1
|
Gabrielli J, Di Blasi R, Kontoravdi C, Ceroni F. Degradation bottlenecks and resource competition in transiently and stably engineered mammalian cells. Nat Commun 2025; 16:328. [PMID: 39746977 PMCID: PMC11696530 DOI: 10.1038/s41467-024-55311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Degradation tags, otherwise known as degrons, are portable sequences that can be used to alter protein stability. Here, we report that degron-tagged proteins compete for cellular degradation resources in engineered mammalian cells leading to coupling of the degradation rates of otherwise independently expressed proteins when constitutively targeted human degrons are adopted. We show the effect of this competition to be dependent on the context of the degrons. By considering different proteins, degron position and cellular hosts, we highlight how the impact of the degron on both degradation strength and resource coupling changes, with identification of orthogonal combinations. By adopting inducible bacterial and plant degrons we also highlight how controlled uncoupling of synthetic construct degradation from the native machinery can be achieved. We then build a genomically integrated capacity monitor tagged with different degrons and confirm resource competition between genomic and transiently expressed DNA constructs. This work expands the characterisation of resource competition in engineered mammalian cells to protein degradation also including integrated systems, providing a framework for the optimisation of heterologous expression systems to advance applications in fundamental and applied biological research.
Collapse
Affiliation(s)
- Jacopo Gabrielli
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
2
|
Chen X, Xu D, Yu J, Song XJ, Li X, Cui YL. Tryptophan Metabolism Disorder-Triggered Diseases, Mechanisms, and Therapeutic Strategies: A Scientometric Review. Nutrients 2024; 16:3380. [PMID: 39408347 PMCID: PMC11478743 DOI: 10.3390/nu16193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Tryptophan is widely present in foods such as peanuts, milk, and bananas, playing a crucial role in maintaining metabolic homeostasis in health and disease. Tryptophan metabolism is involved in the development and progression of immune, nervous, and digestive system diseases. Although some excellent reviews on tryptophan metabolism exist, there has been no systematic scientometric study as of yet. METHODS This review provides and summarizes research hotspots and potential future directions by analyzing annual publications, topics, keywords, and highly cited papers sourced from Web of Science spanning 1964 to 2022. RESULTS This review provides a scientometric overview of tryptophan metabolism disorder-triggered diseases, mechanisms, and therapeutic strategies. CONCLUSIONS The gut microbiota regulates gut permeability, inflammation, and host immunity by directly converting tryptophan to indole and its derivatives. Gut microbial metabolites regulate tryptophan metabolism by activating specific receptors or enzymes. Additionally, the kynurenine (KYN) pathway, activated by indoleamine-2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase, affects the migration and invasion of glioma cells and the development of COVID-19 and depression. The research and development of IDO inhibitors help to improve the effectiveness of immunotherapy. Tryptophan metabolites as potential markers are used for disease therapy, guiding clinical decision-making. Tryptophan metabolites serve as targets to provide a new promising strategy for neuroprotective/neurotoxic imbalance affecting brain structure and function. In summary, this review provides valuable guidance for the basic research and clinical application of tryptophan metabolism.
Collapse
Affiliation(s)
- Xue Chen
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Yu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu-Jiao Song
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (X.C.); (D.X.); (J.Y.); (X.-J.S.); (X.L.)
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Al-Qahtani Z, Al-Kuraishy HM, Ali NH, Elewa YHA, Batiha GES. Kynurenine pathway in type 2 diabetes: Role of metformin. Drug Dev Res 2024; 85:e22243. [PMID: 39129450 DOI: 10.1002/ddr.22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The Kynurenine pathway (KP) which is involved in the synthesis of nicotinamide adenine dinucleotide (NAD) from tryptophan (Trp) is intricate in the development of insulin resistance (IR) and type 2 diabetes (T2D). Inflammatory reactions in response to cardiometabolic disorders can induce the development of IR through the augmentation of KP. However, kynurenine (KYN), a precursor of kynurenic acid (KA) is increased following physical exercise and involved in the reduction of IR. Consequently, KP metabolites KA and KYN have anti-diabetogenic effects while other metabolites have diabetogenic effects. KP modulators, either inhibitors or activators, affect glucose homeostasis and insulin sensitivity in T2D in a bidirectional way, either protective or detrimental, that is not related to the KP effect. However, metformin through inhibition of inflammatory signaling pathways can reduce the activation of KP in T2D. These findings indicated a strong controversy regarding the role of KP in T2D. Therefore, the objectives of this mini review were to clarify how KP induces the development of IR and T2D. In addition, this review aimed to find the mechanistic role of antidiabetic drug metformin on the KP, and how KP modulators affect the pathogenesis of T2D.
