1
|
Mahendran M, Upton JEM, Ramasubramanian R, Memmott HL, Germain G, Büsch K, Laliberté F, Harrington A. Overall survival among patients with activated phosphoinositide 3-kinase delta syndrome (APDS). Orphanet J Rare Dis 2025; 20:212. [PMID: 40319290 PMCID: PMC12049806 DOI: 10.1186/s13023-025-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study aimed to describe overall survival (OS) of patients with APDS relative to the global population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant (HSCT) relative to the overall APDS population. METHODS Patient-level data were extracted from a recent systematic literature review of 351 unique patients with APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables for 2019. RESULTS Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. The OS rate was 25.0% (95% CI, 1.6-62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible limitation. CONCLUSION Reduced survival in patients with APDS suggests a high disease burden, particularly in those with concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
Collapse
Affiliation(s)
| | - Julia E M Upton
- Clinical Immunology and Allergy, Department of Pediatrics, The Hospital For Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Rani A, Saini V, Njini NG, Dixit AK, Meena AK, Jha HC. Interpreting the role of epigallocatechin-3-gallate in Epstein-Barr virus infection-mediated neuronal diseases. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01240-0. [PMID: 39849283 DOI: 10.1007/s12223-025-01240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025]
Abstract
The increasing prevalence of neurodegenerative diseases is a formidable task due to their multifactorial causation and treatments limited to disease maintenance and progression. Epstein-Barr virus (EBV) is reported to be involved with neuropathologies; previous studies from our group suggested the effective binding of epigallocatechin-3-gallate (EGCG) with EBV nuclear antigen 1 (EBNA1) and glycoprotein H (gH). Therefore, in the current study, we evaluated the anti-EBV effect of ECGG on the neuronal cells. EBV-GFP exhibited a decline after EGCG treatment. We have observed a decrease in specific latent and lytic cycle genes. EBNA1 unravelled attenuation at day 1 (D1), whereas EBNA3B, EBNA3C, BMRF1, BZLF1, and gp350 showed major downregulation in D3 compared to EBV infection. Notably, EBNA-LP has shown mitigation in both the considered time points. Inflammatory and chemokine moieties like IL-6, CCR1, CCR3, and CCR5 declined upon EGCG treatment, while IL-10 exhibited elevation. Transcription factor STAT3 and NF-kB were decreased, especially in the pre-EGCG treated samples. Subsequently, restoration in the mitochondrial membrane potential was observed after EGCG treatment. We observed an increase in the mitochondrial fission genes like DRP1 and MiD49, and not many regulations were observed in the mitochondrial fusion genes except MFN2. Furthermore, the CytC, CytC oxidase, MAVS, ANT, and SDH exhibited elevation upon EGCG treatment, while ATPsyn and ABAD showed downregulation. Dysfunction of mitochondria is further related to apoptosis of neurons. Herein, we were keen to examine the level of amyloid-precursor protein (APP), and it has also indicated declined after EGCG treatment. Altogether, the current study demonstrated the anti-EBV effect of EGCG by subsiding the EBV-mediated inflammation and amendments in the neuropathological markers.
Collapse
Affiliation(s)
- Annu Rani
- Infection Bioengineering Group, POD 1B-602, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, POD 1B-602, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Nfor Gael Njini
- Infection Bioengineering Group, POD 1B-602, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, 4-CN Block, Sector-V, Bidhannagar, Kolkata, 700091, India
| | - Ajay Kumar Meena
- Regional Ayurveda Research Institute, Amkhoh, Gwalior, Madhya Pradesh, 474001, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, POD 1B-602, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
3
|
FitzPatrick AM, Chin AT, Nirenberg S, Cunningham-Rundles C, Sacco K, Perlmutter J, Dasso JF, Tsalatsanis A, Maru J, Creech J, Walter JE, Hartog N, Izadi N, Palmucci M, Butte MJ, Loewy K, Relan A, Rider NL. Piloting an automated query and scoring system to facilitate APDS patient identification from health systems. Front Immunol 2025; 15:1508780. [PMID: 39906746 PMCID: PMC11790479 DOI: 10.3389/fimmu.2024.1508780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025] Open
Abstract
Introduction Patients with activated PI3Kδ syndrome (APDS) may elude diagnoses for nearly a decade. Methods to hasten the identification of these patients, and other patients with inborn errors of immunity (IEIs), are needed. We sought to demonstrate that querying electronic health record (EHR) systems by aggregating disparate signs into a risk score can identify these patients. Methods We developed a structured query language (SQL) script using literature-validated APDS-associated clinical concepts mapped to ICD-10-CM codes. We ran the query across EHRs from 7 large, US-based medical centers encompassing approximately 17 million patients. The query calculated an "APDS Score," which stratified risk for APDS for all individuals in these systems. Scores for all known patients with APDS (n=46) were compared. Results The query identified all but one known patient with APDS (98%; 45/46) as well as patients with other complex disease. Median score for all patients with APDS was 9 (IQR = 5.75; range 1-25). Sensitivity analysis suggested an optimal cutoff score of 7 (sensitivity = 0.70). Conclusion Disease-specific queries are a relatively simple method to foster patient identification across the rare-disease spectrum. Such methods are even more important for disorders such as APDS where an approved, pathway-specific treatment is available in the US.
Collapse
Affiliation(s)
| | - Aaron T. Chin
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sharon Nirenberg
- Division of Informatics and Data Architecture, Icahn School of Medicine, Departments of Scientific Computing and Data, Mount Sinai School of Medicine, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Icahn School of Medicine, Departments of Medicine and Pediatrics, Mount Sinai School of Medicine, New York, NY, United States
| | - Keith Sacco
- Department of Child Health, University of Arizona College of Medicine and Division of Pulmonology, Section of Allergy-Immunology, Phoenix Children’s Hospital, Phoenix, AZ, United States
| | | | - Joseph F. Dasso
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Athanasios Tsalatsanis
- Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida Health, St. Petersburg, FL, United States
| | - Jay Maru
- Management Analyst, Research Methodology and Biostatistics Core, Morsani College of Medicine, University of South Florida Health, St. Petersburg, FL, United States
| | - Jessica Creech
- Department of Pediatrics, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Jolan E. Walter
- Department of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Nicholas Hartog
- Division of Allergy and Immunology, Helen DeVos Children’s Hospital and Corewell Health, Grand Rapids, Michigan State University College of Human Medicine, East Lansing, MI, United States
| | - Neema Izadi
- Division of Clinical Immunology and Allergy, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Mandy Palmucci
- Division of Information Services, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Manish J. Butte
- Department of Pediatrics and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Klaus Loewy
- Department of Information Services, Texas Children’s Hospital, Houston, TX, United States
| | - Anurag Relan
- Pharming Healthcare, Inc., Warren, NJ, United States
| | - Nicholas L. Rider
- Department of Health Systems & Implementation Science, Virginia Tech Carilion School of Medicine, Division of Allergy-Immunology Carilion Clinic, Roanoke, VA, United States
| |
Collapse
|
4
|
Barzaghi F, Moratti M, Panza G, Rivalta B, Giardino G, De Rosa A, Baselli LA, Chinello M, Marzollo A, Montin D, Marinoni M, Costagliola G, Ricci S, Lodi L, Martire B, Milito C, Trizzino A, Tommasini A, Zecca M, Badolato R, Cancrini C, Lougaris V, Pignata C, Conti F. Report of the Italian Cohort with Activated Phosphoinositide 3-Kinase δ Syndrome in the Target Therapy Era. J Clin Immunol 2024; 45:58. [PMID: 39714594 DOI: 10.1007/s10875-024-01835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/05/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Activated Phosphoinositide 3-Kinase (PI3K) δ Syndrome (APDS), an inborn error of immunity due to upregulation of the PI3K pathway, leads to recurrent infections and immune dysregulation (lymphoproliferation and autoimmunity). METHODS Clinical and genetic data of 28 APDS patients from 25 unrelated families were collected from fifteen Italian centers. RESULTS Patients were genetically confirmed with APDS-1 (n = 20) or APDS-2 (n = 8), with pathogenic mutations in the PIK3CD or PIK3R1 genes. The median age at diagnosis was 15.5 years, with a median follow-up of 74 months (range 6-384). The main presenting symptoms were respiratory tract infections alone (57%) or associated with lymphoproliferation (17%). Later, non-clonal lymphoproliferation was the leading clinical sign (86%), followed by respiratory infections (79%) and gastrointestinal complications (43%). Malignant lymphoproliferative disorders, all EBV-encoding RNA (EBER)-positive at the histological analysis, occurred in 14% of patients aged 17-19 years, highlighting the role of EBV in lymphomagenesis in this disorder. Diffuse large B-cell lymphoma was the most frequent. Immunological work-up revealed combined T/B cell abnormalities in most patients. Treatment strategies included immunosuppression and PI3K/Akt/mTOR inhibitor therapy. Rapamycin, employed in 36% of patients, showed efficacy in controlling lymphoproliferation, while selective PI3Kδ inhibitor leniolisib, administered in 32% of patients, was beneficial on both infections and immune dysregulation. Additionally, three patients underwent successful HSCT due to recurrent infections despite ongoing prophylaxis or lymphoproliferation poorly responsive to Rapamycin. CONCLUSIONS This study underscores the clinical heterogeneity and challenging diagnosis of APDS, highlighting the importance of multidisciplinary management tailored to individual needs and further supporting leniolisib efficacy.
