1
|
Awoke TD, Kassa SM, Morupisi KS, Tsidu GM. Sex-structured disease transmission model and control mechanisms for visceral leishmaniasis (VL). PLoS One 2024; 19:e0301217. [PMID: 38564571 PMCID: PMC10986940 DOI: 10.1371/journal.pone.0301217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Leishmaniasis are a group of diseases caused by more than 20 species of the protozoan that are transmitted through the bite of female sand fly. The disease is endemic to 98 countries of the world. It affects most commonly the poorest of the poor and mainly males. Several research has been conducted to propose disease control strategies. Effective medical care, vector control, environmental hygiene, and personal protection are the mainstays of the current preventative and control methods. The mathematical models for the transmission dynamics of the disease studied so far did not consider the sex-biased burden of the disease into consideration. METHODOLOGY Unlike the previous VL works, this study introduces a new deterministic sex-structured model for understanding the transmission dynamics of visceral leishmaniasis. Basic properties of the model including basic reproduction number ([Formula: see text]), and conditions for the existence of backward bifurcation of the model are explored. Baseline parameter values were estimated after the model was fitted to Ethiopia's VL data. Sensitivity analysis of the model was performed to identify the parameters that significantly impact the disease threshold. Numerical simulations were performed using baseline parameter values, and scenario analysis is performed by changing some of these parameters as appropriate. CONCLUSION The analysis of the model shows that there is a possibility for a backward bifurcation for [Formula: see text], which means bringing [Formula: see text] to less than unity may not be enough to eradicate the disease. Our numerical result shows that the implementation of disease-preventive strategies, as well as effectively treating the affected ones can significantly reduce the disease prevalence if applied for more proportion of the male population. Furthermore, the implementation of vector management strategies also can considerably reduce the total prevalence of the disease. However, it is demonstrated that putting more effort in treating affected reservoir animals may not have any significant effect on the overall prevalence of the disease as compared to other possible mechanisms. The numerical simulation infers that a maximum of 60% of extra preventative measures targeted to only male population considerably reduces the total prevalence of VL by 80%. It is also possible to decrease the total prevalence of VL by 69.51% when up to 50% additional infected males receive treatment with full efficacy. Moreover, applying a maximum of 15% additional effort to reduce the number of vectors, decreases the total VL prevalence by 57.71%. Therefore, in order to reduce the disease burden of visceral leishmaniasis, public health officials and concerned stakeholders need to give more emphasis to the proportion of male humans in their intervention strategies.
Collapse
Affiliation(s)
- Temesgen Debas Awoke
- Department of Mathematical and Statistical Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Semu Mitiku Kassa
- Department of Mathematical and Statistical Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Kgomotso Suzan Morupisi
- Department of Mathematical and Statistical Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Gizaw Mengistu Tsidu
- Department of Earth and Environmental Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
2
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Pacheco-Fernandez T, Markle H, Verma C, Huston R, Gannavaram S, Nakhasi HL, Satoskar AR. Field-Deployable Treatments For Leishmaniasis: Intrinsic Challenges, Recent Developments and Next Steps. Res Rep Trop Med 2023; 14:61-85. [PMID: 37492219 PMCID: PMC10364832 DOI: 10.2147/rrtm.s392606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 07/27/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self-healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are discussed in this review as potential field-deployable treatments against leishmaniasis.
Collapse
Affiliation(s)
- Thalia Pacheco-Fernandez
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hannah Markle
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Ryan Huston
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| |
Collapse
|
4
|
Saini S, Singh B, Dube A, Sahasrabuddhe AA, Rai AK. Organ-specific immune profiling of Leishmania donovani-infected hamsters. Parasite Immunol 2023; 45:e12964. [PMID: 36571298 DOI: 10.1111/pim.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Visceral leishmaniasis (VL) is a neglected disease with a broad spectrum of clinical manifestations and involvement of visceral organs. Organ-specific immune response against the Leishmania donovani (Ld) complex is not yet understood due to the unavailability of an appropriate experimental model. In reference to our recent work on comparing the hamster model with VL patients, it is now possible to understand immune profiling in different visceral organs. This may offer an answer to varying parasite loads in different visceral organs in the same host. Herein, we analysed a panel of immune markers (Th-2/Th-1) in visceral organs of Ld-infected hamsters and quantified parasitic load in the same tissues using qPCR assay. In spleen, liver, bone marrow and lymph node (mesenteric) from Ld-infected hamsters, the parasite burden was quantified along with mRNA expression of a panel of Th-2 and Th-1 type immune markers, namely IL-10, IL-4, Arginase-I, GATA-3, SOCS-3, IL-12, IFN-γ, iNOS, T-bet and SOCS-5. A clear dichotomy was absent between Th-2 and Th-1 type immune markers and the major players of this immune response were IFN-γ, IL-10, T-bet, GATA-3, SOCS-5 and SOCS-3.
Collapse
Affiliation(s)
- Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Praygraj, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Praygraj, India
| | - Anuradha Dube
- Division of Parasitology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Amogh Anant Sahasrabuddhe
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Praygraj, India
| |
Collapse
|
5
|
Takele Y, Mulaw T, Adem E, Womersley R, Kaforou M, Franssen SU, Levin M, Taylor GP, Müller I, Cotton JA, Kropf P. Recurrent visceral leishmaniasis relapses in HIV co-infected patients are characterized by less efficient immune responses and higher parasite load. iScience 2023; 26:105867. [PMID: 36685039 PMCID: PMC9845767 DOI: 10.1016/j.isci.2022.105867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis (VL) and HIV co-infection (VL/HIV) has emerged as a significant public health problem in Ethiopia, with up to 30% of patients with VL co-infected with HIV. These patients suffer from recurrent VL relapses and increased mortality. Those with a previous history of VL relapses (recurrent VL/HIV) experience increased VL relapses as compared to patients with HIV presenting with their first episode of VL (primary VL/HIV). Our aim was to identify drivers that account for the higher rate of VL relapses in patients with recurrent VL/HIV (n = 28) as compared to primary VL/HIV (n = 21). Our results show that the relapse-free survival in patients with recurrent VL/HIV was shorter, that they had higher parasite load, lower weight gain, and lower recovery of all blood cell lineages. Their poorer prognosis was characterized by lower production of IFN-gamma, lower CD4+ T cell counts, and higher expression of programmed cell death protein 1 (PD1) on T cells.
Collapse
Affiliation(s)
- Yegnasew Takele
- Department of Infectious Disease, Imperial College London, London, UK
- Leishmaniasis Research and Treatment Centre, University of Gondar, Gondar, Ethiopia
| | - Tadele Mulaw
- Leishmaniasis Research and Treatment Centre, University of Gondar, Gondar, Ethiopia
| | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, University of Gondar, Gondar, Ethiopia
| | - Rebecca Womersley
- Department of Infectious Disease, Imperial College London, London, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Michael Levin
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Ingrid Müller
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Pascale Kropf
- Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
6
|
Alizadeh Z, Omidnia P, Altalbawy FMA, Gabr GA, Obaid RF, Rostami N, Aslani S, Heidari A, Mohammadi H. Unraveling the role of natural killer cells in leishmaniasis. Int Immunopharmacol 2023; 114:109596. [PMID: 36700775 DOI: 10.1016/j.intimp.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
NK cells are known as frontline responders that are efficient in combating several maladies as well as leishmaniasis caused by Leishmania spp. As such they are being investigated to be used for adoptive transfer therapy and vaccine. In spite of the lack of antigen-specific receptors at their surface, NK cells can selectively recognize pathogens, accomplished by the activation of the receptors on the NK cell surface and also as the result of their effector functions. Activation of NK cells can occur through interaction between TLR-2 expressed on NK cells and. LPG of Leishmania parasites. In addition, NK cell activation can occur by cytokines (e.g., IFN-γ and IL-12) that also lead to producing cytokines and chemokines and lysis of target cells. This review summarizes several evidences that support NK cells activation for controlling leishmaniasis and the potentially lucrative roles of NK cells during leishmaniasis. Furthermore, we discuss strategies of Leishmania parasites in inhibiting NK cell functions. Leishmania LPG can utilizes TLR2 to evade host-immune responses. Also, Leishmania GP63 can directly binds to NK cells and modulates NK cell phenotype. Finally, this review analyzes the potentialities to harness NK cells effectiveness in therapy regimens and vaccinations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Duba 71911, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Narges Rostami
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliehsan Heidari
- Department of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
7
|
Mukherjee N, Banerjee S, Amin SA, Jha T, Datta S, Das Saha K. Host P2X 7R-p 38MAPK axis mediated intra-macrophage leishmanicidal activity of Spergulin-A. Exp Parasitol 2022; 241:108365. [PMID: 36007587 DOI: 10.1016/j.exppara.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
Current drugs are inefficient for the treatment of visceral leishmaniasis an immunosuppressive ailment caused by Leishmania donovani. Regrettably, there is no plant-origin antileishmanial drug present. P2X7R is constitutively present on macrophage surfaces and can be a putative therapeutic target in intra-macrophage pathogens with function attributes towards inflammation, host cell apoptosis, altered redox, and phagolysosomal maturation by activating p38MAPK. Here we demonstrated that the initial interaction of Spergulin-A (Sp A), a triterpenoid saponin with RAW 264.7 macrophages was mediated through P2X7R involving the signaling cascade intermediates Ca++, p38MAPK, and NF-κβ. Phospho (P)-p38MAPK involvement is shown to have specific and firm importance in leishmanial killing with increased NF-κβp65. Phago-lysosomal maturation by Sp A also campaigns for another contribution of P2X7R. In vivo evaluation of the anti-leishmanial activity of Sp A was monitored through expression analyses of P2X7R, P-p38MAPK, and NF-κβp65 in murine spleen and bone-marrow macrophages and supported Sp A being a natural compound of leishmanicidal functions which acted through the P2X7R-p38MAPK axis.
