1
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Le Voyer T, Debray JC, Stolzenberg MC, Schmutz M, Pellé O, Becquard T, Rodrigo Riestra M, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Bretot C, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Mutations disrupting the kinase domain of IKKα lead to immunodeficiency and immune dysregulation in humans. J Exp Med 2025; 222:e20240843. [PMID: 39812688 PMCID: PMC11734625 DOI: 10.1084/jem.20240843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was unexpectedly partially impaired. Reintroducing wt CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of biallelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding, and suggesting IKKα's role in canonical NF-κB target gene expression in humans.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Boris Sorin
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charline Courteille
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Duong Ho-Nhat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Jean-Christophe Debray
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Olivier Pellé
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Thomas Becquard
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - María Rodrigo Riestra
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Laure Delage
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Marie Jeanpierre
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charlotte Boussard
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Camille Brunaud
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Aude Magérus
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charles Bretot
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - Victor Michel
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Camille Roux
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hopitaux de Paris (AP-HP), University Paris Cité, Paris, France
| | - Cécile Masson
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Aurélien Corneau
- UMS037, PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière CyPS, Sorbonne Université, Paris, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Véronique Baud
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alain Fischer
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Collège de France, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Cécile Boulanger
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| |
Collapse
|
2
|
Cildir G, Aba U, Pehlivan D, Tvorogov D, Warnock NI, Ipsir C, Arik E, Kok CH, Bozkurt C, Tekeoglu S, Inal G, Cesur M, Kucukosmanoglu E, Karahan I, Savas B, Balci D, Yaman A, Demirbaş ND, Tezcan I, Haskologlu S, Dogu F, Ikinciogulları A, Keskin O, Tumes DJ, Erman B. Defective kinase activity of IKKα leads to combined immunodeficiency and disruption of immune tolerance in humans. Nat Commun 2024; 15:9944. [PMID: 39550372 PMCID: PMC11569180 DOI: 10.1038/s41467-024-54345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
IKKα is a multifunctional serine/threonine kinase that controls various biological processes, either dependent on or independent of its kinase activity. However, the importance of the kinase function of IKKα in human physiology remains unknown since no biallelic variants disrupting its kinase activity have been reported. In this study, we present a homozygous germline missense variant in the kinase domain of IKKα, which is present in three children from two Turkish families. This variant, referred to as IKKαG167R, is in the activation segment of the kinase domain and affects the conserved (DF/LG) motif responsible for coordinating magnesium atoms for ATP binding. As a result, IKKαG167R abolishes the kinase activity of IKKα, leading to impaired activation of the non-canonical NF-κB pathway. Patients carrying IKKαG167R exhibit a range of immune system abnormalities, including the absence of secondary lymphoid organs, hypogammaglobulinemia and limited diversity of T and B cell receptors with evidence of autoreactivity. Overall, our findings indicate that, unlike a nonsense IKKα variant that results in early embryonic lethality in humans, the deficiency of IKKα's kinase activity is compatible with human life. However, it significantly disrupts the homeostasis of the immune system, underscoring the essential and non-redundant kinase function of IKKα in humans.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Umran Aba
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Nicholas I Warnock
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Canberk Ipsir
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Elif Arik
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Chung Hoow Kok
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Gaye Inal
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Mahmut Cesur
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ercan Kucukosmanoglu
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ibrahim Karahan
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Berna Savas
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Deniz Balci
- Department of General Surgery and Organ Transplantation, Bahcesehir University School of Medicine, Istanbul, Türkiye
| | - Ayhan Yaman
- Pediatric Intensive Care Unit, Department of Pediatrics, Istinye University, Bahcesehir Liv Hospital, Istanbul, Türkiye
| | - Nazli Deveci Demirbaş
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ilhan Tezcan
- Department of Paediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| | - Sule Haskologlu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Figen Dogu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Aydan Ikinciogulları
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ozlem Keskin
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye.
| | - Damon J Tumes
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| | - Baran Erman
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye.
