1
|
Shafaghat Z, Radmehr S, Saharkhiz S, Khosrozadeh A, Feiz K, Alkhathami AG, Taheripak G, Ramezani Farani M, Rahmati R, Zarimeidani F, Bassereh H, Bakhtiyari S, Alipourfard I. Circular RNA, A Molecule with Potential Chemistry and Applications in RNA-based Cancer Therapeutics: An Insight into Recent Advances. Top Curr Chem (Cham) 2025; 383:21. [PMID: 40343623 PMCID: PMC12064628 DOI: 10.1007/s41061-025-00505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Among these, circular RNAs (circRNAs) represent a recently identified class of endogenous ncRNAs with a pivotal role in gene regulation, alongside short ncRNAs (e.g., microRNAs or miRNAs) and long non-coding RNAs (lncRNAs). CircRNAs are characterized by their single-stranded, covalently closed circular structure, which lacks polyadenylated tails and 5'-3' ends. This unique circular conformation makes them resistant to exonuclease degradation, rendering them more stable than linear RNAs, such as mRNAs in human blood cells, which highlights their potential as biomarkers. Both linear and circular RNAs are derived from pre-mRNA precursors. However, while linear RNAs are produced through conventional splicing, circRNAs are primarily formed through a process known as reverse splicing. CircRNAs can be categorized into five basic types: exon circRNAs, circular intronic RNAs, exon-intron circRNAs, intergenic circRNAs, and fusion circRNAs. These molecules have been shown to significantly influence key hallmarks of cancer, including sustained growth signaling, proliferation, angiogenesis, resistance to apoptosis, unlimited replicative potential, and metastasis. This article will delve into the biogenesis and functions of circRNAs, explore their roles in cancer, and discuss their potential applications as therapeutic options and diagnostic biomarkers.
Collapse
Affiliation(s)
- Zahra Shafaghat
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Radmehr
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saber Saharkhiz
- Division of Neuroscience, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Amirhossein Khosrozadeh
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Feiz
- Biology Department, Texas State University, San Marcos, TX, USA
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P. O. Box 61413, 9088, Abha, Saudi Arabia
| | - Gholamreza Taheripak
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, Republic of Korea
| | - Rahem Rahmati
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Zarimeidani
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hassan Bassereh
- Computational Discovery Research Group, Institute for Diabetes and Obesity, Helmholtz, Munich, Germany
| | - Salar Bakhtiyari
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224, Warsaw, Poland.
- Department of Regenerative Medicine, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| |
Collapse
|
2
|
Cao Y, He Y, Liao L, Xu L. Circular RNAs perspective: exploring the direction of immunotherapy for colorectal cancer. Front Oncol 2025; 15:1554179. [PMID: 40291917 PMCID: PMC12021614 DOI: 10.3389/fonc.2025.1554179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Circular RNAs (circRNAs) are multifaceted molecules that play a pivotal role in regulating gene expression at both transcriptional and post-transcriptional levels. Their expression is highly tissue-specific and developmentally regulated, making them critical players in various physiological processes and diseases, particularly cancer. In colorectal cancer, circRNAs exhibit significantly dysregulated expression patterns and profoundly influence disease progression through diverse molecular mechanisms. Unraveling the complex roles of circRNAs in modulating colorectal cancer immunotherapy outcomes highlights their potential as both promising biomarkers and therapeutic targets. Moving forward, advancements in circRNA-based therapeutic strategies and delivery systems are poised to transform precision medicine, enabling early colorectal cancer diagnosis and improving patient prognosis.
Collapse
Affiliation(s)
- Yanlin Cao
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
- The First Clinical Medical College of Guangdong Medical University, Zhanjiang, China
| | - Yuxing He
- Department of Medical Laboratory Medicine, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
| | - Lingshan Liao
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
| | - Lixin Xu
- Neurosurgery Department, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan, China
| |
Collapse
|
3
|
Hong H, Ding D, Zhang Y, Chen Y, Chen S, Jiang M, Zhang H, Wang Q, Hu Y, He J, Yuan J. Circ_BLNK is a Unique Molecular Marker in Non-small Cell Lung Cancer. Biochem Genet 2025; 63:104-123. [PMID: 38411943 DOI: 10.1007/s10528-023-10661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/30/2023] [Indexed: 02/28/2024]
Abstract
Non-small cell lung cancer (NSCLC) patients are characterized by distant metastasis and poor prognosis. Growing evidence has implied that circular RNAs (circRNAs) are involved in multiple tumor progression, including NSCLC. The objective of the present study was to functionally dissect the role and mechanism of circ_BLNK in NSCLC development and progression. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of circ_BLNK, miR-942-5p, and forkhead box protein O1 (FOXO1) in NSCLC tissues and cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay and colony formation assay detected cell proliferation; the protein expression levels were tested by western blot assay; cell apoptosis was measured by flow cytometry, and transwell assay detected cell migration and invasion. The molecular targeting relationship was determined by dual-luciferase reporter assay. The effect of circ_BLNK overexpression on tumor growth was detected by in vivo experiments and immunohistochemistry. Circ_BLNK was dramatically decreased in NSCLC, and overexpression of circ_BLNK inhibited proliferation, migration, and invasion of NSCLC cells and promoted cell apoptosis. Circ_BLNK level was negatively correlated with miR-942-5p expression and positively correlated with FOXO1 expression. Moreover, circ_BLNK acted as a sponge for miR-942-5p, which targeted FOXO1. Rescue assays presented that miR-942-5p reversed the anticancer action of circ_BLNK in NSCLC. Besides that, miR-942-5p inhibition suppressed the oncogenic behaviors, which were attenuated by FOXO1 knockdown. Animal experiments exhibited that circ_BLNK upregulation repressed tumor growth in vivo. Our study demonstrated a novel regulatory mechanism that circ_BLNK/miR-942-5p/FOXO1 axis adjusted non-small cell lung cancer development.