Collapse
Affiliation(s)
- Zainah Al-Qahtani
- Internal Medicine Department, Neurology Section, College of Medicine, King Khaled university, Abha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of internal medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| |
Collapse
|
4
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
5
|
Thomaidou S, Munoz Garcia A, de Lange S, Gan J, van der Slik AR, Hoeben RC, Roep BO, Carlotti F, Zaldumbide A. IFNɣ but not IFNα increases recognition of insulin defective ribosomal product-derived antigen to amplify islet autoimmunity. Diabetologia 2023; 66:2075-2086. [PMID: 37581620 PMCID: PMC10542729 DOI: 10.1007/s00125-023-05991-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
AIMS/HYPOTHESIS The inflammatory milieu characteristic of insulitis affects translation fidelity and generates defective ribosomal products (DRiPs) that participate in autoimmune beta cell destruction in type 1 diabetes. Here, we studied the role of early innate cytokines (IFNα) and late immune adaptive events (IFNɣ) in insulin DRiP-derived peptide presentation to diabetogenic CD8+ T cells. METHODS Single-cell transcriptomics of human pancreatic islets was used to study the composition of the (immuno)proteasome. Specific inhibition of the immunoproteasome catalytic subunits was achieved using siRNA, and antigenic peptide presentation at the cell surface of the human beta cell line EndoC-βH1 was monitored using peptide-specific CD8 T cells. RESULTS We found that IFNγ induces the expression of the PSMB10 transcript encoding the β2i catalytic subunit of the immunoproteasome in endocrine beta cells, revealing a critical role in insulin DRiP-derived peptide presentation to T cells. Moreover, we showed that PSMB10 is upregulated in a beta cell subset that is preferentially destroyed in the pancreases of individuals with type 1 diabetes. CONCLUSIONS/INTERPRETATION Our data highlight the role of the degradation machinery in beta cell immunogenicity and emphasise the need for evaluation of targeted immunoproteasome inhibitors to limit beta cell destruction in type 1 diabetes. DATA AVAILABILITY The single-cell RNA-seq dataset is available from the Gene Expression Omnibus (GEO) using the accession number GSE218316 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE218316 ).
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Amadeo Munoz Garcia
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine de Lange
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jin Gan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arno R van der Slik
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob C Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart O Roep
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Françoise Carlotti
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother 2023; 166:115395. [PMID: 37657259 DOI: 10.1016/j.biopha.2023.115395] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023] Open
Abstract
In recent years, the incidence rate of diabetes mellitus (DM), including type 1 diabetes mellitus(T1DM), type 2 diabetes mellitus(T2DM), and gestational diabetes mellitus (GDM), has increased year by year and has become a major global health problem. DM can lead to serious complications of macrovascular and microvascular. Tryptophan (Trp) is an essential amino acid for the human body. Trp is metabolized in the body through the indole pathway, kynurenine (Kyn) pathway and serotonin (5-HT) pathway, and is regulated by intestinal microorganisms to varying degrees. These three metabolic pathways have extensive regulatory effects on the immune, endocrine, neural, and energy metabolism systems of the body, and are related to the physiological and pathological processes of various diseases. The key enzymes and metabolites in the Trp metabolic pathway are also deeply involved in the pathogenesis of DM, playing an important role in pancreatic function, insulin resistance (IR), intestinal barrier, and angiogenesis. In DM and its complications, there is a disruption of Trp metabolic balance. Several therapy approaches for DM and complications have been proven to modify tryptophan metabolism. The metabolism of Trp is becoming a new area of focus for DM prevention and care. This paper reviews the impact of the three metabolic pathways of Trp on the pathogenesis of DM and the alterations in Trp metabolism in these diseases, expecting to provide entry points for the treatment of DM and its complications.
Collapse
Affiliation(s)
- Jialiang Gao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ting Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bohan Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaojie Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yichen Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaowei Lin
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hongwu Wang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
Orecchini E, Belladonna ML, Pallotta MT, Volpi C, Zizi L, Panfili E, Gargaro M, Fallarino F, Rossini S, Suvieri C, Macchiarulo A, Bicciato S, Mondanelli G, Orabona C. The signaling function of IDO1 incites the malignant progression of mouse B16 melanoma. Oncoimmunology 2023; 12:2170095. [PMID: 36733497 PMCID: PMC9888476 DOI: 10.1080/2162402x.2023.2170095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Indoleamine 2,3 dioxygenase 1 (IDO1), a leader tryptophan-degrading enzyme, represents a recognized immune checkpoint molecule. In neoplasia, IDO1 is often highly expressed in dendritic cells infiltrating the tumor and/or in tumor cells themselves, particularly in human melanoma. In dendritic cells, IDO1 does not merely metabolize tryptophan into kynurenine but, after phosphorylation of critical tyrosine residues in the non-catalytic small domain, it triggers a signaling pathway prolonging its immunoregulatory effects by a feed-forward mechanism. We here investigated whether the non-enzymatic function of IDO1 could also play a role in tumor cells by using B16-F10 mouse melanoma cells transfected with either the wild-type Ido1 gene (Ido1WT ) or a mutated variant lacking the catalytic, but not signaling activity (Ido1H350A ). As compared to the Ido1WT -transfected counterpart (B16WT), B16-F10 cells expressing Ido1H350A (B16H350A) were characterized by an in vitro accelerated growth mediated by increased Ras and Erk activities. Faster growth and malignant progression of B16H350A cells, also detectable in vivo, were found to be accompanied by a reduction in tumor-infiltrating CD8+ T cells and an increase in Foxp3+ regulatory T cells. Our data, therefore, suggest that the IDO1 signaling function can also occur in tumor cells and that alternative therapeutic approach strategies should be undertaken to effectively tackle this important immune checkpoint molecule.