- Institute of Child Health, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
3
|
Le Voyer T, Maglorius Renkilaraj MRL, Moriya K, Pérez Lorenzo M, Nguyen T, Gao L, Rubin T, Cederholm A, Ogishi M, Arango-Franco CA, Béziat V, Lévy R, Migaud M, Rapaport F, Itan Y, Deenick EK, Cortese I, Lisco A, Boztug K, Abel L, Boisson-Dupuis S, Boisson B, Frosk P, Ma CS, Landegren N, Celmeli F, Casanova JL, Tangye SG, Puel A. Inherited human RelB deficiency impairs innate and adaptive immunity to infection. Proc Natl Acad Sci U S A 2024; 121:e2321794121. [PMID: 39231201 PMCID: PMC11406260 DOI: 10.1073/pnas.2321794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
We report two unrelated adults with homozygous (P1) or compound heterozygous (P2) private loss-of-function variants of V-Rel Reticuloendotheliosis Viral Oncogene Homolog B (RELB). The resulting deficiency of functional RelB impairs the induction of NFKB2 mRNA and NF-κB2 (p100/p52) protein by lymphotoxin in the fibroblasts of the patients. These defects are rescued by transduction with wild-type RELB complementary DNA (cDNA). By contrast, the response of RelB-deficient fibroblasts to Tumor Necrosis Factor (TNF) or IL-1β via the canonical NF-κB pathway remains intact. P1 and P2 have low proportions of naïve CD4+ and CD8+ T cells and of memory B cells. Moreover, their naïve B cells cannot differentiate into immunoglobulin G (IgG)- or immunoglobulin A (IgA)-secreting cells in response to CD40L/IL-21, and the development of IL-17A/F-producing T cells is strongly impaired in vitro. Finally, the patients produce neutralizing autoantibodies against type I interferons (IFNs), even after hematopoietic stem cell transplantation, attesting to a persistent dysfunction of thymic epithelial cells in T cell selection and central tolerance to some autoantigens. Thus, inherited human RelB deficiency disrupts the alternative NF-κB pathway, underlying a T- and B cell immunodeficiency, which, together with neutralizing autoantibodies against type I IFNs, confers a predisposition to viral, bacterial, and fungal infections.
Collapse
Affiliation(s)
- Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris75010, France
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Malena Pérez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tamar Rubin
- Division of Pediatric Clinical Immunology and Allergy, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MBR3A 1S1, Canada
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Group of Inborn Errors of Immunity, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín050010, Colombia
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaan Boztug
- St. Anna Children’s Cancer Research Institute, Vienna1090, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science, Antalya Education and Research Hospital, Antalya07100, Türkiye
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris75015, France
- HHMI, New York, NY10065
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| |
Collapse
|
4
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Voyer TL, Debray JC, Stolzenberg MC, Pellé O, Becquard T, Riestra MR, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Compound heterozygous mutations in the kinase domain of IKKα lead to immunodeficiency and immune dysregulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307356. [PMID: 38798321 PMCID: PMC11118628 DOI: 10.1101/2024.05.17.24307356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
IKKα, encoded by CHUK , is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. Absence of IKKα cause fetal encasement syndrome in human, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and cause combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was partially impaired. Reintroducing wild-type CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of bi-allelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding and suggesting IKKα's role in canonical NF-κB target gene expression in human.
Collapse
|
5
|
Keeney JN, Winters A, Sitcheran R, West AP. NF-κB-Inducing Kinase Governs the Mitochondrial Respiratory Capacity, Differentiation, and Inflammatory Status of Innate Immune Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1123-1133. [PMID: 36881877 PMCID: PMC10073338 DOI: 10.4049/jimmunol.2200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/12/2023] [Indexed: 03/09/2023]
Abstract
NF-κB-inducing kinase (NIK), which is essential for the activation of the noncanonical NF-κB pathway, regulates diverse processes in immunity, development, and disease. Although recent studies have elucidated important functions of NIK in adaptive immune cells and cancer cell metabolism, the role of NIK in metabolic-driven inflammatory responses in innate immune cells remains unclear. In this study, we demonstrate that murine NIK-deficient bone marrow-derived macrophages exhibit defects in mitochondrial-dependent metabolism and oxidative phosphorylation, which impair the acquisition of a prorepair, anti-inflammatory phenotype. Subsequently, NIK-deficient mice exhibit skewing of myeloid cells characterized by aberrant eosinophil, monocyte, and macrophage cell populations in the blood, bone marrow, and adipose tissue. Furthermore, NIK-deficient blood monocytes display hyperresponsiveness to bacterial LPS and elevated TNF-α production ex vivo. These findings suggest that NIK governs metabolic rewiring, which is critical for balancing proinflammatory and anti-inflammatory myeloid immune cell function. Overall, our work highlights a previously unrecognized role for NIK as a molecular rheostat that fine-tunes immunometabolism in innate immunity, and suggests that metabolic dysfunction may be an important driver of inflammatory diseases caused by aberrant NIK expression or activity.
