1
|
Vorsteveld EE, Van der Made CI, Smeekens SP, Schuurs-Hoeijmakers JH, Astuti G, Diepstra H, Gilissen C, Hoenselaar E, Janssen A, van Roozendaal K, Engelen JSV, Steyaert W, Weiss MM, Yntema HG, Mantere T, AlZahrani MS, van Aerde K, Derfalvi B, Faqeih EA, Henriet SSV, van Hoof E, Idressi E, Issekutz TB, Jongmans MCJ, Keski-Filppula R, Krapels I, Te Loo M, Mulders-Manders CM, Ten Oever J, Potjewijd J, Sarhan NT, Slot MC, Terhal PA, Thijs H, Vandersteen A, Vanhoutte EK, van de Veerdonk F, van Well G, Netea MG, Simons A, Hoischen A. Clinical exome sequencing data from patients with inborn errors of immunity: Cohort level diagnostic yield and the benefit of systematic reanalysis. Clin Immunol 2024; 268:110375. [PMID: 39369972 DOI: 10.1016/j.clim.2024.110375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
While next generation sequencing has expanded the scientific understanding of Inborn Errors of Immunity (IEI), the clinical use and re-use of exome sequencing is still emerging. We revisited clinical exome data from 1300 IEI patients using an updated in silico IEI gene panel. Variants were classified and curated through expert review. The molecular diagnostic yield after standard exome analysis was 11.8 %. Through systematic reanalysis, we identified variants of interest in 5.2 % of undiagnosed patients, with 76.7 % being (candidate) disease-causing, providing a (candidate) diagnosis in 15.2 % of our cohort. We find a 1.7 percentage point increase in conclusive molecular diagnoses. We find a high degree of actionability in patients with a genetic diagnosis (76.4 %). Despite the modest absolute diagnostic gain, these data support the benefit of iterative exome reanalysis in IEI patients, conveying the notion that our current understanding of genes and variants involved in IEI is by far not saturated.
Collapse
Affiliation(s)
- Emil E Vorsteveld
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caspar I Van der Made
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sanne P Smeekens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Galuh Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Heleen Diepstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelien Hoenselaar
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alice Janssen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kees van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Wouter Steyaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan M Weiss
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mofareh S AlZahrani
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Koen van Aerde
- Department of Paediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Beata Derfalvi
- Division of Immunology, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Stefanie S V Henriet
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elise van Hoof
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eman Idressi
- Department of Pediatrics, Children's specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Thomas B Issekutz
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology and Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Riikka Keski-Filppula
- PEDEGO Research Unit, University of Oulu, Oulu, Finland; Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland; Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Ingrid Krapels
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maroeska Te Loo
- Department of Pediatric Hematology, Amalia children's hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Catharina M Mulders-Manders
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Ten Oever
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Judith Potjewijd
- Department of Internal Medicine, Division of Experimental and Clinical Immunology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nora Tarig Sarhan
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Marjan C Slot
- Department of Allergology and Clinical Immunology, Maastricht UMC+, Maastricht, The Netherlands
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Herman Thijs
- Department of Pediatrics, Gelre Ziekenhuizen Zutphen, The Netherlands
| | - Anthony Vandersteen
- Division of Medical Genetics, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Els K Vanhoutte
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gijs van Well
- Department of Paediatrics, Maastricht University Medical Center, MosaKids Children's Hospital, Maastricht, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Roussel L, Bernier S, Perez A, Sun Y, Angers I, Laneuville P, Lawandi A, Vinh DC. Impaired apoptosis underlying lymphoproliferative disease in a patient with haploinsufficient NFKB1 deficiency. Br J Haematol 2024; 205:2089-2093. [PMID: 39364635 DOI: 10.1111/bjh.19814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Lucie Roussel
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Stephane Bernier
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Anna Perez
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Yichun Sun
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Isabelle Angers
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Laneuville
- Division of Hematology, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alexander Lawandi
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Donald C Vinh
- IiMMUNO-GRAM (Infection and IMMunity: Genetic Research to Advance Molecular Medicine) Center of Reference, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Division of Medical Microbiology, Division of Molecular Genetics-Immunology, Department of OptiLab, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Rodríguez-Ubreva J, Calvillo CL, Forbes Satter LR, Ballestar E. Interplay between epigenetic and genetic alterations in inborn errors of immunity. Trends Immunol 2023; 44:902-916. [PMID: 37813732 PMCID: PMC10615875 DOI: 10.1016/j.it.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Inborn errors of immunity (IEIs) comprise a variety of immune conditions leading to infections, autoimmunity, allergy, and cancer. Some IEIs have no identified mutation(s), while others with identical mutations can display heterogeneous presentations. These observations suggest the involvement of epigenetic mechanisms. Epigenetic alterations can arise from downstream activation of cellular pathways through both extracellular stimulation and genetic-associated changes, impacting epigenetic enzymes or their interactors. Therefore, we posit that epigenetic alterations and genetic defects do not exclude each other as a disease-causing etiology. In this opinion, encompassing both basic and clinical viewpoints, we focus on selected IEIs with mutations in transcription factors that interact with epigenetic enzymes. The intricate interplay between these factors offers insights into genetic and epigenetic mechanisms in IEIs.