Collapse
Affiliation(s)
- E Orecchini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - ML Belladonna
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - MT Pallotta
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - C Volpi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - L Zizi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - E Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - M Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - F Fallarino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - S Rossini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - C Suvieri
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - A Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - S Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - G Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - C Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy,CONTACT C Orabona Department of Medicine and Surgery, University of Perugia, Piazza Severi, Perugia06129, Italy
| |
Collapse
|
8
|
Panfili E, Orecchini E, Mondanelli G. Unrevealing the Role of TLRs in the Pathogenesis of Autoimmune Disease by Using Mouse Model of Diabetes. Methods Mol Biol 2023; 2700:187-198. [PMID: 37603182 DOI: 10.1007/978-1-0716-3366-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Toll-like receptors (TLRs) are receptors of the innate immune system specialized in recognizing conserved molecular pattern of pathogens and initiating an appropriate immune response. Along with the recognition of foreign materials, TLRs have also been shown to respond to endogenous molecules, thus mediating the development of autoimmune diseases. Type 1 diabetes (T1D) is a prototypic autoimmune disease in which TLRs play a pathogenic role. We here describe a protocol to study the role of TLRs in the development and progression of T1D by resorting to the nonobese diabetic (NOD) mouse model.
Collapse
Affiliation(s)
- Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Orecchini
- Department of Onco-Hematology and Cell and Gene Therapy, Bambin Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| |
Collapse
|
9
|
Jing Z, Li Y, Ma Y, Zhang X, Liang X, Zhang X. Leverage biomaterials to modulate immunity for type 1 diabetes. Front Immunol 2022; 13:997287. [PMID: 36405706 PMCID: PMC9667795 DOI: 10.3389/fimmu.2022.997287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 09/08/2024] Open
Abstract
The pathogeny of type 1 diabetes (T1D) is mainly provoked by the β-cell loss due to the autoimmune attack. Critically, autoreactive T cells firsthand attack β-cell in islet, that results in the deficiency of insulin in bloodstream and ultimately leads to hyperglycemia. Hence, modulating immunity to conserve residual β-cell is a desirable way to treat new-onset T1D. However, systemic immunosuppression makes patients at risk of organ damage, infection, even cancers. Biomaterials can be leveraged to achieve targeted immunomodulation, which can reduce the toxic side effects of immunosuppressants. In this review, we discuss the recent advances in harness of biomaterials to immunomodulate immunity for T1D. We investigate nanotechnology in targeting delivery of immunosuppressant, biological macromolecule for β-cell specific autoreactive T cell regulation. We also explore the biomaterials for developing vaccines and facilitate immunosuppressive cells to restore immune tolerance in pancreas.
Collapse
Affiliation(s)
- Zhangyan Jing
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yumeng Ma
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaozhou Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Xudong Zhang
- Department of Pharmacology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Pallotta MT, Rossini S, Suvieri C, Coletti A, Orabona C, Macchiarulo A, Volpi C, Grohmann U. Indoleamine 2,3-dioxygenase 1 (IDO1): an up-to-date overview of an eclectic immunoregulatory enzyme. FEBS J 2022; 289:6099-6118. [PMID: 34145969 PMCID: PMC9786828 DOI: 10.1111/febs.16086] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the initial rate-limiting step in the degradation of the essential amino acid tryptophan along the kynurenine pathway. When discovered more than 50 years ago, IDO1 was thought to be an effector molecule capable of mediating a survival strategy based on the deprivation of bacteria and tumor cells of the essential amino acid tryptophan. Since 1998, when tryptophan catabolism was discovered to be crucially involved in the maintenance of maternal T-cell tolerance, IDO1 has become the focus of several laboratories around the world. Indeed, IDO1 is now considered as an authentic immune regulator not only in pregnancy, but also in autoimmune diseases, chronic inflammation, and tumor immunity. However, in the last years, a bulk of new information-including structural, biological, and functional evidence-on IDO1 has come to light. For instance, we now know that IDO1 has a peculiar conformational plasticity and, in addition to a complex and highly regulated catalytic activity, is capable of performing a nonenzymic function that reprograms the expression profile of immune cells toward a highly immunoregulatory phenotype. With this state-of-the-art review, we aimed at gathering the most recent information obtained for this eclectic protein as well as at highlighting the major unresolved questions.
Collapse
Affiliation(s)
| | - Sofia Rossini
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Chiara Suvieri
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Alice Coletti
- Department of Pharmaceutical SciencesUniversity of PerugiaItaly
| | - Ciriana Orabona
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | | | - Claudia Volpi
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| | - Ursula Grohmann
- Department of Medicine and SurgeryUniversity of PerugiaItaly
| |
Collapse
|
11
|
Li R, Li H, Yang X, Hu H, Liu P, Liu H. Crosstalk between dendritic cells and regulatory T cells: Protective effect and therapeutic potential in multiple sclerosis. Front Immunol 2022; 13:970508. [PMID: 36177043 PMCID: PMC9513370 DOI: 10.3389/fimmu.2022.970508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system related to autoimmunity and is characterized by demyelination, neuroinflammation, and neurodegeneration. Cell therapies mediated by dendritic cells (DCs) and regulatory T cells (Tregs) have gradually become accumulating focusing in MS, and the protective crosstalk mechanisms between DCs and Tregs provide the basis for the efficacy of treatment regimens. In MS and its animal model experimental autoimmune encephalomyelitis, DCs communicate with Tregs to form immune synapses and complete a variety of complex interactions to counteract the unbalanced immune tolerance. Through different co-stimulatory/inhibitory molecules, cytokines, and metabolic enzymes, DCs regulate the proliferation, differentiation and function of Tregs. On the other hand, Tregs inhibit the mature state and antigen presentation ability of DCs, ultimately improving immune tolerance. In this review, we summarized the pivotal immune targets in the interaction between DCs and Tregs, and elucidated the protective mechanisms of DC-Treg cell crosstalk in MS, finally interpreted the complex cell interplay in the manner of inhibitory feedback loops to explore novel therapeutic directions for MS.
