signaling induces functional heterogeneity and tolerance. Proc Natl Acad Sci U S A 2019; 116:15160-15169. [PMID: 31285342 DOI: 10.1073/pnas.1904096116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Naïve CD4+ T cells experience weak T cell receptor (TCR) signals induced by self-peptides presented by MHC II. To investigate how these "basal" TCR signals influence responses to agonist TCR ligand stimulation, we analyzed naïve CD4+ cells expressing varying amounts of CD5, Ly6C, and Nur77-GFP, markers that reflect the strength of basal TCR signaling. Phenotypic analyses indicate that the broadest range of basal TCR signal strength can be visualized by a combination of Nur77-GFP and Ly6C. A range of basal TCR signaling is detectable even in populations that express identical TCRs. Whereas moderate basal TCR signal strength correlates with higher IL-2 secretion at early time points following TCR stimulation, weak basal TCR signaling correlated with higher IL-2 secretion at later time points. We identify a population of Nur77-GFPHI Ly6C- cells that could not be reliably marked by either of CD5, Ly6C, or Nur77-GFP alone. These cells experience the strongest basal TCR signaling, consistently produce less IL-2, and express PD-1 and markers associated with anergy, such as Grail and Cbl-b. We propose that adaptation to the strength of basal TCR signaling drives the phenotypic and functional heterogeneity of naïve CD4+ cells.
Collapse
|
8
|
Freitas CMT, Johnson DK, Weber KS. T Cell Calcium Signaling Regulation by the Co-Receptor CD5. Int J Mol Sci 2018; 19:E1295. [PMID: 29701673 PMCID: PMC5983667 DOI: 10.3390/ijms19051295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Calcium influx is critical for T cell effector function and fate. T cells are activated when T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions between the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and enhance Ca2+ signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ signaling and inhibit T cell activation. Immune checkpoint therapies block inhibitory co-receptors, such as cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), to increase T cell Ca2+ signaling and promote T cell survival. Similar to CTLA-4 and PD-1, the co-receptor CD5 has been known to act as a negative regulator of T cell activation and to alter Ca2+ signaling and T cell function. Though much is known about the role of CD5 in B cells, recent research has expanded our understanding of CD5 function in T cells. Here we review these recent findings and discuss how our improved understanding of CD5 Ca2+ signaling regulation could be useful for basic and clinical research.
Collapse
Affiliation(s)
- Claudia M Tellez Freitas
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| |
Collapse
|
9
|
Freitas CMT, Hamblin GJ, Raymond CM, Weber KS. Naïve helper T cells with high CD5 expression have increased calcium signaling. PLoS One 2017; 12:e0178799. [PMID: 28562659 PMCID: PMC5451127 DOI: 10.1371/journal.pone.0178799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
The adaptive immune response is orchestrated by T helper cells and their function is dependent upon interactions between the T cell receptor (TCR), peptide MHC (pMHC) and co-receptors. TCR-pMHC interactions initiate calcium signaling cascades which determine T cell activation, survival, proliferation and differentiation. CD5 is a co-receptor that plays an important role in regulating T cell signaling and fate during thymocyte education. CD5 surface expression on mature single positive thymocytes correlates with the TCR signal strength for positive selecting self-ligands. CD5 also plays a role in T cell function after thymic development is complete. Peripheral T cells with higher CD5 expression respond better to foreign antigen than those with lower CD5 expression and CD5-high T cells are enriched in memory populations. In our study, we examined the role of CD5 expression and calcium signaling in the primary response of T cells using two Listeria monocytogenes specific T helper cells (LLO118 and LLO56). These T cells recognize the same immunodominant epitope (LLO190-205) of L. monocytogenes and have divergent primary and secondary responses and different levels of CD5 expression. We found that each T cell has unique calcium mobilization in response to in vitro stimulation with LLO190-205 and that CD5 expression levels in these cells changed over time following stimulation. LLO56 naïve T helper cells, which expresses higher levels of CD5, have higher calcium mobilization than naïve LLO118 T cells. Three days after in vitro stimulation, LLO118 T cells had more robust calcium mobilization than LLO56 and there were no differences in calcium mobilization 8 days after in vitro stimulation. To further evaluate the role of CD5, we measured calcium signaling in CD5 knockout LLO118 and LLO56 T cells at these three time points and found that CD5 plays a significant role in promoting the calcium signaling of naïve CD5-high LLO56 T cells.
Collapse
Affiliation(s)
- Claudia M. Tellez Freitas
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Garrett J. Hamblin
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Carlee M. Raymond
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - K. Scott Weber
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
- * E-mail:
| |
Collapse
|