1
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Sato Y, Osada E, Ushiki T, Maeda T, Manome Y. UDP-glucose ceramide glucosyltransferase specifically upregulated in plasmacytoid dendritic cells regulates type I interferon production upon CpG stimulation. Biochem Biophys Res Commun 2024; 733:150703. [PMID: 39307111 DOI: 10.1016/j.bbrc.2024.150703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Plasmacytoid dendritic cells (pDCs) are a distinct subset of DCs involved in immune regulation and antiviral immune responses. Recent studies have elucidated the metabolic profile of pDCs and reported that perturbations in amino acid metabolism can modulate their immune functions. Glycolipid metabolism is suggested to be highly active in pDCs; however, its significance remains unclear. In this study, bulk RNA-sequencing analysis confirmed the known pDC-marker expressions, including interleukin (IL)-3R (CD123), BDCA-2 (CD303), BDCA-4 (CD304), and toll-like receptor 9, compared with that of myeloid DCs (mDCs). Among the differentially expressed genes, UDP-glucose-ceramide glucosyltransferase (UGCG) expression was significantly upregulated in pDCs than in mDCs. Moreover, pDC-specific UGCG expression was observed at both the mRNA and protein levels in pDCs and pDC-like cell lines, including CAL-1 and PMDC05 cell lines. Pharmacological or clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9-mediated genetic inhibition of UGCG did not affect the pDC phenotype as evidenced by the persistent expression of IL-3R and BDCA-2 in pDC-like cell lines. However, UGCG knockout resulted in reduced type I interferon production in pDCs upon CpG activation. In addition, UGCG-knockout pDC-like cell lines exhibited reduced transduction by vesicular stomatitis virus-G pseudo-typed lentiviral vectors, suggesting that low UGCG expression hinders infectivity. Collectively, our findings suggest that pDC-specific UGCG expression is critical for cytokine production and antiviral immune responses in pDCs.
Collapse
Affiliation(s)
- Yohei Sato
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
| | - Erika Osada
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Ushiki
- Division of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Takahiro Maeda
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshinobu Manome
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Araujo AM, Dekker JD, Garrison K, Su Z, Rhee C, Hu Z, Lee BK, Osorio D, Lee J, Iyer VR, Ehrlich LIR, Georgiou G, Ippolito G, Yi S, Tucker HO. Lymphoid origin of intrinsically activated plasmacytoid dendritic cells in mice. eLife 2024; 13:RP96394. [PMID: 39269281 PMCID: PMC11398865 DOI: 10.7554/elife.96394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
We identified a novel mouse plasmacytoid dendritic cell (pDC) lineage derived from the common lymphoid progenitors (CLPs) that is dependent on expression of Bcl11a. These CLP-derived pDCs, which we refer to as 'B-pDCs', have a unique gene expression profile that includes hallmark B cell genes, normally not expressed in conventional pDCs. Despite expressing most classical pDC markers such as SIGLEC-H and PDCA1, B-pDCs lack IFN-α secretion, exhibiting a distinct inflammatory profile. Functionally, B-pDCs induce T cell proliferation more robustly than canonical pDCs following Toll-like receptor 9 (TLR9) engagement. B-pDCs, along with another homogeneous subpopulation of myeloid-derived pDCs, display elevated levels of the cell surface receptor tyrosine kinase AXL, mirroring human AXL+ transitional DCs in function and transcriptional profile. Murine B-pDCs therefore represent a phenotypically and functionally distinct CLP-derived DC lineage specialized in T cell activation and previously not described in mice.
Collapse
Affiliation(s)
| | - Joseph D Dekker
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Kendra Garrison
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Zhe Su
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Catherine Rhee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Zicheng Hu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Bum-Kyu Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Daniel Osorio
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Jiwon Lee
- Department of Chemical Engineering, The University of Texas at Austin, Austin, United States
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Gregory Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Stephen Yi
- Department of Biomedical Engineering, and Livestrong Cancer Institutes, The University of Texas at Austin, Austin, United States
| | - Haley O Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
4
|
Joseph J, Premeaux TA, Tandon R, Murphy EL, Bruhn R, Nicot C, Herrera BB, Lemenze A, Alatrash R, Baffour Tonto P, Ndhlovu LC, Jain P. Dendritic Cells Pulsed with HAM/TSP Exosomes Sensitize CD4 T Cells to Enhance HTLV-1 Infection, Induce Helper T-Cell Polarization, and Decrease Cytotoxic T-Cell Response. Viruses 2024; 16:1443. [PMID: 39339919 PMCID: PMC11436225 DOI: 10.3390/v16091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a progressive demyelinating disease of the spinal cord due to chronic inflammation. Hallmarks of disease pathology include dysfunctional anti-viral responses and the infiltration of HTLV-1-infected CD4+ T cells and HTLV-1-specific CD8+ T cells in the central nervous system. HAM/TSP individuals exhibit CD4+ and CD8+ T cells with elevated co-expression of multiple inhibitory immune checkpoint proteins (ICPs), but ICP blockade strategies can only partially restore CD8+ T-cell effector function. Exosomes, small extracellular vesicles, can enhance the spread of viral infections and blunt anti-viral responses. Here, we evaluated the impact of exosomes isolated from HTLV-1-infected cells and HAM/TSP patient sera on dendritic cell (DC) and T-cell phenotypes and function. We observed that exosomes derived from HTLV-infected cell lines (OSP2) elicit proinflammatory cytokine responses in DCs, promote helper CD4+ T-cell polarization, and suppress CD8+ T-cell effector function. Furthermore, exosomes from individuals with HAM/TSP stimulate CD4+ T-cell polarization, marked by increased Th1 and regulatory T-cell differentiation. We conclude that exosomes in the setting of HAM/TSP are detrimental to DC and T-cell function and may contribute to the progression of pathology with HTLV-1 infection.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Thomas A. Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornel Medicine, New York, NY 10021, USA; (T.A.P.); (L.C.N.)
| | - Ritesh Tandon
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Edward L. Murphy
- Departments of Laboratory Medicine and Epidemiology/Biostatistics, University of California, San Francisco, CA 94143, USA
- Vitalant Research Institute, San Francisco, CA 94105, USA
| | - Roberta Bruhn
- Vitalant Research Institute, San Francisco, CA 94105, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA;
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, Newark, NJ 07102, USA (P.B.T.)
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alexander Lemenze
- Molecular and Genomics Informatics Core, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, Newark, NJ 07102, USA (P.B.T.)
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Prince Baffour Tonto
- Rutgers Global Health Institute, Rutgers University, Newark, NJ 07102, USA (P.B.T.)
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases, and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornel Medicine, New York, NY 10021, USA; (T.A.P.); (L.C.N.)
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
5
|
McGinnis CS, Miao Z, Superville D, Yao W, Goga A, Reticker-Flynn NE, Winkler J, Satpathy AT. The temporal progression of lung immune remodeling during breast cancer metastasis. Cancer Cell 2024; 42:1018-1031.e6. [PMID: 38821060 PMCID: PMC11255555 DOI: 10.1016/j.ccell.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 03/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Tumor metastasis requires systemic remodeling of distant organ microenvironments that impacts immune cell phenotypes, population structure, and intercellular communication. However, our understanding of immune phenotypic dynamics in the metastatic niche remains incomplete. Here, we longitudinally assayed lung immune transcriptional profiles in the polyomavirus middle T antigen (PyMT) and 4T1 metastatic breast cancer models from primary tumorigenesis, through pre-metastatic niche formation, to the final stages of metastatic outgrowth at single-cell resolution. Computational analyses of these data revealed a TLR-NFκB inflammatory program enacted by both peripherally derived and tissue-resident myeloid cells that correlated with pre-metastatic niche formation and mirrored CD14+ "activated" myeloid cells in the primary tumor. Moreover, we observed that primary tumor and metastatic niche natural killer (NK) cells are differentially regulated in mice and human patient samples, with the metastatic niche featuring elevated cytotoxic NK cell proportions. Finally, we identified cell-type-specific dynamic regulation of IGF1 and CCL6 signaling during metastatic progression that represents anti-metastatic immunotherapy candidate pathways.
Collapse
Affiliation(s)
- Christopher S McGinnis
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Zhuang Miao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Daphne Superville
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | - Winnie Yao
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Andrei Goga
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Department of Medicine, UCSF, San Francisco, CA 94143, USA
| | | | - Juliane Winkler
- Center for Cancer Research, Medical University of Vienna, Vienna 1090, Austria.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA.
| |
Collapse
|
6
|
Ahodantin J, Wu J, Funaki M, Flores J, Wang X, Zheng P, Liu Y, Su L. Siglec-H -/- Plasmacytoid Dendritic Cells Protect Against Acute Liver Injury by Suppressing IFN-γ/Th1 Response and Promoting IL-21 + CD4 T Cells. Cell Mol Gastroenterol Hepatol 2024; 18:101367. [PMID: 38849082 PMCID: PMC11296256 DOI: 10.1016/j.jcmgh.2024.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND & AIMS Siglec-H is a receptor specifically expressed in mouse plasmacytoid dendritic cells (pDCs), which functions as a negative regulator of interferon-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS Using the model of concanavalin A-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. Anti-BDCA2 antibody, anti-interleukin (IL)-21R antibody, and Stat3 inhibitor were used to specifically deplete pDCs, block IL21 receptor, and inhibit Stat3 signaling, respectively. Splenocytes and purified naive CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with phorbol myristate acetate/ionomycin and CD3/CD28 beads, respectively. RESULTS Data showed that specific depletion of pDCs aggravated concanavalin A-induced ALI. Remarkably, alanine aminotransferase, hyaluronic acid, and proinflammatory cytokines IL6 and tumor necrosis factor-α levels were lower in the blood and liver of Siglec-H knockout mice. This was associated with attenuation of both interferon-γ/Th1 response and Stat1 signaling in the liver of Siglec-H knockout mice while intrahepatic IL21 and Stat3 signaling pathways were upregulated. Blocking IL21R or Stat3 signaling in Siglec-H knockout mice restored concanavalin A-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T-cell activation and promotion of IL21+CD4 T cells in the liver. CONCLUSIONS During T-cell-mediated ALI, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.