Collapse
Affiliation(s)
- Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India; Techno India University, EM-4, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
8
|
Takele Y, Adem E, Mulaw T, Müller I, Cotton JA, Kropf P. Following successful anti-leishmanial treatment, neutrophil counts, CD10 expression and phagocytic capacity remain reduced in visceral leishmaniasis patients co-infected with HIV. PLoS Negl Trop Dis 2022; 16:e0010681. [PMID: 35969625 PMCID: PMC9410551 DOI: 10.1371/journal.pntd.0010681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/25/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis (VL) patients co-infected with HIV (VL/HIV patients) experience frequent treatment failures, VL relapses, opportunistic infections, and higher mortality. Their immune system remains profoundly suppressed after clinical cure and they maintain higher parasite load. This is in contrast with patients with VL alone (VL patients). Since neutrophils play a critical role in the control of Leishmania replication and the regulation of immune responses, we tested the hypothesis that neutrophil activation status and effector functions are fully restored in VL, but not in VL/HIV patients. Our results show the neutrophil counts and all activation markers and effector functions tested in our study were reduced at the time of diagnosis in VL and VL/HIV patients as compared to controls. CD62L, CD63, arginase 1 expression levels and reactive oxygen species production were restored at the end of treatment in both groups. However, neutrophil counts, CD10 expression and phagocytosis remained significantly lower throughout follow-up in VL/HIV patients; suggesting that dysregulated neutrophils contribute to the impaired host defence against pathogens in VL/HIV patients.
Collapse
Affiliation(s)
- Yegnasew Takele
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- Leishmaniasis Research and Treatment Centre, University of Gondar, Ethiopia
| | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, University of Gondar, Ethiopia
| | - Tadele Mulaw
- Leishmaniasis Research and Treatment Centre, University of Gondar, Ethiopia
| | - Ingrid Müller
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Pascale Kropf
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Chowdhury SR, Bhoumik A, Gupta VK, Majumder HK. Type II DNA Topoisomerases in trypanosomatid and apicomplexan parasites. Acta Trop 2022; 234:106613. [PMID: 35905776 DOI: 10.1016/j.actatropica.2022.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
Abstract
Diseases caused by trypanosomatid parasites have no commercially available vaccines for human application. Treatment modalities completely rely on chemotherapeutics strategies that often exhibit clinical drawbacks, like host toxicity, side effects and treatment failure for drug resistance. These, in many instances, are costly, making them unaffordable for certain groups of beneficiaries. To find reasonable solutions, researchers are attempting to identify and validate new drug targets that would offer parasite specificity. DNA topoisomerases in parasites present a consolidated class of drug targets due to their multiple structural and functional differences with host homologs. Type II DNA topoisomerases in these parasites, in particular, have been attracting interest of scientific community attributable to their pivotal role in the replication of the atypical DNA. In this article, we present a detailed review of structural and functional features of type II DNA topoisomerases of clinically-relevant trypanosomatid and apicomplexan parasites. Also, we provide up-to-date information on different molecules that target these enzymes. Altogether, the review will largely help in understanding the rationale for exploiting type II DNA topoisomerases in these groups of parasites as drug targets.
Collapse
Affiliation(s)
- Somenath Roy Chowdhury
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Correnstrasse 28, 48149, Münster.
| | - Arpita Bhoumik
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700 032
| | - Vivek Kumar Gupta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032
| | - Hemanta K Majumder
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700 032
| |
Collapse
|
10
|
Bastos DSS, Silva AC, Novaes RD, Souza ACF, Santos EC, Gonçalves RV, Marques-Da-Silva EA. Could combination chemotherapy be more effective than monotherapy in the treatment of visceral leishmaniasis? A systematic review of preclinical evidence. Parasitology 2022; 149:1-14. [PMID: 35346411 DOI: 10.1017/s0031182022000142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
From a systematic review framework, we assessed the preclinical evidence on the effectiveness of drug combinations for visceral leishmaniasis (VL) treatment. Research protocol was based on the PRISMA guideline. Research records were identified from Medline, Scopus and Web of Science. Animal models, infection and treatment protocols, parasitological and immunological outcomes were analysed. The SYRCLE's (SYstematic Review Center for Laboratory Animal Experimentation) toll was used to evaluate the risk of bias in all studies reviewed. Fourteen papers using mice, hamster and dogs were identified. Leishmania donovani was frequently used to induce VL, which was treated with 23 drugs in 40 different combinations. Most combinations allowed to reduce the effective dose, cost and time of treatment, in addition to improving the parasitological control of Leishmania spp. The benefits achieved from drug combinations were associated with an increased drug's half-life, direct parasitic toxicity and improved immune defences in infected hosts. Selection, performance and detection bias were the main limitations identified. Current evidence indicates that combination chemotherapy, especially those based on classical drugs (miltefosine, amphotericin B antimony-based compounds) and new drugs (CAL-101, PAM3Cys, tufisin and DB766), develops additive or synergistic interactions, which trigger trypanocidal and immunomodulatory effects associated with reduced parasite load, organ damage and better cure rates in VL.
Collapse
Affiliation(s)
- Daniel S S Bastos
- Department of General Biology, Federal University of Viçosa, Viçosa, 36570-000, Minas Gerais, Brazil
| | - Adriana C Silva
- Department of General Biology, Federal University of Viçosa, Viçosa, 36570-000, Minas Gerais, Brazil
| | - Rômulo D Novaes
- Department of Structural Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Ana Claudia F Souza
- Department of Animal Biology, Federal Rural University of Rio de Janeiro, Seropédica, 23897-000, Rio de Janeiro, Brazil
| | - Eliziária C Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina39100-00, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa, 36570-000, Minas Gerais, Brazil
| | | |
Collapse
|
11
|
Effects of terpenes in the treatment of visceral leishmaniasis: a systematic review of preclinical evidence. Pharmacol Res 2022; 177:106117. [DOI: 10.1016/j.phrs.2022.106117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/15/2022]
|
12
|
Takele Y, Mulaw T, Adem E, Shaw CJ, Franssen SU, Womersley R, Kaforou M, Taylor GP, Levin M, Müller I, Cotton JA, Kropf P. Immunological factors, but not clinical features, predict visceral leishmaniasis relapse in patients co-infected with HIV. Cell Rep Med 2022; 3:100487. [PMID: 35106507 PMCID: PMC8784791 DOI: 10.1016/j.xcrm.2021.100487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Visceral leishmaniasis (VL) has emerged as a clinically important opportunistic infection in HIV patients, as VL/HIV co-infected patients suffer from frequent VL relapse. Here, we follow cohorts of VL patients with or without HIV in Ethiopia. By the end of the study, 78.1% of VL/HIV-but none of the VL patients-experience VL relapse. Despite a clinically defined cure, VL/HIV patients maintain higher parasite loads, lower BMI, hepatosplenomegaly, and pancytopenia. We identify three immunological markers associated with VL relapse in VL/HIV patients: (1) failure to restore antigen-specific production of IFN-γ, (2) persistently lower CD4+ T cell counts, and (3) higher expression of PD1 on CD4+ and CD8+ T cells. We show that these three markers, which can be measured in primary hospital settings in Ethiopia, combine well in predicting VL relapse. The use of our prediction model has the potential to improve disease management and patient care.