Collapse
Affiliation(s)
- Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Moratti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Giuseppina Panza
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Beatrice Rivalta
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Antonio De Rosa
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Augusta Baselli
- Pediatric Immunorheumatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Chinello
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino and Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maddalena Marinoni
- SSD Oncoematologia Pediatrica, Dipartimento materno infantile, Ospedale Filippo del Ponte, ASST Sette Laghi, Varese, Italy
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Baldassarre Martire
- Maternal and Child Department, Unit of Pediatrics and Neonatology, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, "ARNAS Civico Di Cristina Benfratelli" Hospital, Palermo, Italy
| | - Alberto Tommasini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Marco Zecca
- Paediatric Haematology and Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Raffaele Badolato
- Molecular Medicine Institute "Angelo Nocivelli", Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali civili, Brescia, Italy
| | - Caterina Cancrini
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Science, Pediatric Section, Federico II University, Via S. Pansini, 5, 80131 , Naples, Italy.
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Remiker AS, Lopes JPM, Jesudas R, Superdock A, Park N, Pateva I. Case Report: Early-onset or recalcitrant cytopenias as presenting manifestations of activated PI3Kδ syndrome. Front Pediatr 2024; 12:1494945. [PMID: 39664282 PMCID: PMC11632462 DOI: 10.3389/fped.2024.1494945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
Background Patients with recurrent, chronic, or refractory cytopenias represent a challenging subgroup that may harbor an underlying diagnosis, such as an inborn error of immunity (IEI). Patients with IEIs such as activated phosphoinositide 3-kinase delta syndrome (APDS), frequently have hematologic manifestations, but these are not often reported as presenting symptoms. As a result, IEIs may be overlooked in patients presenting with early and/or recalcitrant cytopenias. Here, we describe the diagnostic journey and management of three patients who presented to a pediatric hematologist/oncologist with early-onset or recalcitrant cytopenias and were ultimately diagnosed with APDS. Case presentations Patients presented with early-onset and/or refractory cytopenias, with two of the three developing multilineage cytopenias. Prior to an APDS diagnosis, two patients underwent a total of approximately 20 procedures, including biopsies, invasive endoscopies, and imaging, with one undergoing eight differential diagnoses that were ruled out through additional testing. Recalcitrant cytopenias, a history of infection, and a family history of lymphoproliferation, infection, or autoimmunity raised suspicion of an underlying IEI, leading to genetic testing. Genetic testing identified a pathogenic variant of PIK3CD in each patient, resulting in the diagnosis of APDS. Following these diagnoses, two patients underwent modifications in the management of care with the administration of intravenous immunoglobulin therapy (IVIG), the mTOR inhibitor sirolimus, or surgical procedures. These treatment modifications either improved or resolved the cytopenias. The third patient showed improvement in immune thrombocytopenia with IVIG 1 month prior to receiving a definitive diagnosis. Following diagnosis, follow-up genetic testing of family members led to the identification of additional cases of APDS. Conclusions These cases highlight the importance of early genetic evaluation in patients with early-onset or recalcitrant cytopenias and demonstrate the challenges of differential diagnosis. In addition, these cases demonstrate beneficial changes in management and outcomes that can follow a definitive diagnosis, including the identification of targeted treatment options. Collectively, this case series supports the notion that underlying IEIs should be considered in the workup of early-onset or recalcitrant cytopenias, particularly in patients who present with a combination of hematologic and immunologic manifestations that are refractory to treatment, manifest at an unusually young age, or can be tied to family history.
Collapse
Affiliation(s)
- Allison S. Remiker
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Division of Hematology/Oncology/Blood and Bone Marrow Transplantation, Children's Wisconsin Hospital, Milwaukee, WI, United States
| | - Joao Pedro Matias Lopes
- Division of Pediatric Allergy/Immunology, UH Rainbow Babies & Children's Hospital, Cleveland, OH, United States
| | - Rohith Jesudas
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Alexandra Superdock
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Nami Park
- Medical Affairs, Pharming Healthcare, Inc., Warren, NJ, United States
| | - Irina Pateva
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Hematologic Malignancies II, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
6
|
Barman P, Basu S, Goyal T, Sharma S, Siniah S, Tyagi R, Sharma K, Jindal AK, Pilania RK, Vignesh P, Dhaliwal M, Suri D, Rawat A, Singh S. Epstein-Barr virus-driven lymphoproliferation in inborn errors of immunity: a diagnostic and therapeutic challenge. Expert Rev Clin Immunol 2024; 20:1331-1346. [PMID: 39066572 DOI: 10.1080/1744666x.2024.2386427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEI) are a group of genetically heterogeneous disorders with a wide-ranging clinical phenotype, varying from increased predisposition to infections to dysregulation of the immune system, including autoimmune phenomena, autoinflammatory disorders, lymphoproliferation, and malignancy. Lymphoproliferative disorder (LPD) in IEI refers to the nodal or extra-nodal and persistent or recurrent clonal or non-clonal proliferation of lymphoid cells in the clinical context of an inherited immunodeficiency or immune dysregulation. The Epstein-Barr virus (EBV) plays a significant role in the etiopathogenesis of LPD in IEIs. In patients with specific IEIs, lack of immune surveillance can lead to an uninhibited proliferation of EBV-infected cells that may result in chronic active EBV infection, hemophagocytic lymphohistiocytosis, and LPD, particularly lymphomas. AREAS COVERED We intend to discuss the pathogenesis, diagnosis, and treatment modalities directed toward EBV-associated LPD in patients with distinct IEIs. EXPERT OPINION EBV-driven lymphoproliferation in IEIs presents a diagnostic and therapeutic problem that necessitates a comprehensive understanding of host-pathogen interactions, immune dysregulation, and personalized treatment approaches. A multidisciplinary approach involving immunologists, hematologists, infectious disease specialists, and geneticists is paramount to addressing the diagnostic and therapeutic challenges posed by this intriguing yet formidable clinical entity.