Collapse
MESH Headings
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Proliferation
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Animals
- Mice
- Apoptosis
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Female
- Male
- Cell Movement
- Mice, Nude
- Middle Aged
Collapse
Affiliation(s)
- Haihua Hong
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Dongxiao Ding
- Department of Thoracic Surgery, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, 315800, Zhejiang, China.
| | - Yonghua Zhang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Yongbin Chen
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Shiyuan Chen
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Maofen Jiang
- Department of Pathology, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, 315800, Zhejiang, China
| | - Hairong Zhang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Qinqin Wang
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Yue Hu
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Jianghong He
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| | - Jiawei Yuan
- Department of Respiratory, The People's Hospital of Beilun District, Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, No.1288 East Lushan Road, Xinqi, Beilun, Ningbo, 315800, Zhejiang, China
| |
Collapse
|
4
|
Shlyakhovenko V, Samoylenko O, Verbinenko A, Ganusevich I. ROLE OF RIBONUCLEASES IN THE REGULATION OF IMMUNE RESPONSE. Exp Oncol 2024; 46:192-201. [PMID: 39704462 DOI: 10.15407/exp-oncology.2024.03.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Ribonucleases (RNases) perform many different functions in living systems. They are responsible for the formation and processing of various ribonucleic acids (RNAs), including the messenger RNA and all types of microRNAs, and determine the duration of the existence of different RNAs in the cell and extracellular environment. RNases are ubiquitously expressed in many tissue types. This short review discusses the major types and main functions of RNases, their homeostatic functions, influence of transcription, immunomodulation, and the role of extracellular RNases in the immune defense mechanisms.
Collapse
Affiliation(s)
- V Shlyakhovenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - O Samoylenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - A Verbinenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - I Ganusevich
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Lou Y, Yan J, Liu Q, Miao M, Shao Y. Biological functions and molecular mechanisms of exosome-derived circular RNAs and their clinical implications in digestive malignancies: the vintage in the bottle. Ann Med 2024; 56:2420861. [PMID: 39484707 PMCID: PMC11536637 DOI: 10.1080/07853890.2024.2420861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are identified as a novel family of endogenous RNA molecules through 'back-splicing' and covalently linked at the 5' and 3' ends. Emerging researches have demonstrated circRNAs are stable and abundant in exosomes called exosomal circRNAs (exo-circRNA). MATERIALS AND METHODS We searched recent studies and references to summary the research progress of exosomal circRNA. RESULTS Recent studies have revealed that exosome-derived circRNAs including exo-CDR1as, exo-circRanGAP1, exo-circIAR play vital roles in cell proliferation and apoptosis, epithelial mesenchymal transition, invasion and metastasis, angiogenesis, immune evasion, cellular crosstalk, cancer cachexia through a variety of biological mechanisms, such as serving as microRNA sponges, interacting with RNA binding proteins, regulating gene transcription, N6-Methyladenosine modification and so on. Due to their characteristics of origin, structure, properties and biological functions, exo-circRNAs are expected to apply in precious diagnosis and prognostic indicators, improving drug and radiation resistance and sensitivity, becoming biological therapeutic targets. CONCLUSION We summarize the update of digestive malignancies associated exo-circRNAs in biogenesis, biological functions, molecular mechanisms, clinical implications, potential applications and experimental technique in order to effectively promote transformation and application in the future.