Collapse
Affiliation(s)
- Justin N. Keeney
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Ashley Winters
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - A. Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| |
Collapse
|
6
|
NF-κB-inducing kinase maintains mitochondrial efficiency and systemic metabolic homeostasis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166682. [PMID: 36878304 DOI: 10.1016/j.bbadis.2023.166682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
NF-κB-inducing kinase (NIK) is an essential upstream inducer of noncanonical NF-κB signaling and a critical regulator of immunity and inflammation. Our recent work has demonstrated that NIK regulates mitochondrial respiration and adaptive metabolic responses in cancer and innate immune cells. However, it is not clear whether NIK also has roles in regulating systemic metabolism. In this study, we demonstrate that NIK has local and systemic effects on developmental and metabolic processes. Our findings show that NIK-deficient mice exhibit reduced adiposity, as well as elevated energy expenditure both basally, and under the stress of a high-fat diet. Moreover, we identify NF-κB-independent and -dependent functions for NIK in white adipose tissue metabolism and development. Specifically, we found that in an NF-κB-independent manner NIK is required for maintaining mitochondrial fitness, as NIK-deficient adipocytes have impaired mitochondrial membrane potential and spare respiratory capacity. In addition to mitochondrial exhaustion, NIK-deficient adipocytes and ex vivo adipose tissue exhibit a compensatory upregulation of glycolysis to meet bioenergetic demands. Finally, while NIK regulation of mitochondrial metabolism in preadipocytes is NF-κB-independent, we demonstrate that NIK has a complementary role in adipocyte differentiation that requires activation of RelB and the noncanonical NF-κB pathway. Collectively, these data demonstrate that NIK has critical roles in local and systemic development and metabolism. Our findings establish NIK as an important regulator of organelle, cell, and systemic metabolic homeostasis, suggesting that metabolic dysfunction may be an important and unappreciated component of immune disorders and inflammatory diseases arising from NIK deficiency.
Collapse
|
7
|
Pflug KM, Sitcheran R. Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer. Int J Mol Sci 2020; 21:E8470. [PMID: 33187137 PMCID: PMC7696043 DOI: 10.3390/ijms21228470] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/23/2022] Open
Abstract
NF-κB-inducing kinase (NIK), the essential upstream kinase, which regulates activation of the noncanonical NF-κB pathway, has important roles in regulating immunity and inflammation. In addition, NIK is vital for maintaining cellular health through its control of fundamental cellular processes, including differentiation, growth, and cell survival. As such aberrant expression or regulation of NIK is associated with several disease states. For example, loss of NIK leads to severe immune defects, while the overexpression of NIK is observed in inflammatory diseases, metabolic disorders, and the development and progression of cancer. This review discusses recent studies investigating the therapeutic potential of NIK inhibitors in various diseases.