Collapse
Affiliation(s)
- Prabal Barman
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suprit Basu
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saniya Sharma
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sangeetha Siniah
- Pediatric Infectious Disease and Immunology Unit, Department of Paediatrics, Hospital Tunku, Azizah Women and Children Hospital, Kuala Lumpur, Malaysia
| | - Rahul Tyagi
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur K Jindal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh K Pilania
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manpreet Dhaliwal
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Allergy Immunology Unit, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
7
|
Lougaris V, Piane FL, Cancrini C, Conti F, Tommasini A, Badolato R, Trizzino A, Zecca M, De Rosa A, Barzaghi F, Pignata C. Activated phosphoinositde 3-kinase (PI3Kδ) syndrome: an Italian point of view on diagnosis and new advances in treatment. Ital J Pediatr 2024; 50:103. [PMID: 38769568 PMCID: PMC11106885 DOI: 10.1186/s13052-024-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Activated phosphoinositide 3-kinase (PI3Kδ) Syndrome (APDS) is an inborn error of immunity (IEI) with a variable clinical presentation, characterized by infection susceptibility and immune dysregulation that may overlaps with other Primary Immune Regulatory Disorders (PIRDs). The rarity of the disease, its recent discovery, and the multiform /multifaced clinical presentation make it difficult to establish a correct diagnosis, especially at an early stage. As a result, the true prevalence of the pathology remains unknown. There is no treatment protocol for APDS, and drug therapy is primarily focused on treating symptoms. The most common therapies include immunoglobulin replacement therapy, antimicrobial prophylaxis, and immunosuppressive drugs. Hematopoietic stem cell transplantation (HSCT) has been used in some cases, but the risk-benefit balance remains unclear. With the upcoming introduction of specific medications, such as selective inhibitors for PI3Kδ, clinicians are shifting their attention towards target therapy.This review provides a comprehensive overview of APDS with a focus on diagnostic and treatments procedures available. This review may be useful in implementing strategies for a more efficient patients' management and therapeutic interventions.Main Text.
Collapse
Affiliation(s)
- Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | | | - Caterina Cancrini
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34137, Italy
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Raffaele Badolato
- Department of Pediatrics, Università di Brescia, Istituto di Medicina Molecolare Angelo Nocivelli", ASST Spedali Civili, Brescia, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Ospedali Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Marco Zecca
- Paediatric Haematology and Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Università degli Studi di Napoli "Federico II", Naples, 80125, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Università degli Studi di Napoli "Federico II", Naples, 80125, Italy.
| |
Collapse
|
8
|
刘 清, 彭 力, 黄 寒, 邓 亮, 钟 礼. [Activated phosphoinositide 3-kinase delta syndrome: report of seven cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:499-505. [PMID: 38802911 PMCID: PMC11135056 DOI: 10.7499/j.issn.1008-8830.2312065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES To summarize the clinical data of 7 children with activated phosphoinositide 3-kinase delta syndrome (APDS) and enhance understanding of the disease. METHODS A retrospective analysis was conducted on clinical data of 7 APDS children admitted to Hunan Provincial People's Hospital from January 2019 to August 2023. RESULTS Among the 7 children (4 males, 3 females), the median age of onset was 30 months, and the median age at diagnosis was 101 months. Recurrent respiratory tract infections, hepatosplenomegaly, and multiple lymphadenopathy were observed in all 7 cases. Sepsis was observed in 5 cases, otitis media and multiple caries were observed in 3 cases, and diarrhea and joint pain were observed in 2 cases. Lymphoma and systemic lupus erythematosus were observed in 1 case each. Fiberoptic bronchoscopy was performed in 4 cases, revealing scattered nodular protrusions in the bronchial lumen. The most common respiratory pathogen was Streptococcus pneumoniae (4 cases). Six patients had a p.E1021K missense mutation, and one had a p.434-475del splice site mutation. CONCLUSIONS p.E1021K is the most common mutation site in APDS children. Children who present with one or more of the following symptoms: recurrent respiratory tract infections, hepatosplenomegaly, multiple lymphadenopathy, otitis media, and caries, and exhibit scattered nodular protrusions on fiberoptic bronchoscopy, should be vigilant for APDS. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(5): 499-505.
Collapse
|
9
|
Cant AJ, Chandra A, Munro E, Rao VK, Lucas CL. PI3Kδ Pathway Dysregulation and Unique Features of Its Inhibition by Leniolisib in Activated PI3Kδ Syndrome and Beyond. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:69-78. [PMID: 37777067 PMCID: PMC10872751 DOI: 10.1016/j.jaip.2023.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway regulates diverse cellular processes, with finely tuned PI3Kδ activity being crucial for immune cell development and function. Genetic hyperactivation of PI3Kδ causes the inborn error of immunity activated phosphoinositide 3-kinase δ syndrome (APDS). Several PI3Kδ inhibitors have been investigated as treatment options for APDS, but only leniolisib has shown both efficacy and tolerability. In contrast, severe immune-mediated adverse events such as colitis, neutropenia, and hepatotoxicity have been observed with other PI3Kδ inhibitors, particularly those indicated for hematological malignancies. We propose that leniolisib is distinguished from other PI3Kδ inhibitors due to its structure, specific inhibitory properties selectively targeting the δ isoform without overinhibition of the δ or γ isoforms, and the precise match between APDS mechanism of disease and drug mechanism of action.