Collapse
Affiliation(s)
- Yegnasew Takele
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Tadele Mulaw
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Caroline Jayne Shaw
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, UK
| | | | - Rebecca Womersley
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Michael Levin
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Ingrid Müller
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Pascale Kropf
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|
13
|
Beasley EA, Pessôa-Pereira D, Scorza BM, Petersen CA. Epidemiologic, Clinical and Immunological Consequences of Co-Infections during Canine Leishmaniosis. Animals (Basel) 2021; 11:3206. [PMID: 34827938 PMCID: PMC8614518 DOI: 10.3390/ani11113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Canine leishmaniosis (CanL) is a vector-borne, parasitic disease. CanL is endemic in the Mediterranean basin and South America but also found in Northern Africa, Asia, and the U.S. Regions with both competent sand fly vectors and L. infantum parasites are also endemic for additional infectious diseases that could cause co-infections in dogs. Growing evidence indicates that co-infections can impact immunologic responses and thus the clinical course of both CanL and the comorbid disease(s). The aim for this review is to summarize epidemiologic, clinical, and immunologic factors contributing to eight primary co-infections reported with CanL: Ehrlichia spp., Anaplasma spp., Borrelia spp., Babesia spp., Trypanosoma cruzi, Toxoplasma gondii, Dirofilaria immitis, Paracoccidioides braziliensis. Co-infection causes mechanistic differences in immunity which can alter diagnostics, therapeutic management, and prognosis of dogs with CanL. More research is needed to further explore immunomodulation during CanL co-infection(s) and their clinical impact.
Collapse
Affiliation(s)
- Erin A. Beasley
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Danielle Pessôa-Pereira
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Breanna M. Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| | - Christine A. Petersen
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA; (E.A.B.); (D.P.-P.); (B.M.S.)
- Center for Emerging Infectious Diseases, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Rani GF, Preham O, Ashwin H, Brown N, Hitchcock IS, Kaye PM. Dissecting pathways to thrombocytopenia in a mouse model of visceral leishmaniasis. Blood Adv 2021; 5:1627-1637. [PMID: 33710338 PMCID: PMC7993103 DOI: 10.1182/bloodadvances.2020004082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis is an important yet neglected parasitic disease caused by infection with Leishmania donovani or L infantum. Disease manifestations include fever, weight loss, hepatosplenomegaly, immune dysregulation, and extensive hematological complications. Thrombocytopenia is a dominant hematological feature seen in both humans and experimental models, but the mechanisms behind this infection-driven thrombocytopenia remain poorly understood. Using a murine model of experimental visceral leishmaniasis (EVL), we demonstrated a progressive decrease in platelets from day 14 after infection, culminating in severe thrombocytopenia by day 28. Plasma thrombopoietin (TPO) levels were reduced in infected mice, at least in part because of the alterations in the liver microenvironment associated with granulomatous inflammation. Bone marrow (BM) megakaryocyte cytoplasmic maturation was significantly reduced. In addition to a production deficit, we identified significant increases in platelet clearance. L donovani-infected splenectomized mice were protected from thrombocytopenia compared with sham operated infected mice and had a greater response to exogenous TPO. Furthermore, infection led to higher levels of platelet opsonization and desialylation, both associated with platelet clearance in spleen and liver, respectively. Critically, these changes could be reversed rapidly by drug treatment to reduce parasite load or by administration of TPO agonists. In summary, our findings demonstrate that the mechanisms underpinning thrombocytopenia in EVL are multifactorial and reversible, with no obvious residual damage to the BM microenvironment.
Collapse
Affiliation(s)
| | - Olivier Preham
- York Biomedical Research Institute, Hull York Medical School, and
| | - Helen Ashwin
- York Biomedical Research Institute, Hull York Medical School, and
| | - Najmeeyah Brown
- York Biomedical Research Institute, Hull York Medical School, and
| | - Ian S Hitchcock
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, and
| |
Collapse
|
15
|
Immune response dynamics and Lutzomyia longipalpis exposure characterize a biosignature of visceral leishmaniasis susceptibility in a canine cohort. PLoS Negl Trop Dis 2021; 15:e0009137. [PMID: 33617528 PMCID: PMC7943000 DOI: 10.1371/journal.pntd.0009137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/09/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background Reports have shown correlations between the immune response to vector saliva and Leishmaniasis outcome. We followed dogs in an endemic area for two years characterizing resistance or susceptibility to canine visceral leishmaniasis (CVL) according to Leishmania infantum diagnosis and clinical development criteria. Then, we aimed to identify a biosignature based on parasite load, serum biological mediators’ interactions, and vector exposure intensity associated with CVL resistance and susceptibility. Methodology/Principal findings A prospective two-year study was conducted in an area endemic for CVL. Dogs were evaluated at 6-month intervals to determine infection, clinical manifestations, immune profile, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. After two years, 78% of the dogs were infected with L. infantum (53% susceptible and 47% resistant to CVL). Susceptible dogs presented higher splenic parasite load as well as persistence of the parasite during the follow-up, compared to resistant ones. Susceptible dogs also displayed a higher number of correlations among the investigated biological mediators, before and after infection diagnosis. At baseline, anti-saliva antibodies, indicative of exposure to the vector, were detected in 62% of the dogs, reaching 100% in one year. Higher sandfly exposure increased the risk of susceptibility to CVL by 1.6 times (CI: 1.11–2.41). We identified a discriminatory biosignature between the resistant and susceptible dogs assessing splenic parasite load, interaction of biological mediators, PGE2 serum levels and intensity of exposure to sandfly. All these parameters were elevated in susceptible dogs compared to resistant animals. Conclusions/Significance The biosignature identified in our study reinforces the idea that CVL is a complex multifactorial disease that is affected by a set of factors which are correlated and, for a better understanding of CVL, should not be evaluated in an isolated way. Visceral Leishmaniasis (VL) is a disease that can affect humans and dogs, caused by a parasite called Leishmania transmitted through the bite of sandfly insects. During the bite, together with the parasite, the insects also inoculate their saliva into the host. The host immune response produces molecules to the sandfly saliva, such as antibodies and cytokines that can impact VL resistance or susceptibility. The presence of these molecules also indicates if the insects bit the hosts. We followed dogs of a VL endemic area for two years to study Canine Visceral Leishmaniasis (CVL) and immune response to sandfly saliva. Dogs were evaluated at 6-month intervals to determine Leishmania infection, clinical manifestations, parasite load, immune response, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. Dogs living in the endemic area were intensely bitten, as at the beginning of the study, 62% of the dogs present anti-saliva antibodies, reaching 100% after one year. Our findings revealed a biosignature of CVL susceptibility characterized by elevated parasite load, interaction of cytokines, and higher exposure to the sandfly. This data reinforced that CVL is a complex disease affected by several factors related to each other.