Collapse
Affiliation(s)
- Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongbo Liu,
| |
Collapse
|
12
|
Crocus sativus L. Petal Extract Inhibits Inflammation and Osteoclastogenesis in RAW 264.7 Cell Model. Pharmaceutics 2022; 14:pharmaceutics14061290. [PMID: 35745865 PMCID: PMC9230138 DOI: 10.3390/pharmaceutics14061290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
The dried stigmas of Crocus sativus L. (Iridaceae) are traditionally processed to produce saffron, a spice widely used as a food coloring and flavoring agent, which is important in the pharmaceutical and textile dye-producing industries. The labor-intensive by-hand harvesting and the use of only a small amount of each flower cause saffron to be the most expensive spice in the world. Crocus sp. petals are by-products of saffron production and represent an interesting raw material for the preparation of extracts intended for health protection in the perspective of a circular economy. In the present study, ethanolic extract from Crocus sativus L. petals (Crocus sativus L. petal extract, CsPE) was tested on macrophages by in vitro models of inflammation and osteoclastogenesis. The extract was found to be endowed with anti-inflammatory activity, significantly reducing the nitric oxide production and IL-6 release by RAW 264.7 murine cells. Moreover, CsPE demonstrated an anti-osteoclastogenic effect, as revealed by a complete inhibition of tartrate-resistant acid phosphatase (TRAP)-positive osteoclast formation and a decreased expression of key osteoclast-related genes. This study, which focuses on the macrophage as the target cell of the bioactive extract from Crocus sativus L. petals, suggests that the petal by-product of saffron processing can usefully be part of a circular economy network aimed at producing an extract that potentially prevents bone disruption.
Collapse
|
13
|
Evidence and possible mechanisms of probiotics in the management of type 1 diabetes mellitus. J Diabetes Metab Disord 2022; 21:1081-1094. [PMID: 35673472 PMCID: PMC9167374 DOI: 10.1007/s40200-022-01006-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Abstract Type 1 diabetes mellitus (T1DM) is one of the most common chronic immune-mediated diseases. The prevalence is worldwide especially among children and young adults. The destruction of the pancreatic β-cells due to some abnormalities in the immune system characterizes T1DM. Considering the high burden of the disease and its impact on human health, researchers have made great efforts during the last decades; investigating the disease pathogenesis and discovering new strategies for its management. Fortunately, probiotics have been found as potential remedies for T1DM. This review aims to explore the potentialities of probiotics in managing T1DM and its complications. Based on the outcomes of human and animal studies carried out from 2016 to 2021, the review hopes to assess the effectiveness of probiotics in the prevention and treatment of T1DM and its complications. We first tried to explain the disease's pathogenesis, and highlighted the possible mechanisms involved in these potentialities of probiotics. We concluded that, probiotics can be used as possible therapeutic tools for the management of T1DM. Possible mechanisms of action of probiotics include; the modulation of the gut microbiota, the regulation of inflammation-related cytokines, the production of short chain fatty acids (SCFAs), and the regulation of GLP-1. However, we recommend further studies especially human trials should be carried out to investigate these potentialities of probiotics. Highlights • T1DM is highly prevalent worldwide, causing high morbidity and mortality especially among children and young adults• Gut microbiota plays a significant role in the pathogenesis of T1DM via an interconnection with the immune system• Probiotics can be used as possible therapeutic tools for the management of T1DM• Possible mechanisms of action of probiotics include the modulation of the gut microbiota, the regulation of inflammation-related cytokines, the production of SCFAs, and the regulation of GLP-1.
Collapse
|
14
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
15
|
Bortezomib: a proteasome inhibitor for the treatment of autoimmune diseases. Inflammopharmacology 2021; 29:1291-1306. [PMID: 34424482 DOI: 10.1007/s10787-021-00863-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases (ADs) are conditions in which the immune system cannot distinguish self from non-self and, as a result, tissue injury occurs primarily due to the action of various inflammatory mediators. Different immunosuppressive agents are used for the treatment of patients with ADs, but some clinical cases develop resistance to currently available therapies. The proteasome inhibitor bortezomib (BTZ) is an approved agent for first-line therapy of people with multiple myeloma. BTZ has been shown to improve the symptoms of different ADs in animal models and ameliorated symptoms in patients with systemic lupus erythematous, rheumatoid arthritis, myasthenia gravis, neuromyelitis optica spectrum disorder, Chronic inflammatory demyelinating polyneuropathy, and autoimmune hematologic diseases that were nonresponsive to conventional therapies. Proteasome inhibition provides a potent strategy for treating ADs. BTZ represents a proteasome inhibitor that can potentially be used to treat AD patients resistant to conventional therapies.