Collapse
Affiliation(s)
- James Ahodantin
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Jiapeng Wu
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Masaya Funaki
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jair Flores
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xu Wang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Yang Liu
- OncoC4, Inc, Rockville, Maryland
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
7
|
Li G, Zhao X, Zheng Z, Zhang H, Wu Y, Shen Y, Chen Q. cGAS-STING pathway mediates activation of dendritic cell sensing of immunogenic tumors. Cell Mol Life Sci 2024; 81:149. [PMID: 38512518 PMCID: PMC10957617 DOI: 10.1007/s00018-024-05191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Type I interferons (IFN-I) play pivotal roles in tumor therapy for three decades, underscoring the critical importance of maintaining the integrity of the IFN-1 signaling pathway in radiotherapy, chemotherapy, targeted therapy, and immunotherapy. However, the specific mechanism by which IFN-I contributes to these therapies, particularly in terms of activating dendritic cells (DCs), remains unclear. Based on recent studies, aberrant DNA in the cytoplasm activates the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) signaling pathway, which in turn produces IFN-I, which is essential for antiviral and anticancer immunity. Notably, STING can also enhance anticancer immunity by promoting autophagy, inflammation, and glycolysis in an IFN-I-independent manner. These research advancements contribute to our comprehension of the distinctions between IFN-I drugs and STING agonists in the context of oncology therapy and shed light on the challenges involved in developing STING agonist drugs. Thus, we aimed to summarize the novel mechanisms underlying cGAS-STING-IFN-I signal activation in DC-mediated antigen presentation and its role in the cancer immune cycle in this review.
Collapse
Affiliation(s)
- Guohao Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zuda Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hucheng Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yundi Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
8
|
Hu H, Zhang M. Correlation analysis between peripheral blood dendritic cell subsets and PD-1 in patients with peritoneal adenocarcinoma. Braz J Med Biol Res 2024; 57:e13192. [PMID: 38381884 PMCID: PMC10880883 DOI: 10.1590/1414-431x2023e13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
The aim of this study was to explore the association between differential percentages of dendritic cell (DC) subsets in peripheral blood and malignancy (grade and lymph node metastasis) of peritoneal adenocarcinoma patients and the frequencies of dendritic cell subsets in the normal controls. The peripheral blood of 30 patients with peritoneal adenocarcinoma and 12 healthy controls were collected for multicolor flow cytometry analysis. Peritoneal adenocarcinoma patients were grouped according to the malignant degree (grade and lymph node metastasis). Percentages of myeloid DCs (mDCs) and its subsets MDC1 and MDC2 in DCs were lower in peripheral blood of patients with peritoneal adenocarcinoma than in normal controls. The percentages of plasmacytoid dendritic cells (pDCs) and CD16+mDCs in DCs were higher than in normal controls. Compared with poor differentiation grade, patients with well/moderate differentiation grade had an increased percentage of CD16+mDCs. Contrary to CD16+mDCs, the percentage of MDC1 was lower in the well/moderate differentiation grade group. In patients with no lymph node metastasis, pDCs and CD16+mDCs levels were higher compared with patients with lymph node metastasis. mDCs and MDC1 levels had opposite results. pDCs were positively correlated with CD16+mDCs in peripheral blood of peritoneal patients, as was mDCs and MDC1. CD16+mDCs were negatively correlated with MDC1. The percentages of pDCs and CD16+mDCs in DCs were positively correlated with CD3+CD8+T cells, and pDCs also positively correlated with CD8+PD-1+T cells. Our results revealed that DCs subsets correlated with peritoneal adenocarcinoma malignancy. Dendritic cells play an independent role in the immune function of peritoneal adenocarcinoma.
Collapse
Affiliation(s)
- Huihui Hu
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Department of Clinical Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| |
Collapse
|
9
|
París-Muñoz A, León-Triana O, Pérez-Martínez A, Barber DF. Helios as a Potential Biomarker in Systemic Lupus Erythematosus and New Therapies Based on Immunosuppressive Cells. Int J Mol Sci 2023; 25:452. [PMID: 38203623 PMCID: PMC10778776 DOI: 10.3390/ijms25010452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
The Helios protein (encoded by the IKZF2 gene) is a member of the Ikaros transcription family and it has recently been proposed as a promising biomarker for systemic lupus erythematosus (SLE) disease progression in both mouse models and patients. Helios is beginning to be studied extensively for its influence on the T regulatory (Treg) compartment, both CD4+ Tregs and KIR+/Ly49+ CD8+ Tregs, with alterations to the number and function of these cells correlated to the autoimmune phenomenon. This review analyzes the most recent research on Helios expression in relation to the main immune cell populations and its role in SLE immune homeostasis, specifically focusing on the interaction between T cells and tolerogenic dendritic cells (tolDCs). This information could be potentially useful in the design of new therapies, with a particular focus on transfer therapies using immunosuppressive cells. Finally, we will discuss the possibility of using nanotechnology for magnetic targeting to overcome some of the obstacles related to these therapeutic approaches.
Collapse
Affiliation(s)
- Andrés París-Muñoz
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Odelaisy León-Triana
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, Hospital Universitario La Paz, 28049 Madrid, Spain; (O.L.-T.); (A.P.-M.)
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049 Madrid, Spain
| | - Domingo F. Barber
- Department of Immunology and Oncology and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain;
| |
Collapse
|
10
|
Li Q, Qu L, Miao Y, Li Q, Zhang J, Zhao Y, Cheng R. A gene network database for the identification of key genes for diagnosis, prognosis, and treatment in sepsis. Sci Rep 2023; 13:21815. [PMID: 38071387 PMCID: PMC10710458 DOI: 10.1038/s41598-023-49311-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Sepsis and sepsis-related diseases cause a high rate of mortality worldwide. The molecular and cellular mechanisms of sepsis are still unclear. We aim to identify key genes in sepsis and reveal potential disease mechanisms. Six sepsis-related blood transcriptome datasets were collected and analyzed by weighted gene co-expression network analysis (WGCNA). Functional annotation was performed in the gProfiler tool. DSigDB was used for drug signature enrichment analysis. The proportion of immune cells was estimated by the CIBERSORT tool. The relationships between modules, immune cells, and survival were identified by correlation analysis and survival analysis. A total of 37 stable co-expressed gene modules were identified. These modules were associated with the critical biology process in sepsis. Four modules can independently separate patients with long and short survival. Three modules can recurrently separate sepsis and normal patients with high accuracy. Some modules can separate bacterial pneumonia, influenza pneumonia, mixed bacterial and influenza A pneumonia, and non-infective systemic inflammatory response syndrome (SIRS). Drug signature analysis identified drugs associated with sepsis, such as testosterone, phytoestrogens, ibuprofen, urea, dichlorvos, potassium persulfate, and vitamin B12. Finally, a gene co-expression network database was constructed ( https://liqs.shinyapps.io/sepsis/ ). The recurrent modules in sepsis may facilitate disease diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Qingsheng Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Lili Qu
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Yurui Miao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Qian Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Jing Zhang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Yongxue Zhao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China
| | - Rui Cheng
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, People's Republic of China.
| |
Collapse
|
11
|
Petrovic A, Bergen LLT, Solberg SM, Sarkar I, Bergum B, Davies R, Jonsson R, Appel S. Biological treatment in severe psoriasis: Influence on peripheral blood dendritic cells. Scand J Immunol 2023; 98:e13321. [PMID: 38441394 DOI: 10.1111/sji.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
In-depth immunophenotyping by flow cytometry of peripheral blood dendritic cell (DC) populations of psoriasis vulgaris without (PsO; N = 23) or with psoriatic arthritis (PsA; N = 15), before (T1) and after 12 months (T2) therapy with the anti-TNF drugs infliximab, etanercept, the anti-IL-17A secukinumab and the anti-IL12/IL-23 ustekinumab. Compared to healthy donors (N = 38), patients with PsA displayed lower frequencies of dendritic cell subsets pDC, cDC1 and cDC2, which were normalized following treatment except pDC. In contrast, patients with PsO only displayed lower frequencies of pDC which were normalized following treatment. Figure created with BioRender.com.