Collapse
Affiliation(s)
- Yuanyan Lou
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qingqing Liu
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Min Miao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Gaal OI, Leask M, Nica V, Cabău G, Badii M, Hotea I, de Graaf DM, Zhang Z, Li Y, Pamfil C, Rednic S, Merriman TR, Crișan TO, Joosten LAB. Gout-associated SNP at the IL1RN-IL1F10 region is associated with altered cytokine production in PBMCs of patients with gout and controls. Arthritis Res Ther 2024; 26:205. [PMID: 39568029 PMCID: PMC11577629 DOI: 10.1186/s13075-024-03436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVES Gout is caused by the response of the innate immune system to monosodium urate (MSU) crystals. A recent gout GWAS identified a signal of genetic association at a locus encompassing IL1RN-IL1F10. Colocalisation analysis using Genotype Tissue Expression Database (GTEx) eQTL data showed that the signal overlaps with genetic control of IL1RN/IL1F10 gene expression. We assess the functional implications of IL1RN rs9973741, the lead gout-associated variant. METHODS We conducted functional validation of IL1RN rs9973741 in patients with gout and controls. The transcription level of IL1RN/IL1F10 was investigated in unstimulated or MSU-crystal co-stimulated PBMCs. Ex vivo functional assays were performed in PBMCs stimulated with C16 + MSU crystals or LPS for 24 h. Cytokine levels were assessed by ELISA. RESULTS In unstimulated PBMCs, no association of IL1RN rs9973741 (gout risk allele G) to IL1RN expression was observed while IL-1F10 was hindered by low expression at both transcriptional and protein levels. However, G allele carriers showed lower IL1RN expression in PBMCs stimulated with C16/MSU crystal and lower concentrations of circulating IL-1Ra in both controls and gout patients. PBMCs depicted less spontaneous IL-1Ra release in GG homozygous controls and lower IL-1Ra production in response to C16 + MSU crystal costimulation in patients with gout. The G allele was associated with elevated IL-1β cytokine production in response to C16 + MSU crystal stimulation in controls. CONCLUSIONS The gout risk allele G associates with lower circulating IL-1Ra, lower IL-1Ra production in PBMC assays and elevated IL-1β production in PBMCs challenged with C16 + MSU crystals but not in unchallenged cells. Our data indicate that the genetic signal that associates with gout at IL1RN-IL1F10 region functions to alter expression of IL-1Ra when stimulated by MSU crystals.
Collapse
Grants
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- P_37_762, MySMIS 103587 Competitiveness Operational Programme grant of the Romanian Ministry of European Funds
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- PNRR-III-C9-2022-I8, CF 85 / 15.11.2022 Romania's National Recovery and Resilience Plan grant of the Romanian Ministry of Investments and European Projects
- 2462/22 University of Medicine and Pharmacy "Iuliu Hațieganu", Cluj-Napoca, Romania
- University of Medicine and Pharmacy „Iuliu Hațieganu”, Cluj-Napoca, Romania
Collapse
Affiliation(s)
- Orsolya I Gaal
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Megan Leask
- Department of Physiology, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Valentin Nica
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
| | - Georgiana Cabău
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
| | - Medeea Badii
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ioana Hotea
- Department of Rheumatology, University of Medicine and Pharmay, Cluj-Napoca, Romania
| | - Dennis M de Graaf
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Zhenhua Zhang
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany
| | - Cristina Pamfil
- Department of Rheumatology, University of Medicine and Pharmay, Cluj-Napoca, Romania
| | - Simona Rednic
- Department of Rheumatology, University of Medicine and Pharmay, Cluj-Napoca, Romania
| | - Tony R Merriman
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tania O Crișan
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania.
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Leo A B Joosten
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Str. Pasteur nr.6, Cluj, Napoca, 400349, Romania
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Zhu H, Li C, Jia L, Qiao J, El-Seedi HR, Zhang Y, Zhang H. Supercritical CO 2 extracts of propolis inhibits tumor proliferation and Enhances the immunomodulatory activity via activating the TLR4-MAPK/NF-κB signaling pathway. Food Res Int 2024; 196:115137. [PMID: 39614528 DOI: 10.1016/j.foodres.2024.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 12/01/2024]
Abstract
Propolis is a natural immunomodulator with anticancer activity. This study investigated the immunomodulatory mechanism and anti-tumor activity of supercritical CO2 extracts of propolis (SEP) in tumor-bearing immunosuppression mice. We used cyclophosphamide (CTX) to construct the immunosuppressive mice model and then inoculated them with CT26 cells to build the CT26 tumor-bearing immunosuppression mice model. Upon treatment with SEP, tumor proliferation in mice was markedly suppressed, with tumor volumes decreasing from 1881.43 mm3 to 1049.95 mm3 and weights reducing from 2.07 g to 1.13 g. Concurrently, the immune system recovered well, and the spleen and thymus indexes increased significantly. The total T lymphocyte (CD3+ T cell) contents in the spleen and blood recovered from 11.88 % to 21.19 % and 15.32 % to 22.19 %, respectively. In addition, the CD4+ /CD8+ ratio has returned to a healthy level, 3.12 in the spleen and 5.42 in the blood. The levels of IL-1β, IL-6, and TNF-α were increased by 2.17, 2.76, and 7.15 times in the spleen, 2.76, 1.92, and 3.02 times in the serum. Moreover, the western blot results showed that SEP treatment increased the expression of toll-like receptor 4 (TLR4) and the phosphorylation of p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p65. These results indicated that SEP activated the immune activity of RAW 264.7 macrophages through the TLR4-mitogen-activated protein kinase (MAPK)/nuclear factor kappa B (NF-κB) signaling pathway to exert immunomodulatory function and inhibit tumor proliferation. This study facilitated the further application of SEP as a potential immunomodulatory and anti-tumor functional food.