Collapse
Affiliation(s)
- Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Celia L Calvillo
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Lisa R Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, USA; William T. Shearer Texas Children's Hospital Center for Human Immunobiology, Houston, TX, USA
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain; Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
4
|
Fliegauf M, Kinnunen M, Posadas-Cantera S, Camacho-Ordonez N, Abolhassani H, Alsina L, Atschekzei F, Bogaert DJ, Burns SO, Church JA, Dückers G, Freeman AF, Hammarström L, Hanitsch LG, Kerre T, Kobbe R, Sharapova SO, Siepermann K, Speckmann C, Steiner S, Verma N, Walter JE, Westermann-Clark E, Goldacker S, Warnatz K, Varjosalo M, Grimbacher B. Detrimental NFKB1 missense variants affecting the Rel-homology domain of p105/p50. Front Immunol 2022; 13:965326. [PMID: 36105815 PMCID: PMC9465457 DOI: 10.3389/fimmu.2022.965326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Most of the currently known heterozygous pathogenic NFKB1 (Nuclear factor kappa B subunit 1) variants comprise deleterious defects such as severe truncations, internal deletions, and frameshift variants. Collectively, these represent the most frequent monogenic cause of common variable immunodeficiency (CVID) identified so far. NFKB1 encodes the transcription factor precursor p105 which undergoes limited proteasomal processing of its C-terminal half to generate the mature NF-κB subunit p50. Whereas p105/p50 haploinsufficiency due to devastating genetic damages and protein loss is a well-known disease mechanism, the pathogenic significance of numerous NFKB1 missense variants still remains uncertain and/or unexplored, due to the unavailability of accurate test procedures to confirm causality. In this study we functionally characterized 47 distinct missense variants residing within the N-terminal domains, thus affecting both proteins, the p105 precursor and the processed p50. Following transient overexpression of EGFP-fused mutant p105 and p50 in HEK293T cells, we used fluorescence microscopy, Western blotting, electrophoretic mobility shift assays (EMSA), and reporter assays to analyze their effects on subcellular localization, protein stability and precursor processing, DNA binding, and on the RelA-dependent target promoter activation, respectively. We found nine missense variants to cause harmful damage with intensified protein decay, while two variants left protein stability unaffected but caused a loss of the DNA-binding activity. Seven of the analyzed single amino acid changes caused ambiguous protein defects and four variants were associated with only minor adverse effects. For 25 variants, test results were indistinguishable from those of the wildtype controls, hence, their pathogenic impact remained elusive. In summary, we show that pathogenic missense variants affecting the Rel-homology domain may cause protein-decaying defects, thus resembling the disease-mechanisms of p105/p50 haploinsufficiency or may cause DNA-binding deficiency. However, rare variants (with a population frequency of less than 0.01%) with minor abnormalities or with neutral tests should still be considered as potentially pathogenic, until suitable tests have approved them being benign.
Collapse
Affiliation(s)
- Manfred Fliegauf
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Barcelona, Spain
| | - Faranaz Atschekzei
- RESIST – Cluster of Excellence 2155 to Hanover Medical School , Satellite Center Freiburg, Freiburg, Germany
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Delfien J. Bogaert
- Department of Pediatrics, Division of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Joseph A. Church
- Department of Pediatrics, Keck School of Medicine, University of Southern California and Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | | | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, Huddinge, Sweden
| | - Leif Gunnar Hanitsch
- Department of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Robin Kobbe
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Carsten Speckmann
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sophie Steiner
- Department of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nisha Verma
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Emma Westermann-Clark
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy and Immunology, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sigune Goldacker
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Proteomics Unit, University of Helsinki, Helsinki, Finland
| | - Bodo Grimbacher
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, Freiburg, Germany
- RESIST – Cluster of Excellence 2155 to Hanover Medical School , Satellite Center Freiburg, Freiburg, Germany
- DZIF – German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- *Correspondence: Bodo Grimbacher,
| |
Collapse
|
5
|
Lecerf K, Koboldt DC, Kuehn HS, Jayaraman V, Lee K, Mihalic Mosher T, Yonkof JR, Mori M, Hickey SE, Franklin S, Drew J, Akoghlanian S, Sivaraman V, Rosenzweig SD, Wilson RK, Abraham RS. Case report and review of the literature: immune dysregulation in a large familial cohort due to a novel pathogenic RELA variant. Rheumatology (Oxford) 2022; 62:347-359. [PMID: 35412596 PMCID: PMC9960492 DOI: 10.1093/rheumatology/keac227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To explore and define the molecular cause(s) of a multi-generational kindred affected by Bechet's-like mucocutaneous ulcerations and immune dysregulation. METHODS Whole genome sequencing and confirmatory Sanger sequencing were performed. Components of the NFκB pathway were quantified by immunoblotting, and function was assessed by cytokine production (IL-6, TNF-α, IL-1β) after lipopolysaccharide (LPS) stimulation. Detailed immunophenotyping of T-cell and B-cell subsets was performed in four patients from this cohort. RESULTS A novel variant in the RELA gene, p. Tyr349LeufsTer13, was identified. This variant results in premature truncation of the protein before the serine (S) 536 residue, a key phosphorylation site, resulting in enhanced degradation of the p65 protein. Immunoblotting revealed significantly decreased phosphorylated [p]p65 and pIκBα. The decrease in [p]p65 may suggest reduced heterodimer formation between p50/p65 (NFκB1/RelA). Immunophenotyping revealed decreased naïve T cells, increased memory T cells, and expanded senescent T-cell populations in one patient (P1). P1 also had substantially higher IL-6 and TNF-α levels post-stimulation compared with the other three patients. CONCLUSION Family members with this novel RELA variant have a clinical phenotype similar to other reported RELA cases with predominant chronic mucocutaneous ulceration; however, the clinical phenotype broadens to include Behçet's syndrome and IBD. Here we describe the clinical, immunological and genetic evaluation of a large kindred to further expand identification of patients with autosomal dominant RELA deficiency, facilitating earlier diagnosis and intervention. The functional impairment of the canonical NFκB pathway suggests that this variant is causal for the clinical phenotype in these patients.