Collapse
Affiliation(s)
- Aleksandra Petrovic
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lisa Lynn Ten Bergen
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Silje Michelsen Solberg
- Department of Dermatology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Irene Sarkar
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brith Bergum
- Core Facility for Flow Cytometry, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Davies
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Core Facility for Flow Cytometry, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Dombroski JA, Antunovic M, Schaffer KR, Hurley PJ, King MR. Activation of Dendritic Cells Isolated from the Blood of Patients with Prostate Cancer by Ex Vivo Fluid Shear Stress Stimulation. Curr Protoc 2023; 3:e933. [PMID: 38047658 PMCID: PMC11178276 DOI: 10.1002/cpz1.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Prostate cancer is one of the most common cancers among men in the United States and a leading cause of cancer-related death in men. Treatment options for patients with advanced prostate cancer include hormone therapies, chemotherapies, radioligand therapies, and immunotherapies. Provenge (sipuleucel-T) is an autologous cancer-vaccine-based immunotherapy approved for men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). Administration of sipuleucel-T involves leukapheresis of patient blood to isolate antigen-presenting cells (APCs), including dendritic cells (DCs), and subsequent incubation of isolated APCs with both an antigen, prostatic acid phosphatase (PAP), and granulocyte macrophage-colony stimulating factor (GM-CSF) before their infusion back into the patient. Although sipuleucel-T has been shown to improve overall survival, other meaningful outcomes, such as prostate-specific antigen (PSA) levels and radiographic response, are inconsistent. This lack of robust response may be due to limited ex vivo activation of DCs using current protocols. Earlier studies have shown that many cell types can be activated ex vivo by external forces such as fluid shear stress (FSS). We hypothesize that novel fluid shear stress technologies and methods can be used to improve ex vivo efficacy of prostate cancer DC activation in prostate cancer. Herein, we report a new protocol for activating DCs from patients with prostate cancer using ex vivo fluid shear stress. Ultimately, the goal of these studies is to improve DC activation to expand the efficacy of therapies such as sipuleucel-T. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Sample collection and DC isolation Basic Protocol 2: Determination and application of fluid shear stress Basic Protocol 3: Flow cytometry analysis of DCs after FSS stimulation.
Collapse
Affiliation(s)
- Jenna A. Dombroski
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Monika Antunovic
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kerry R. Schaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | - Paula J. Hurley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Nashville, TN, United States
| | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
13
|
Kang C, Li X, Liu P, Liu Y, Niu Y, Zeng X, Zhao H, Liu J, Qiu S. Tolerogenic dendritic cells and TLR4/IRAK4/NF-κB signaling pathway in allergic rhinitis. Front Immunol 2023; 14:1276512. [PMID: 37915574 PMCID: PMC10616250 DOI: 10.3389/fimmu.2023.1276512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Dendritic cells (DCs), central participants in the allergic immune response, can capture and present allergens leading to allergic inflammation in the immunopathogenesis of allergic rhinitis (AR). In addition to initiating antigen-specific immune responses, DCs induce tolerance and modulate immune homeostasis. As a special type of DCs, tolerogenic DCs (tolDCs) achieve immune tolerance mainly by suppressing effector T cell responses and inducing regulatory T cells (Tregs). TolDCs suppress allergic inflammation by modulating immune tolerance, thereby reducing symptoms of AR. Activation of the TLR4/IRAK4/NF-κB signaling pathway contributes to the release of inflammatory cytokines, and inhibitors of this signaling pathway induce the production of tolDCs to alleviate allergic inflammatory responses. This review focuses on the relationship between tolDCs and TLR4/IRAK4/NF-κB signaling pathway with AR.
Collapse
Affiliation(s)
- Chenglin Kang
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, China
- Department of Otolaryngology, Longgang E.N.T Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
- Department of Otolaryngology, Second People’s Hospital of Gansu Province, Lanzhou, China
| | - Xiaomei Li
- Department of Otolaryngology, Second People’s Hospital of Gansu Province, Lanzhou, China
| | - Peng Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Yue Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Yuan Niu
- Department of Neurology, Second People’s Hospital of Gansu Province, Lanzhou, China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, China
- Department of Otolaryngology, Longgang E.N.T Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Hailiang Zhao
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, China
- Department of Otolaryngology, Longgang E.N.T Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Jiangqi Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, China
- Department of Otolaryngology, Longgang E.N.T Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Shuqi Qiu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, China
- Department of Otolaryngology, Longgang E.N.T Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| |
Collapse
|
14
|
DeYoung EG, Howe JM, Fang S, Reddy MM, Handel JP, Gillen Miller JT, Wheeler DR, Tumey LN. Synthesis and Optimization of 1-Substituted Imidazo[4,5- c]quinoline TLR7 Agonists. ACS Med Chem Lett 2023; 14:1358-1368. [PMID: 37849530 PMCID: PMC10577892 DOI: 10.1021/acsmedchemlett.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
TLR7 agonists have significant therapeutic potential in a variety of oncology and autoimmune applications. We recently reported a potent TLR7 selective agonist 1 that could be delivered by antibody-drug conjugate (ADC) technology to elicit potent anticancer activity. Herein we report synthetic chemistry and structure-activity relationship studies to develop TLR7 agonists with improved potency for next-generation ADC efforts. We found that the addition of hydrophobic acyl tails to parent compound 1 generally resulted in retained or improved TLR7 agonist activity without sacrificing the permeability or the selectivity over TLR8. In contrast, the addition of a simple alkyl tail at the same position resulted in a dramatic loss in potency. Molecular modeling was performed to provide a rationale for this dramatic loss in potency. We ultimately identified compounds 17b, 16b, and 16d as highly potent TLR7 agonists that potently induced the activation of mouse macrophages and hPBMCs at low-nanomolar concentrations.
Collapse
Affiliation(s)
- Emma G. DeYoung
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Justin M. Howe
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Siteng Fang
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Mullapudi Mohan Reddy
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Jillian P. Handel
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Jared T. Gillen Miller
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - Daniel R. Wheeler
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| | - L. Nathan Tumey
- Binghamton University School of Pharmacy
and Pharmaceutical Sciences, Johnson
City, New York 13790, United States
| |
Collapse
|
15
|
Zhao M, Huang H, He F, Fu X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1188277. [PMID: 37275909 PMCID: PMC10233045 DOI: 10.3389/fimmu.2023.1188277] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and shows high global incidence and mortality rates. The liver is an immune-tolerated organ with a specific immune microenvironment that causes traditional therapeutic approaches to HCC, such as chemotherapy, radiotherapy, and molecular targeted therapy, to have limited efficacy. The dramatic advances in immuno-oncology in the past few decades have modified the paradigm of cancer therapy, ushering in the era of immunotherapy. Currently, despite the rapid integration of cancer immunotherapy into clinical practice, some patients still show no response to treatment. Therefore, a rational approach is to target the tumor microenvironment when developing the next generation of immunotherapy. This review aims to provide insights into the hepatic immune microenvironment in HCC and summarize the mechanisms of action and clinical usage of immunotherapeutic options for HCC, including immune checkpoint blockade, adoptive therapy, cytokine therapy, vaccine therapy, and oncolytic virus-based therapy.
Collapse
Affiliation(s)
| | | | - Feng He
- *Correspondence: Feng He, ; Xiangsheng Fu,
| | | |
Collapse
|
16
|
Xia W, Singh N, Goel S, Shi S. Molecular Imaging of Innate Immunity and Immunotherapy. Adv Drug Deliv Rev 2023; 198:114865. [PMID: 37182699 DOI: 10.1016/j.addr.2023.114865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
The innate immune system plays a key role as the first line of defense in various human diseases including cancer, cardiovascular and inflammatory diseases. In contrast to tissue biopsies and blood biopsies, in vivo imaging of the innate immune system can provide whole body measurements of immune cell location and function and changes in response to disease progression and therapy. Rationally developed molecular imaging strategies can be used in evaluating the status and spatio-temporal distributions of the innate immune cells in near real-time, mapping the biodistribution of novel innate immunotherapies, monitoring their efficacy and potential toxicities, and eventually for stratifying patients that are likely to benefit from these immunotherapies. In this review, we will highlight the current state-of-the-art in noninvasive imaging techniques for preclinical imaging of the innate immune system particularly focusing on cell trafficking, biodistribution, as well as pharmacokinetics and dynamics of promising immunotherapies in cancer and other diseases; discuss the unmet needs and current challenges in integrating imaging modalities and immunology and suggest potential solutions to overcome these barriers.
Collapse
Affiliation(s)
- Wenxi Xia
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Neetu Singh
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States
| | - Shreya Goel
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States
| | - Sixiang Shi
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, United States; Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
17
|
McGinnis CS, Miao Z, Reticker-Flynn NE, Winker J, Satpathy AT. The temporal progression of immune remodeling during metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539153. [PMID: 37205523 PMCID: PMC10187284 DOI: 10.1101/2023.05.04.539153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Tumor metastasis requires systemic remodeling of distant organ microenvironments which impacts immune cell phenotypes, population structure, and intercellular communication networks. However, our understanding of immune phenotypic dynamics in the metastatic niche remains incomplete. Here, we longitudinally assayed lung immune cell gene expression profiles in mice bearing PyMT-driven metastatic breast tumors from the onset of primary tumorigenesis, through formation of the pre-metastatic niche, to the final stages of metastatic outgrowth. Computational analysis of these data revealed an ordered series of immunological changes that correspond to metastatic progression. Specifically, we uncovered a TLR-NFκB myeloid inflammatory program which correlates with pre-metastatic niche formation and mirrors described signatures of CD14+ 'activated' MDSCs in the primary tumor. Moreover, we observed that cytotoxic NK cell proportions increased over time which illustrates how the PyMT lung metastatic niche is both inflammatory and immunosuppressive. Finally, we predicted metastasis-associated immune intercellular signaling interactions involving Igf1 and Ccl6 which may organize the metastatic niche. In summary, this work identifies novel immunological signatures of metastasis and discovers new details about established mechanisms that drive metastatic progression. Graphical abstract In brief McGinnis et al. report a longitudinal scRNA-seq atlas of lung immune cells in mice bearing PyMT-driven metastatic breast tumors and identify immune cell transcriptional states, shifts in population structure, and rewiring of cell-cell signaling networks which correlate with metastatic progression. Highlights Longitudinal scRNA-seq reveals distinct stages of immune remodeling before, during, and after metastatic colonization in the lungs of PyMT mice.TLR-NFκB inflammation correlates with pre-metastatic niche formation and involves both tissue-resident and bone marrow-derived myeloid cell populations. Inflammatory lung myeloid cells mirror 'activated' primary tumor MDSCs, suggesting that primary tumor-derived cues induce Cd14 expression and TLR-NFκB inflammation in the lung. Lymphocytes contribute to the inflammatory and immunosuppressive lung metastatic microenvironment, highlighted by enrichment of cytotoxic NK cells in the lung over time. Cell-cell signaling network modeling predicts cell type-specific Ccl6 regulation and IGF1-IGF1R signaling between neutrophils and interstitial macrophages.