Collapse
|
16
|
Orecchini E, Mondanelli G, Orabona C, Volpi C, Adorisio S, Calvitti M, Thuy TT, Delfino DV, Belladonna ML. Artocarpus tonkinensis Extract Inhibits LPS-Triggered Inflammation Markers and Suppresses RANKL-Induced Osteoclastogenesis in RAW264.7. Front Pharmacol 2021; 11:593829. [PMID: 33551802 PMCID: PMC7862131 DOI: 10.3389/fphar.2020.593829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Artocarpus tonkinensis (At) leaf decoction, a traditional remedy prepared in North Vietnam by the Hmong ethnic group, is a tea extract rich in bioactive compounds that may have therapeutic effects in arthritis and backache. Indeed, it has been demonstrated that At is able to inhibit Th17 lymphocytes development and to protect mice in an experimental model of collagen-induced arthritis. By resorting to macrophage in vitro models of inflammation and osteoclastogenesis, we showed that At extract significantly reduced nitric oxide synthase 2 (NOS2) activity and IL-6 production by RAW 264.7 murine cells. Moreover, At demonstrated an anti-osteoclastogenic effect, as revealed by complete inhibition of TRAP-positive osteoclast formation and decreased expression of key osteoclast-related genes. This At activity likely relies on the inhibition of RANK downstream signaling pathway, as the activation of non-receptor tyrosine kinase Src is reduced upon RANKL-At exposure. Protective effect of At against bone loss was also enlightened in vivo by collagen-induced arthritis (CIA) experiment demonstrating that, although paw edema was only weakly opposed by drinking At decoction, bone and cartilage were well preserved in CIA+At mice and joint tissue expressed decreased levels of osteoclast marker genes respect to CIA control group. Maesopsin 4-O-β-D-glucoside (i.e., TAT-2, one of the main decoction bioactive components) was capable to contrast NOS2 activity, IL-6 expression and osteoclast formation, too, albeit to a lesser extent when compared to At decoction. Overall, this study enlightens another At cell target, macrophages, beside Th17 lymphocytes, and suggests that the anti-arthritic beneficial effects of At decoction largely derives from its ability to counteract not only inflammation, but also osteoclastogenesis.
Collapse
Affiliation(s)
- Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sabrina Adorisio
- Department of Medicine and Surgery, Foligno Nursing School, University of Perugia, Perugia, Italy
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Trinh Thi Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Domenico V Delfino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | |
Collapse
|
17
|
Proietti E, Rossini S, Grohmann U, Mondanelli G. Polyamines and Kynurenines at the Intersection of Immune Modulation. Trends Immunol 2020; 41:1037-1050. [PMID: 33055013 DOI: 10.1016/j.it.2020.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Polyamines (i.e., putrescine, spermidine, and spermine) are bioactive polycations capable of binding nucleic acids and proteins and modulating signaling pathways. Polyamine functions have been studied most extensively in tumors, where they can promote cell transformation and proliferation. Recently, spermidine was found to exert protective effects in an experimental model of multiple sclerosis (MS) and to confer immunoregulatory properties on dendritic cells (DCs), via the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. IDO1 converts l-tryptophan into metabolites, collectively known as kynurenines, endowed with several immunoregulatory effects via activation of the arylhydrocarbon receptor (AhR). Because AhR activation increases polyamine production, the emerging scenario has identified polyamines and kynurenines as actors of an immunoregulatory circuitry with potential implications for immunotherapy in autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Elisa Proietti
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Sofia Rossini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| |
Collapse
|
18
|
Mondanelli G, Orecchini E, Volpi C, Panfili E, Belladonna ML, Pallotta MT, Moretti S, Galarini R, Esposito S, Orabona C. Effect of Probiotic Administration on Serum Tryptophan Metabolites in Pediatric Type 1 Diabetes Patients. Int J Tryptophan Res 2020; 13:1178646920956646. [PMID: 33061415 PMCID: PMC7534075 DOI: 10.1177/1178646920956646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 01/11/2023] Open
Abstract
Type 1 diabetes (T1D) is characterized by anomalous functioning of the immuno regulatory, tryptophan-catabolic enzyme indoleamine 2,3 dioxygenase 1 (IDO1). In T1D, the levels of kynurenine-the first byproduct of tryptophan degradation via IDO1-are significantly lower than in nondiabetic controls, such that defective immune regulation by IDO1 has been recognized as potentially contributing to autoimmunity in T1D. Because tryptophan catabolism-and the production of immune regulatory catabolites-also occurs via the gut microbiota, we measured serum levels of tryptophan, and metabolites thereof, in pediatric, diabetic patients after a 3-month oral course of Lactobacillus rhamnosus GG. Daily administration of the probiotic significantly affected circulating levels of tryptophan as well as the qualitative pattern of metabolite formation in the diabetic patients, while it decreased inflammatory cytokine production by the patients. This study suggests for the first time that a probiotic treatment may affect systemic tryptophan metabolism and restrain proinflammatory profile in pediatric T1D.