Collapse
Affiliation(s)
- Andrew J Cant
- Paediatric Immunology, Infectious Diseases & Allergy Department, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Anita Chandra
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - V Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
10
|
Mertowska P, Mertowski S, Smolak K, Pasiarski M, Smok-Kalwat J, Góźdź S, Grywalska E. Exploring the Significance of Immune Checkpoints and EBV Reactivation in Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia. Cancers (Basel) 2023; 15:5059. [PMID: 37894426 PMCID: PMC10605741 DOI: 10.3390/cancers15205059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
This study delves into the intricate landscape of primary immunodeficiencies, with a particular focus on antibody deficiencies characterized by near-normal immunoglobulin levels or hyperimmunoglobulinemia. Contrary to the conventional focus on genetic dysregulation, these studies investigate the key roles of immune checkpoints, such as PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200, on selected subpopulations of T and B lymphocytes and their serum concentrations of soluble forms in patients recruited for the studies in healthy volunteers. In addition, the studies also show the role of Epstein-Barr virus (EBV) reactivation and interactions with tested pathways of immune checkpoints involved in the immunopathogenesis of this disease. By examining the context of antibody deficiencies, this study sheds light on the nuanced interplay of factors beyond genetics, particularly the immune dysregulations that occur in the course of this type of disease and the potential role of EBV reactivation, which affects the clinical presentation of patients and may contribute to the development of cancer in the future, especially related to hematological malignancies.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Marcin Pasiarski
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland;
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Jolanta Smok-Kalwat
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Stanisław Góźdź
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
11
|
Mertowska P, Mertowski S, Smolak K, Kita G, Guz K, Kita A, Pasiarski M, Smok-Kalwat J, Góźdź S, Grywalska E. Could Immune Checkpoint Disorders and EBV Reactivation Be Connected in the Development of Hematological Malignancies in Immunodeficient Patients? Cancers (Basel) 2023; 15:4786. [PMID: 37835480 PMCID: PMC10572023 DOI: 10.3390/cancers15194786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Primary immunodeficiencies (PIDs) and secondary immunodeficiencies (SIDs) are characterized by compromised immune function, rendering individuals susceptible to infections and potentially influencing cancer development. Epstein-Barr virus (EBV), a widespread herpesvirus, has been linked to cancer, particularly in those with weakened immune systems. This study aims to compare selected immune parameters, focusing on immune checkpoint molecules (PD-1/PD-L1, CTLA-4/CD86, CD200R/CD200), and EBV reactivation in patients with chronic lymphocytic leukemia (CLL, a representative of SIDs) and common variable immunodeficiency (CVID, a representative of PIDs). We performed a correlation analysis involving patients diagnosed with CLL, CVID, and a healthy control group. EBV reactivation was assessed using specific antibody serology and viral load quantification. Peripheral blood morphology, biochemistry, and immunophenotyping were performed, with emphasis on T and B lymphocytes expressing immune checkpoints and their serum concentrations. Our findings revealed elevated EBV reactivation markers in both CLL and CVID patients compared with healthy controls, indicating increased viral activity in immunodeficient individuals. Furthermore, immune checkpoint expression analysis demonstrated significantly altered percentages of T and B lymphocytes expressing PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200 in CLL and CVID patients. This suggests a potential interplay between immune checkpoint dysregulation and EBV reactivation in the context of immunodeficiency. In conclusion, our study underscores the intricate relationship between immune dysfunction, EBV reactivation, and immune checkpoint modulation in the context of immunodeficiency-associated cancers. The altered expression of immune checkpoints, along with heightened EBV reactivation, suggests a potential mechanism for immune evasion and tumor progression. These findings provide insights into the complex interactions that contribute to cancer development in immunocompromised individuals, shedding light on potential therapeutic targets for improved management and treatment outcomes. Further investigations are warranted to elucidate the underlying mechanisms and to explore potential interventions to mitigate cancer risk in these patient populations.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| | - Gabriela Kita
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Guz
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Kita
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marcin Pasiarski
- Department of Immunology, Faculty of Health Sciences, Jan Kochanowski University, 25-317 Kielce, Poland;
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Jolanta Smok-Kalwat
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
| | - Stanisław Góźdź
- Department of Hematology, Holy Cross Cancer Centre, 25-734 Kielce, Poland; (J.S.-K.); (S.G.)
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (P.M.); (K.S.); (G.K.); (K.G.); (A.K.); (E.G.)
| |
Collapse
|
12
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Ma Y, Bao Y, Zheng M. Epstein-Barr virus-associated B-cell lymphoproliferative disorder meeting the definition of CAEBV B cell disease: a case report. BMC Infect Dis 2023; 23:453. [PMID: 37420238 DOI: 10.1186/s12879-023-08430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Chronic active Epstein-Barr virus infection (CAEBV) is a systemic EBV-positive lymphoproliferative disorder (EBV-LPD) considered to be associated with a genetic immunological abnormality, although its cause is still unclear. EBV is usually detected in T cells or NK cells in CAEBV patients with only a few cases involving B cells described in East Asia, which may be due to differences in genetic and environmental factors. CASE DESCRIPTION A 16-year-old boy who seemed to be diagnosed as CAEBV of B cell type was studied. The patient had IM-like symptoms persisting for more than 3 months, high levels of EBV DNA in the PB, and positive EBER in situ hybridization in B cells. In addition, to exclude underlying genetic disorders, we performed next-generation sequencing (NGS) and whole-exome sequencing (WES), which identified the missense mutation in PIK3CD (E1021K), ADA (S85L) and CD3D (Q140K) in the patient while no same genetic mutation was detected in his parents and sister. However, there is no diagnosis of CAEBV of B cell type in the most recent World Health Organization classification of tumors of hematopoietic and lymphoid tissues, therefore we finally diagnosed this patient as EBV-B-LPD. CONCLUSIONS This study shows a rare case of a patient meeting the definition of CAEBV B-cell disease in East Asia. Meanwhile, the case indicates that the missense mutation and the disease are related.
Collapse
Affiliation(s)
- Yaxian Ma
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yuhan Bao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Miao Zheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China.
| |
Collapse
|
14
|
Guevara-Hoyer K, Fuentes-Antrás J, de la Fuente-Muñoz E, Fernández-Arquero M, Solano F, Pérez-Segura P, Neves E, Ocaña A, Pérez de Diego R, Sánchez-Ramón S. Genomic crossroads between non-Hodgkin's lymphoma and common variable immunodeficiency. Front Immunol 2022; 13:937872. [PMID: 35990641 PMCID: PMC9390007 DOI: 10.3389/fimmu.2022.937872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Common variable immunodeficiency (CVID) represents the largest group of primary immunodeficiencies that may manifest with infections, inflammation, autoimmunity, and cancer, mainly B-cell non-Hodgkin's lymphoma (NHL). Indeed, NHL may result from chronic or recurrent infections and has, therefore, been recognized as a clinical phenotype of CVID, although rare. The more one delves into the mechanisms involved in CVID and cancer, the stronger the idea that both pathologies can be a reflection of the same primer events observed from different angles. The potential effects of germline variants on specific somatic modifications in malignancies suggest that it might be possible to anticipate critical events during tumor development. In the same way, a somatic alteration in NHL could be conditioning a similar response at the transcriptional level in the shared signaling pathways with genetic germline alterations in CVID. We aimed to explore the genomic substrate shared between these entities to better characterize the CVID phenotype immunodeficiency in NHL. By means of an in-silico approach, we interrogated the large, publicly available datasets contained in cBioPortal for the presence of genes associated with genetic pathogenic variants in a panel of 50 genes recurrently altered in CVID and previously described as causative or disease-modifying. We found that 323 (25%) of the 1,309 NHL samples available for analysis harbored variants of the CVID spectrum, with the most recurrent alteration presented in NHL occurring in PIK3CD (6%) and STAT3 (4%). Pathway analysis of common gene alterations showed enrichment in inflammatory, immune surveillance, and defective DNA repair mechanisms similar to those affected in CVID, with PIK3R1 appearing as a central node in the protein interaction network. The co-occurrence of gene alterations was a frequent phenomenon. This study represents an attempt to identify common genomic grounds between CVID and NHL. Further prospective studies are required to better know the role of genetic variants associated with CVID and their reflection on the somatic pathogenic variants responsible for cancer, as well as to characterize the CVID-like phenotype in NHL, with the potential to influence early CVID detection and therapeutic management.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Fernando Solano
- Department of Hematology, General University Hospital Nuestra Señora del Prado, Talavera de la Reina, Spain
| | | | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Hospital and University Center of Porto, Porto, Portugal
| | - Alberto Ocaña
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
15
|
Kirchenwitz M, Stahnke S, Prettin S, Borowiak M, Menke L, Sieben C, Birchmeier C, Rottner K, Stradal TEB, Steffen A. SMER28 Attenuates PI3K/mTOR Signaling by Direct Inhibition of PI3K p110 Delta. Cells 2022; 11:1648. [PMID: 35626685 PMCID: PMC9140127 DOI: 10.3390/cells11101648] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
SMER28 (Small molecule enhancer of Rapamycin 28) is an autophagy-inducing compound functioning by a hitherto unknown mechanism. Here, we confirm its autophagy-inducing effect by assessing classical autophagy-related parameters. Interestingly, we also discovered several additional effects of SMER28, including growth retardation and reduced G1 to S phase progression. Most strikingly, SMER28 treatment led to a complete arrest of receptor tyrosine kinase signaling, and, consequently, growth factor-induced cell scattering and dorsal ruffle formation. This coincided with a dramatic reduction in phosphorylation patterns of PI3K downstream effectors. Consistently, SMER28 directly inhibited PI3Kδ and to a lesser extent p110γ. The biological relevance of our observations was underscored by SMER28 interfering with InlB-mediated host cell entry of Listeria monocytogenes, which requires signaling through the prominent receptor tyrosine kinase c-Met. This effect was signaling-specific, since entry of unrelated, gram-negative Salmonella Typhimurium was not inhibited. Lastly, in B cell lymphoma cells, which predominantly depend on tonic signaling through PI3Kδ, apoptosis upon SMER28 treatment is profound in comparison to non-hematopoietic cells. This indicates SMER28 as a possible drug candidate for the treatment of diseases that derive from aberrant PI3Kδ activity.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stephanie Stahnke
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Silvia Prettin
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Malgorzata Borowiak
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany; (M.B.); (C.B.)
| | - Laura Menke
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
| | - Christian Sieben
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (L.M.); (C.S.)