Collapse
Affiliation(s)
- Hequan Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Chunyang Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Lei Jia
- Xingjiang Yifan Biotechnology Co., LTD, Ili Kazakh Autonomous Prefecture, 835000, China
| | - Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Jiangsu Beevip Biotechnology Co., LTD, Taizhou 225300, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
8
|
Yan C, Geng A, Pan Z, Zhang Z, Cui F. MultiFeatVotPIP: a voting-based ensemble learning framework for predicting proinflammatory peptides. Brief Bioinform 2024; 25:bbae505. [PMID: 39406523 PMCID: PMC11479713 DOI: 10.1093/bib/bbae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Inflammatory responses may lead to tissue or organ damage, and proinflammatory peptides (PIPs) are signaling peptides that can induce such responses. Many diseases have been redefined as inflammatory diseases. To identify PIPs more efficiently, we expanded the dataset and designed an ensemble learning model with manually encoded features. Specifically, we adopted a more comprehensive feature encoding method and considered the actual impact of certain features to filter them. Identification and prediction of PIPs were performed using an ensemble learning model based on five different classifiers. The results show that the model's sensitivity, specificity, accuracy, and Matthews correlation coefficient are all higher than those of the state-of-the-art models. We named this model MultiFeatVotPIP, and both the model and the data can be accessed publicly at https://github.com/ChaoruiYan019/MultiFeatVotPIP. Additionally, we have developed a user-friendly web interface for users, which can be accessed at http://www.bioai-lab.com/MultiFeatVotPIP.
Collapse
Affiliation(s)
- Chaorui Yan
- School of Computer Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haidian Campus, Haikou 570228, China
| | - Aoyun Geng
- School of Computer Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haidian Campus, Haikou 570228, China
| | - Zhuoyu Pan
- International Business School, Hainan University, 58 Renmin Avenue, Meilan District, Haidian Campus, Haikou 570228, China
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haidian Campus, Haikou 570228, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haidian Campus, Haikou 570228, China
| |
Collapse
|
9
|
Yan Y, Zhang Y, He Y, Bu X. Has_circ_0002360 promotes the progression of lung adenocarcinoma by activating miR-762 and regulating PODXL expression. Transl Cancer Res 2024; 13:4172-4186. [PMID: 39262484 PMCID: PMC11384312 DOI: 10.21037/tcr-24-279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/30/2024] [Indexed: 09/13/2024]
Abstract
Background Circular RNAs (circRNAs) have been found to be linked to cancer progression and metastasis, but there is not much known about their connection to lung adenocarcinoma (LAC). In the previous study reported by our group, has_circ_0002360 was highly expressed in LAC tissues. The goal of this study was to investigate the potential impact of has_circ_0002360 in LAC. Methods Bioinformatics software, TargetScan, and miRanda were used to study the interactions of RNAs. Luciferase reporter assays further confirmed their relationship. The relative expression of has_circ_0002360 in 122 patients and four cell lines of the lung were obtained using real-time qualitative polymerase chain reaction (qRT-PCR). The target gene podocalyxin-like (PODXL) expression was confirmed by immunohistochemistry (IHC) in ten pairs of clinical samples. Then, cell counting kit-8 (CCK8), wound healing, and transwell experiments were applied to examine cell growth, migration, and infection-induced cell invasion. LAC cell lines were infected, and the process was monitored by examination of the related epithelial-mesenchymal transition (EMT) proteins. Results The resulting data indicated that has_circ_0002360 and PODXL were overexpressed in LAC tissues, whereas miR-762 expression was repressed. The reduction of has_circ_0002360 or upregulation of miR-762 mitigated the proliferation, migration, invasion of LAC cells. Mechanistically, has_circ_0002360 upregulated PODXL expressions by targeting miR-762 to promote LAC progression. Conclusions In general, the has_circ_0002360/miR-762/PODXL axis affected the progress of LAC. The results of our study identified has_circ_0002360 as a novel oncogenic RNA in LAC.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yao Zhang
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingjue He
- Clinical Medicine College of Jiangsu University, Zhenjiang, China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Lamola MT, Musekiwa A, de Voux A, Reddy C, Mutevedzi PC. The epidemiology of laboratory-confirmed Hepatitis B Virus infection in the general population of South Africa, 2016-2018. Pan Afr Med J 2024; 48:172. [PMID: 39650831 PMCID: PMC11624476 DOI: 10.11604/pamj.2024.48.172.40907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/19/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction despite the introduction of the Hepatitis B Virus (HBV) vaccine in South Africa in 1995, HBV remains endemic. South Africa's HBV vaccine coverage for the third dose was 71% in 2015. Information on the HBV prevalence in South Africa in recent years is limited, therefore, we estimated HBV prevalence and described annual trends. Methods we conducted a retrospective descriptive study of data extracted from the Notifiable Medical Conditions Surveillance System, and estimated HBV prevalence per 100,000 population using the mid-year population estimates obtained from Statistics South Africa, for the 2016-2018 period. Results in total, 105 308 laboratory-confirmed HBV cases were analysed, of which 50.2% (53 895/105 308), 95% CI (49.9-50.5) were males. HBV prevalence for males was 34.1 in 2016, 84.1 in 2017, and 72.3 per 100,000 population in 2018. The age group with the highest HBV cases and prevalence were ages 15-49 years having 80.5% (n=84 718), with 52.2 in 2016, 123.3 in 2017, and 99.6 per 100 000 population in 2018. Between 2016 and 2018, South Africa had an overall HBV prevalence of 33.8, 82.6, and 68.8 per 100,000 population, respectively. KwaZulu-Natal province had the highest number of HBV cases with 37.8% (n=39 851) however, Mpumalanga province had the highest HBV prevalence with 73.2 in 2016, 188.8 in 2017, and 126.5 per 100,000 population in 2018. Conclusion our results indicated a high HBV prevalence is reflective of the group prior to the HBV vaccine introduction in South Africa.