Collapse
Affiliation(s)
- Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Elena Orecchini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eleonora Panfili
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | | | - Simone Moretti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati," Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati," Perugia, Italy
| | - Susanna Esposito
- Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Essa MM, Hamdan H, Chidambaram SB, Al-Balushi B, Guillemin GJ, Ojcius DM, Qoronfleh MW. Possible role of tryptophan and melatonin in COVID-19. Int J Tryptophan Res 2020; 13:1178646920951832. [PMID: 32913393 PMCID: PMC7443751 DOI: 10.1177/1178646920951832] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| | - Hamdan Hamdan
- Department of Physiology, College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Buthainah Al-Balushi
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - David M Ojcius
- Biomedical Sciences Department, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco CA, USA
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar
| |
Collapse
|
20
|
Mondanelli G, Di Battista V, Pellanera F, Mammoli A, Macchiarulo A, Gargaro M, Mavridou E, Matteucci C, Ruggeri L, Orabona C, Volpi C, Grohmann U, Mecucci C. A novel mutation of indoleamine 2,3-dioxygenase 1 causes a rapid proteasomal degradation and compromises protein function. J Autoimmun 2020; 115:102509. [PMID: 32605792 DOI: 10.1016/j.jaut.2020.102509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) - the enzyme catalyzing the rate-limiting step of tryptophan catabolism along the kynurenine pathway - belongs to the class of inhibitory immune checkpoint molecules. Such regulators of the immune system are crucial for maintaining self-tolerance and thus, when properly working, preventing autoimmunity. A dysfunctional IDO1 has recently been associated with a specific single nucleotide polymorphism (SNP) and with the occurrence of autoimmune diabetes and multiple sclerosis. Many genetic alterations of IDO1 have been proposed being related with dysimmune disorders. However, the molecular and functional meaning of variations in IDO1 exomes as well as the promoter region remains a poorly explored field. In the present study, we identified a rare missense variant (rs751360195) at the IDO1 gene in a patient affected by coeliac disease, thyroiditis, and selective immunoglobulin A deficiency. Molecular and functional studies demonstrated that the substitution of lysine (K) at position 257 with a glutamic acid (E) results in an altered IDO1 protein that undergoes a rapid protein turnover. This genotype-to-phenotype relation is produced by peripheral blood mononuclear cells (PBMCs) of the patient bearing this variation and is associated with a specific phenotype (i.e., impaired tryptophan catabolism and defective mechanisms of immune tolerance). Thus decoding functional mutations of the IDO1 exome may provide clinically relevant information exploitable to personalize therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Andrea Mammoli
- Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
22
|
Belladonna ML, Orabona C. Potential Benefits of Tryptophan Metabolism to the Efficacy of Tocilizumab in COVID-19. Front Pharmacol 2020; 11:959. [PMID: 32636755 PMCID: PMC7319082 DOI: 10.3389/fphar.2020.00959] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/11/2020] [Indexed: 12/30/2022] Open
Abstract
Tocilizumab has been proposed as a means of opposing hyperinflammatory responses in intensive care patients with COVID-19. Here, we briefly discuss the potentially multiple, synergistic mechanisms whereby tocilizumab might exert therapeutic activity, mostly focusing on the production of tryptophan-derived catabolites that would result from blockade of IL-6 signaling, as contextualized to the cytokine storm occurring in COVID-19 patients.
Collapse
Affiliation(s)
| | - Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Positive allosteric modulation of indoleamine 2,3-dioxygenase 1 restrains neuroinflammation. Proc Natl Acad Sci U S A 2020; 117:3848-3857. [PMID: 32024760 DOI: 10.1073/pnas.1918215117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.
Collapse
|
24
|
Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 2019; 18:379-401. [PMID: 30760888 DOI: 10.1038/s41573-019-0016-5] [Citation(s) in RCA: 934] [Impact Index Per Article: 155.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
L-Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is involved in the regulation of immunity, neuronal function and intestinal homeostasis. Imbalances in Trp metabolism in disorders ranging from cancer to neurodegenerative disease have stimulated interest in therapeutically targeting the KP, particularly the main rate-limiting enzymes indoleamine-2,3-dioxygenase 1 (IDO1), IDO2 and tryptophan-2,3-dioxygenase (TDO) as well as kynurenine monooxygenase (KMO). However, although small-molecule IDO1 inhibitors showed promise in early-stage cancer immunotherapy clinical trials, a phase III trial was negative. This Review summarizes the physiological and pathophysiological roles of Trp metabolism, highlighting the vast opportunities and challenges for drug development in multiple diseases.