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany; (M.B.); (C.B.)
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (M.K.); (S.S.); (S.P.); (K.R.)
| |
Collapse
|
16
|
Boz V, Zanchi C, Levantino L, Riccio G, Tommasini A. Druggable monogenic immune defects hidden in diverse medical specialties: Focus on overlap syndromes. World J Clin Pediatr 2022; 11:136-150. [PMID: 35433297 PMCID: PMC8985491 DOI: 10.5409/wjcp.v11.i2.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
In the last two decades two new paradigms changed our way of perceiving primary immunodeficiencies: An increasing number of immune defects are more associated with inflammatory or autoimmune features rather than with infections. Some primary immune defects are due to hyperactive pathways that can be targeted by specific inhibitors, providing innovative precision treatments that can change the natural history of diseases. In this article we review some of these "druggable" inborn errors of immunity and describe how they can be suspected and diagnosed in diverse pediatric and adult medicine specialties. Since the availability of precision treatments can dramatically impact the course of these diseases, preventing the development of organ damage, it is crucial to widen the awareness of these conditions and to provide practical hints for a prompt detection and cure.
Collapse
Affiliation(s)
- Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34137, Italy
| | - Chiara Zanchi
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste 34137, Italy
| | - Laura Levantino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34137, Italy
| | - Guglielmo Riccio
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34137, Italy
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34137, Italy
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste 34137, Italy
| |
Collapse
|
17
|
Successful treatment for diffuse large B-cell lymphoma in a Japanese adolescent with PIK3CD germ-line mutation: stem cell transplantation after reduced-intensity conditioning. Ann Hematol 2022; 101:1617-1619. [PMID: 35247100 DOI: 10.1007/s00277-022-04809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 11/01/2022]
|
18
|
Host Defenses to Viruses: Lessons from Inborn Errors of Immunity. Medicina (B Aires) 2022; 58:medicina58020248. [PMID: 35208572 PMCID: PMC8879264 DOI: 10.3390/medicina58020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/03/2023] Open
Abstract
The constant battle between viruses and their hosts leads to their reciprocal evolution. Viruses regularly develop survival strategies against host immunity, while their ability to replicate and disseminate is countered by the antiviral defense mechanisms that host mount. Although most viral infections are generally controlled by the host’s immune system, some viruses do cause overt damage to the host. The outcome can vary widely depending on the properties of the infecting virus and the circumstances of infection but also depends on several factors controlled by the host, including host genetic susceptibility to viral infections. In this narrative review, we provide a brief overview of host immunity to viruses and immune-evasion strategies developed by viruses. Moreover, we focus on inborn errors of immunity, these being considered a model for studying host response mechanisms to viruses. We finally report exemplary inborn errors of both the innate and adaptive immune systems that highlight the role of proteins involved in the control of viral infections.
Collapse
|
19
|
Nguyen T, Deenick EK, Tangye SG. Phosphatidylinositol 3-kinase signaling and immune regulation: insights into disease pathogenesis and clinical implications. Expert Rev Clin Immunol 2021; 17:905-914. [PMID: 34157234 DOI: 10.1080/1744666x.2021.1945443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that plays a fundamental role in cell survival, metabolism, proliferation and differentiation. Thus, balanced PI3K signalling is critical for multiple aspects of human health. The discovery that germline variants in genes in the PI3K pathway caused inborn errors of immunity highlighted the non-redundant role of these signalling proteins in the human immune system. The subsequent identification and characterisation of >300 individuals with a novel immune dysregulatory disorder, termed activated PI3K-delta syndrome (APDS), has reinforced the status of PI3K as a key pathway regulating immune function. Studies of APDS have demonstrated that dysregulated PI3K function is disruptive for immune cell development, activation, differentiation, effector function and self-tolerance, which are all important in supporting effective, long-term immune responses. AREAS COVERED In this review, we recount recent findings regarding humans with germline variants in PI3K genes and discuss the underlying cellular and molecular pathologies, with a focus on implications for therapy in APDS patients. EXPERT OPINION Modulating PI3K immune cell signalling by offers opportunities for therapeutic interventions in settings of immunodeficiency, autoimmunity and malignancy, but also highlights potential adverse events that may result from overt pharmacological or intrinsic inhibition of PI3K function.
Collapse
Affiliation(s)
- Tina Nguyen
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Elissa K Deenick
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Stuart G Tangye
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| |
Collapse
|
20
|
Brodsky NN, Lucas CL. Infections in activated PI3K delta syndrome (APDS). Curr Opin Immunol 2021; 72:146-157. [PMID: 34052541 DOI: 10.1016/j.coi.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
Activated PI3K-delta Syndrome (APDS), also called PI3K-delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI), is an autosomal dominant disorder caused by inherited or de novo gain-of-function mutations in one of two genes encoding subunits of the phosphoinositide-3-kinase delta (PI3Kδ) complex. This largely leukocyte-restricted protein complex regulates cell growth, activation, proliferation, and survival. Patients who harbor these mutations have early onset immunodeficiency with recurrent infections, lymphadenopathy, and autoimmunity. The most common infection susceptibilities are sinopulmonary (encapsulated bacteria) and herpesviruses. Multiple defects in both innate and adaptive immune function are responsible for this phenotype. Apart from anti-microbial prophylaxis and immunoglobulin replacement, patients are treated with a variety of immunomodulatory agents and some have needed hematopoietic stem cell transplants. Here, we highlight the spectrum of infections, immune defects, and therapy options in this inborn error of immunity.