Collapse
Affiliation(s)
- Kelsey Lecerf
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital,Division of Allergy and Immunology, Department of Otolaryngology, The Ohio State University Wexner Medical Center
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH,Department of Pathology, The Ohio State University Wexner College of Medicine, Columbus, OH
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH,Ambry Genetics, Aliso Viejo, CA
| | | | - Mari Mori
- Division of Genetic and Genomic Medicine
| | | | - Samuel Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Joanne Drew
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Roshini S Abraham
- Correspondence to: Roshini S. Abraham, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH-43205, USA. E-mail:
| |
Collapse
|
6
|
Labrador-Horrillo M, Franco-Jarava C, Garcia-Prat M, Parra-Martínez A, Antolín M, Salgado-Perandrés S, Aguiló-Cucurull A, Martinez-Gallo M, Colobran R. Case Report: X-Linked SASH3 Deficiency Presenting as a Common Variable Immunodeficiency. Front Immunol 2022; 13:881206. [PMID: 35464398 PMCID: PMC9027814 DOI: 10.3389/fimmu.2022.881206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022] Open
Abstract
SASH3 is a lymphoid-specific adaptor protein. In a recent study, SASH3 deficiency was described as a novel X-linked combined immunodeficiency with immune dysregulation, associated with impaired TCR signaling and thymocyte survival in humans. The small number of patients reported to date showed recurrent sinopulmonary, cutaneous and mucosal infections, and autoimmune cytopenia. Here we describe an adult patient previously diagnosed with common variable immunodeficiency (CVID) due to low IgG and IgM levels and recurrent upper tract infections. Two separate, severe viral infections drew our attention and pointed to an underlying T cell defect: severe varicella zoster virus (VZV) infection at the age of 4 years and bilateral pneumonia due type A influenza infection at the age of 38. Genetic testing using an NGS-based custom-targeted gene panel revealed a novel hemizygous loss-of-function variant in the SASH3 gene (c.505C>T/p.Gln169*). The patient’s immunological phenotype included marked B cell lymphopenia with reduced pre-switch and switch memory B cells, decreased CD4+ and CD8+ naïve T cells, elevated CD4+ and CD8+ TEMRA cells, and abnormal T cell activation and proliferation. The patient showed a suboptimal response to Streptococcus pneumoniae (polysaccharide) vaccine, and a normal response to Haemophilus influenzae type B (conjugate) vaccine and SARS-CoV-2 (RNA) vaccine. In summary, our patient has a combined immunodeficiency, although he presented with a phenotype resembling CVID. Two severe episodes of viral infection alerted us to a possible T-cell defect, and genetic testing led to SASH3 deficiency. Our patient displays a milder phenotype than has been reported previously in these patients, thus expanding the clinical spectrum of this recently identified inborn error of immunity.
Collapse
Affiliation(s)
- Moisés Labrador-Horrillo
- Allergy Section, Internal Medicine Department, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Research Institute (VHIR) RETIC ARADyal, Vall d’Hebron Barcelona Hospital, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Clara Franco-Jarava
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Marina Garcia-Prat
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - Alba Parra-Martínez
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
| | - Sandra Salgado-Perandrés
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Aina Aguiló-Cucurull
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Mónica Martinez-Gallo
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- *Correspondence: Roger Colobran, ; Mónica Martinez-Gallo,
| | - Roger Colobran
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital, Barcelona, Spain
- *Correspondence: Roger Colobran, ; Mónica Martinez-Gallo,
| |
Collapse
|
7
|
Fliegauf M, Krüger R, Steiner S, Hanitsch LG, Büchel S, Wahn V, von Bernuth H, Grimbacher B. A Pathogenic Missense Variant in NFKB1 Causes Common Variable Immunodeficiency Due to Detrimental Protein Damage. Front Immunol 2021; 12:621503. [PMID: 33995346 PMCID: PMC8115018 DOI: 10.3389/fimmu.2021.621503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
In common variable immunodeficiency (CVID), heterozygous damaging NFKB1 variants represent the most frequent monogenic cause. NFKB1 encodes the precursor p105, which undergoes proteasomal processing to generate the mature NF-κB transcription factor subunit p50. The majority of NFKB1 sequence changes comprises missense variants of uncertain significance (VUS), each requiring functional evaluation to assess causality, particularly in families with multiple affected members presenting with different phenotypes. In four affected members of a German family, all diagnosed with CVID, we identified a previously uncharacterized heterozygous NFKB1 missense variant (c.1049A>G; p.Tyr350Cys). The clinical phenotypes varied markedly regarding onset, frequency and severity of infections. Consistent immunologic findings were hypogammaglobulinemia with normal specific antibody response to protein- and polysaccharide-based vaccinations, reduced switched memory B cells and decreased lymphocyte proliferation upon stimulation with the B cell mitogen SAC. To assess the pathogenicity of the NFKB1 missense variant, we employed immunophenotyping and functional analyses in a routine in vitro cell culture model. Following site-directed mutagenesis to introduce the variant into overexpression vectors encoding EGFP-fused p105 or p50, we analyzed transiently transfected HEK293T cells by confocal imaging and Western blotting. The cytoplasmic p105-Tyr350Cys precursor gained only weak expression levels indicating accelerated decay. The missense change disabled processing of the precursor to prevent the generation of mutant p50. Unlike the wildtype p50, the overexpressed mutant p50-Tyr350Cys was also not sustainable and showed a conspicuous subnuclear mislocalization with accumulation in dense aggregates instead of a homogenous distribution. Electrophoretic mobility shift assays, fluorescence-based reporter gene analyses and co-transfection experiments however demonstrated, that the DNA-binding activity of p50-Tyr350Cys and the interaction with RelA(p65), IκBα and wildtype p50 were preserved. Mutation carriers had reduced p105 and p50 levels, indicating insufficient protein amounts as the most likely primary defect. In conclusion, the missense variant c.1049A>G caused a detrimental defect, preventing the persistent expression of both, the p105-Tyr350Cys precursor and the mature p50-Tyr350Cys. The variable clinical phenotypes among affected family members sharing an identical pathogenic NFKB1 variant support a disease mechanism provoked by a p105/p50 (haplo)insufficient condition.