Collapse
|
25
|
Gualdoni GS, Jacobo PV, Sobarzo CM, Pérez CV, Matzkin ME, Höcht C, Frungieri MB, Hill M, Anegon I, Lustig L, Guazzone VA. Role of indoleamine 2,3-dioxygenase in testicular immune-privilege. Sci Rep 2019; 9:15919. [PMID: 31685866 PMCID: PMC6828782 DOI: 10.1038/s41598-019-52192-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/12/2019] [Indexed: 02/07/2023] Open
Abstract
Male meiotic germ cell including the spermatozoa represent a great challenge to the immune system, as they appear long after the establishment of normal immune tolerance mechanisms. The capacity of the testes to tolerate autoantigenic germ cells as well as survival of allogeneic organ engrafted in the testicular interstitium have led to consider the testis an immunologically privileged site. Disruption of this immune privilege following trauma, tumor, or autoimmune orchitis often results in male infertility. Strong evidence indicates that indoleamine 2,3-dioxygenase (IDO) has been implicated in fetal and allograft tolerance, tumor immune resistance, and regulation of autoimmune diseases. IDO and tryptophan 2,3-dioxygenase (TDO) catalyze the same rate-limiting step of tryptophan metabolism along a common pathway, which leads to tryptophan starvation and generation of catabolites collectively known as kynurenines. However, the relevance of tryptophan metabolism in testis pathophysiology has not yet been explored. Here we assessed the in vivo role of IDO/TDO in experimental autoimmune orchitis (EAO), a model of autoimmune testicular inflammation and immunologically impaired spermatogenesis. EAO was induced in adult Wistar rats with testicular homogenate and adjuvants. Control (C) rats injected with saline and adjuvants and normal untreated rats (N) were also studied. mRNA expression of IDO decreased in whole testes and in isolated Sertoli cells during EAO. TDO and IDO localization and level of expression in the testis were analyzed by immunostaining and Western blot. TDO is expressed in granulomas from EAO rats, and similar protein levels were observed in N, C, and EAO groups. IDO was detected in mononuclear and endothelial cells and reduced IDO expression was detected in EAO group compared to N and C rats. This phenomenon was concomitant with a significant reduction of IDO activity in EAO testis measured by tryptophan and kynurenine concentrations (HPLC). Finally, in vivo inhibition of IDO with 1-methyl-tryptophan increased severity of the disease, demonstrating down regulation of IDO-based tolerance when testicular immune regulation was disrupted. We present evidence that an IDO-based mechanism is involved in testicular immune privilege.
Collapse
Affiliation(s)
- Gisela S Gualdoni
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Patricia V Jacobo
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Cristian M Sobarzo
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Cecilia V Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - María E Matzkin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Christian Höcht
- Cátedra de Farmacología. Facultad de Farmacia y Bioquímica, UBA, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Mónica B Frungieri
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Ciudad Autónoma de Buenos Aires, C1428ADN, Argentina
| | - Marcelo Hill
- Laboratory of Immunoregulation and Inflammation, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.,Immunobiology Department, Faculty of Medicine, University of the Republic, 11800, Montevideo, Uruguay
| | - Ignacio Anegon
- Inserm, Université de Nantes, Centre de Recherche en Transplantation et Immunologie, Nantes, France, INSERM UMR 1064, France
| | - Livia Lustig
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Vanesa A Guazzone
- Universidad de Buenos Aires (UBA), Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II., Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.
| |
Collapse
|
26
|
Mondanelli G, Iacono A, Allegrucci M, Puccetti P, Grohmann U. Immunoregulatory Interplay Between Arginine and Tryptophan Metabolism in Health and Disease. Front Immunol 2019; 10:1565. [PMID: 31354721 PMCID: PMC6629926 DOI: 10.3389/fimmu.2019.01565] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Massimo Allegrucci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
27
|
Mondanelli G, Iacono A, Carvalho A, Orabona C, Volpi C, Pallotta MT, Matino D, Esposito S, Grohmann U. Amino acid metabolism as drug target in autoimmune diseases. Autoimmun Rev 2019; 18:334-348. [DOI: 10.1016/j.autrev.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
|
28
|
Albini E, Coletti A, Greco F, Pallotta M, Mondanelli G, Gargaro M, Belladonna M, Volpi C, Bianchi R, Grohmann U, Macchiarulo A, Orabona C. Identification of a 2-propanol analogue modulating the non-enzymatic function of indoleamine 2,3-dioxygenase 1. Biochem Pharmacol 2018; 158:286-297. [DOI: 10.1016/j.bcp.2018.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
|
29
|
Orabona C, Mondanelli G, Puccetti P, Grohmann U. Immune Checkpoint Molecules, Personalized Immunotherapy, and Autoimmune Diabetes. Trends Mol Med 2018; 24:931-941. [PMID: 30236470 DOI: 10.1016/j.molmed.2018.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
Although significant progress has been made in understanding autoimmunity, no immunotherapy to effectively halt immune-mediated destruction of β cells in type 1 diabetes (T1D) is currently available. For successful immunotherapy it will be necessary to identify novel drug targets as well as robust immunologic biomarkers to predict disease heterogeneity and patient responsiveness. Inhibition of immune checkpoint mechanisms represents a novel and effective strategy in tumor immunotherapy. Because they are fundamental to rewiring immune circuits, the underlying mechanisms could be therapeutically enhanced and used as biomarkers in T1D. We examine here current knowledge of immune checkpoint molecules in T1D. One specific immune checkpoint mechanism, namely tryptophan metabolism, may meet the need for a valid drug target and robust biomarker in the quest for effective and personalized immunotherapy in T1D.