Collapse
Affiliation(s)
- Nina N Brodsky
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208064, New Haven, CT 06520, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA.
| |
Collapse
|
21
|
Rivalta B, Amodio D, Milito C, Chiriaco M, Di Cesare S, Giancotta C, Conti F, Santilli V, Pacillo L, Cifaldi C, Desimio MG, Doria M, Quinti I, De Vito R, Di Matteo G, Finocchi A, Palma P, Trizzino A, Tommasini A, Cancrini C. Case Report: EBV Chronic Infection and Lymphoproliferation in Four APDS Patients: The Challenge of Proper Characterization, Therapy, and Follow-Up. Front Pediatr 2021; 9:703853. [PMID: 34540765 PMCID: PMC8448282 DOI: 10.3389/fped.2021.703853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Activated PI3K-kinase Delta Syndrome (APDS) is an autosomal-dominant primary immunodeficiency (PID) caused by the constitutive activation of the PI3Kδ kinase. The consequent hyperactivation of the PI3K-Akt-mTOR pathway leads to an impaired T- and B-cells differentiation and function, causing progressive lymphopenia, hypogammaglobulinemia and hyper IgM. Patients with APDS show recurrent sinopulmonary and chronic herpes virus infections, immune dysregulation manifestations, including cytopenia, arthritis, inflammatory enteropathy, and a predisposition to persistent non-neoplastic splenomegaly/lymphoproliferation and lymphoma. The recurrence of the lymphoproliferative disorder and the difficulties in the proper definition of malignancy on histological examination represents the main challenge in the clinical management of APDS patients, since a prompt and correct diagnosis is needed to avoid major complications. Targeted therapies with PI3Kδ-Akt-mTOR pathway pharmacologic inhibitors (i.e., Rapamycin, Theophylline, PI3K inhibitors) represent a good therapeutic strategy. They can also be used as bridge therapies when HSCT is required in order to control refractory symptoms. Indeed, treated patients showed a good tolerance, improved immunologic phenotype and reduced incidence/severity of immune dysregulation manifestations. Here, we describe our experience in the management of four patients, one male affected with APDS1 (P1) and the other three, a male and two females, with APDS2 (P2, P3, P4) presenting with chronic EBV replication, recurrent episodes of immune dysregulation manifestations and lymphomas. These cases highlighted the importance of a tailored and close follow-up, including serial endoscopic and lymph nodes biopsies control to detect a prompt and correct diagnosis and offer the best therapeutic strategy.
Collapse
Affiliation(s)
- Beatrice Rivalta
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Donato Amodio
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmela Giancotta
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucia Pacillo
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Cristina Cifaldi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rita De Vito
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, Rome, Italy
| | - Gigliola Di Matteo
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Finocchi
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.,Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, ARNAS Civico Di Cristina and Benfratelli Hospital, Palermo, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Immune and Infectious Diseases Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
22
|
Activated Phosphoinositide 3-Kinase Delta Syndrome 1: Clinical and Immunological Data from an Italian Cohort of Patients. J Clin Med 2020; 9:jcm9103335. [PMID: 33080915 PMCID: PMC7603210 DOI: 10.3390/jcm9103335] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Activated phosphoinositide 3-kinase delta syndrome 1 (APDS-1) is a recently described inborn error of immunity caused by monoallelic gain-of-function mutations in the PIK3CD gene. We reviewed for the first time medical records and laboratory data of eight Italian APDS-1 patients. Recurrent sinopulmonary infections were the most common clinical feature at onset of disease. Seven patients presented lymphoproliferative disease, at onset or during follow-up, one of which resembled hemophagocytic lymphohistiocytosis (HLH). Genetic analysis of the PIK3CD gene revealed three novel mutations: functional testing confirmed their activating nature. In the remaining patients, the previously reported variants p.E1021K (n = 4) and p.E525A (n = 1) were identified. Six patients were started on immunoglobulin replacement treatment (IgRT). One patient successfully underwent hematopoietic stem cell transplantation (HSCT), with good chimerism and no GVHD at 21 months post-HSCT. APDS-1 is a combined immune deficiency with a wide variety of clinical manifestations and a complex immunological presentation. Besides IgRT, specific therapies targeting the PI3Kδ pathway will most likely become a valid aid for the amelioration of patients’ clinical management and their quality of life.
Collapse
|
23
|
Lougaris V, Baronio M, Castagna A, Tessarin G, Rossi S, Gazzurelli L, Benvenuto A, Moratto D, Chiarini M, Cattalini M, Facchetti M, Palumbo L, Giliani S, Girelli MF, Badolato R, Bondioni MP, Facchetti F, Meini A, Plebani A. Paediatric MAS/HLH caused by a novel monoallelic activating mutation in p110δ. Clin Immunol 2020; 219:108543. [PMID: 32681977 DOI: 10.1016/j.clim.2020.108543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/15/2022]
Abstract
This study provides evidence for the first time for APDS-1 presenting as MAS/HLH, with evident clinical implications in patient's management and prognosis.
Collapse
Affiliation(s)
- Vassilios Lougaris
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy.
| | - Manuela Baronio
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Andrea Castagna
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Giulio Tessarin
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Rossi
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Luisa Gazzurelli
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Alessio Benvenuto
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marcho Chiarini
- Flow Cytometry Unit, Clinical Chemistry Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Cattalini
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Mattia Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Laura Palumbo
- Pediatrics Clinic, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Silvia Giliani
- Institute for Molecular Medicine A. Nocivelli, and Department of Pathology, Laboratory of Genetic Disorders of Childhood, Department of Molecular and Translational Medicine, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | | | - Raffaele Badolato
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Maria Pia Bondioni
- Pediatric Radiology, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Antonella Meini
- Pediatrics Clinic, ASST- Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST- Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Nunes-Santos CJ, Uzel G, Rosenzweig SD. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 2020; 143:1676-1687. [PMID: 31060715 DOI: 10.1016/j.jaci.2019.03.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a broad range of cellular processes, including growth, metabolism, differentiation, proliferation, motility, and survival. The PI3Kδ enzyme complex is primarily present in the immune system and comprises a catalytic (p110δ) and regulatory (p85α) subunit. Dynamic regulation of PI3Kδ activity is required to ensure normal function and differentiation of immune cells. In the last decade, discovery of germline mutations in genes involved in the PI3Kδ pathway (PIK3CD, PIK3R1, or phosphatase and tensin homolog [PTEN]) proved that both overactivation and underactivation (gain of function and loss of function, respectively) of PI3Kδ lead to impaired and dysregulated immunity. Although a small group of patients reported to underactivate PI3Kδ show predominantly humoral defects and autoimmune features, more than 200 patients have been described with overactivation of PI3Kδ, presenting with a much more complex phenotype of combined immunodeficiency and immune dysregulation. The clinical and immunologic characterization, as well as current pathophysiologic understanding and specific therapies for PI3K pathway defects leading to immunodeficiency and immune dysregulation, are reviewed here.
Collapse
Affiliation(s)
- Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md; Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md.
| |
Collapse
|
25
|
A Rare Case of Activated Phosphoinositide 3-Kinase Delta Syndrome (APDS) Presenting With Hemophagocytosis Complicated With Hodgkin Lymphoma. J Pediatr Hematol Oncol 2020; 42:156-159. [PMID: 31033788 DOI: 10.1097/mph.0000000000001487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gain of function mutations in the p110δ catalytic subunit of the phosphatidylinositol-3-OH kinase (PIK3CD) classified as activated phosphoinositide 3-kinase delta syndrome (APDS) are the cause of a primary immunodeficiency characterized by recurrent sinopulmonary infections, and lymphoproliferation. Previously, autoimmunity and Epstein-Barr virus-related B-cell lymphoma have been documented for patients with APDS; here, we present a case that extends the picture, as the patient shows the full diagnostic criteria of hemophagocytic lymphohistiocytosis at 6 months of age. He experienced Hodgkin lymphoma as a 2.5-year-old baby. Next-generation sequencing returned a de novo heterozygous missense variant in PIK3CD (LRG_191t1: c.3061G>A; p.Glu1021Lys), confirming the primary immunodeficiency. After 2 courses of ifosfamide, cisplatin, and etoposide combined with brentuximab, the patient successfully underwent allogeneic hematopoietic stem cell transplantation from his HLA full matched sister, and he has been well for 18 months after that. The hematologist treating Hodgkin lymphoma and/or hemophagocytic lymphohistiocytosis should be vigilant about the possible underlying immune deficiency, and they should consider APDS in their differential diagnosis.