Collapse
|
18
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
19
|
Javitt A, Shmueli MD, Kramer MP, Kolodziejczyk AA, Cohen IJ, Radomir L, Sheban D, Kamer I, Litchfield K, Bab-Dinitz E, Zadok O, Neiens V, Ulman A, Wolf-Levy H, Eisenberg-Lerner A, Kacen A, Alon M, Rêgo AT, Stacher-Priehse E, Lindner M, Koch I, Bar J, Swanton C, Samuels Y, Levin Y, da Fonseca PCA, Elinav E, Friedman N, Meiners S, Merbl Y. The proteasome regulator PSME4 modulates proteasome activity and antigen diversity to abrogate antitumor immunity in NSCLC. NATURE CANCER 2023; 4:629-647. [PMID: 37217651 DOI: 10.1038/s43018-023-00557-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023]
Abstract
Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.
Collapse
Affiliation(s)
- Aaron Javitt
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Matthias P Kramer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ivan J Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lihi Radomir
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Kevin Litchfield
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | | | - Oranit Zadok
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Vanessa Neiens
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Adi Ulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Wolf-Levy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Assaf Kacen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Ina Koch
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Jair Bar
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charles Swanton
- UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Yardena Samuels
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Paula C A da Fonseca
- Department of Molecular and Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany
| | - Nir Friedman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum Muenchen, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Research Center Borstel, Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Nikolova-Ganeva K, Tchorbanov A. Folic acid in systemic lupus erythematosus - a new aspect. Clin Rheumatol 2023; 42:1729-1730. [PMID: 37106121 DOI: 10.1007/s10067-023-06604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Affiliation(s)
- Kalina Nikolova-Ganeva
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, 26 "Acad. Georgy Bonchev" Str, 1113, Sofia, Bulgaria.
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Department of Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, 26 "Acad. Georgy Bonchev" Str, 1113, Sofia, Bulgaria
- National Institute of Immunology, 1517, Sofia, Bulgaria
| |
Collapse
|
21
|
Russell BM, Avigan DE. Immune dysregulation in multiple myeloma: the current and future role of cell-based immunotherapy. Int J Hematol 2023; 117:652-659. [PMID: 36964840 PMCID: PMC10039687 DOI: 10.1007/s12185-023-03579-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/26/2023]
Abstract
Immune dysregulation is a hallmark of clinically active multiple myeloma (MM). Interactions between malignant clonal cells and immune cells within the bone marrow microenvironment are associated with the formation of a milieu favorable to tumor progression. IL-10, TGF-β and other immunoregulatory pathways are upregulated, promoting angiogenesis, tumor cell survival and inhibition of the native immune response. Transcriptomic evaluation of the bone marrow microenvironment reveals polarization of the T cell repertoire towards exhaustion and predominance of accessory cells with immunosuppressive qualities. These changes facilitate the immune escape of tumor cells and functional deficiencies that manifest as an increased risk of infection and a reduction in response to vaccinations. Immunotherapy with Chimeric Antigen Receptor (CAR) T cells and other cellular-based approaches have transformed outcomes for patients with advanced MM. Characterization of the immune milieu and identification of biomarkers predictive of treatment response are essential to increasing durability and allowing for the incorporation of novel strategies such as cancer vaccines. This paper will review the current use of cancer vaccines and CAR T cell therapy in MM as well as potential opportunities to expand and improve the application of these platforms.
Collapse
Affiliation(s)
- Brian M Russell
- Department of Medicine, Divisions of Hematology & Hematologic Malignancies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA
| | - David E Avigan
- Department of Medicine, Divisions of Hematology & Hematologic Malignancies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Tsang M, McNiff JM. Interface change in early mycosis fungoides: A potential mimicker of benign dermatoses. J Cutan Pathol 2023; 50:266-274. [PMID: 36444501 DOI: 10.1111/cup.14369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Histopathologic features of interface dermatitis can occasionally be seen in mycosis fungoides (MF), particularly in early patch-stage disease. MATERIALS AND METHODS We identified six patients with MF whose early biopsy specimens showed such prominent interface dermatitis that a benign diagnosis was favored. All subsequent specimens were reviewed for these patients, and the histopathologic evolution of disease was documented. Immunohistochemistry (IHC) for CD2, CD3, CD4, CD5, CD7, CD8, CD30, and CD123 was performed retrospectively. Educational archives were reviewed to assess the incidence of interface dermatitis in biopsies otherwise diagnostic of MF. RESULTS A spectrum of vacuolar and lichenoid patterns of interface change was observed in this series of six patients eventually diagnosed as having MF, and was seen as a recurring pattern in multiple specimens over time. In retrospect, findings described in early MF such as lining up of lymphocytes along the dermal-epidermal junction within the basal layer, papillary dermal fibrosis, and intraepidermal lymphocyte atypia could be appreciated to varying degrees in the confounding specimens. CD123 was negative in all cases, putatively excluding a connective tissue disease (CTD). None of the early biopsies showed loss of pan-T antigens CD2, CD5, and CD7. Forty-six of 164 cases (28%) of MF in an archival study set showed varying degrees of interface dermatitis in the setting of otherwise diagnostic changes of MF. CONCLUSIONS Early MF can show prominent interface change and mimic inflammatory dermatoses. Histopathologic clues suggestive of MF should be carefully assessed, and IHC for CD123 may be helpful in distinguishing MF from CTD. Repeat biopsies over time may be necessary to arrive at a definitive diagnosis, in conjunction with ancillary studies and strong clinicopathologic correlation.
Collapse
Affiliation(s)
- Matthew Tsang
- Department of Pathology, University of Ottawa, Ottawa, Canada
| | - Jennifer M McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
The Journey of Cancer Cells to the Brain: Challenges and Opportunities. Int J Mol Sci 2023; 24:ijms24043854. [PMID: 36835266 PMCID: PMC9967224 DOI: 10.3390/ijms24043854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer metastases into the brain constitute one of the most severe, but not uncommon, manifestations of cancer progression. Several factors control how cancer cells interact with the brain to establish metastasis. These factors include mediators of signaling pathways participating in migration, infiltration of the blood-brain barrier, interaction with host cells (e.g., neurons, astrocytes), and the immune system. Development of novel therapies offers a glimpse of hope for increasing the diminutive life expectancy currently forecasted for patients suffering from brain metastasis. However, applying these treatment strategies has not been sufficiently effective. Therefore, there is a need for a better understanding of the metastasis process to uncover novel therapeutic targets. In this review, we follow the journey of various cancer cells from their primary location through the diverse processes that they undergo to colonize the brain. These processes include EMT, intravasation, extravasation, and infiltration of the blood-brain barrier, ending up with colonization and angiogenesis. In each phase, we focus on the pathways engaging molecules that potentially could be drug target candidates.
Collapse
|
24
|
Mohammadi B, Saghafi M, Abdulsattar Faraj T, Kamal Kheder R, Sajid Abdulabbas H, Esmaeili SA. The role of tolerogenic dendritic cells in systematic lupus erythematosus progression and remission. Int Immunopharmacol 2023; 115:109601. [PMID: 36571919 DOI: 10.1016/j.intimp.2022.109601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022]
Abstract
Systematic lupus erythematosus (SLE) is an autoimmune disease reflecting an imbalance between effector and regulatory immune responses. Dendritic cells (DC) are a link between innate and adaptive immunity. Inflammatory DCs (inflDC) can initiate and trigger lymphocyte responses in SLE with over-expression of surface molecules and pro-inflammatory cytokine, including Interferon (IFN) α, Interleukin (IL) 1α, IL-1β, and IL-6, resulting in the overreaction of T helper cells (Th), and B cells immune responses. On the opposite side, tolerogenic DCs (tolDC) express inhibitory interacting surface molecules and repressive mediators, such as IL-10, Transforming growth factor beta (TGF-β), and Indoleamine 2, 3-dioxygenase (IDO), which can maintain self-tolerance in SLE by induction of regulatory T cells (Treg), T cells deletion and anergy. Hence, tolDCs can be a therapeutic candidate for patients with SLE to suppress their systematic inflammation. Recent pre-clinical and clinical studies showed the efficacy of tolDCs therapy in autoimmune diseases. In this review, we provide a wide perspective on the effect of inflDCs in promoting inflammation and the role of tolDC in the suppression of immune cells' overreaction in SLE. Furthermore, we reviewed the finding of clinical trials and experimental studies related to autoimmune diseases, particularly SLE.