Collapse
|
16
|
Jafarzadeh A, Jafarzadeh S, Sharifi I, Aminizadeh N, Nozari P, Nemati M. The importance of T cell-derived cytokines in post-kala-azar dermal leishmaniasis. Cytokine 2020; 147:155321. [PMID: 33039255 DOI: 10.1016/j.cyto.2020.155321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Infection with the same species of Leishmania (L)donovani causes different manifestations including visceral leishmaniasis (VL) and post kala-azar dermal leishmaniasis (PKDL), indicating that the host-related immunological parameters perform a decisive role in the pathogenesis of diseases. As PKDL is a reservoir of the parasite, a better understanding of the host immune responses is necessary to restrict the L. donovani transmission. The proper local production of Th1 cell-related cytokines (including IFN-γ, TNF-α and IL-12), Th17 cell-derived cytokines (such as IL-17A, IL-17F and IL-22), and CD8+ cytotoxic T lymphocyte (CTL)-derived IFN-γ are protective against PKDL. However, dominant production of regulatory CD4+ T cell-derived cytokines (such as IL-10 and TGF-β), Th2 cell-derived cytokines (such as IL-4/IL-13), M2 macrophage-derived cytokines (such as IL-4 and IL-10), keratinocyte-derived IL-10, regulatory CD8+ T cell-derived IL-10, and dendritic cell-derived IL-10, IL-27 and IL-21 can contribute to the parasite persistence and PKDL development. Understanding of the T cell-related cytokine network within PKDL lesions gives rise to novel insights concerning the role of each cytokine in the protection or susceptibility to disease. Manipulation of the cytokine network can be considered as an interesting immunotherapeutic strategy for the treatment of L. donovani-mediated PKDL.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Aminizadeh
- Department of Histology, School of Medicine, Islamic Azad University Branch of Kerman, Kerman, Iran
| | - Parvin Nozari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Saha B, Bhattacharjee S, Sarkar A, Bhor R, Pai K, Bodhale N. Conundrums in leishmaniasis. Cytokine 2020; 145:155304. [PMID: 33004260 DOI: 10.1016/j.cyto.2020.155304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022]
Abstract
Parasites of the genus Leishmania cause the disease leishmaniasis. As the sandfly vector transfers the promastigotes into the skin of the human host, the infection is either cured or exacerbated. In the process, there emerge several unsolved paradoxes of leishmaniasis. Chronologically, as the infections starts in skin, the role of the salivary proteins in supporting the infection or the host response to these proteins influencing the induction of immunological memory becomes a conundrum. As the parasite invokes inflammation, the infiltrating neutrophils may act as "Trojan Horse" to transfer parasites to macrophages that, along with dendritic cells, carry the parasite to lymphoid organs to start visceralization. As the visceralized infection becomes chronic, the acutely enhanced monocytopoiesis takes a downturn while neutropenia and thrombocytopenia ensue with concomitant rise in splenic colony-forming-units. These responses are accompanied by splenic and hepatic granulomas, polyclonal activation of B cells and deviation of T cell responses. The granuloma formation is both a containment process and a form of immunopathogenesis. The heterogeneity in neutrophils and macrophages contribute to both cure and progression of the disease. The differentiation of T-helper subsets presents another paradox of visceral leishmaniasis, as the counteractive T cell subsets influence the curing or non-curing outcome. Once the parasites are killed by chemotherapy, in some patients the cured visceral disease recurs as a cutaneous manifestation post-kala azar dermal leishmaniasis (PKDL). As no experimental model exists, the natural history of PKDL remains almost a black box at the end of the visceral disease.
Collapse
Affiliation(s)
- Baibaswata Saha
- Centre of Advanced Study, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura Central University, Agartala, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneshwar, Odisha 751024, India
| | - Renuka Bhor
- Centre of Advanced Study, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Kalpana Pai
- Centre of Advanced Study, Department of Zoology, Savitribai Phule Pune University, Pune 411007, India
| | - Neelam Bodhale
- Jagadis Bose National Science Talent Search, 1300 Rajdanga Road, Kolkata 700107, India; National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
18
|
Tesfanchal B, Gebremichail G, Belay G, Gebremariam G, Teklehaimanot G, Haileslasie H, Kahsu G, Gebrewahd A, Mardu F, Adhanom G, Berhe B, Teame H, Tsegaye A, Wolde M. Alteration of Clinical Chemistry Parameters Among Visceral Leishmaniasis Patients in Western Tigrai, Ethiopia, 2018/2019: A Comparative Cross-Sectional Study. Infect Drug Resist 2020; 13:3055-3062. [PMID: 32943889 PMCID: PMC7467734 DOI: 10.2147/idr.s261698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis causes alterations of lipid metabolism and it is associated with hypocholesterolemia and severe hypertriglyceridemia. Hepatic dysfunction and life-threatening hepatitis are associated with visceral leishmaniasis. Kidney damage is frequently associated with increased morbidity and mortality in visceral leishmaniasis patients. METHODS A cross-sectional study was carried out to assess the alterations of clinical chemistry parameters among visceral leishmaniasis patients attending Kahsay Abera and Mearg hospitals, Northwest Ethiopia. A total of 100 visceral leishmaniasis patients and 100 healthy controls without visceral leishmaniasis were selected by using convenient sampling techniques. Data were entered and analyzed using statistical package for social sciences (SPSS) version 23. RESULTS Results were showed that the mean value of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, and triglyceride was significantly higher in visceral leishmaniasis patients than in apparently healthy controls, but the mean value of serum urea and total cholesterol was significantly lower in visceral leishmaniasis patients than healthy controls. CONCLUSION The finding of this study concluded that visceral leishmaniasis causes significant alterations of clinical chemistry tests like liver and lipid profile tests compared to healthy controls.
Collapse
Affiliation(s)
- Brhane Tesfanchal
- Unit of Clinical Chemistry, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Gebremedhin Gebremichail
- Unit of Hematology and Immuno-Hematology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Getachew Belay
- Unit of Clinical Chemistry, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Gebreslassie Gebremariam
- Unit of Clinical Chemistry, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Gebreyohannes Teklehaimanot
- Unit of Hematology and Immuno-Hematology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hagos Haileslasie
- Unit of Hematology and Immuno-Hematology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Getachew Kahsu
- Unit of Clinical Chemistry, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Aderajew Gebrewahd
- Unit of Medical Microbiology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Fitsum Mardu
- Unit of Medical Parasitology and Entomology, Department of Medical Laboratory Science, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Gebre Adhanom
- Unit of Medical Microbiology, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Brhane Berhe
- Unit of Medical Parasitology and Entomology, Department of Medical Laboratory Science, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Hirut Teame
- Department of Public Health, College of Medicine and Health Sciences, Adigrat University, Adigrat, Ethiopia
| | - Aster Tsegaye
- Unit of Hematology and Immuno-Hematology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mistire Wolde
- Unit of Clinical Chemistry, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
Campelo CM, Pinheiro IC, de Melo Tavares B, Alves de Lima Henn G, Fernandes C, Albuquerque-Pinto LC, Carneiro Câmara LM. Modulation in the expression of type 1 (CR1/CD35) and type 3 (CR3/CD11b) complement receptors on leukocytes from patients with Visceral leishmaniasis. Exp Parasitol 2020; 218:107970. [PMID: 32828829 DOI: 10.1016/j.exppara.2020.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
Visceral leishmaniasis (VL) is an anthropozoonosis endemic in Brazil. We included 20 patients with confirmed diagnosis of VL and 20 healthy individuals to evaluate the expression levels of complement receptor 1 (CR1)/CD35 and CR3/CD11b on leukocytes in the peripheral blood and determine their correlation with the clinical state of patients. CR1/CD35 expression increased on CD11b+CD35+granulocytes of patients, while CR1/CD35 and CR3/CD11b expression levels increased on CD14+CD11b+CD35+ monocytes. Among patients, those with severe clinical state had higher expression of CR3/CD11b on CD14+monocytes. The count of CD19+CD35+B lymphocytes reduced in the blood samples from patients. These observed changes may indicate the modulation in CR1/CD35 and CR3/CD11b complement receptor expressionlevels on granulocyte and monocyte populations in response to Leishmania sp.
Collapse
Affiliation(s)
- Cássio Marinho Campelo
- Federal University of Ceará, Biomedicine Center, Laboratory of Medical Immunology, Fortaleza, Ceará, Brazil.
| | | | | | - Guilherme Alves de Lima Henn
- Federal University of Ceará, Biomedicine Center, Laboratory of Medical Immunology, Fortaleza, Ceará, Brazil; Hospital São José for Infectious Diseases(HSJ), Fortaleza, Ceará, Brazil.
| | - Camila Fernandes
- Federal University of Ceará, Biomedicine Center, Laboratory of Medical Immunology, Fortaleza, Ceará, Brazil.
| | | | - Lilia Maria Carneiro Câmara
- Federal University of Ceará, Biomedicine Center, Laboratory of Medical Immunology, Fortaleza, Ceará, Brazil.