Collapse
|
26
|
Jia Y, Yang Q, Wang Y, Li W, Chen X, Xu T, Tian Z, Feng M, Zhang L, Tang W, Tian N, Zhou L, Song W, Zhao X. Hyperactive PI3Kδ predisposes naive T cells to activation via aerobic glycolysis programs. Cell Mol Immunol 2020; 18:1783-1797. [PMID: 32099075 DOI: 10.1038/s41423-020-0379-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is an autosomal-dominant combined immunodeficiency disorder resulting from pathogenic gain-of-function (GOF) mutations in the PIK3CD gene. Patients with APDS display abnormal T cell homeostasis. However, the mechanisms by which PIK3CD GOF contributes to this feature remain unknown. Here, with a cohort of children with PIK3CD GOF mutations from multiple regions of China and a corresponding CRISPR/Cas9 gene-edited mouse model, we reported that hyperactive PI3Kδ disrupted TNaive cell homeostasis in the periphery by intrinsically promoting the growth, proliferation, and activation of TNaive cells. Our results showed that PIK3CD GOF resulted in loss of the quiescence-associated gene expression profile in naive T cells and promoted naive T cells to overgrow, hyperproliferate and acquire an activated functional status. Naive PIK3CD GOF T cells exhibited an enhanced glycolytic capacity and reduced mitochondrial respiration in the resting or activated state. Blocking glycolysis abrogated the abnormal splenic T cell pool and reversed the overactivated phenotype induced by PIK3CD GOF in vivo and in vitro. These results suggest that enhanced aerobic glycolysis is required for PIK3CD GOF-induced overactivation of naive T cells and provide a potential therapeutic approach for targeting glycolysis to treat patients with APDS as well as other immune disorders.
Collapse
Affiliation(s)
- Yanjun Jia
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Yang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanping Wang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Xu
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhirui Tian
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Minxuan Feng
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Zhang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Na Tian
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Xiaodong Zhao
- National Clinical Research for Child Health and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
28
|
Human PI3Kγ deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat Commun 2019; 10:4364. [PMID: 31554793 PMCID: PMC6761123 DOI: 10.1038/s41467-019-12311-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
Phosphatidylinositol 3-kinase-gamma (PI3Kγ) is highly expressed in leukocytes and is an attractive drug target for immune modulation. Different experimental systems have led to conflicting conclusions regarding inflammatory and anti-inflammatory functions of PI3Kγ. Here, we report a human patient with bi-allelic, loss-of-function mutations in PIK3CG resulting in absence of the p110γ catalytic subunit of PI3Kγ. She has a history of childhood-onset antibody defects, cytopenias, and T lymphocytic pneumonitis and colitis, with reduced peripheral blood memory B, memory CD8+ T, and regulatory T cells and increased CXCR3+ tissue-homing CD4 T cells. PI3Kγ-deficient macrophages and monocytes produce elevated inflammatory IL-12 and IL-23 in a GSK3α/β-dependent manner upon TLR stimulation. Pik3cg-deficient mice recapitulate major features of human disease after exposure to natural microbiota through co-housing with pet-store mice. Together, our results emphasize the physiological importance of PI3Kγ in restraining inflammation and promoting appropriate adaptive immune responses in both humans and mice.
Collapse
|
29
|
Rodriguez R, Fournier B, Cordeiro DJ, Winter S, Izawa K, Martin E, Boutboul D, Lenoir C, Fraitag S, Kracker S, Watts TH, Picard C, Bruneau J, Callebaut I, Fischer A, Neven B, Latour S. Concomitant PIK3CD and TNFRSF9 deficiencies cause chronic active Epstein-Barr virus infection of T cells. J Exp Med 2019; 216:2800-2818. [PMID: 31537641 PMCID: PMC6888974 DOI: 10.1084/jem.20190678] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of biallelic loss-of-function mutations in TNFRSF9 and PIK3CD in a kindred with chronic active Epstein-Barr virus infection of T cells (CAEBV) suggests that CAEBV is the consequence of factors providing growth advantage to EBV-infected T cells combined with defective cell immunity toward EBV-infected cells. Infection of T cells by Epstein-Barr virus (EBV) causes chronic active EBV infection (CAEBV) characterized by T cell lymphoproliferative disorders (T-LPD) of unclear etiology. Here, we identified two homozygous biallelic loss-of-function mutations in PIK3CD and TNFRSF9 in a patient who developed a fatal CAEBV. The mutation in TNFRSF9 gene coding CD137/4-1BB, a costimulatory molecule expressed by antigen-specific activated T cells, resulted in a complete loss of CD137 expression and impaired T cell expansion toward CD137 ligand–expressing cells. Isolated as observed in one sibling, CD137 deficiency resulted in persistent EBV-infected T cells but without clinical manifestations. The mutation in PIK3CD gene that encodes the catalytic subunit p110δ of the PI3K significantly reduced its kinase activity. Deficient T cells for PIK3CD exhibited reduced AKT signaling, while calcium flux, RAS-MAPK activation, and proliferation were increased, suggestive of an imbalance between the PLCγ1 and PI3K pathways. These skewed signals in T cells may sustain accumulation of EBV-infected T cells, a process controlled by the CD137–CD137L pathway, highlighting its critical role in immunity to EBV.
Collapse
Affiliation(s)
- Rémy Rodriguez
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Debora Jorge Cordeiro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Kazushi Izawa
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - David Boutboul
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Sylvie Fraitag
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sven Kracker
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Laboratory of Human Lymphohematopoiesis, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julie Bruneau
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Collège de France, Paris, France.,Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France
| | - Bénédicte Neven
- University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et la Recherche Médicale, Unité Mixte de Recherche 1163, Paris, France .,University Paris Descartes Sorbonne Paris Cité, Imagine Institute, Paris, France
| |
Collapse
|
30
|
Hoshino A, Tanita K, Kanda K, Imadome KI, Shikama Y, Yasumi T, Imai K, Takagi M, Morio T, Kanegane H. High frequencies of asymptomatic Epstein-Barr virus viremia in affected and unaffected individuals with CTLA4 mutations. Clin Immunol 2018; 195:45-48. [DOI: 10.1016/j.clim.2018.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/07/2018] [Accepted: 07/22/2018] [Indexed: 11/25/2022]
|
31
|
Luo Y, Xia Y, Wang W, Li Z, Jin Y, Gong Y, He T, Li Q, Li C, Yang J. Identification of a novel de novo gain-of-function mutation of PIK3CD in a patient with activated phosphoinositide 3-kinase δ syndrome. Clin Immunol 2018; 197:60-67. [PMID: 30138677 DOI: 10.1016/j.clim.2018.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 07/15/2018] [Accepted: 08/18/2018] [Indexed: 01/23/2023]
Abstract
Activated phosphoinositide 3-kinase δ (PI3Kδ) syndrome is a newly defined and relatively common primary immunodeficiency, which is caused by heterozygous gain-of-function (GOF) mutations in PIK3CD or PIK3R1. Here, we report a novel de novo GOF mutation (c.1570 T > A, p.Y524N) in PIK3CD in a 6-year-old Chinese girl. The patient suffered recurrent sinopulmonary infection, bronchiectasis, lymphoproliferation, herpesvirus infection, and distinctive nodular lymphoid hyperplasia of mucosal surfaces. Immunological analysis revealed increased CD4+ T cell senescence and B cell immaturity. Further analysis revealed an increase in almost all CD4+ T cell subsets to varying degrees, including effector T cells and Treg cells. Increased levels of plasma T cell-related cytokines corroborated these results. Hyperactivation of the PI3Kδ-Akt-mTOR signaling pathway was also confirmed. Treatment with rapamycin ameliorated the lymphoproliferative immunodeficiency caused by hyperactivation of mTOR. These results expand genetic spectrum of APDS and will facilitate further study of the genotype-phenotype correlation in those with PIK3CD mutations.