Collapse
Affiliation(s)
- Bita Mohammadi
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammadreza Saghafi
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Tola Abdulsattar Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania 46012, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala 56001, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Lee MS, Chiang J, Lin RY. Two cases with dermatomyositis-like skin rash and myopathy following COVID-19 vaccination. DERMATOL SIN 2023. [DOI: 10.4103/ds.ds-d-22-00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
26
|
Graciliano NG, Tenório MCS, Fragoso MBT, Moura FA, Botelho RM, Tanabe ELL, Borbely KSC, Borbely AU, Oliveira ACM, Goulart MOF. The impact on colostrum oxidative stress, cytokines, and immune cells composition after SARS-CoV-2 infection during pregnancy. Front Immunol 2022; 13:1031248. [PMID: 36591280 PMCID: PMC9798093 DOI: 10.3389/fimmu.2022.1031248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Background Limited data are available regarding the differences between immunological, biochemical, and cellular contents of human colostrum following maternal infection during pregnancy with coronavirus 2 disease (COVID-19). Objective To investigate whether maternal COVID-19 infection may affect immunological, biochemical, and cellular contents of human colostrum. Methods Using a case-control study design, we collected colostrum from 14 lactating women with a previous diagnosis of COVID-19 during pregnancy and 12 without a clear diagnosis during September 2020 to May 2021. Colostrum samples were analysed for some enzymes and non-enzymatic oxidative stress markers (SOD, CAT, GPx, MDA, GSH, GSSG, H2O2, MPO) and for IL-1β, IL-6, tumour necrosis factor (TNF)-α, protein induced by interferon gamma (IP)-10, IL-8, IFN-λ1, IL12p70, IFN-α2, IFN-λ2/3, granulocyte macrophage colony stimulating factor (GM-CSF), IFN-β, IL-10 and IFN-γ, along with IgA and IgG for the SARS-CoV-2 S protein. We perform immunophenotyping to assess the frequency of different cell types in the colostrum. Results Colostrum from the COVID-19 symptomatic group in pregnancy contained reduced levels of H2O2, IFN-α2, and GM-CSF. This group had higher levels of GSH, and both NK cell subtypes CD3-CD56brightCD16-CD27+IFN-γ+ and CD3-CD56dimCD16+CD27- were also increased. Conclusion The present results reinforce the protective role of colostrum even in the case of mild SARS-Cov-2 infection, in addition to demonstrating how adaptive the composition of colostrum is after infections. It also supports the recommendation to encourage lactating women to continue breastfeeding after COVID-19 illness.
Collapse
Affiliation(s)
- Nayara Gomes Graciliano
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | | | - Rayane Martins Botelho
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Eloiza Lopes Lira Tanabe
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | - Alexandre Urban Borbely
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Alane Cabral Menezes Oliveira
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
- College of Nutrition, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio, Alagoas, Brazil
- National Institute of Science and Technology in Bioanalytics (INCT-Bio), Campinas, Sao Paulo, Brazil
| |
Collapse
|
27
|
Zhang X, Xu Y, Zhao G, Liu R, Yu H. Sorafenib inhibits interferon production by plasmacytoid dendritic cells in hepatocellular carcinoma. BMC Cancer 2022; 22:1239. [PMID: 36451110 PMCID: PMC9710007 DOI: 10.1186/s12885-022-10356-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 11/22/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Sorafenib is a multi-kinase inhibitor that shows antitumor activity in advanced hepatocellular carcinoma. Sorafenib exerts a regulatory effect on immune cells, including T cells, natural killer cells and dendritic cells. Studies have shown that plasmacytoid dendritic cells (pDCs) are functionally impaired in cancer tissues or produce low type I interferon alpha (IFNα) in cancer microenvironments. However, the effects of sorafenib on the function of pDCs have not been evaluated in detail. METHODS Normal and patient PBMCs were stimulated with CpG-A to evaluate IFNα production with Flow cytometry and ELISA. RESULT We analyzed the production of IFNα by PBMCs in patients with advanced HCC under sorafenib treatment. We found that sorafenib-treated HCC patients produced less IFNα than untreated patients. Furthermore, we demonstrated that sorafenib suppressed the production of IFNα by PBMCs or pDCs from heathy donors in a concentration-dependent manner. CONCLUSION Sorafenib suppressed pDCs function. Given that sorafenib is a currently recommended targeted therapeutic agent against cancer, our results suggest that its immunosuppressive effect on pDCs should be considered during treatment.
Collapse
Affiliation(s)
- Xinning Zhang
- grid.414252.40000 0004 1761 8894Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China ,grid.488137.10000 0001 2267 2324Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China ,Key Laboratory of Digital Hepetobiliary Surgery, Chinese PLA, Beijing, China ,grid.414252.40000 0004 1761 8894Chinese PLA General Hospital and Chinese PLA Medical School, Beijing, China
| | - Yong Xu
- grid.414252.40000 0004 1761 8894Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China ,grid.488137.10000 0001 2267 2324Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China ,Key Laboratory of Digital Hepetobiliary Surgery, Chinese PLA, Beijing, China
| | - Guodong Zhao
- grid.414252.40000 0004 1761 8894Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China ,grid.488137.10000 0001 2267 2324Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China ,Key Laboratory of Digital Hepetobiliary Surgery, Chinese PLA, Beijing, China
| | - Rong Liu
- grid.414252.40000 0004 1761 8894Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China ,grid.488137.10000 0001 2267 2324Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China ,Key Laboratory of Digital Hepetobiliary Surgery, Chinese PLA, Beijing, China
| | - Haisheng Yu
- grid.410737.60000 0000 8653 1072Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Wang Y, Yang T, Liang H, Deng M. Cell atlas of the immune microenvironment in gastrointestinal cancers: Dendritic cells and beyond. Front Immunol 2022; 13:1007823. [PMID: 36505406 PMCID: PMC9729272 DOI: 10.3389/fimmu.2022.1007823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Gastrointestinal (GI) cancers occur in the alimentary tract and accessory organs. They exert a global burden with high morbidity and mortality. Inside the tumor microenvironment, dendritic cells (DCs) are the most efficient antigen-presenting cells and are necessary for adaptive immune responses such as T and B-cell maturation. However, the subsets of DCs revealed before were mostly based on flow cytometry and bulk sequencing. With the development of single-cell RNA sequencing (scRNA-seq), the tumor and microenvironment heterogeneity of GI cancer has been illustrated. In this review, we summarize the classification and development trajectory of dendritic cells at the single-cell level in GI cancer. Additionally, we focused on the interaction of DCs with T cells and their effect on the response to immunotherapy. Specifically, we focused on the newly identified tumor-infiltrating dendritic cells and discuss their potential function in antitumor immunity.
Collapse
Affiliation(s)
- Yinuo Wang
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, China,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Ting Yang
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, China,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Huan Liang
- School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Mi Deng
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, China,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China,Peking University Cancer Hospital and Institute, Peking University Health Science Center, Peking University, Beijing, China,*Correspondence: Mi Deng,
| |
Collapse
|
29
|
Ho M, Xiao A, Yi D, Zanwar S, Bianchi G. Treating Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Curr Oncol 2022; 29:8975-9005. [PMID: 36421358 PMCID: PMC9689284 DOI: 10.3390/curroncol29110705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The treatment landscape of multiple myeloma (MM) has evolved considerably with the FDA-approval of at least 15 drugs over the past two decades. Together with the use of autologous stem cell transplantation, these novel therapies have resulted in significant survival benefit for patients with MM. In particular, our improved understanding of the BM and immune microenvironment has led to the development of highly effective immunotherapies that have demonstrated unprecedented response rates even in the multiple refractory disease setting. However, MM remains challenging to treat especially in a high-risk setting. A key mediator of therapeutic resistance in MM is the bone marrow (BM) microenvironment; a deeper understanding is necessary to facilitate the development of therapies that target MM in the context of the BM milieu to elicit deeper and more durable responses with the ultimate goal of long-term control or a cure of MM. In this review, we discuss our current understanding of the role the BM microenvironment plays in MM pathogenesis, with a focus on its immunosuppressive nature. We also review FDA-approved immunotherapies currently in clinical use and highlight promising immunotherapeutic approaches on the horizon.