Collapse
Affiliation(s)
- Kathryn M. Pflug
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| | - Raquel Sitcheran
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA;
- Department of Molecular & Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77002, USA
| |
Collapse
|
8
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
9
|
Fekrvand S, Yazdani R, Olbrich P, Gennery A, Rosenzweig SD, Condino-Neto A, Azizi G, Rafiemanesh H, Hassanpour G, Rezaei N, Abolhassani H, Aghamohammadi A. Primary Immunodeficiency Diseases and Bacillus Calmette-Guérin (BCG)-Vaccine-Derived Complications: A Systematic Review. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:1371-1386. [PMID: 32006723 DOI: 10.1016/j.jaip.2020.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bacillus Calmette-Guérin (BCG) vaccine is a live attenuated bacterial vaccine derived from Mycobacterium bovis, which is mostly administered to neonates in regions where tuberculosis is endemic. Adverse reactions after BCG vaccination are rare; however, immunocompromised individuals and in particular patients with primary immunodeficiencies (PIDs) are prone to develop vaccine-derived complications. OBJECTIVE To systematically review demographic, clinical, immunologic, and genetic data of PIDs that present with BCG vaccine complications. Moreover, we performed a meta-analysis aiming to determine the BCG-vaccine complications rate for patients with PID. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (1966 to September 2018) introducing terms related to PIDs, BCG vaccination, and BCG vaccine complications. Studies with human subjects with confirmed PID, BCG vaccination history, and vaccine-associated complications (VACs) were included. RESULTS A total of 46 PIDs associated with BCG-VAC were identified. Severe combined immunodeficiency was the most common (466 cases) and also showed the highest BCG-related mortality. Most BCG infection cases in patients with PID were reported from Iran (n = 219 [18.8%]). The overall frequency of BCG-VAC in the included 1691 PID cases was 41.5% (95% CI, 29.9-53.2; I2 = 98.3%), based on the results of the random-effect method used in this meta-analysis. Patients with Mendelian susceptibility to mycobacterial diseases had the highest frequency of BCG-VACs with a pooled frequency of 90.6% (95% CI, 79.7-1.0; I2 = 81.1%). CONCLUSIONS Several PID entities are susceptible to BCG-VACs. Systemic neonatal PID screening programs may help to prevent a substantial amount of BCG vaccination complications.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla, Seville, Spain
| | - Andrew Gennery
- Institute of Cellular Medicine, Newcastle University, and Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes Clinical Center, National Institutes of Health, Bethesda, Md
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Network for Immunology in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden; Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
10
|
Jiang Y, Jiang Y, Zhang H, Mei M, Song H, Ma X, Jiang L, Yu Z, Zhang Q, Ding X. A mutation in MAP2 is associated with prenatal hair follicle density. FASEB J 2019; 33:14479-14490. [PMID: 31751154 DOI: 10.1096/fj.201901187r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hairlessness is usually a rare trait in pigs; however, in this study, we found hairless (HR) pigs at a relatively high frequency in 1 pig herd. We observed that, the lower hair shaft density of HR pigs could be mainly attributed to the lower hair follicle density, and during the embryonic period, d 39-45 were a critical stage for the formation of the hair follicle. In this regard, d 41 during gestation was a particularly important point. Hair follicle morphogenesis occurring at an early stage of embryo development is similar to humans and mice. Further analyses of association studies based on single-nucleotide polymorphism chip as well as sequence data, mRNA sequencing, immunohistochemistry, and comparative genomics demonstrated that microtubule-associated protein 2 (MAP2) is a key gene responsible for hair follicle density and 1 missense mutation of A-to-G at rs328005415 in MAP2, causing a valine-to-methionine substitution leads to the HR phenotype. Considering the high homology between pigs and humans, our research has some significance for the study of the mechanisms of skin development, hair morphogenesis, and hair loss in humans by showing that the pig may be a more appropriate model in which to study these processes.-Jiang, Y., Jiang, Y., Zhang, H., Mei, M., Song, H., Ma, X., Jiang, L., Yu, Z., Zhang, Q., Ding, X. A mutation in MAP2 is associated with prenatal hair follicle density.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yifan Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haihan Zhang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mengran Mei
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hailiang Song
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xianghui Ma
- State Key Laboratory for Agrobiotechnology-Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Li Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenquan Yu
- State Key Laboratory for Agrobiotechnology-Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qin Zhang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Shen H, Ji Y, Xiong Y, Kim H, Zhong X, Jin MG, Shah YM, Omary MB, Liu Y, Qi L, Rui L. Medullary thymic epithelial NF-kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. Proc Natl Acad Sci U S A 2019; 116:19090-19097. [PMID: 31481626 PMCID: PMC6754592 DOI: 10.1073/pnas.1901056116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant T cell development is a pivotal risk factor for autoimmune disease; however, the underlying molecular mechanism of T cell overactivation is poorly understood. Here, we identified NF-κB-inducing kinase (NIK) and IkB kinase α (IKKα) in thymic epithelial cells (TECs) as essential regulators of T cell development. Mouse TEC-specific ablation of either NIK or IKKα resulted in severe T cell-mediated inflammation, injury, and fibrosis in the liver and lung, leading to premature death within 18 d of age. NIK or IKKα deficiency abrogated medullary TEC development, and led to breakdown of central tolerance, production of autoreactive T cells, and fatal autoimmune destruction in the liver and lung. TEC-specific ablation of NIK or IKKα also impaired thymic T cell development from the double-negative through the double-positive stages and inhibited peripheral B cell development. These results unravel a hitherto unrecognized essential role of TEC-intrinsic NIK and IKKα pathways in autoimmunity and T cell-instigated chronic liver and lung diseases.