Collapse
Affiliation(s)
- Ying Luo
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yu Xia
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenjing Wang
- BGI-Shenzhen, Shenzhen, China.; China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Zhichuan Li
- Department of Respiration, Shenzhen Children's Hospital, Shenzhen, China
| | - Yan Jin
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Yifeng Gong
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Tingyan He
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Qiu Li
- Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chengrong Li
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China..
| | - Jun Yang
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China..
| |
Collapse
|
32
|
Nguyen Y, Rosain J, Aguilar C, Picard C, Malphettes M. Long-term follow-up of an activated PI3K-δ syndrome 2 in patient presenting with an agammaglobulinemia phenotype. Ann Allergy Asthma Immunol 2018; 121:739-740.e1. [PMID: 30081089 DOI: 10.1016/j.anai.2018.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Yann Nguyen
- Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jérémie Rosain
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Necker Medical School, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Claire Aguilar
- Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Necker Medical School, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris, Necker Medical School, Paris, France; INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Marion Malphettes
- Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; EA3518, Université Paris Diderot Paris 7, Paris, France.
| |
Collapse
|
33
|
Cannons JL, Preite S, Kapnick SM, Uzel G, Schwartzberg PL. Genetic Defects in Phosphoinositide 3-Kinase δ Influence CD8 + T Cell Survival, Differentiation, and Function. Front Immunol 2018; 9:1758. [PMID: 30116245 PMCID: PMC6082933 DOI: 10.3389/fimmu.2018.01758] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS), also known as p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI), is an autosomal dominant primary human immunodeficiency (PID) caused by heterozygous gain-of-function mutations in PIK3CD, which encodes the p110δ catalytic subunit of PI3K. This recently described PID is characterized by diverse and heterogeneous clinical manifestations that include recurrent respiratory infections, lymphoproliferation, progressive lymphopenia, and defective antibody responses. A major clinical manifestation observed in the NIH cohort of patients with PIK3CD mutations is chronic Epstein-Barr virus (EBV) and/or cytomegalovirus viremia. Despite uncontrolled EBV infection, many APDS/PASLI patients had normal or higher frequencies of EBV-specific CD8+ T cells. In this review, we discuss data pertaining to CD8+ T cell function in APDS/PASLI, including increased cell death, expression of exhaustion markers, and altered killing of autologous EBV-infected B cells, and how these and other data on PI3K provide insight into potential cellular defects that prevent clearance of chronic infections.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Silvia Preite
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Senta M Kapnick
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gulbu Uzel
- National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.,National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Edwards ESJ, Bier J, Cole TS, Wong M, Hsu P, Berglund LJ, Boztug K, Lau A, Gostick E, Price DA, O'Sullivan M, Meyts I, Choo S, Gray P, Holland SM, Deenick EK, Uzel G, Tangye SG. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol 2018; 143:276-291.e6. [PMID: 29800648 DOI: 10.1016/j.jaci.2018.04.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphoinositide 3-kinase (PI3K), result in hyperactivation of the PI3K-AKT-mechanistic target of rapamycin pathway and underlie a novel inborn error of immunity. Affected subjects exhibit perturbed humoral and cellular immunity, manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or cytomegalovirus infection, and increased incidence of B-cell lymphoproliferation, lymphoma, or both. Mechanisms underlying disease pathogenesis remain unknown. OBJECTIVE Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B cells is required to understand disease in patients with PIK3CD GOF mutations, identify key molecules required for cell-mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this and other EBV-opathies. METHODS We studied the consequences of PIK3CD GOF mutations on the generation, differentiation, and function of CD8+ T cells and natural killer (NK) cells, which are implicated in host defense against infection with herpesviruses, including EBV. RESULTS PIK3CD GOF total and EBV-specific CD8+ T cells were skewed toward an effector phenotype, with exaggerated expression of markers associated with premature immunosenescence/exhaustion and increased susceptibility to reactivation-induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF mutations. NK cells in patients with PIK3CD GOF mutations also exhibited perturbed expression of differentiation-associated molecules. Both CD8+ T and NK cells had reduced capacity to kill EBV-infected B cells. PIK3CD GOF B cells had increased expression of CD48, programmed death ligand 1/2, and CD70. CONCLUSIONS PIK3CD GOF mutations aberrantly induce exhaustion, senescence, or both and impair cytotoxicity of CD8+ T and NK cells. These defects might contribute to clinical features of affected subjects, such as impaired immunity to herpesviruses and tumor surveillance.
Collapse
Affiliation(s)
- Emily S J Edwards
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Julia Bier
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Theresa S Cole
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia
| | - Melanie Wong
- Children's Hospital at Westmead, Westmead, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia
| | - Peter Hsu
- Children's Hospital at Westmead, Westmead, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Lucinda J Berglund
- CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; Immunopathology Department, Westmead Hospital, Westmead, Australia; Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, St Anna Children's Hospital and Children's Cancer Research Institute, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, and Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Anthony Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom; Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | | | - Isabelle Meyts
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium; Department of Microbiology and Immunology, Childhood Immunology, KU Leuven, Leuven, Belgium
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Australia; Immunology Laboratory, Laboratory Services, Royal Children's Hospital, Melbourne, Australia
| | - Paul Gray
- CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia; University of New South Wales School of Women's and Children's Health, Randwick, Australia
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst, Australia; CIRCA (Clinical Immunogenomics Consortia Australia), Sydney, Australia.
| |
Collapse
|
35
|
Pham MN, Cunningham-Rundles C. Evaluation of Lymphoproliferative Disease and Increased Risk of Lymphoma in Activated Phosphoinositide 3 Kinase Delta Syndrome: A Case Report With Discussion. Front Pediatr 2018; 6:402. [PMID: 30619796 PMCID: PMC6305443 DOI: 10.3389/fped.2018.00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Activated phosphoionositide-3 kinase delta syndrome (APDS) is a rare disorder caused by activating mutations in phosphoionositide 3-kinase delta (PI3Kδ). This syndrome usually presents in childhood with recurrent sinopulmonary infections and immune deficiency as is seen in the case discussed in this report. Patients with APDS also experience other complications including lymphoid hyperplasia, autoimmunity, increased susceptibility to herpes viruses, especially Epstein-Barr virus and cytomegalovirus, and an increased incidence of B-cell lymphoma. The clinical implications for lymphoid hyperplasia and lymphoma are profound and frequently, it is challenging to distinguish between the two. This case report is of a young girl with a mutation in PIK3CD, the gene encoding the catalytic subunit of PI3Kδ, who presents with asymmetrical cervical lymphadenopathy and parotid swelling. After little improvement in lymphadenopathy on antibiotics, an excisional biopsy of a cervical lymph node was obtained which was initially concerning for lymphoma. This case recounts the clinical decisions made to evaluate this lymphadenopathy and concern for malignancy due to the increased incidence of B-cell lymphoma in this population. It was concluded after careful evaluation of her lymph node histology and cytometry, bone marrow biopsy, and CSF studies that her findings were consistent with lymphoid hyperplasia and not lymphoma and she was treated with rituximab. This case highlights the many comorbidities present in patients with this disease and the current treatments for complications in patients with APDS, including new targeted therapies.
Collapse
Affiliation(s)
- Michele N Pham
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|