Collapse
Affiliation(s)
- Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Steiner
- Department of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif Gunnar Hanitsch
- Department of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Büchel
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Immunology, Labor Berlin Charité - Vivantes GmbH, Berlin, Germany.,Berlin Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.,DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Recurrent necrotizing cellulitis, multi-organ autoimmune disease and humoral immunodeficiency due to a novel NFKB1 frameshift mutation. Eur J Med Genet 2021; 64:104144. [PMID: 33486103 DOI: 10.1016/j.ejmg.2021.104144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/30/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mutations in NFKB1(nuclear factor of kappa light polypeptide gene enhancer in B-cells 1) are associated with a variety of clinical symptoms, including lymphadenopathy, splenomegaly, hepatomegaly, autoimmune haemolytic anaemia, arthralgia, recurrent respiratory tract infections and post-operative necrotizing cellulitis. CASE PRESENTATION We describe a case of a 47-year-old man, who presented with deep necrotizing cellulitis after incision of a submucous abscess by a dentist. Surgical intervention led to a massive progress. Pyoderma gangraenosum (PG) was diagnosed clinically and confirmed histopathologically. High dose corticosteroids and intravenous immunoglobulins (IVIG) improved wound healing dramatically. Until now, immune mediated inflammation events not only affected the skin, but also multiple inner organs, i.e. the heart, lungs and gut. Sequencing of all coding exons of NFKB1 revealed a heterozygous 1bp deletion in exon 23 predicting a frameshift starting at codon Ala891 and resulting in a subsequent stop codon at position 6 in the new reading frame: NM_003998.4: c.2671del; p.(Ala891Glnfs*6) Acute episodes were always successfully treated with corticosteroids, IVIG and concomitant antibiotics. To prevent further exacerbations, the patient receives IVIG once a month, low-dose corticosteroids and methotrexate. CONCLUSION This is the first case of a patient with recurrent necrotizing cellulitis and immune mediated multi-organ involvement (heart, lungs, intestine) carrying the novel frameshift mutation c.2671del (p.Ala891Glnfs*6) in NFKB1 effectively treated with IVIG, low-dose corticosteroids and methotrexate.
Collapse
|
9
|
Nguyen DTI, Grimes A, Mahoney D, Faro S, Shearer WT, Miller AL, Rider NL. Case Report: Post-Partum Complications of NFκB1 Deficiency Underscore a Need to Better Understand Primary Immunodeficiency Management During Pregnancy. Front Pediatr 2021; 9:648022. [PMID: 34307247 PMCID: PMC8292645 DOI: 10.3389/fped.2021.648022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor κappa-B (NFκB) is a family of transcription factors involved in regulating inflammation and immunity. Mutations in the NFκB1 pathway are associated with primary immune defects and underlie the most common monogenic etiology of common variable immunodeficiency (CVID). However, little is known about how NFκB1 defects or primary immunodeficiency (PID) complicate pregnancy. We present a previously healthy 34-year-old patient who suffered from poor wound healing and sterile sepsis during the post-partum period of each of her three pregnancies. She was otherwise asymptomatic, but her daughter developed Evans Syndrome (ES) with hypogammaglobulinemia prompting expanded genetic testing which revealed a novel monoallelic variant in NFκB1. This case highlights that pregnancy-related complications of PID can be difficult to recognize and may portend adverse patient outcomes. For these reasons, guidance regarding diagnosis and management of women of childbearing age with PID is warranted.
Collapse
Affiliation(s)
- Diem-Tran I Nguyen
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Amanda Grimes
- Section of Hematology and Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Donald Mahoney
- Section of Hematology and Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Sebastian Faro
- Department of Obstetrics and Gynecology, Women's Hospital of Texas, Houston, TX, United States
| | - William T Shearer
- Section of Immunology, Allergy and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Nicholas L Rider
- Section of Immunology, Allergy and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Lymphotropic Viruses: Chronic Inflammation and Induction of Cancers. BIOLOGY 2020; 9:biology9110390. [PMID: 33182552 PMCID: PMC7697807 DOI: 10.3390/biology9110390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
Inflammation induced by transcription factors, including Signal Transducers and Activators of Transcription (STATs) and NF-κB, in response to microbial pathogenic infections and ligand dependent receptors stimulation are critical for controlling infections. However, uncontrolled inflammation induced by these transcription factors could lead to immune dysfunction, persistent infection, inflammatory related diseases and the development of cancers. Although the induction of innate immunity and inflammation in response to viral infection is important to control virus replication, its effects can be modulated by lymphotropic viruses including human T-cell leukemia virus type 1 (HTLV-1), Κaposi's sarcoma herpesvirus (KSHV), and Epstein Barr virus (EBV) during de novo infection as well as latent infection. These lymphotropic viruses persistently activate JAK-STAT and NF-κB pathways. Long-term STAT and NF-κB activation by these viruses leads to the induction of chronic inflammation, which can support the persistence of these viruses and promote virus-mediated cancers. Here, we review how HTLV-1, KSHV and EBV hijack the function of host cell surface molecules (CSMs), which are involved in the regulation of chronic inflammation, innate and adaptive immune responses, cell death and the restoration of tissue homeostasis. Thus, better understanding of CSMs-mediated chronic activation of STATs and NF-κB pathways in lymphotropic virus-infected cells may pave the way for therapeutic intervention in malignancies caused by lymphotropic viruses.