| |
Collapse
|
20
|
Jafarzadeh A, Nemati M, Chauhan P, Patidar A, Sarkar A, Sharifi I, Saha B. Interleukin-27 Functional Duality Balances Leishmania Infectivity and Pathogenesis. Front Immunol 2020; 11:1573. [PMID: 32849534 PMCID: PMC7427467 DOI: 10.3389/fimmu.2020.01573] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
IL-27 is a cytokine that exerts diverse effects on the cells of innate and adaptive immune systems. Chiefly expressed in macrophages and dendritic cells during the early phase of Leishmania infection, IL-27 contributes to the protection against L. major infection but suppresses the protective Th1 response against L. donovani, L. infantum, L. amazonensis and L. braziliensis infections, suggesting its functional duality. During the late stage of Leishmania infection, IL-27 limits the immunopathogenic reactions and tissue damages. Herein, we analyze the mechanism of the functional duality of IL-27 in the resistance or susceptibility to Leishmania infection, prompting IL-27 for anti-Leishmanial therapy.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Haematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, India
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, India
- Trident Academy of Creative Technology, Bhubaneswar, India
| |
Collapse
|
21
|
Ryan N, Anderson K, Volpedo G, Varikuti S, Satoskar M, Satoskar S, Oghumu S. The IL-33/ST2 Axis in Immune Responses Against Parasitic Disease: Potential Therapeutic Applications. Front Cell Infect Microbiol 2020; 10:153. [PMID: 32363166 PMCID: PMC7180392 DOI: 10.3389/fcimb.2020.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections pose a wide and varying threat globally, impacting over 25% of the global population with many more at risk of infection. These infections are comprised of, but not limited to, toxoplasmosis, malaria, leishmaniasis and any one of a wide variety of helminthic infections. While a great deal is understood about the adaptive immune response to each of these parasites, there remains a need to further elucidate the early innate immune response. Interleukin-33 is being revealed as one of the earliest players in the cytokine milieu responding to parasitic invasion, and as such has been given the name "alarmin." A nuclear cytokine, interleukin-33 is housed primarily within epithelial and fibroblastic tissues and is released upon cellular damage or death. Evidence has shown that interleukin-33 seems to play a crucial role in priming the immune system toward a strong T helper type 2 immune response, necessary in the clearance of some parasites, while disease exacerbating in the context of others. With the possibility of being a double-edged sword, a great deal remains to be seen in how interleukin-33 and its receptor ST2 are involved in the immune response different parasites elicit, and how those parasites may manipulate or evade this host mechanism. In this review article we compile the current cutting-edge research into the interleukin-33 response to toxoplasmosis, malaria, leishmania, and helminthic infection. Furthermore, we provide insight into directions interleukin-33 research may take in the future, potential immunotherapeutic applications of interleukin-33 modulation and how a better clarity of early innate immune system responses involving interleukin-33/ST2 signaling may be applied in development of much needed treatment options against parasitic invaders.
Collapse
Affiliation(s)
- Nathan Ryan
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Anatomy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kelvin Anderson
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Greta Volpedo
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Sanjay Varikuti
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Monika Satoskar
- Northeast Ohio Medical University, Rootstown, OH, United States
| | - Sanika Satoskar
- Northeast Ohio Medical University, Rootstown, OH, United States
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
22
|
Bastos DSS, Miranda BM, Fialho Martins TV, Guimarães Ervilha LO, Souza ACF, de Oliveira Emerick S, Carneiro da Silva A, Novaes RD, Neves MM, Santos EC, de Oliveira LL, Marques-da-Silva EDA. Lipophosphoglycan-3 recombinant protein vaccine controls hepatic parasitism and prevents tissue damage in mice infected by Leishmania infantum chagasi. Biomed Pharmacother 2020; 126:110097. [PMID: 32203891 DOI: 10.1016/j.biopha.2020.110097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS In this work, we aimed to evaluate the effects of the Leishmania infantum chagasi infection on the liver of vaccinated mice, considering parameters of tissue damage and the inflammatory response elicited by vaccination. MAIN METHODS We used recombinant LPG3 protein (rLPG3) as immunogen in BALB/c mice before challenge with promastigote forms of L. infantum chagasi. The animals were separated into five groups: NI: non-infected animals; NV: non-vaccinated; SAP: treated with saponin; rLPG3: immunized with rLPG3; rLPG3 + SAP: immunized with rLPG3 plus SAP. The experiment was conducted in replicate, and the vaccination protocol consisted of three subcutaneous doses of rLPG3 (40 μg + two boosters of 20 μg). The mice were challenged two weeks after the last immunization. KEY FINDINGS Our results showed that rLPG3 + SAP immunization decreased the parasite burden in 99 %, conferring immunological protection in the liver of the infected animals. Moreover, the immunization improved the antioxidant defenses, increasing CAT and GST activity, while reducing the levels of oxidative stress markers, such as H2O2 and NO3/NO2, and carbonyl protein in the organ. As a consequence, rLPG3 + SAP immunization preserved tissue integrity and reduced the granuloma formation, inflammatory infiltrate and serum levels of AST, ALT, and ALP. SIGNIFICANCE Taken together, these results showed that rLPG3 vaccine confers liver protection against L. infantum chagasi in mice, while maintaining the liver tissue protected against the harmful inflammatory effects caused by the vaccine followed by the infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, MG, Brazil
| | | | | | | | | |
Collapse
|
23
|
Lecoeur H, Prina E, Rosazza T, Kokou K, N’Diaye P, Aulner N, Varet H, Bussotti G, Xing Y, Milon G, Weil R, Meng G, Späth GF. Targeting Macrophage Histone H3 Modification as a Leishmania Strategy to Dampen the NF-κB/NLRP3-Mediated Inflammatory Response. Cell Rep 2020; 30:1870-1882.e4. [DOI: 10.1016/j.celrep.2020.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
|
24
|
Varikuti S, Volpedo G, Saljoughian N, Hamza OM, Halsey G, Ryan NM, Sedmak BE, Seidler GR, Papenfuss TL, Oghumu S, Satoskar AR. The Potent ITK/BTK Inhibitor Ibrutinib Is Effective for the Treatment of Experimental Visceral Leishmaniasis Caused by Leishmania donovani. J Infect Dis 2019; 219:599-608. [PMID: 30239895 DOI: 10.1093/infdis/jiy552] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background New drugs are needed for leishmaniasis because current treatments such as pentavalent antimonials are toxic and require prolonged administration, leading to poor patient compliance. Ibrutinib is an anticancer drug known to modulate T-helper type 1 (Th1)/Th2 responses and has the potential to regulate immunity against infectious disease. Methods In this study, we evaluated the efficacy of oral ibrutinib as a host-targeted treatment for visceral leishmaniasis (VL) caused by Leishmania donovani using an experimental mouse model. Results We found that oral ibrutinib was significantly more effective than the pentavalent antimonial sodium stibogluconate (70 mg/kg) for the treatment of VL caused by L. donovani. Ibrutinib treatment increased the number of interleukin 4- and interferon γ-producing natural killer T cells in the liver and spleen and enhanced granuloma formation in the liver. Further, ibrutinib treatment reduced the influx of Ly6Chi inflammatory monocytes, which mediate susceptibility to L. donovani. Finally, ibrutinib treatment was associated with the increased production of the cytokines interferon γ, tumor necrosis factor α, interleukin 4, and interleukin 13 in the liver and spleen, which are associated with protection against L. donovani. Conclusions Our findings show that oral ibrutinib is highly effective for the treatment of VL caused by L. donovani and mediates its antileishmanial activity by promoting host immunity. Therefore, ibrutinib could be a novel host-targeted drug for the treatment of VL.