Collapse
Affiliation(s)
- Mashudu Teresa Lamola
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
- South African Field Epidemiology Training Program, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg 2193, South Africa
| | - Alfred Musekiwa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Alex de Voux
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town 7925, South Africa
| | - Carl Reddy
- South African Field Epidemiology Training Program, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg 2193, South Africa
- Training Programs in Epidemiology and Public Health Interventions Network (TEPHINET), A program of the Task Force for Global Health, 325 Swanton Way, Decatur, GA 30030, USA
| | | |
Collapse
|
11
|
Leng X, Zhang M, Xu Y, Wang J, Ding N, Yu Y, Sun S, Dai W, Xue X, Li N, Yang Y, Shi Z. Non-coding RNAs as therapeutic targets in cancer and its clinical application. J Pharm Anal 2024; 14:100947. [PMID: 39149142 PMCID: PMC11325817 DOI: 10.1016/j.jpha.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 08/17/2024] Open
Abstract
Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.
Collapse
Affiliation(s)
- Xuejiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengyuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yancheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhihao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
12
|
Chen S, Zhao M, Chen K, Xu J, Li H. A Network of Circular RNA and MicroRNA Sequencing Provides Insights into Pigment Deposition of Changshun Blue Eggshell Chickens. Genes (Basel) 2024; 15:812. [PMID: 38927747 PMCID: PMC11202489 DOI: 10.3390/genes15060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Eggshell color plays important biological roles and attracts the attention of both egg retailers and researchers. However, whether non-coding RNAs are involved in pigment deposition among different eggshell colors remains unknown. In this study, RNA sequencing was used to analyse the uterine gland transcriptome (CircRNA and miRNA) of Changshun chicken blue-shell hens producing four different eggshell color eggs including dark blue PK(DB) and light blue (LB), dark brown and greenish (between blue and pink, DP) and pink (p). We found that miR-192-x, targeting SLC16a7, was expressed in DB, DP, and LB groups compared with the PK group, which indicates that miR-192-x may play a role in the blue eggshell color. KEGG and GO analyses showed that the "metabolic pathways" with targeted genes such BLVRA and HMOX1 were detected in dark and light blue color eggshell chickens, which confirms the different ratios of biliverdin and HO-1 involved in the deposition of blue color. As annotated by connectivity analysis, RASGRF1 and RASGRF2, belonging to the RASGRF family, are involved in the Ras signaling pathway, which plays an important role in cell growth, differentiation, metastasis and apoptosis. Our findings enrich the database of circRNA, miRNAs and genes for chicken uterine tissue, which will be useful in accelerating molecular selection for blue eggshell color layers.
Collapse
Affiliation(s)
| | | | | | | | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
13
|
Li Z, Yin S, Yang K, Zhang B, Wu X, Zhang M, Gao D. CircRNA Regulation of T Cells in Cancer: Unraveling Potential Targets. Int J Mol Sci 2024; 25:6383. [PMID: 38928088 PMCID: PMC11204142 DOI: 10.3390/ijms25126383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
T lymphocytes play a critical role in antitumor immunity, but their exhaustion poses a significant challenge for immune evasion by malignant cells. Circular RNAs (circRNAs), characterized by their covalently closed looped structure, have emerged as pivotal regulators within the neoplastic landscape. Recent studies have highlighted their multifaceted roles in cellular processes, including gene expression modulation and protein function regulation, which are often disrupted in cancer. In this review, we systematically explore the intricate interplay between circRNAs and T cell modulation within the tumor microenvironment. By dissecting the regulatory mechanisms through which circRNAs impact T cell exhaustion, we aim to uncover pathways crucial for immune evasion and T cell dysfunction. These insights can inform innovative immunotherapeutic strategies targeting circRNA-mediated molecular pathways. Additionally, we discuss the translational potential of circRNAs as biomarkers for therapeutic response prediction and as intervention targets. Our comprehensive analysis aims to enhance the understanding of immune evasion dynamics in the tumor microenvironment by facilitating the development of precision immunotherapy.
Collapse
Affiliation(s)
- Zelin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Shuanshuan Yin
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Kangping Yang
- The Second Clinical Medical College, Nanchang University, Nanchang 330047, China;
| | - Baojie Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Xuanhuang Wu
- The First Clinical Medical College, Nanchang University, Nanchang 330047, China; (S.Y.); (X.W.)
| | - Meng Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| | - Dian Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330047, China; (Z.L.); (B.Z.)