Collapse
Affiliation(s)
- Ciriana Orabona
- University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | | | - Paolo Puccetti
- University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Ursula Grohmann
- University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy.
| |
Collapse
|
30
|
Anquetil F, Mondanelli G, Gonzalez N, Rodriguez Calvo T, Zapardiel Gonzalo J, Krogvold L, Dahl-Jørgensen K, Van den Eynde B, Orabona C, Grohmann U, von Herrath MG. Loss of IDO1 Expression From Human Pancreatic β-Cells Precedes Their Destruction During the Development of Type 1 Diabetes. Diabetes 2018; 67:1858-1866. [PMID: 29945890 PMCID: PMC6110313 DOI: 10.2337/db17-1281] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Indoleamine 2,3 dioxygenase-1 (IDO1) is a powerful immunoregulatory enzyme that is deficient in patients with type 1 diabetes (T1D). In this study, we present the first systematic evaluation of IDO1 expression and localization in human pancreatic tissue. Although IDO1 was constitutively expressed in β-cells from donors without diabetes, less IDO1 was expressed in insulin-containing islets from double autoantibody-positive donors and patients with recent-onset T1D, although it was virtually absent in insulin-deficient islets from donors with T1D. Scatter plot analysis suggested that IDO1 decay occurred in individuals with multiple autoantibodies, prior to β-cell demise. IDO1 impairment might therefore contribute to β-cell demise and could potentially emerge as a promising therapeutic target.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Autoantibodies/metabolism
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- Autoimmune Diseases/pathology
- Autoimmune Diseases/physiopathology
- Autoimmunity
- Cadaver
- Cohort Studies
- Cross-Sectional Studies
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Disease Progression
- Down-Regulation
- Female
- Fluorescent Antibody Technique, Indirect
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Insulin/metabolism
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Male
- Middle Aged
- Prediabetic State/immunology
- Prediabetic State/metabolism
- Prediabetic State/pathology
- Prediabetic State/physiopathology
- Protein Transport
- Young Adult
Collapse
Affiliation(s)
| | | | | | | | | | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Benoit Van den Eynde
- de Duve Institute, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
| | | | | | - Matthias G von Herrath
- La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Novo Nordisk Diabetes Research & Development Center, Seattle, WA
| |
Collapse
|
31
|
Orabona C, Mondanelli G, Pallotta MT, Carvalho A, Albini E, Fallarino F, Vacca C, Volpi C, Belladonna ML, Berioli MG, Ceccarini G, Esposito SM, Scattoni R, Verrotti A, Ferretti A, De Giorgi G, Toni S, Cappa M, Matteoli MC, Bianchi R, Matino D, Iacono A, Puccetti M, Cunha C, Bicciato S, Antognelli C, Talesa VN, Chatenoud L, Fuchs D, Pilotte L, Van den Eynde B, Lemos MC, Romani L, Puccetti P, Grohmann U. Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1in juvenile diabetes. JCI Insight 2018; 3:96244. [PMID: 29563329 DOI: 10.1172/jci.insight.96244] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory tryptophan catabolism, impairs development of immune tolerance to autoantigens in NOD mice, a model for human autoimmune type 1 diabetes (T1D). Whether IDO1 function is also defective in T1D is still unknown. We investigated IDO1 function in sera and peripheral blood mononuclear cells (PBMCs) from children with T1D and matched controls. These children were further included in a discovery study to identify SNPs in IDO1 that might modify the risk of T1D. T1D in children was characterized by a remarkable defect in IDO1 function. A common haplotype, associated with dysfunctional IDO1, increased the risk of developing T1D in the discovery and also confirmation studies. In T1D patients sharing such a common IDO1 haplotype, incubation of PBMCs in vitro with tocilizumab (TCZ) - an IL-6 receptor blocker - would, however, rescue IDO1 activity. In an experimental setting with diabetic NOD mice, TCZ was found to restore normoglycemia via IDO1-dependent mechanisms. Thus, functional SNPs of IDO1 are associated with defective tryptophan catabolism in human T1D, and maneuvers aimed at restoring IDO1 function would be therapeutically effective in at least a subgroup of T1D pediatric patients.
Collapse
Affiliation(s)
- Ciriana Orabona
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giada Mondanelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Maria T Pallotta
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elisa Albini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Carmine Vacca
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Maria L Belladonna
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Maria G Berioli
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Giulia Ceccarini
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.,Pediatric Clinic of S. Maria della Misericordia Hospital, Perugia, Italy
| | - Susanna Mr Esposito
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.,Pediatric Clinic of S. Maria della Misericordia Hospital, Perugia, Italy
| | - Raffaella Scattoni
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.,Pediatric Clinic of S. Maria della Misericordia Hospital, Perugia, Italy
| | - Alberto Verrotti
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.,Pediatric Clinic of S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Giovanni De Giorgi
- Pediatric Clinic of S. Maria della Misericordia Hospital, Perugia, Italy
| | - Sonia Toni
- Juvenile Diabetes Center, Anna Meyer Children's Hospital, Florence, Italy
| | - Marco Cappa
- Unit of Endocrinology and Diabetes, 'Bambino Gesù' Children's Hospital, Rome, Italy
| | - Maria C Matteoli
- Unit of Endocrinology and Diabetes, 'Bambino Gesù' Children's Hospital, Rome, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Davide Matino
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Alberta Iacono
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Matteo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Vincenzo N Talesa
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucienne Chatenoud
- INSERM U1013, Hôpital Necker-Enfants Malades and Université Paris Descartes, Paris, France
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University, Innsbruck, Austria
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Walloon Excellence in Life Sciences and Biotechnology and.,De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Walloon Excellence in Life Sciences and Biotechnology and.,De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ursula Grohmann
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|