Collapse
|
11
|
Lorenzini T, Fliegauf M, Klammer N, Frede N, Proietti M, Bulashevska A, Camacho-Ordonez N, Varjosalo M, Kinnunen M, de Vries E, van der Meer JWM, Ameratunga R, Roifman CM, Schejter YD, Kobbe R, Hautala T, Atschekzei F, Schmidt RE, Schröder C, Stepensky P, Shadur B, Pedroza LA, van der Flier M, Martínez-Gallo M, Gonzalez-Granado LI, Allende LM, Shcherbina A, Kuzmenko N, Zakharova V, Neves JF, Svec P, Fischer U, Ip W, Bartsch O, Barış S, Klein C, Geha R, Chou J, Alosaimi M, Weintraub L, Boztug K, Hirschmugl T, Dos Santos Vilela MM, Holzinger D, Seidl M, Lougaris V, Plebani A, Alsina L, Piquer-Gibert M, Deyà-Martínez A, Slade CA, Aghamohammadi A, Abolhassani H, Hammarström L, Kuismin O, Helminen M, Allen HL, Thaventhiran JE, Freeman AF, Cook M, Bakhtiar S, Christiansen M, Cunningham-Rundles C, Patel NC, Rae W, Niehues T, Brauer N, Syrjänen J, Seppänen MRJ, Burns SO, Tuijnenburg P, Kuijpers TW, Warnatz K, Grimbacher B. Characterization of the clinical and immunologic phenotype and management of 157 individuals with 56 distinct heterozygous NFKB1 mutations. J Allergy Clin Immunol 2020; 146:901-911. [PMID: 32278790 PMCID: PMC8246418 DOI: 10.1016/j.jaci.2019.11.051] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND An increasing number of NFKB1 variants are being identified in patients with heterogeneous immunologic phenotypes. OBJECTIVE To characterize the clinical and cellular phenotype as well as the management of patients with heterozygous NFKB1 mutations. METHODS In a worldwide collaborative effort, we evaluated 231 individuals harboring 105 distinct heterozygous NFKB1 variants. To provide evidence for pathogenicity, each variant was assessed in silico; in addition, 32 variants were assessed by functional in vitro testing of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) signaling. RESULTS We classified 56 of the 105 distinct NFKB1 variants in 157 individuals from 68 unrelated families as pathogenic. Incomplete clinical penetrance (70%) and age-dependent severity of NFKB1-related phenotypes were observed. The phenotype included hypogammaglobulinemia (88.9%), reduced switched memory B cells (60.3%), and respiratory (83%) and gastrointestinal (28.6%) infections, thus characterizing the disorder as primary immunodeficiency. However, the high frequency of autoimmunity (57.4%), lymphoproliferation (52.4%), noninfectious enteropathy (23.1%), opportunistic infections (15.7%), autoinflammation (29.6%), and malignancy (16.8%) identified NF-κB1-related disease as an inborn error of immunity with immune dysregulation, rather than a mere primary immunodeficiency. Current treatment includes immunoglobulin replacement and immunosuppressive agents. CONCLUSIONS We present a comprehensive clinical overview of the NF-κB1-related phenotype, which includes immunodeficiency, autoimmunity, autoinflammation, and cancer. Because of its multisystem involvement, clinicians from each and every medical discipline need to be made aware of this autosomal-dominant disease. Hematopoietic stem cell transplantation and NF-κB1 pathway-targeted therapeutic strategies should be considered in the future.
Collapse
Affiliation(s)
- Tiziana Lorenzini
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS (Centre for Integrative Biological Signalling Studies), University of Freiburg, Freiburg, Germany
| | - Nils Klammer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Frede
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Esther de Vries
- Laboratory for Medical Microbiology and Immunology, Elisabeth Tweesteden Hospital, and Department of Tranzo, Tilburg University, Tilburg, The Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rohan Ameratunga
- Department of Virology and Immunology and the Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Chaim M Roifman
- Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Yael D Schejter
- Canadian Centre for Primary Immunodeficiency, Immunogenomic Laboratory, Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Robin Kobbe
- Department of Pediatrics, University Medical Centre Hamburg, Hamburg, Germany
| | - Timo Hautala
- Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Faranaz Atschekzei
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Reinhold E Schmidt
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Claudia Schröder
- Division of Immunology and Rheumatology, Hannover Medical University, Hannover, Germany
| | - Polina Stepensky
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Shadur
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Immunology, Garvan Institute of Medical Research, and University of New South Wales, Graduate Research School, Sydney, Australia
| | - Luis A Pedroza
- Colegio de ciencias de la salud-Hospital de los Valles and Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador; Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Tex
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases & Immunology and Nijmegen Institute for Infection, Immunity and Inflammation, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiencies Unit, Pediatrics, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Luis M Allende
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Anna Shcherbina
- Department of Clinical Immunology, Dmitry Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalia Kuzmenko
- Department of Clinical Immunology, Dmitry Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Victoria Zakharova
- Department of Hematopoietic Stem Cell Transplantation, Dmitry Rogachev National Medical and Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefania, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Peter Svec
- Department of Paediatric Haematology and Oncology, Haematopoietic Stem Cell Transplantation Unit, Comenius University Children's Hospital, Bratislava, Slovakia
| | - Ute Fischer
- Department of Paediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Winnie Ip
- Department of Immunology and Molecular and Cellular Immunology Unit, Great Ormond Street Hospital & University College London (UCL), Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Oliver Bartsch
- Institute of Human Genetics, Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Safa Barış
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
| | - Christoph Klein
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mohammed Alosaimi
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Lauren Weintraub
- Divisions of Pediatric Hematology/Oncology, Albany Medical Center, Albany, NY
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Department of Pediatrics and Adolescent Medicine and St Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Tatjana Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Department of Pediatrics and Adolescent Medicine and St Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Maria Marluce Dos Santos Vilela
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, Faculty of Medical Sciences, University of Campinas - UNICAMP, Campinas, Brazil
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency and Molecular Pathology, Department of Pathology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Department and Institut de Recerca, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Monica Piquer-Gibert
- Pediatric Allergy and Clinical Immunology Department and Institut de Recerca, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Angela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Department and Institut de Recerca, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Charlotte A Slade
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, Australia
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Outi Kuismin
- PEDEGO Research Unit, Medical Research Center Oulu, and University of Oulu and Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Merja Helminen