| |
Collapse
|
14
|
Han R, Rao X, Zhou H, Lu L. Synergistic Immunoregulation: harnessing CircRNAs and PiRNAs to Amplify PD-1/PD-L1 Inhibition Therapy. Int J Nanomedicine 2024; 19:4803-4834. [PMID: 38828205 PMCID: PMC11144010 DOI: 10.2147/ijn.s461289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/12/2024] [Indexed: 06/05/2024] Open
Abstract
The utilization of PD-1/PD-L1 inhibitors marks a significant advancement in cancer therapy. However, the efficacy of monotherapy is still disappointing in a substantial subset of patients, necessitating the exploration of combinational strategies. Emerging from the promising results of the KEYNOTE-942 trial, RNA-based therapies, particularly circRNAs and piRNAs, have distinguished themselves as innovative sensitizers to immune checkpoint inhibitors (ICIs). These non-coding RNAs, notable for their stability and specificity, were once underrecognized but are now known for their crucial roles in regulating PD-L1 expression and bolstering anti-cancer immunity. Our manuscript offers a comprehensive analysis of selected circRNAs and piRNAs, elucidating their immunomodulatory effects and mechanisms, thus underscoring their potential as ICIs enhancers. In conjunction with the recent Nobel Prize-awarded advancements in mRNA vaccine technology, our review highlights the transformative implications of these findings for cancer treatment. We also discuss the prospects of circRNAs and piRNAs in future therapeutic applications and research. This study pioneers the synergistic application of circRNAs and piRNAs as novel sensitizers to augment PD-1/PD-L1 inhibition therapy, demonstrating their unique roles in regulating PD-L1 expression and modulating immune responses. Our findings offer a groundbreaking approach for enhancing the efficacy of cancer immunotherapy, opening new avenues for treatment strategies. This abstract aims to encapsulate the essence of our research and the burgeoning role of these non-coding RNAs in enhancing PD-1/PD-L1 inhibition therapy, encouraging further investigation into this promising field.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- Department of Chinese Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiwu Rao
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Huiling Zhou
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, People’s Republic of China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Liu X, Jiang L, Zeng H, Gao L, Guo S, Chen C, Liu X, Zhang M, Ma L, Li Y, Qi X, Wu Y. Circ-0000953 deficiency exacerbates podocyte injury and autophagy disorder by targeting Mir665-3p-Atg4b in diabetic nephropathy. Autophagy 2024; 20:1072-1097. [PMID: 38050963 PMCID: PMC11135827 DOI: 10.1080/15548627.2023.2286128] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Circular RNAs (circRNAs) are special non-coding RNA (ncRNA) molecules that play a significant role in many diseases. However, the biogenesis and regulation of circRNAs in diabetic nephropathy (DN) are largely unknown. Here, we investigated the expression profile of circRNAs in kidney of DN mice through circular RNA sequencing (circRNA-seq). The renal biopsy samples of patients with DN had low circ -0,000,953 expression, which was significantly associated with renal function. Furthermore, loss-of-function and gain-of-function experiments were carried out to prove the role of circ -0,000,953 in DN. Podocyte conditional knockin (cKI) or systemic overexpression of circ -0,000,953 alleviated albuminuria and restored macroautophagy/autophagy in kidney of diabetic mice. However, circ -0,000,953 knockdown exacerbated albuminuria and podocyte injury. Mechanistically, we found circ -0,000,953 directly binds to Mir665-3p-Atg4b to perform its function. Silencing of Mir665-3p or overexpression of Atg4b recovered podocyte autophagy both in vitro and in vivo. To examine the cause of circ -0,000,953 downregulation in DN, bioinformatics prediction found that circ -0,000,953 sequence has a high possibility of containing an m6A methylation site. Additionally, METTL3 was proved to regulate the expression and methylation level of circ -0,000,953 through YTHDF2 (YTH N6-methyladenosine RNA binding protein 2). In conclusion, this study revealed that circ -0,000,953 regulates podocyte autophagy by targeting Mir665-3p-Atg4b in DN. Therefore, circ -0,000,953 is a potential biomarker for prevention and cure of DN.Abbreviation: CCL2/MCP-1: C-C motif chemokine ligand 2; ceRNA: competing endogenous RNA; circRNA: circular RNA; cKI: conditional knockin; cKO: conditional knockout; CRE: creatinine; DM: diabetes mellitus; DN: diabetic nephropathy; ESRD: end-stage renal disease; HG: high glucose; IF: immunofluorescence; MAP1LC3/LC3B: microtubule-associated protein 1 light chain 3 beta; MPC5: mouse podocyte clone 5; MTECs: mouse tubular epithelial cells; MTOR: mechanistic target of rapamycin kinase; NC: normal control; ncRNA: non-coding RNA; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PAS: periodic acid-Schiff; RELA/p65: v-rel reticuloendotheliosis viral oncogene homolog A (avian); SDs: slit diaphragm proteins; Seq: sequencing; STZ: streptozotocin; SV40: SV40-MES13-cells, mouse mesangial cell line; T1D: type 1 diabetes mellitus; T2D: type 2 diabetes mellitus; TEM: transmission electron microscopy; TNF/TNF-α: tumor necrosis factor; VECs: vascular endothelial cells; WT1: WT1 transcription factor; YTHDF2: YTH N6-methyladenosine RNA binding protein 2.