Collapse
Affiliation(s)
- Sanjay Varikuti
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus
| | - Greta Volpedo
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus.,Department of Microbiology, Ohio State University, Columbus
| | - Noushin Saljoughian
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus
| | - Omar M Hamza
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus
| | - Gregory Halsey
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus
| | - Nathan M Ryan
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus
| | - Bren E Sedmak
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus
| | - Gabriella R Seidler
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus
| | | | - Steve Oghumu
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus
| | - Abhay R Satoskar
- Department of Pathology, Ohio State University Medical Center, Ohio State University, Columbus.,Department of Microbiology, Ohio State University, Columbus
| |
Collapse
|
25
|
Conceição-Silva F, Morgado FN. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Front Cell Infect Microbiol 2019; 9:330. [PMID: 31608245 PMCID: PMC6761226 DOI: 10.3389/fcimb.2019.00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
For a long time Leishmaniasis had been considered as a neglected tropical disease. Recently, it has become a priority in public health all over the world for different aspects such as geographic spread, number of population living at risk of infection as well as the potential lethality and/or the development of disfiguring lesions in the, respectively, visceral and tegumentary forms of the disease. As a result, several groups have been bending over this issue and many valuable data have been published. Nevertheless, parasite-host interactions are still not fully known and, consequently, we do not entirely understand the infection dynamics and parasite persistence. This knowledge may point targets for modulation or blockage, being very useful in the development of measures to interfere in the course of infection/ disease and to minimize the risks and morbidity. In the present review we will discuss some aspects of the Leishmania spp-mammalian host interaction in the onset of infection and after the clinical cure of the lesions. We will also examine the information already available concerning the parasite strategy to evade immune response mainly at the beginning of the infection, as well as during the parasite persistence. This knowledge can improve the conditions of treatment, follow-up and cure control of patients, minimizing the potential damages this protozoosis can cause to infected individuals.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Banerjee S, Mukherjee N, Gajbhiye RL, Mishra S, Jaisankar P, Datta S, Das Saha K. Intracellular anti-leishmanial effect of Spergulin-A, a triterpenoid saponin of Glinus oppositifolius. Infect Drug Resist 2019; 12:2933-2942. [PMID: 31571946 PMCID: PMC6756365 DOI: 10.2147/idr.s211721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
Background Many of present chemotherapeutics are inadequate and also resistant against visceral leishmaniasis (VL), an immunosuppressive ailment caused by Leishmania donovani. Despite the interest in plant-based drug development, no antileishmanial drugs from plant source are currently available. Glinus oppositifolius had been reported in favor of being immune modulators along with other traditional uses. Novel anti-VL therapies can rely on host immune-modulation with associated leishmanicidal action. Objective Discovery of novel plant-based antileishmanial compound from G. oppositifolius having permissible side effects. Methods With this rationale, an n-BuOH fraction of the methanolic extract of the plant and obtained triterpenoid saponin Spergulin-A were evaluated against acellular and intracellular L. donovani. Immunostimulatory activity of them was confirmed by elevated TNF-α and extracellular NO production from treated MФs and was found nontoxic to the host cells. Identification and structure confirmation for isolated Spergulin-A was performed by ESI-MS,13C, and 1H NMR. Results Spergulin-A was found ineffective against the acellular forms while, against the intracellular parasites at 30 μg/mL, the reduction was 92.6% after 72 hrs. Spergulin-A enhanced ROS and nitric oxide (NO) release and changes in Gp91-phox, i-NOS, and pro and anti-inflammatory cytokines elaborated its intracellular anti-leishmanial activity. Conclusion The results supported that G. oppositifolius and Spergulin-A can potentiate new lead molecules for the development of alternative drugs against VL.
Collapse
Affiliation(s)
- Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Rahul L Gajbhiye
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Parasuraman Jaisankar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
27
|
da Costa-Silva TA, Conserva GAA, Galisteo AJ, Tempone AG, Lago JHG. Antileishmanial activity and immunomodulatory effect of secosubamolide, a butanolide isolated from Nectandra oppositifolia (Lauraceae). J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190008. [PMID: 31467511 PMCID: PMC6707387 DOI: 10.1590/1678-9199-jvatitd-2019-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/27/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Visceral leishmaniasis is a complex neglected tropical disease caused by
Leishmania donovani complex. Its current treatment
reveals strong limitations, especially high toxicity. In this context,
natural products are important sources of new drug alternatives for VL
therapy. Therefore, the antileishmanial and immunomodulatory activity of
compounds isolated from Nectandra oppositifolia (Lauraceae)
was investigated herein. Methods: The n-hexane extract from twigs of N.
oppositifolia were subjected to HPLC/HRESIMS and
bioactivity-guided fractionation to afford compounds 1 and
2 which were evaluated in vitro against
Leishmania (L.) infantum
chagasi and NCTC cells. Results: The n-hexane extract displayed activity against
L. (L.) infantum
chagasi and afforded isolinderanolide E
(1) and secosubamolide A (2),
which were effective against L. (L.)
infantum chagasi promastigotes, with IC50
values of 57.9 and 24.9 µM, respectively. Compound 2 was
effective against amastigotes (IC50 = 10.5 µM) and displayed
moderate mammalian cytotoxicity (CC50 = 42 µM). The
immunomodulatory studies of compound 2 suggested an
anti-inflammatory activity, with suppression of IL-6, IL-10, TNF with lack
of nitric oxide. Conclusion: This study showed the antileishmanial activity of compounds 1
and 2 isolated from N. oppositifolia.
Furthermore, compound 2 demonstrated an antileishmanial
activity towards amastigotes associated to an immunomodulatory effect.
Collapse
Affiliation(s)
- Thais A da Costa-Silva
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| | - Geanne A Alves Conserva
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| | - Andrés J Galisteo
- Institute of Tropical Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Adolfo Lutz Institute (IAL), São Paulo, SP, Brazil
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC (UFBAC), São Paulo, SP, Brazil
| |
Collapse
|
28
|
Chowdhury FT, Shohan MU, Islam T, Mimu TT, Palit P. A Therapeutic Approach Against Leishmania donovani by Predicting RNAi Molecules Against the Surface Protein, gp63. Curr Bioinform 2019. [DOI: 10.2174/1574893613666180828095737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background:
Leishmaniasis is a disease caused by the Leishmania sp. and can be
classified into two major types: cutaneous and visceral leismaniasis. Visceral leishmaniasis is the
deadlier type and is mediated by Leishmania donovani and involves the establishment of persistent
infection and causes damage to the liver, spleen and bone marrow. With no vaccine yet available
against leishmaniasis and the current therapeutic drugs of leishmaniasis being toxic and expensive;
an alternative treatment is necessary.
Objective:
Surface glycocalyx protein gp63, plays a major role in the virulence and resulting
pathogenicity associated with the disease. Henceforth, silencing the gp63 mRNA through the RNA
interference system was the aim of this study.
Methods:
In this study two competent siRNAs and three miRNAs have been designed against gp63
for five different strains of L. donovani by using various computational methods. Target specific
siRNAs were designed using siDirect 2.0 and to design possible miRNA, another tool named IDT
(IntegratedDNA Technology). Screening for off-target similarity was done by BLAST and the GC
contents and the secondary structures of the designed RNAs were determined. RNA-RNA
interaction was calculated by RNAcofold and IntraRNA, followed by the determination of heat
capacity and the concentration of duplex by DNAmelt web server.
Results:
The selected RNAi molecules; two siRNA and three miRNA had no off-target in human
genome and the ones with lower GC content were selected for efficient RNAi function. The
selected ones showed proper thermodynamic characteristics to suppress the expression of the
pathogenic gene of gp63.
Collapse
Affiliation(s)
- Farhana T. Chowdhury
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad U.S. Shohan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tasmia Islam
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Taisha T. Mimu
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Parag Palit
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
29
|
Kobets T, Čepičková M, Volkova V, Sohrabi Y, Havelková H, Svobodová M, Demant P, Lipoldová M. Novel Loci Controlling Parasite Load in Organs of Mice Infected With Leishmania major, Their Interactions and Sex Influence. Front Immunol 2019; 10:1083. [PMID: 31231359 PMCID: PMC6566641 DOI: 10.3389/fimmu.2019.01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis is a serious health problem in many countries, and continues expanding to new geographic areas including Europe and USA. This disease, caused by parasites of Leishmania spp. and transmitted by phlebotomine sand flies, causes up to 1.3 million new cases each year and despite efforts toward its functional dissection and treatment it causes 20-50 thousands deaths annually. Dependence of susceptibility to leishmaniasis on sex and host's genes was observed in humans and in mouse models. Several laboratories defined in mice a number of Lmr (Leishmania major response) genetic loci that control functional and pathological components of the response to and outcome of L. major infection. However, the development of its most aggressive form, visceral leishmaniasis, which is lethal if untreated, is not yet understood. Visceral leishmaniasis is caused by infection and inflammation of internal organs. Therefore, we analyzed the genetics of parasite load, spread to internal organs, and ensuing visceral pathology. Using a new PCR-based method of quantification of parasites in tissues we describe a network-like set of interacting genetic loci that control parasite load in different organs. Quantification of Leishmania parasites in lymph nodes, spleen and liver from infected F2 hybrids between BALB/c and recombinant congenic strains CcS-9 and CcS-16 allowed us to map two novel parasite load controlling Leishmania major response loci, Lmr24 and Lmr27. We also detected parasite-controlling role of the previously described loci Lmr4, Lmr11, Lmr13, Lmr14, Lmr15, and Lmr25, and describe 8 genetic interactions between them. Lmr14, Lmr15, Lmr25, and Lmr27 controlled parasite load in liver and lymph nodes. In addition, Leishmania burden in lymph nodes but not liver was influenced by Lmr4 and Lmr24. In spleen, parasite load was controlled by Lmr11 and Lmr13. We detected a strong effect of sex on some of these genes. We also mapped additional genes controlling splenomegaly and hepatomegaly. This resulted in a systematized insight into genetic control of spread and load of Leishmania parasites and visceral pathology in the mammalian organism.