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Hana Lango Allen
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom; NHS Blood and Transplant Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, Md
| | - Matthew Cook
- Australian National University Medical School and John Curtin School of Medical Research, Australian National University, Acton, Australia; Department of Immunology, Canberra Hospital, Canberra, Australia
| | - Shahrzad Bakhtiar
- Division for Pediatric Stem-Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Mette Christiansen
- International Center for Immunodeficiency Diseases and Department of Clinical Immunology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | - Niraj C Patel
- Department of Pediatrics, Section of Infectious Disease and Immunology, Levine Children's Hospital, Atrium Health, Charlotte, NC
| | - William Rae
- Southampton NIHR Wellcome Trust Clinical Research Facility and NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Department of Allergy, Asthma and Clinical Immunology, University Hospital Southampton, Southampton, United Kingdom
| | - Tim Niehues
- Department of Pediatric Hematology and Oncology, Helios Klinikum Krefeld, Krefeld, Germany
| | - Nina Brauer
- Department of Pediatric Hematology and Oncology, Helios Klinikum Krefeld, Krefeld, Germany
| | - Jaana Syrjänen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Mikko R J Seppänen
- Rare Disease Center, New Children's Hospital and Adult immunodeficiency Unit, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Siobhan O Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Paul Tuijnenburg
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious diseases, Meibergdreef 9, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious diseases, Meibergdreef 9, Amsterdam, The Netherlands
| | -
- NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS (Centre for Integrative Biological Signalling Studies), University of Freiburg, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany; Institute of Immunology and Transplantation, Royal Free Hospital and University College London, London, United Kingdom; DZIF (German Center for Infection Research) Satellite Center Freiburg, Freiburg, Germany; Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
12
|
Zhu GJ, Gong S, Ma DB, Tao T, He WQ, Zhang L, Wang F, Qian XY, Zhou H, Fan C, Wang P, Chen X, Zhao W, Sun J, Chen H, Wang Y, Gao X, Zuo J, Zhu MS, Gao X, Wan G. Aldh inhibitor restores auditory function in a mouse model of human deafness. PLoS Genet 2020; 16:e1009040. [PMID: 32970669 PMCID: PMC7553308 DOI: 10.1371/journal.pgen.1009040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic hearing loss is a common health problem with no effective therapy currently available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common forms of autosomal dominant non-syndromic deafness. In this study, we established a novel mouse model of the human DFNA15 deafness, with a Pou4f3 gene mutation (Pou4f3Δ) identical to that found in a familial case of DFNA15. The Pou4f3(Δ/+) mice suffered progressive deafness in a similar manner to the DFNA15 patients. Hair cells in the Pou4f3(Δ/+) cochlea displayed significant stereociliary and mitochondrial pathologies, with apparent loss of outer hair cells. Progression of hearing and outer hair cell loss of the Pou4f3(Δ/+) mice was significantly modified by other genetic and environmental factors. Using Pou4f3(-/+) heterozygous knockout mice, we also showed that DFNA15 is likely caused by haploinsufficiency of the Pou4f3 gene. Importantly, inhibition of retinoic acid signaling by the aldehyde dehydrogenase (Aldh) and retinoic acid receptor inhibitors promoted Pou4f3 expression in the cochlear tissue and suppressed the progression of hearing loss in the mutant mice. These data demonstrate Pou4f3 haploinsufficiency as the main underlying cause of human DFNA15 deafness and highlight the therapeutic potential of Aldh inhibitors for treatment of progressive hearing loss. More than 50% of deafness cases are due to genetic defects with no treatment available. DFNA15, caused by mutations of the transcription factor POU4F3, is one of the most common types of autosomal dominant non-syndromic deafness. Here, we established a novel mouse model with the exact Pou4f3 mutation identified in human patients. The mutant mouse display similar auditory pathophysiology as human patients and exhibit multiple hair cell abnormalities. The onset and severity of hearing loss in the mouse model is highly modifiable to environmental factors, such as aging, noise exposure or genetic backgrounds. Using a new knockout mouse model, we found Pou4f3 haploinsufficiency as the underlying mechanism of human DFNA15. Importantly, we identified Aldh inhibitor as a potent small molecule for upregulation of Pou4f3 and treatment of hearing loss in the mutant mouse. The identification of Aldh inhibitor for treatment of DFNA15 deafness represents a major advance in the unmet medical need for this common form of progressive hearing loss.
Collapse
Affiliation(s)
- Guang-Jie Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Sihao Gong
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Deng-Bin Ma
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Tao Tao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei-Qi He
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Linqing Zhang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Fang Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xiao-Yun Qian
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Han Zhou
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Chi Fan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Pei Wang
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Xin Chen
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Zhao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Sun
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Huaqun Chen
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ye Wang
- Nanjing MuCyte Biotechnology Co., Ltd., Nanjing, China
| | - Xiang Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, United States of America
| | - Min-Sheng Zhu
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Xia Gao
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| | - Guoqiang Wan
- Department of Otorhinolaryngology, Provincial Key Discipline of the affiliated Drum Tower Hospital of Nanjing University and Model Animal Research Center, MOE Key Laboratory of Model Animal for Disease Studies, School of Medicine, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- * E-mail: (MSZ); (XG); (GW)
| |
Collapse
|
13
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
14
|
Rheumatological manifestations in inborn errors of immunity. Pediatr Res 2020; 87:293-299. [PMID: 31581173 DOI: 10.1038/s41390-019-0600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 11/08/2022]
Abstract
Rare monogenetic diseases serve as natural models to dissect the molecular pathophysiology of the complex disease traits. Rheumatologic disorders by their nature are considered complex diseases with partially genetic origin, as illustrated by their heterogeneous genetic background and variable phenotypic presentation. Recent advances in genetic technologies have helped uncover multiple variants associated with disease susceptibility; however, a precise understanding of genotype-phenotype relationships is still missing. Inborn errors of immunity (IEIs), in addition to recurrent infections, may also present with autoimmune and autoinflammatory rheumatologic manifestations and have provided insights for understanding the underlying the principles of immune system homeostasis and mechanisms of immune dysregulation. This review discusses the rheumatologic manifestations in IEIs with overlapping and differentiating features in immunodeficiencies and rheumatologic disorders.