Collapse
Affiliation(s)
- Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Ling Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Hanxu Zeng
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Li Gao
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Shanshan Guo
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Chaoyi Chen
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xinran Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Mengya Zhang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Lijuan Ma
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanyuan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xiangming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
16
|
Tiberio L, Laffranchi M, Zucchi G, Salvi V, Schioppa T, Sozzani S, Del Prete A, Bosisio D. Inhibitory receptors of plasmacytoid dendritic cells as possible targets for checkpoint blockade in cancer. Front Immunol 2024; 15:1360291. [PMID: 38504978 PMCID: PMC10948453 DOI: 10.3389/fimmu.2024.1360291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the major producers of type I interferons (IFNs), which are essential to mount antiviral and antitumoral immune responses. To avoid exaggerated levels of type I IFNs, which pave the way to immune dysregulation and autoimmunity, pDC activation is strictly regulated by a variety of inhibitory receptors (IRs). In tumors, pDCs display an exhausted phenotype and correlate with an unfavorable prognosis, which largely depends on the accumulation of immunosuppressive cytokines and oncometabolites. This review explores the hypothesis that tumor microenvironment may reduce the release of type I IFNs also by a more pDC-specific mechanism, namely the engagement of IRs. Literature shows that many cancer types express de novo, or overexpress, IR ligands (such as BST2, PCNA, CAECAM-1 and modified surface carbohydrates) which often represent a strong predictor of poor outcome and metastasis. In line with this, tumor cells expressing ligands engaging IRs such as BDCA-2, ILT7, TIM3 and CD44 block pDC activation, while this blocking is prevented when IR engagement or signaling is inhibited. Based on this evidence, we propose that the regulation of IFN secretion by IRs may be regarded as an "innate checkpoint", reminiscent of the function of "classical" adaptive immune checkpoints, like PD1 expressed in CD8+ T cells, which restrain autoimmunity and immunopathology but favor chronic infections and tumors. However, we also point out that further work is needed to fully unravel the biology of tumor-associated pDCs, the neat contribution of pDC exhaustion in tumor growth following the engagement of IRs, especially those expressed also by other leukocytes, and their therapeutic potential as targets of combined immune checkpoint blockade in cancer immunotherapy.
Collapse
Affiliation(s)
- Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Giovanni Zucchi
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur-Italia, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
17
|
Sun H, Yuan X, Zhang N, Luo Z, Zhang L, Li X. Screening of hair follicle telogen-associated circRNAs in sheep and construction of their ceRNA network. Genomics 2024; 116:110818. [PMID: 38431032 DOI: 10.1016/j.ygeno.2024.110818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Sheep breeds with hair-shedding traits have many advantages over non-shedding sheep breeds, not only because of reduced shearing labor and feeding management costs but also because it reduces in vitro parasites and improves adaptability to summer heat stress. The wool of Dorper sheep naturally sheds in spring due to the periodic growth of hair follicles. CircRNAs primarily regulate the morphogenesis of hair follicles through the ceRNA mechanism. In this study, five 2-year-old Dorper ewes with extreme hair-shedding phenotype (S) and three Dorper ewes with non-shedding (N) phenotype were selected for subsequent analyses. For RNA extraction, skin tissues were collected on 27th September 2019 (S1, N1), 3rd January 2020 (S2, N2), and 17th March 2020 (S3, N3), which were then subjected to RNA-seq. RNA-seq technology revealed 20,185 novel circRNAs in the hair follicles of Dorper sheep. Among them, 1450 circRNAs were differentially expressed (DE). Clustering heatmap and expression pattern analyses were performed on DE circRNAs, which indicated 78 circRNAs with T pattern (Telogen, highly expressed in telogen), and the source genes for candidate circRNAs were further screened by functional enrichment analysis, which identified 13 crucial genes enriched in pathways associated with hair follicle development. Additionally, a ceRNA regulatory network comprising 4 circRNAs, 11 miRNAs, and 13 target genes was constructed. Overall, this study screened circRNAs that may be associated with the telogen phase of hair follicles in sheep, providing a relevant theoretical basis for wool shedding in sheep and for breeding Dorper sheep with automatic wool shedding.
Collapse
Affiliation(s)
- Haoran Sun
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaochun Yuan
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Ningyue Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Zhongze Luo
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Liang Zhang
- Ningxia China Animal Husbandry Yilin Livestock Co., Ltd., Yinchuan 750021, Ningxia, China
| | - Xinhai Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China.
| |
Collapse
|
18
|
Meng L, Wu H, Wu J, Ding P, He J, Sang M, Liu L. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis 2024; 15:3. [PMID: 38177102 PMCID: PMC10766988 DOI: 10.1038/s41419-023-06389-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Current treatment strategies for cancer, especially advanced cancer, are limited and unsatisfactory. One of the most substantial advances in cancer therapy, in the last decades, was the discovery of a new layer of immunotherapy approach, immune checkpoint inhibitors (ICIs), which can specifically activate immune cells by targeting immune checkpoints. Immune checkpoints are a type of immunosuppressive molecules expressed on immune cells, which can regulate the degree of immune activation and avoid autoimmune responses. ICIs, such as anti-PD-1/PD-L1 drugs, has shown inspiring efficacy and broad applicability across various cancers. Unfortunately, not all cancer patients benefit remarkably from ICIs, and the overall response rates to ICIs remain relatively low for most cancer types. Moreover, the primary and acquired resistance to ICIs pose serious challenges to the clinical application of cancer immunotherapy. Thus, a deeper understanding of the molecular biological properties and regulatory mechanisms of immune checkpoints is urgently needed to improve clinical options for current therapies. Recently, circular RNAs (circRNAs) have attracted increasing attention, not only due to their involvement in various aspects of cancer hallmarks, but also for their impact on immune checkpoints in shaping the tumor immune microenvironment. In this review, we systematically summarize the current status of immune checkpoints in cancer and the existing regulatory roles of circRNAs on immune checkpoints. Meanwhile, we also aim to settle the issue in an evidence-oriented manner that circRNAs involved in cancer hallmarks regulate the effects and resistance of ICIs by targeting immune checkpoints.