Collapse
Affiliation(s)
- Matthew Ho
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Alexander Xiao
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Dongni Yi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Giada Bianchi
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02120, USA
| |
Collapse
|
30
|
Fu C, Ma T, Zhou L, Mi QS, Jiang A. Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunol Invest 2022; 51:2133-2158. [PMID: 35946383 DOI: 10.1080/08820139.2022.2109486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the most potent professional antigen presenting cells, dendritic cells (DCs) have the ability to activate both naive CD4 and CD8 T cells. Recognized for their exceptional ability to cross-present exogenous antigens to prime naive antigen-specific CD8 T cells, DCs play a critical role in generating CD8 T cell immunity, as well as mediating CD8 T cell tolerance to tumor antigens. Despite the ability to potentiate host CD8 T cell-mediated anti-tumor immunity, current DC-based cancer vaccines have not yet achieved the promised success clinically with the exception of FDA-approved Provenge. Interestingly, recent studies have shown that type 1 conventional DCs (cDC1s) play a critical role in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies including immune checkpoint blockade (ICB). Together with promising clinical results in neoantigen-based cancer vaccines, there is a great need for DC-based vaccines to be further developed and refined either as monotherapies or in combination with other immunotherapies. In this review, we will present a brief review of DC development and function, discuss recent progress, and provide a perspective on future directions to realize the promising potential of DC-based cancer vaccines.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
31
|
Bencze D, Fekete T, Pfliegler W, Szöőr Á, Csoma E, Szántó A, Tarr T, Bácsi A, Kemény L, Veréb Z, Pázmándi K. Interactions between the NLRP3-Dependent IL-1β and the Type I Interferon Pathways in Human Plasmacytoid Dendritic Cells. Int J Mol Sci 2022; 23:12154. [PMID: 36293012 PMCID: PMC9602791 DOI: 10.3390/ijms232012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1β pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1β secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1β pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1β during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1β requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1β production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1β production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1β secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Walter Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Antónia Szántó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
32
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
33
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
34
|
Hur B, Koster MJ, Jang JS, Weyand CM, Warrington KJ, Sung J. Global Transcriptomic Profiling Identifies Differential Gene Expression Signatures Between Inflammatory and Noninflammatory Aortic Aneurysms. Arthritis Rheumatol 2022; 74:1376-1386. [PMID: 35403833 PMCID: PMC9902298 DOI: 10.1002/art.42138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To identify hallmark genes and biomolecular processes in aortitis using high-throughput gene expression profiling, and to provide a range of potentially new drug targets (genes) and therapeutics from a pharmacogenomic network analysis. METHODS Bulk RNA sequencing was performed on surgically resected ascending aortic tissues from inflammatory aneurysms (giant cell arteritis [GCA] with or without polymyalgia rheumatica, n = 8; clinically isolated aortitis [CIA], n = 17) and noninflammatory aneurysms (n = 25) undergoing surgical aortic repair. Differentially expressed genes (DEGs) between the 2 patient groups were identified while controlling for clinical covariates. A protein-protein interaction model, drug-gene target information, and the DEGs were used to construct a pharmacogenomic network for identifying promising drug targets and potentially new treatment strategies in aortitis. RESULTS Overall, tissue gene expression patterns were the most associated with disease state than with any other clinical characteristic. We identified 159 and 93 genes that were significantly up-regulated and down-regulated, respectively, in inflammatory aortic aneurysms compared to noninflammatory aortic aneurysms. We found that the up-regulated genes were enriched in immune-related functions, whereas the down-regulated genes were enriched in neuronal processes. Notably, gene expression profiles of inflammatory aortic aneurysms from patients with GCA were no different than those from patients with CIA. Finally, our pharmacogenomic network analysis identified genes that could potentially be targeted by immunosuppressive drugs currently approved for other inflammatory diseases. CONCLUSION We performed the first global transcriptomics analysis in inflammatory aortic aneurysms from surgically resected aortic tissues. We identified signature genes and biomolecular processes, while finding that CIA may be a limited presentation of GCA. Moreover, our computational network analysis revealed potential novel strategies for pharmacologic interventions and suggests future biomarker discovery directions for the precise diagnosis and treatment of aortitis.
Collapse
Affiliation(s)
- Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew J. Koster
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jin Sung Jang
- Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cornelia M. Weyand
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
35
|
Jonny J, Putranto TA, Sitepu EC, Irfon R. Dendritic cell vaccine as a potential strategy to end the COVID-19 pandemic. Why should it be Ex Vivo? Expert Rev Vaccines 2022; 21:1111-1120. [PMID: 35593184 DOI: 10.1080/14760584.2022.2080658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Developing a safe and efficacious vaccine that can induce broad and long-term immunity for SARS-CoV-2 infection is the most critical research to date. As the most potent APCs, dendritic cells (DCs) can induce a robust T cell immunity. In addition, DCs also play an essential role in COVID-19 pathogenesis, making them a potential vaccination target. However, the DCs-based vaccine with ex vivo loading has not yet been explored for COVID-19. AREAS COVERED This review aims to provide the rationale for developing a DCs-based vaccine with ex vivo loading of SARS-CoV-2 antigen. Here, we discuss the role of DCs in immunity and the effect of SARS-CoV-2 infection on DCs. Then, we propose the mechanism of the DCs-based vaccine in inducing immunity and highlight the benefits of ex vivo loading of antigen. EXPERT OPINION We make the case that an ex vivo loaded DC-based vaccination is appropriate for COVID-19 prevention.
Collapse
Affiliation(s)
- Jonny Jonny
- Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta, Indonesia
| | | | | | - Raoulian Irfon
- Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta, Indonesia
| |
Collapse
|
36
|
Sosa Cuevas E, Bendriss-Vermare N, Mouret S, De Fraipont F, Charles J, Valladeau-Guilemond J, Chaperot L, Aspord C. Diversification of circulating and tumor-infiltrating plasmacytoid DCs towards the P3 (CD80 + PDL1 -)-pDC subset negatively correlated with clinical outcomes in melanoma patients. Clin Transl Immunology 2022; 11:e1382. [PMID: 35517992 PMCID: PMC9063720 DOI: 10.1002/cti2.1382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Plasmacytoid DCs (pDCs) play a critical yet enigmatic role in antitumor immunity through their pleiotropic immunomodulatory functions. Despite proof of pDC diversity in several physiological or pathological contexts, pDCs have been studied as a whole population so far in cancer. The assessment of individual pDC subsets is needed to fully grasp their involvement in cancer immunity, especially in melanoma where pDC subsets are largely unknown and remain to be uncovered. Methods We explored for the first time the features of diverse circulating and tumor-infiltrating pDC subsets in melanoma patients using multi-parametric flow cytometry, and assessed their clinical relevance. Based on CD80, PDL1, CD2, LAG3 and Axl markers, we provided an integrated overview of the frequency, basal activation status and functional features of pDC subsets in melanoma patients together with their relationship to clinical outcome. Results Strikingly, we demonstrated that P3-pDCs (CD80+PDL1-) accumulated within the tumor of melanoma patients and negatively correlated with clinical outcomes. The basal activation status, diversification towards P1-/P2-/P3-pDCs and functionality of several pDC subsets upon TLR7/TLR9 triggering were perturbed in melanoma patients, and were differentially linked to clinical outcome. Conclusion Our study shed light for the first time on the phenotypic and functional heterogeneity of pDCs in the blood and tumor of melanoma patients and their potential involvement in shaping clinical outcomes. Such novelty brightens our understanding of pDC complexity, and prompts the further deciphering of pDCs' features to better apprehend and exploit these potent immune players. It highlights the importance of considering pDC diversity when developing pDC-based therapeutic strategies to ensure optimal clinical success.
Collapse
Affiliation(s)
- Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Nathalie Bendriss-Vermare
- Univ Lyon Université Claude Bernard Lyon 1 INSERM 1052 CNRS 5286 Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon Lyon France
| | - Stephane Mouret
- Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Florence De Fraipont
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology) Grenoble University Hospital Grenoble France
| | - Julie Charles
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Dermatology Clinic Grenoble University Hospital Grenoble France
| | - Jenny Valladeau-Guilemond
- Univ Lyon Université Claude Bernard Lyon 1 INSERM 1052 CNRS 5286 Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon Lyon France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,Etablissement Français du Sang Auvergne-Rhône-Alpes R&D Laboratory Grenoble France
| |
Collapse
|
37
|
Fu C, Zhou L, Mi QS, Jiang A. Plasmacytoid Dendritic Cells and Cancer Immunotherapy. Cells 2022; 11:222. [PMID: 35053338 PMCID: PMC8773673 DOI: 10.3390/cells11020222] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite largely disappointing clinical trials of dendritic cell (DC)-based vaccines, recent studies have shown that DC-mediated cross-priming plays a critical role in generating anti-tumor CD8 T cell immunity and regulating anti-tumor efficacy of immunotherapies. These new findings thus support further development and refinement of DC-based vaccines as mono-immunotherapy or combinational immunotherapies. One exciting development is recent clinical studies with naturally circulating DCs including plasmacytoid DCs (pDCs). pDC vaccines were particularly intriguing, as pDCs are generally presumed to play a negative role in regulating T cell responses in tumors. Similarly, DC-derived exosomes (DCexos) have been heralded as cell-free therapeutic cancer vaccines that are potentially superior to DC vaccines in overcoming tumor-mediated immunosuppression, although DCexo clinical trials have not led to expected clinical outcomes. Using a pDC-targeted vaccine model, we have recently reported that pDCs required type 1 conventional DCs (cDC1s) for optimal cross-priming by transferring antigens through pDC-derived exosomes (pDCexos), which also cross-prime CD8 T cells in a bystander cDC-dependent manner. Thus, pDCexos could combine the advantages of both cDC1s and pDCs as cancer vaccines to achieve better anti-tumor efficacy. In this review, we will focus on the pDC-based cancer vaccines and discuss potential clinical application of pDCexos in cancer immunotherapy.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
38
|
Kobayashi S, Wannakul T, Sekino K, Takahashi Y, Kagawa Y, Miyazaki H, Umaru BA, Yang S, Yamamoto Y, Owada Y. Fatty acid-binding protein 5 limits the generation of Foxp3 + regulatory T cells through regulating plasmacytoid dendritic cell function in the tumor microenvironment. Int J Cancer 2022; 150:152-163. [PMID: 34449874 DOI: 10.1002/ijc.33777] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 01/28/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) promote viral elimination by producing large amounts of Type I interferon. Recent studies have shown that pDCs regulate the pathogenesis of diverse inflammatory diseases, such as cancer. Fatty acid-binding protein 5 (FABP5) is a cellular chaperone of long-chain fatty acids that induce biological responses. Although the effects of FABP-mediated lipid metabolism are well studied in various immune cells, its role in pDCs remains unclear. This study, which compares wild-type and Fabp5-/- mice, provides the first evidence that FABP5-mediated lipid metabolism regulates the commitment of pDCs to inflammatory vs tolerogenic gene expression patterns in the tumor microenvironment and in response to toll-like receptor stimulation. Additionally, we demonstrated that FABP5 deficiency in pDCs affects the surrounding cellular environment, and that FABP5 expression in pDCs supports the appropriate generation of regulatory T cells (Tregs). Collectively, our findings reveal that pDC FABP5 acts as an important regulator of tumor immunity by controlling lipid metabolism.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tunyanat Wannakul
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaname Sekino
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Takahashi
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Shuhan Yang
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
39
|
Lee-Sundlov MM, Burns RT, Kim TO, Grozovsky R, Giannini S, Rivadeneyra L, Zheng Y, Glabere SH, Kahr WHA, Abdi R, Despotovic JM, Wang D, Hoffmeister KM. Immune cells surveil aberrantly sialylated O-glycans on megakaryocytes to regulate platelet count. Blood 2021; 138:2408-2424. [PMID: 34324649 PMCID: PMC8662070 DOI: 10.1182/blood.2020008238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a platelet disorder. Pediatric and adult ITP have been associated with sialic acid alterations, but the pathophysiology of ITP remains elusive, and ITP is often a diagnosis of exclusion. Our analysis of pediatric ITP plasma samples showed increased anti-Thomsen-Friedenreich antigen (TF antigen) antibody representation, suggesting increased exposure of the typically sialylated and cryptic TF antigen in these patients. The O-glycan sialyltransferase St3gal1 adds sialic acid specifically on the TF antigen. To understand if TF antigen exposure associates with thrombocytopenia, we generated a mouse model with targeted deletion of St3gal1 in megakaryocytes (MK) (St3gal1MK-/-). TF antigen exposure was restricted to MKs and resulted in thrombocytopenia. Deletion of Jak3 in St3gal1MK-/- mice normalized platelet counts implicating involvement of immune cells. Interferon-producing Siglec H-positive bone marrow (BM) immune cells engaged with O-glycan sialic acid moieties to regulate type I interferon secretion and platelet release (thrombopoiesis), as evidenced by partially normalized platelet count following inhibition of interferon and Siglec H receptors. Single-cell RNA-sequencing determined that TF antigen exposure by MKs primed St3gal1MK-/- BM immune cells to release type I interferon. Single-cell RNA-sequencing further revealed a new population of immune cells with a plasmacytoid dendritic cell-like signature and concomitant upregulation of the immunoglobulin rearrangement gene transcripts Igkc and Ighm, suggesting additional immune regulatory mechanisms. Thus, aberrant TF antigen moieties, often found in pathological conditions, regulate immune cells and thrombopoiesis in the BM, leading to reduced platelet count.