Collapse
Affiliation(s)
- Hong Shen
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yewei Ji
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yi Xiong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Hana Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Xiao Zhong
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Michelle G Jin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yong Liu
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, 430072 Wuhan, China
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109;
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Scott O, Roifman CM. NF-κB pathway and the Goldilocks principle: Lessons from human disorders of immunity and inflammation. J Allergy Clin Immunol 2019; 143:1688-1701. [PMID: 30940520 DOI: 10.1016/j.jaci.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling pathways play a key role in various cell processes related to host immunity. The last few years have seen an explosion of disorders associated with NF-κB components from core members of the canonical and noncanonical cascades to adaptor protein and ubiquitination-related enzymes. Disease phenotypes have extended beyond susceptibility to infections and include autoimmunity, lymphoproliferation, atopy, and inflammation. Concurrently, studies are unveiling a tightly regulated system marked by extensive cross-talk between the canonical and noncanonical pathways, as well as among the NF-κB and other signaling pathways. As the rate of discovery in the realm of NF-κB defects accelerates, this review presents a timely summary of major known defects causing human disease, as well as diagnostic, therapeutic, and research challenges and opportunities.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children.
| |
Collapse
|
13
|
Ben Farhat K, Alosaimi MF, Shendi H, Al-Hammadi S, Jones J, Schwarz K, Schulz A, Alawdah LS, Burchett S, Albuhairi S, Whangbo J, Kwatra N, Shamseldin HE, Alkuraya FS, Chou J, Geha RS. Immunologic reconstitution following hematopoietic stem cell transplantation despite lymph node paucity in NF-κB-inducing kinase deficiency. J Allergy Clin Immunol 2019; 143:1240-1243.e4. [PMID: 30445060 PMCID: PMC6408971 DOI: 10.1016/j.jaci.2018.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/08/2023]
Abstract
This case demonstrates successful immune reconstitution following hematopoietic stem cell transplantation in NIK deficiency.
Collapse
Affiliation(s)
- Khaoula Ben Farhat
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Mohammed F Alosaimi
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass; Department of Pediatrics, King Saud University, Riyadh, Saudi Arabia.
| | - Hiba Shendi
- Department of Allergy/Immunology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Suleiman Al-Hammadi
- Department of Pediatrics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Jennifer Jones
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Klaus Schwarz
- Institute for Transfusion Medicine, Ulm University and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Laila S Alawdah
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sandra Burchett
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sultan Albuhairi
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Jennifer Whangbo
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital and the Dana Farber Cancer Institute, Boston, Mass
| | - Neha Kwatra
- Division of Nuclear Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
14
|
Primary immunodeficiency diseases in a tuberculosis endemic region: challenges and opportunities. Genes Immun 2018; 20:447-454. [PMID: 30185814 DOI: 10.1038/s41435-018-0041-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
While individual primary immunodeficiency diseases (PIDs) are rare, collectively they represent a significant burden of disease. Recent estimates show that about one million people in Africa suffer from a PID. However, data from African PID registries reflect only a small percentage of the estimated prevalence. This disparity is partly due to the lack of PID awareness and the masking of PIDs by the endemic pathogens. Over three million tuberculosis (TB) cases were reported in Africa in 2016, with many of these from southern Africa. Despite concerted efforts to address this high burden of disease, the underlying genetic correlates of susceptibility to TB remain poorly understood. High penetrance mutations in immune system genes can cause PIDs that selectively predispose individuals to TB and other mycobacterial diseases. Additionally, the identification of individuals at a heightened risk of developing TB or of presenting with severe or disseminated TB due to their genetic ancestry is crucial to promote a positive treatment outcome. The screening for and identification of PID mutations in TB-endemic regions by next-generation sequencing (NGS) represents a promising approach to improve the understanding of what constitutes an effective immune response to TB, as well as the range of associated PIDs and phenotypes.
Collapse
|