Collapse
Affiliation(s)
- Tatyana Kobets
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Marie Čepičková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | | | - Peter Demant
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
30
|
Sex-Related Differences in Immune Response and Symptomatic Manifestations to Infection with Leishmania Species. J Immunol Res 2019; 2019:4103819. [PMID: 30756088 PMCID: PMC6348913 DOI: 10.1155/2019/4103819] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Worldwide, an estimated 12 million people are infected with Leishmania spp. and an additional 350 million are at risk of infection. Leishmania are intracellular parasites that cause disease by suppressing macrophage microbicidal responses. Infection can remain asymptomatic or lead to a spectrum of diseases including cutaneous, mucocutaneous, and visceral leishmaniasis. Ultimately, the combination of both pathogen and host factors determines the outcome of infection. Leishmaniasis, as well as numerous other infectious diseases, exhibits sex-related differences that cannot be explained solely in terms of environmental exposure or healthcare access. Furthermore, transcriptomic evidence is revealing that biological sex is a variable impacting physiology, immune response, drug metabolism, and consequently, the progression of disease. Herein, we review the distribution, morbidity, and mortality among male and female leishmaniasis patients. Additionally, we discuss experimental findings and new avenues of research concerning sex-specific responses in cutaneous and visceral leishmaniasis. The limitations of current therapies and the emergence of drug-resistant parasites underscore the need for new treatments that could harness the host immune response. As such, understanding the mechanisms driving the differential immune response and disease outcome of males versus females is a necessary step in the development of safer and more effective treatments against leishmaniasis.
Collapse
|
31
|
Rodríguez NE, Lima ID, Gaur Dixit U, Turcotte EA, Lockard RD, Batra-Sharma H, Nascimento EL, Jeronimo SMB, Wilson ME. Epidemiological and Experimental Evidence for Sex-Dependent Differences in the Outcome of Leishmania infantum Infection. Am J Trop Med Hyg 2018; 98:142-145. [PMID: 29165220 DOI: 10.4269/ajtmh.17-0563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Leishmania infantum causes visceral leishmaniasis (VL) in Brazil. We previously observed that VL is more common in males than females living in endemic neighborhoods, despite similar exposure. Using a larger sample, we document that VL is more common in males than females, but only after puberty. BALB/c and C57BL/6 mouse models confirmed that there is a biological basis for male susceptibility to symptomatic VL, showing higher parasite burdens in males than females. Female C57BL/6 mice generated more antigen-induced cytokines associated with curative responses (interferon-γ, interleukin [IL]-1β). Males expressed higher levels of IL-10 and tumor necrosis factor, which are linked to exacerbated disease. Different parasite lines entered or survived at a higher rate in macrophages of male- than female-origin. These results suggest that males are inherently more susceptible to L. infantum than females and that mice are a valid model to study this sex-dependent difference.
Collapse
Affiliation(s)
- Nilda E Rodríguez
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa
| | - Iraci D Lima
- Health Science Post-Graduate Program, Health Science Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Fundação Nacional de Saúde, Secretaria de Saúde do Estado do Rio Grande do Norte, Natal, Brazil
| | - Upasna Gaur Dixit
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | | | - Ryan D Lockard
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa
| | | | - Eliana L Nascimento
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil.,Health Science Post-Graduate Program, Health Science Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Selma M B Jeronimo
- National Institute of Science and Technology of Tropical Diseases, Salvador, Brazil.,Health Science Post-Graduate Program, Health Science Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mary E Wilson
- Veterans' Affairs Medical Center, Iowa City, Iowa.,Department of Microbiology, University of Iowa, Iowa City, Iowa.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
32
|
Tomiotto-Pellissier F, Bortoleti BTDS, Assolini JP, Gonçalves MD, Carloto ACM, Miranda-Sapla MM, Conchon-Costa I, Bordignon J, Pavanelli WR. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front Immunol 2018; 9:2529. [PMID: 30429856 PMCID: PMC6220043 DOI: 10.3389/fimmu.2018.02529] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/15/2018] [Indexed: 01/14/2023] Open
Abstract
Leishmaniasis is a vector-borne neglected tropical disease that affects more than 700,000 people annually. Leishmania parasites cause the disease, and different species trigger a distinct immune response and clinical manifestations. Macrophages are the final host cells for the proliferation of Leishmania parasites, and these cells are the key to a controlled or exacerbated response that culminates in clinical manifestations. M1 and M2 are the two main macrophage phenotypes. M1 is a pro-inflammatory subtype with microbicidal properties, and M2, or alternatively activated, is an anti-inflammatory/regulatory subtype that is related to inflammation resolution and tissue repair. The present review elucidates the roles of M1 and M2 polarization in leishmaniasis and highlights the role of the salivary components of the vector and the action of the parasite in the macrophage plasticity.
Collapse
Affiliation(s)
- Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - João Paulo Assolini
- Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, State University of Londrina, Universitary Hospital, Londrina, Brazil
| | | | | | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Molecular Virology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil
| | - Wander Rogério Pavanelli
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
33
|
Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs). 3 Biotech 2018; 8:98. [PMID: 29430360 DOI: 10.1007/s13205-018-1121-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/16/2018] [Indexed: 10/18/2022] Open
Abstract
The present study was conducted to investigate the antileishmanial activity of biogenic silver nanoparticles (AgNPs) compared to chemically synthesized AgNPs. A nano dimension size (10-15 nm) biogenic AgNPs was produced and characterized by UV-Vis spectroscopy and X-rays diffraction. The chemically synthesized AgNPs was recovering from our previous study with a nanoparticle (NP) size in the range of 10-40 nm. The antileishmanial activities were investigated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. The infectivity was determined by Giemsa staining of the infected macrophages cells. Nitric oxide (NO) accumulation was measured by Griess reagent using NaNO2 as a positive control. After 24 h of exposure with nanoparticles (NPs), a concentration-dependent growth inhibition was observed. The IC50 values were determined against promastigotes of L. infantum as 19.42 ± 2.76 µg/ml for leaves aqueous extract mediated AgNPs, 30.71 ± 1.91 µg/ml for stem mediated AgNPs and 51.23 ± 2.20 µg/ml for chemically synthesized AgNPs. It was also detected that all types of NPs produced NO at a significant level. However, the production of a high-level of NO in the biologically synthesized NPs activated macrophage cells, infected with L. infantum promastigotes indicates that NO radicals are mainly responsible for induced cell death and a decrease in the pathogenicity of the parasites. Since, biogenic nanoparticles are cost-effective, eco-friendly, simple to synthesize, and more effective than chemically synthesized silver nanoparticles, therefore, it could be used as a potential alternative for the development of antileishmanial drugs.
Collapse
|
34
|
Ghorbani M, Farhoudi R. Leishmaniasis in humans: drug or vaccine therapy? DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 12:25-40. [PMID: 29317800 PMCID: PMC5743117 DOI: 10.2147/dddt.s146521] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Leishmania is an obligate intracellular pathogen that invades phagocytic host cells. Approximately 30 different species of Phlebotomine sand flies can transmit this parasite either anthroponotically or zoonotically through their bites. Leishmaniasis affects poor people living around the Mediterranean Basin, East Africa, the Americas, and Southeast Asia. Affected regions are often remote and unstable, with limited resources for treating this disease. Leishmaniasis has been reported as one of the most dangerous neglected tropical diseases, second only to malaria in parasitic causes of death. People can carry some species of Leishmania for long periods without becoming ill, and symptoms depend on the form of the disease. There are many drugs and candidate vaccines available to treat leishmaniasis. For instance, antiparasitic drugs, such as amphotericin B (AmBisome), are a treatment of choice for leishmaniasis depending on the type of the disease. Despite the availability of different treatment approaches to treat leishmaniasis, therapeutic tools are not adequate to eradicate this infection. In the meantime, drug therapy has been limited because of adverse side effects and unsuccessful vaccine preparation. However, it can immediately make infections inactive. According to other studies, vaccination cannot eradicate leishmaniasis. There is no perfect vaccine or suitable drug to eradicate leishmaniasis completely. So far, no vaccine or drug has been provided to induce long-term protection and ensure effective immunity against leishmaniasis. Therefore, it is necessary that intensive research should be performed in drug and vaccine fields to achieve certain results.