Collapse
|
15
|
Schröder C, Sogkas G, Fliegauf M, Dörk T, Liu D, Hanitsch LG, Steiner S, Scheibenbogen C, Jacobs R, Grimbacher B, Schmidt RE, Atschekzei F. Late-Onset Antibody Deficiency Due to Monoallelic Alterations in NFKB1. Front Immunol 2019; 10:2618. [PMID: 31803180 PMCID: PMC6871540 DOI: 10.3389/fimmu.2019.02618] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Adult-onset primary immunodeficiency is characterized by recurrent infections, hypogammaglobulinemia, and poor antibody response to vaccines. In this study, we have analyzed targeted gene panel sequencing results of 270 patients diagnosed with antibody deficiency and identified five disease-associated variants in NFKB1 in five unrelated families. We detected two single base pair deletions and two single base pair insertions, causing severe protein truncations, and one missense mutation. Immunoblotting, lymphocyte stimulation, immunophenotyping, and ectopic expression assays demonstrated the functional relevance of NFKB1 mutations. Besides antibody deficiency, clinical manifestations included infections, autoimmune features, lymphoproliferation, lymphoma, Addison's disease, type 2 diabetes and asthma. Although partial clinical penetrance was observed in almost all pedigrees, all carriers presented a deficiency in certain serum immunoglobulins and the majority showed a lack of memory B cells (CD19+CD27+). Among all tested genes, NFKB1 alterations were the most common monoallelic cause of antibody deficiency in our cohort.
Collapse
Affiliation(s)
- Claudia Schröder
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,Hannover Biomedical Research School (HBRS), Hannover Medical School, Hanover, Germany
| | - Georgios Sogkas
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Manfred Fliegauf
- Center for Chronic Immunodeficiency, Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany
| | - Di Liu
- Gynaecology Research Unit, Hannover Medical School, Hanover, Germany
| | - Leif G Hanitsch
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Sophie Steiner
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Roland Jacobs
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany.,DZIF - German Center for Infection Research, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| | - Reinhold E Schmidt
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,Hannover Biomedical Research School (HBRS), Hannover Medical School, Hanover, Germany.,DZIF - German Center for Infection Research, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| | - Faranaz Atschekzei
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany.,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Hanover, Germany
| |
Collapse
|
16
|
Aggarwal V, Banday AZ, Jindal AK, Das J, Rawat A. Recent advances in elucidating the genetics of common variable immunodeficiency. Genes Dis 2019; 7:26-37. [PMID: 32181273 PMCID: PMC7063417 DOI: 10.1016/j.gendis.2019.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID), a heterogeneous group of inborn errors of immunity, is the most common symptomatic primary immunodeficiency disorder. Patients with CVID have highly variable clinical presentation. With the advent of whole genome sequencing and genome wide association studies (GWAS), there has been a remarkable improvement in understanding the genetics of CVID. This has also helped in understanding the pathogenesis of CVID and has drastically improved the management of these patients. A multi-omics approach integrating the DNA sequencing along with RNA sequencing, proteomics, epigenetic and metabolomics profile is the need of the hour to unravel specific CVID associated disease pathways and novel therapeutic targets. In this review, we elaborate various techniques that have helped in understanding the genetics of CVID.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aaqib Zaffar Banday
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Kumar Jindal
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jhumki Das
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy and Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
17
|
Klemann C, Camacho-Ordonez N, Yang L, Eskandarian Z, Rojas-Restrepo JL, Frede N, Bulashevska A, Heeg M, Al-Ddafari MS, Premm J, Seidl M, Ammann S, Sherkat R, Radhakrishnan N, Warnatz K, Unger S, Kobbe R, Hüfner A, Leahy TR, Ip W, Burns SO, Fliegauf M, Grimbacher B. Clinical and Immunological Phenotype of Patients With Primary Immunodeficiency Due to Damaging Mutations in NFKB2. Front Immunol 2019; 10:297. [PMID: 30941118 PMCID: PMC6435015 DOI: 10.3389/fimmu.2019.00297] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Non-canonical NF-κB-pathway signaling is integral in immunoregulation. Heterozygous mutations in NFKB2 have recently been established as a molecular cause of common variable immunodeficiency (CVID) and DAVID-syndrome, a rare condition combining deficiency of anterior pituitary hormone with CVID. Here, we investigate 15 previously unreported patients with primary immunodeficiency (PID) from eleven unrelated families with heterozygous NFKB2-mutations including eight patients with the common p.Arg853* nonsense mutation and five patients harboring unique novel C-terminal truncating mutations. In addition, we describe the clinical phenotype of two patients with proximal truncating mutations. Cohort analysis extended to all 35 previously published NFKB2-cases revealed occurrence of early-onset PID in 46/50 patients (mean age of onset 5.9 years, median 4.0 years). ACTH-deficiency occurred in 44%. Three mutation carriers have deceased, four developed malignancies. Only two mutation carriers were clinically asymptomatic. In contrast to typical CVID, most patients suffered from early-onset and severe disease manifestations, including clinical signs of T cell dysfunction e.g., chronic-viral or opportunistic infections. In addition, 80% of patients suffered from (predominately T cell mediated) autoimmune (AI) phenomena (alopecia > various lymphocytic organ-infiltration > diarrhea > arthritis > AI-cytopenia). Unlike in other forms of CVID, auto-antibodies or lymphoproliferation were not common hallmarks of disease. Immunophenotyping showed largely normal or even increased quantities of naïve and memory CD4+ or CD8+ T-cells and normal T-cell proliferation. NK-cell number and function were also normal. In contrast, impaired B-cell differentiation and hypogammaglobinemia were consistent features of NFKB2-associated disease. In addition, an array of lymphocyte subpopulations, such as regulatory T cell, Th17-, cTFH-, NKT-, and MAIT-cell numbers were decreased. We conclude that heterozygous damaging mutations in NFKB2 represent a distinct PID entity exceeding the usual clinical spectrum of CVID. Impairment of the non-canonical NF-κB pathways affects function and differentiation of numerous lymphocyte-subpopulations and thus causes a heterogeneous, more severe form of PID phenotype with early-onset. Further characteristic features are multifaceted, primarily T cell-mediated autoimmunity, such as alopecia, lymphocytic organ infiltration, and in addition frequently ACTH-deficiency.