Collapse
Affiliation(s)
| | - Robert T Burns
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
| | - Taylor O Kim
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Cancer and Hematology Centers, Houston, TX
| | - Renata Grozovsky
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Silvia Giannini
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Yongwei Zheng
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
| | - Simon H Glabere
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
| | - Walter H A Kahr
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, and
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and
| | - Jenny M Despotovic
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Cancer and Hematology Centers, Houston, TX
| | - Demin Wang
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
| | - Karin M Hoffmeister
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI
- Department of Biochemistry and
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
40
|
Das A, Chauhan KS, Kumar H, Tailor P. Mutation in Irf8 Gene ( Irf8R294C ) Impairs Type I IFN-Mediated Antiviral Immune Response by Murine pDCs. Front Immunol 2021; 12:758190. [PMID: 34867997 PMCID: PMC8635750 DOI: 10.3389/fimmu.2021.758190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 12/01/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the key producers of type I interferons (IFNs), thus playing a central role in initiating antiviral immune response. Besides robust type I IFN production, pDCs also act as antigen presenting cells post immunogenic stimulation. Transcription factor Irf8 is indispensable for the development of both pDC and cDC1 subset. However, the mechanism underlying the differential regulation by IRF8 in cDC1- and pDC-specific genomic architecture of developmental pathways still remains to be fully elucidated. Previous studies indicated that the Irf8R294C mutation specifically abrogates development of cDC1 without affecting that of pDC. In the present study using RNA-seq based approach, we have found that though the point mutation Irf8R294C did not affect pDC development, it led to defective type I IFN production, thus resulting in inefficient antiviral response. This observation unraveled the distinctive roles of IRF8 in these two subpopulations—regulating the development of cDC1 whereas modulating the functionality of pDCs without affecting development. We have reported here that Irf8R294C mutation also caused defect in production of ISGs as well as defective upregulation of costimulatory molecules in pDCs in response to NDV infection (or CpG stimulation). Through in vivo studies, we demonstrated that abrogation of type I IFN production was concomitant with reduced upregulation of costimulatory molecules in pDCs and increased NDV burden in IRF8R294C mice in comparison with wild type, indicating inefficient viral clearance. Further, we have also shown that Irf8R294C mutation abolished the activation of type I IFN promoter by IRF8, justifying the low level of type I IFN production. Taken together, our study signifies that the single point mutation in Irf8, Irf8R294C severely compromised type I IFN-mediated immune response by murine pDCs, thereby causing impairment in antiviral immunity.
Collapse
Affiliation(s)
- Annesa Das
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | | | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India.,Special Centre for Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
41
|
Mann-Nüttel R, Ali S, Petzsch P, Köhrer K, Alferink J, Scheu S. The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells. BMC Genom Data 2021; 22:37. [PMID: 34544361 PMCID: PMC8454182 DOI: 10.1186/s12863-021-00991-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Transcription factors (TFs) control gene expression by direct binding to regulatory regions of target genes but also by impacting chromatin landscapes and modulating DNA accessibility for other TFs. In recent years several TFs have been defined that control cell fate decisions and effector functions in the immune system. Plasmacytoid dendritic cells (pDCs) are an immune cell type with the unique capacity to produce high amounts of type I interferons quickly in response to contact with viral components. Hereby, this cell type is involved in anti-infectious immune responses but also in the development of inflammatory and autoimmune diseases. To date, the global TF reservoir in pDCs early after activation remains to be fully characterized. Results To fill this gap, we have performed a comprehensive analysis in naïve versus TLR9-activated murine pDCs in a time course study covering early timepoints after stimulation (2 h, 6 h, 12 h) integrating gene expression (RNA-Seq) and chromatin landscape (ATAC-Seq) studies. To unravel the biological processes underlying the changes in TF expression on a global scale gene ontology (GO) analyses were performed. We found that 70% of all genes annotated as TFs in the mouse genome (1014 out of 1636) are expressed in pDCs for at least one stimulation time point and are covering a wide range of TF classes defined by their specific DNA binding mechanisms. GO analysis revealed involvement of TLR9-induced TFs in epigenetic modulation, NFκB and JAK-STAT signaling, and protein production in the endoplasmic reticulum. pDC activation predominantly “turned on” the chromatin regions associated with TF genes. Our in silico analyses pointed at the AP-1 family of TFs as less noticed but possibly important players in these cells after activation. AP-1 family members exhibit (1) increased gene expression, (2) enhanced chromatin accessibility in their promoter region, and (3) a TF DNA binding motif that is globally enriched in genomic regions that were found more accessible in pDCs after TLR9 activation. Conclusions In this study we define the complete set of TLR9-regulated TFs in pDCs. Further, this study identifies the AP-1 family of TFs as potentially important but so far less well characterized regulators of pDC function. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00991-2.
Collapse
Affiliation(s)
- Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.,Cells in Motion Interfaculty Centre, Münster, Germany.,Department of Mental Health, University of Münster, Münster, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cells in Motion Interfaculty Centre, Münster, Germany.,Department of Mental Health, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
42
|
Yao Y, Fu C, Zhou L, Mi QS, Jiang A. DC-Derived Exosomes for Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13153667. [PMID: 34359569 PMCID: PMC8345209 DOI: 10.3390/cancers13153667] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022] Open
Abstract
As the initiators of adaptive immune responses, DCs play a central role in regulating the balance between CD8 T cell immunity versus tolerance to tumor antigens. Exploiting their function to potentiate host anti-tumor immunity, DC-based vaccines have been one of most promising and widely used cancer immunotherapies. However, DC-based cancer vaccines have not achieved the promised success in clinical trials, with one of the major obstacles being tumor-mediated immunosuppression. A recent discovery on the critical role of type 1 conventional DCs (cDC1s) play in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies, however, has highlighted the need to further develop and refine DC-based vaccines either as monotherapies or in combination with other therapies. DC-derived exosomes (DCexos) have been heralded as a promising alternative to DC-based vaccines, as DCexos are more resistance to tumor-mediated suppression and DCexo vaccines have exhibited better anti-tumor efficacy in pre-clinical animal models. However, DCexo vaccines have only achieved limited clinical efficacy and failed to induce tumor-specific T cell responses in clinical trials. The lack of clinical efficacy might be partly due to the fact that all current clinical trials used peptide-loaded DCexos from monocyte-derived DCs. In this review, we will focus on the perspective of expanding current DCexo research to move DCexo cancer vaccines forward clinically to realize their potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Yao
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
- Correspondence: (Q.-S.M.); (A.J.); Tel.: +313-876-1017 (Q.-S.M.); +313-876-7292 (A.J.)
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (Y.Y.); (C.F.); (L.Z.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
- Correspondence: (Q.-S.M.); (A.J.); Tel.: +313-876-1017 (Q.-S.M.); +313-876-7292 (A.J.)
| |
Collapse
|
43
|
Activation of plasmacytoid dendritic cells promotes AML-cell fratricide. Oncotarget 2021; 12:878-890. [PMID: 33953842 PMCID: PMC8092344 DOI: 10.18632/oncotarget.27949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid blasts and a suppressed immune state. Interferons have been previously shown to aid in the clearance of AML cells. Type I interferons are produced primarily by plasmacytoid dendritic cells (pDCs). However, these cells exist in a quiescent state in AML. Because pDCs express TLR 7–9, we hypothesized that the TLR7/8 agonist R848 would be able to reprogram them toward a more active, IFN-producing phenotype. Consistent with this notion, we found that R848-treated pDCs from patients produced significantly elevated levels of IFNβ. In addition, they showed increased expression of the immune-stimulatory receptor CD40. We next tested whether IFNβ would influence antibody-mediated fratricide among AML cells, as our recent work showed that AML cells could undergo cell-to cell killing in the presence of the CD38 antibody daratumumab. We found that IFNβ treatment led to a significant, IRF9-dependent increase in CD38 expression and a subsequent increase in daratumumab-mediated cytotoxicity and decreased colony formation. These findings suggest that the tolerogenic phenotype of pDCs in AML can be reversed, and also demonstrate a possible means of enhancing endogenous Type I IFN production that would promote daratumumab-mediated clearance of AML cells.