Collapse
Affiliation(s)
- Masoud Ghorbani
- Department of Viral Vaccine Production, Pasteur Institute of Iran, Research and Production Complex, Karaj, Iran
| | - Ramin Farhoudi
- Department of Viral Vaccine Production, Pasteur Institute of Iran, Research and Production Complex, Karaj, Iran
| |
Collapse
|
35
|
Kumar P, Misra P, Thakur CP, Saurabh A, Rishi N, Mitra DK. T cell suppression in the bone marrow of visceral leishmaniasis patients: impact of parasite load. Clin Exp Immunol 2017; 191:318-327. [PMID: 29058314 DOI: 10.1111/cei.13074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 11/27/2022] Open
Abstract
Visceral leishmaniasis (VL) is a disseminated and lethal disease of reticulo-endothelial system caused by protozoan parasites Leishmania donovani and L. infantum, which are known to induce host T cell suppression. To understand the impact of parasite load on T cell function, the present was focused on parasite load with T cell function in bone marrow of 26 VL patients. We observed significant enrichment of forkhead box protein 3 (FoxP3)+ (P = 0·0003) and interleukin (IL)-10+ FoxP3+ regulatory T cells (Treg ) (P = 0·004) in the bone marrow (BM) of patients with high parasite load (HPL) compared with low parasite load (LPL). Concordantly, T effector cells producing interferon (IFN)-γ (P = 0·005) and IL-17A (P = 0·002) were reduced in the BM of HPL. Blocking of Treg -cell derived suppressive cytokines [(IL-10 and transforming growth factor (TGF)-β] rescued the effector T cells and their functions. However, it was observed that TGF-β levels were dominant, favouring Treg cell differentiation. Furthermore, the low ratio of IL-6/TGF-β favours the suppressive milieu in HPL patients. Here we show the change in levels of various cytokines with the parasitic load during active VL, which could be helpful in devising newer immunotherapeutic strategies against this disease.
Collapse
Affiliation(s)
- P Kumar
- Department of T.I.I., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi.,Amity Institute of Virology and Immunology, Amity University, Noida
| | - P Misra
- Department of T.I.I., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi
| | - C P Thakur
- Balaji Utthan Sansthan, Patna, Bihar, India
| | - A Saurabh
- Department of T.I.I., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi.,Amity Institute of Virology and Immunology, Amity University, Noida
| | - N Rishi
- Amity Institute of Virology and Immunology, Amity University, Noida
| | - D K Mitra
- Department of T.I.I., All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi
| |
Collapse
|
36
|
Abidin BM, Hammami A, Stäger S, Heinonen KM. Infection-adapted emergency hematopoiesis promotes visceral leishmaniasis. PLoS Pathog 2017; 13:e1006422. [PMID: 28787450 PMCID: PMC5560750 DOI: 10.1371/journal.ppat.1006422] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/17/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Cells of the immune system are derived from hematopoietic stem cells (HSCs) residing in the bone marrow. HSCs become activated in response to stress, such as acute infections, which adapt the bone marrow output to the needs of the immune response. However, the impact of infection-adapted HSC activation and differentiation on the persistence of chronic infections is poorly understood. We have examined here the bone marrow outcome of chronic visceral leishmaniasis and show that the parasite Leishmania donovani induces HSC expansion and skews their differentiation towards non-classical myeloid progenitors with a regulatory phenotype. Our results further suggest that emergency hematopoiesis contributes to the pathogenesis of visceral leishmaniasis, as decreased HSC expansion results in a lower parasite burden. Conversely, monocytes derived in the presence of soluble factors from the infected bone marrow environment are more permissive to infection by Leishmania. Our results demonstrate that L. donovani is able to subvert host bone marrow emergency responses to facilitate parasite persistence, and put forward hematopoiesis as a novel therapeutic target in chronic infections. Hematopoietic stem cells (HSCs) are responsible for the generation of all blood cells and thus play an important but often underappreciated role in the host response to infections. HSCs are normally dormant, but they can become activated in response to stress, such as infections. This stress response is meant to generate more blood cells and help the body to eliminate the invading pathogen. We have studied here the activation of HSCs in a mouse model of chronic infection with the parasite Leishmania donovani. We found that the parasite efficiently activates HSCs and steers them to produce large numbers of specific blood cells that are among the preferred targets of the parasite and become even more susceptible to infection when produced within the diseased environment. Using a mouse strain in which HSC activation cannot be sustained, we found that diminished HSC activity correlated with decreased parasite numbers. We therefore propose that HSC activation by the parasite promotes the infection and could be used as a new target for treatment.
Collapse
Affiliation(s)
- Belma Melda Abidin
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Akil Hammami
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Simona Stäger
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- Centre for Host-Parasite interactions, Laval, Québec, Canada
| | - Krista M. Heinonen
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- Centre for Host-Parasite interactions, Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
37
|
Rodríguez NE, Lockard RD, Turcotte EA, Araújo-Santos T, Bozza PT, Borges VM, Wilson ME. Lipid bodies accumulation in Leishmania infantum-infected C57BL/6 macrophages. Parasite Immunol 2017; 39. [PMID: 28518475 DOI: 10.1111/pim.12443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Lipid bodies (LBs) are intracellular accumulations of neutral lipids surrounded by a single membrane. These organelles are involved in the production of eicosanoids, which modulate immunity by either promoting or dampening inflammatory responses. Leishmania infantum, the etiological agent of visceral leishmaniasis in Brazil, is an intracellular parasite that causes disease by suppressing macrophage microbicidal responses. C57BL/6 mouse bone marrow-derived macrophages infected with L. infantum strain LcJ had higher numbers of LB+ cells (P<.0001) and total LBs than noninfected cultures. Large (>3 μm) LBs were present inside parasitophorous vacuoles (PVs). These results contrast with those of L. infantum-infected BALB/c macrophages, in which the only LBs are derived from parasite, not macrophage origin. Increased LBs in C57BL/6 macrophages in close association with parasites would position host LBs where they could modulate L. infantum infection. These results imply a potential influence of the host genetics on the role of LBs in host-pathogen interactions. Overall, our data support a model in which the expression, and the role of LBs upon infection, ultimately depends on the specific combination of host-pathogen interactions.
Collapse
Affiliation(s)
- N E Rodríguez
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - R D Lockard
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - E A Turcotte
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - T Araújo-Santos
- Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), Barreiras, BA, Brazil
| | - P T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - V M Borges
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil
| | - M E Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA.,Veterans' Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
38
|
Investigation of the Anti-Leishmania (Leishmania) infantum Activity of Some Natural Sesquiterpene Lactones. Molecules 2017; 22:molecules22050685. [PMID: 28441357 PMCID: PMC6154613 DOI: 10.3390/molecules22050685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
Leishmaniases are neglected infectious diseases caused by parasites of the ‘protozoan’ genus Leishmania. Depending on the parasite species, different clinical forms are known as cutaneous, muco-cutaneous, and the visceral leishmaniasis (VL). VL is particularly fatal and the therapy presents limitations. In the search for new anti-leishmanial hit compounds, seven natural sesquiterpene lactones were evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum, a pathogen causing VL. The pseudoguaianolides mexicanin I and helenalin acetate demonstrated the highest selectivity and potency against intracellular amastigotes. In addition, promastigotes treated with helenalin acetate were subject to an ultrastructural and biochemical investigation. The lethal action of the compound was investigated by fluorescence-activated cell sorting and related techniques to detect alterations in reactive oxygen species (ROS) content, plasma membrane permeability, and mitochondrial membrane potential. Helenalin acetate significantly reduced the mitochondrial membrane potential and the mitochondrial structural damage was also confirmed by transmission electron microscopy, displaying an intense organelle swelling. No alteration of plasma membrane permeability or ROS content could be detected. Additionally, helenalin acetate significantly increased the production of nitric oxide in peritoneal macrophages, probably potentiating the activity against the intracellular amastigotes. Helenalin acetate could hence be a useful anti-leishmanial scaffold for further optimization studies.
Collapse
|