Collapse
Affiliation(s)
- Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany.,Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Linlin Yang
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Zoya Eskandarian
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Jessica L Rojas-Restrepo
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Natalie Frede
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Pediatrics, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Moudjahed Saleh Al-Ddafari
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany.,Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| | - Julian Premm
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Institute for Surgical Pathology, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany.,Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nita Radhakrishnan
- Department of Pediatric Hematology Oncology, Super Speciality Pediatric Hospital and PG Teaching Institute, Noida, India
| | - Klaus Warnatz
- Faculty of Medicine, Division Immunodeficiency (CCI), Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Faculty of Medicine, Division Immunodeficiency (CCI), Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Robin Kobbe
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Hüfner
- Infectious Disease Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Winnie Ip
- Infection, Immunity and Inflammation Theme, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital, London, United Kingdom
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation London, United Kingdom.,Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Manfred Fliegauf
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Faculty of Medicine, Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Fliegauf M, Grimbacher B. Nuclear factor κB mutations in human subjects: The devil is in the details. J Allergy Clin Immunol 2018; 142:1062-1065. [PMID: 30165054 DOI: 10.1016/j.jaci.2018.06.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Manfred Fliegauf
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Dieli-Crimi R, Martínez-Gallo M, Franco-Jarava C, Antolin M, Blasco L, Paramonov I, Semidey ME, Álvarez Fernández A, Molero X, Velásquez J, Martín-Nalda A, Pujol-Borrell R, Colobran R. Th1-skewed profile and excessive production of proinflammatory cytokines in a NFKB1-deficient patient with CVID and severe gastrointestinal manifestations. Clin Immunol 2018; 195:49-58. [PMID: 30063981 DOI: 10.1016/j.clim.2018.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/13/2018] [Accepted: 07/27/2018] [Indexed: 02/03/2023]
Abstract
Monoallelic loss-of-function mutations in NFKB1 were recently recognized as the most common monogenic cause of common variable immunodeficiency (CVID). The prototypic clinical phenotype of NFKB1-deficient patients includes common CVID features, such as hypogammaglobulinaemia and sinopulmonary infections, plus other highly variable individual manifestations. Here, we describe a patient with a profound CVID phenotype and severe gastrointestinal manifestations, including chronic and recurrent diarrhoea. Using an NGS customized panel of 323 genes related to primary immunodeficiencies, we identified a novel monoallelic loss-of-function mutation in NFKB1 leading to a truncated protein (c.1149delT/p.Gly384Glu ∗ 48). Interestingly, we also found a rare variant in NOD2 previously associated with Crohn's disease (p.His352Arg). Our patient had hypogammaglobulinaemia with a small number of B cells, most of which were naïve. The most noteworthy findings included marked skewing towards a Th1 phenotype in peripheral blood T cells and excessive production of proinflammatory cytokines (IL-1β, TNFα). The patient's 6-year-old daughter, a carrier of the NFKB1 mutation, is clinically asymptomatic, but has started to show cellular and molecular changes. This case of NFKB1 deficiency appears to be a combination of immunodeficiency and a hyperinflammatory state. The current situation of the patient's daughter provides a glimpse of the preclinical phase of the condition.
Collapse
Affiliation(s)
- Romina Dieli-Crimi
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
| | - Clara Franco-Jarava
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
| | - Maria Antolin
- Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain
| | - Laura Blasco
- Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain
| | - Ida Paramonov
- Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain
| | - Maria E Semidey
- Pathology Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain
| | | | - Xavier Molero
- Exocrine Pancreas Research Unit, Department of Digestive Diseases, Hospital Universitari Vall d'Hebron (HUVH), Autonomous University of Barcelona (UAB), CiberEHD, Barcelona, Catalonia, Spain
| | - Julio Velásquez
- Exocrine Pancreas Research Unit, Department of Digestive Diseases, Hospital Universitari Vall d'Hebron (HUVH), Autonomous University of Barcelona (UAB), CiberEHD, Barcelona, Catalonia, Spain
| | - Andrea Martín-Nalda
- Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain; Pediatric Infectious Diseases and Immunodeficiencies Unit (UPIIP), Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain
| | - Ricardo Pujol-Borrell
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
| | - Roger Colobran
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain; Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain; Area of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain.
| |
Collapse
|
20
|
Ameratunga R, Ahn Y, Jordan A, Lehnert K, Brothers S, Woon ST. Keeping it in the family: the case for considering late-onset combined immunodeficiency a subset of common variable immunodeficiency disorders. Expert Rev Clin Immunol 2018; 14:549-556. [PMID: 29806948 DOI: 10.1080/1744666x.2018.1481750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune defect in adults. Within the broad spectrum of CVID, a proportion of patients present with a predominant T cell phenotype associated with increased mortality. These patients are termed late-onset combined immunodeficiency (LOCID) and are currently separated from patients suffering from CVID. Areas covered: We have recently codiscovered a new CVID-like disorder caused by mutations of the NFKB1 gene. Members of this non-consanguineous New Zealand kindred have a very diverse spectrum of phenotypes in spite of carrying the identical mutation. The proband appears to have the autoimmune variant. The proband's recently deceased sister best matched LOCID while other family members are less severely affected, including one asymptomatic adult brother, who has an affected daughter. Differences in genetics was one of the main arguments for separating these disorders in the past. Expert commentary: Given the recent advances in the understanding of the genetic basis of these conditions, we present the case that LOCID should now be considered a subset of CVID, rather than a separate disorder. At a clinical level, this distinction is less important but it is imperative these patients are carefully evaluated, the relevant complications are treated, and they are offered prognostic information.
Collapse
Affiliation(s)
- Rohan Ameratunga
- a Department of Virology and Immunology , Auckland City Hospital , Auckland , New Zealand.,b Department of Clinical Immunology , Auckland City Hospital , Auckland , New Zealand
| | - Yeri Ahn
- a Department of Virology and Immunology , Auckland City Hospital , Auckland , New Zealand.,b Department of Clinical Immunology , Auckland City Hospital , Auckland , New Zealand
| | - Anthony Jordan
- b Department of Clinical Immunology , Auckland City Hospital , Auckland , New Zealand
| | - Klaus Lehnert
- c School of Biological Sciences , University of Auckland , Auckland , New Zealand
| | | | - See-Tarn Woon
- a Department of Virology and Immunology , Auckland City Hospital , Auckland , New Zealand
| |
Collapse
|