Collapse
|
44
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
45
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
46
|
Topical Adoptive Transfer of Plasmacytoid Dendritic Cells for Corneal Wound Healing. Methods Mol Biol 2021. [PMID: 32808268 DOI: 10.1007/978-1-0716-0845-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plasmacytoid dendritic cells (pDCs) are crucial for corneal homeostasis through secretion of various anti-angiogenic molecules and growth factors. Due to its avascular nature, only a limited number of adoptively transferred cells home to the cornea, when administered systemically. In addition, local adoptive transfer of cells poses several challenges and the clinical application of commonly used techniques is limited. Herein, we detail a novel approach for local adoptive transfer of pDCs to the cornea for the treatment of corneal wounds. This approach utilizes a commonly used fibrin sealant as a means of transferring previously isolated cells locally on the cornea. The technique is simple, reproducible, and is accompanied with successful transfer and integration of a substantial number of the cells to the cornea. Application of this approach to transfer pDCs promotes corneal wound healing. Furthermore, this technique can be applied for adoptive transfer of any cell of interest to the cornea.
Collapse
|
47
|
Wu J, Cheng H, Wang H, Zang G, Qi L, Lv X, Liu C, Zhu S, Zhang M, Cui J, Ueno H, Liu YJ, Suo J, Chen J. Correlation Between Immune Lymphoid Cells and Plasmacytoid Dendritic Cells in Human Colon Cancer. Front Immunol 2021; 12:601611. [PMID: 33708200 PMCID: PMC7940519 DOI: 10.3389/fimmu.2021.601611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Innate lymphoid cells (ILCs), so far studied mostly in mouse models, are important tissue-resident innate immune cells that play important roles in the colorectal cancer microenvironment and maintain mucosal tissue homeostasis. Plasmacytoid dendritic cells (pDCs) present complexity in various tumor types and are correlated with poor prognosis. pDCs can promote HIV-1-induced group 3 ILC (ILC3) depletion through the CD95 pathway. However, the role of ILC3s in human colon cancer and their correlation with other immune cells, especially pDCs, remain unclear. Methods We characterized ILCs and pDCs in the tumor microenvironment of 58 colon cancer patients by flow cytometry and selected three patients for RNA sequencing. Results ILC3s were negatively correlated, and pDCs were positively correlated, with cancer pathological stage. There was a negative correlation between the numbers of ILC3s and pDCs in tumor tissues. RNA sequencing confirmed the correlations between ILC3s and pDCs and highlighted the potential function of many ILC- and pDC-associated differentially expressed genes in the regulation of tumor immunity. pDCs can induce apoptosis of ILC3s through the CD95 pathway in the tumor-like microenvironment. Conclusions One of the interactions between ILC3s and pDCs is via the CD95 pathway, which may help explain the role of ILC3s in colon cancer.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Hang Cheng
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Pediatrics, The First Hospital, Jilin University, Changchun, China
| | - Helei Wang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Stomach Colorectal Anal Surgery, The First Hospital, Jilin University, Changchun, China
| | - Guoxia Zang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Lingli Qi
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Pediatric Gastroenterology, The First Hospital, Jilin University, Changchun, China
| | - Xinping Lv
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Chunyan Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Gynecology, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Mingyou Zhang
- Department of Cardiovascular Center, The First Hospital, Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital, Jilin University, Changchun, China
| | - Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yong-Jun Liu
- Department of Research and Development of Sanofi, Cambridge, MA, United States
| | - Jian Suo
- Department of Stomach Colorectal Anal Surgery, The First Hospital, Jilin University, Changchun, China
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Snyder RJ, Kleeberger SR. Role of Mitochondrial DNA in Inflammatory Airway Diseases. Compr Physiol 2021; 11:1485-1499. [PMID: 33577124 DOI: 10.1002/cphy.c200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mitochondrial genome is a small, circular, and highly conserved piece of DNA which encodes only 13 protein subunits yet is vital for electron transport in the mitochondrion and, therefore, vital for the existence of multicellular life on Earth. Despite this importance, mitochondrial DNA (mtDNA) is located in one of the least-protected areas of the cell, exposing it to high concentrations of intracellular reactive oxygen species (ROS) and threat from exogenous substances and pathogens. Until recently, the quality control mechanisms which ensured the stability of the nuclear genome were thought to be minimal or nonexistent in the mitochondria, and the thousands of redundant copies of mtDNA in each cell were believed to be the primary mechanism of protecting these genes. However, a vast network of mechanisms has been discovered that repair mtDNA lesions, replace and recycle mitochondrial chromosomes, and conduct alternate RNA processing for previously undescribed mitochondrial proteins. New mtDNA/RNA-dependent signaling pathways reveal a mostly undiscovered biochemical landscape in which the mitochondria interface with their host cells/organisms. As the myriad ways in which the function of the mitochondrial genome can affect human health have become increasingly apparent, the use of mitogenomic biomarkers (such as copy number and heteroplasmy) as toxicological endpoints has become more widely accepted. In this article, we examine several pathologies of human airway epithelium, including particle exposures, inflammatory diseases, and hyperoxia, and discuss the role of mitochondrial genotoxicity in the pathogenesis and/or exacerbation of these conditions. © 2021 American Physiological Society. Compr Physiol 11:1485-1499, 2021.
Collapse
Affiliation(s)
- Ryan J Snyder
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| | - Steven R Kleeberger
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| |
Collapse
|
49
|
Fu C, Zhou L, Mi QS, Jiang A. DC-Based Vaccines for Cancer Immunotherapy. Vaccines (Basel) 2020; 8:vaccines8040706. [PMID: 33255895 PMCID: PMC7712957 DOI: 10.3390/vaccines8040706] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
As the sentinels of the immune system, dendritic cells (DCs) play a critical role in initiating and regulating antigen-specific immune responses. Cross-priming, a process that DCs activate CD8 T cells by cross-presenting exogenous antigens onto their MHCI (Major Histocompatibility Complex class I), plays a critical role in mediating CD8 T cell immunity as well as tolerance. Current DC vaccines have remained largely unsuccessful despite their ability to potentiate both effector and memory CD8 T cell responses. There are two major hurdles for the success of DC-based vaccines: tumor-mediated immunosuppression and the functional limitation of the commonly used monocyte-derived dendritic cells (MoDCs). Due to their resistance to tumor-mediated suppression as inert vesicles, DC-derived exosomes (DCexos) have garnered much interest as cell-free therapeutic agents. However, current DCexo clinical trials have shown limited clinical benefits and failed to generate antigen-specific T cell responses. Another exciting development is the use of naturally circulating DCs instead of in vitro cultured DCs, as clinical trials with both human blood cDC2s (type 2 conventional DCs) and plasmacytoid DCs (pDCs) have shown promising results. pDC vaccines were particularly encouraging, especially in light of promising data from a recent clinical trial using a human pDC cell line, despite pDCs being considered tolerogenic and playing a suppressive role in tumors. However, how pDCs generate anti-tumor CD8 T cell immunity remains poorly understood, thus hindering their clinical advance. Using a pDC-targeted vaccine model, we have recently reported that while pDC-targeted vaccines led to strong cross-priming and durable CD8 T cell immunity, cross-presenting pDCs required cDCs to achieve cross-priming in vivo by transferring antigens to cDCs. Antigen transfer from pDCs to bystander cDCs was mediated by pDC-derived exosomes (pDCexos), which similarly required cDCs for cross-priming of antigen-specific CD8 T cells. pDCexos thus represent a new addition in our arsenal of DC-based cancer vaccines that would potentially combine the advantage of pDCs and DCexos.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI 48202, USA; (C.F.); (L.Z.); (Q.-S.M.)
- Immunology Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
- Correspondence: ; Tel.: +1-716-400-2536
| |
Collapse
|
50
|
Verneau J, Sautés-Fridman C, Sun CM. Dendritic cells in the tumor microenvironment: prognostic and theranostic impact. Semin Immunol 2020; 48:101410. [PMID: 33011065 DOI: 10.1016/j.smim.2020.101410] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022]
Abstract
Among all immune cells, dendritic cells (DC) are the most potent APCs in the immune system and are central players of the adaptive immune response. There are phenotypically and functionally distinct DC populations derived from blood and lymphoid organ including plasmacytoid DC (pDC), conventional DC (cDC1 and cDC2) and monocyte-derived DC (moDC). The interaction between these different DCs and tumors is a dynamic process where DC-mediated cross-priming of tumor specific T cells is critical in initiating and sustaining anti-tumor immunity. Their presence within the tumor tends to induce T cell responses and to reduce cancer progression and is associated with improved patient survival. This review will focus on the distinct tumor-associated DCs (TADC) subsets in the tumor microenvironment (TME), their roles in tumor immunology and their prognostic and/or predictive impact in human cancers. The development of therapeutic immunity strategies targeting TADC is promising to enhance their immune-stimulatory capacity in cancers and improve the efficacy of current immunotherapies including immune checkpoint inhibitor (ICI) blockade and DC-based therapies.
Collapse
Affiliation(s)
- Johanna Verneau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Catherine Sautés-Fridman
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006, Paris, France.
| |
Collapse
|