Collapse
Affiliation(s)
- Lingjiao Meng
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Haotian Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jiaxiang Wu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Ping'an Ding
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Jinchen He
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Meixiang Sang
- Research Center and Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
- Science and Education Department, Shanghai Electric Power Hospital, Shanghai, 20050, China.
| | - Lihua Liu
- Department of Tumor Immunotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050035, China.
| |
Collapse
|
19
|
Oley MH, Oley MC, Langi FLFG, Kepel BJ, Pajan J, Kepel REM, Wagiu AMJ, Kalitouw F, Kalesaran L, Faruk M. Factors related to serum levels of intercellular adhesion molecule-1 in probable COVID-19 patients in surgical treatment: an observational study. Pan Afr Med J 2023; 46:117. [PMID: 38465016 PMCID: PMC10924607 DOI: 10.11604/pamj.2023.46.117.41690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 03/12/2024] Open
Abstract
Introduction COVID-19 causes a systemic inflammatory response, involving dysregulation and misexpression of many inflammatory cytokines. The recruitment and activation of inflammatory cells depend on the expression of many classes of inflammatory mediators, with increased expression of endothelial cell adhesion molecules being related to COVID-19 disease severity. With the World Health Organization having recently updated case definitions to suspect, probable, and confirmed, this study aimed to measure the mean value of intercellular adhesion molecule 1 (ICAM-1) and its relation to suspected COVID-19. Methods all suspected patients (n=20) were hospitalized and treated following the Indonesian National Guidelines for COVID-19 management. ICAM-1 levels were measured on days 1 and 7, demographic data were recorded, and routine blood count values were measured and additionally considered. Results the results showed that the levels of ICAM-1 in the 1st-day group (mean 271.3 ng/ml) were higher than those in the 7th-day group (mean 253.9 ng/ml). This difference was statistically significant (p = 0.00, p ≤ 0.05). All of the patients with suspected COVID-19 were included in this study and tested for COVID-19 by reverse transcription polymerase chain reaction (RT-PCR) testing. A total of 10 patients were confirmed positive with a COVID-19 infection, with elevated ICAM-1 levels compared to the confirmed negative patients (with a mean 1st day 296.8 versus a mean 7th day 279.0 ng/ml). ICAM-1 levels of all patients decreased by the seventh day. Conclusion the mean value of ICAM-1 levels for patients with confirmed positive COVID-19 cases was higher than those with suspected COVID-19 cases.
Collapse
Affiliation(s)
- Mendy Hatibie Oley
- Division of Plastic Reconstructive and Aesthetic Surgery, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Division of Plastic Reconstructive and Aesthetic Surgery, Department of Surgery, R. D. Kandou Hospital, Manado, Indonesia
| | - Maximillian Christian Oley
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
- Division of Neurosurgery, Department of Surgery, R. D. Kandou Hospital, Manado, Indonesia
| | | | - Billy Johnson Kepel
- Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado, North Sulawesi, Indonesia
| | - Jacob Pajan
- Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | | | | | - Ferry Kalitouw
- Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Laurens Kalesaran
- Department of Surgery, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
20
|
Abaza T, El-Aziz MKA, Daniel KA, Karousi P, Papatsirou M, Fahmy SA, Hamdy NM, Kontos CK, Youness RA. Emerging Role of Circular RNAs in Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2023; 24:16484. [PMID: 38003674 PMCID: PMC10671287 DOI: 10.3390/ijms242216484] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly fatal malignancy with limited therapeutic options and high recurrence rates. Recently, immunotherapeutic agents such as immune checkpoint inhibitors (ICIs) have emerged as a new paradigm shift in oncology. ICIs, such as programmed cell death protein 1 (PD-1) inhibitors, have provided a new source of hope for patients with advanced HCC. Yet, the eligibility criteria of HCC patients for ICIs are still a missing piece in the puzzle. Circular RNAs (circRNAs) have recently emerged as a new class of non-coding RNAs that play a fundamental role in cancer pathogenesis. Structurally, circRNAs are resistant to exonucleolytic degradation and have a longer half-life than their linear counterparts. Functionally, circRNAs possess the capability to influence various facets of the tumor microenvironment, especially at the HCC tumor-immune synapse. Notably, circRNAs have been observed to control the expression of immune checkpoint molecules within tumor cells, potentially impeding the therapeutic effectiveness of ICIs. Therefore, this renders them potential cancer-immune biomarkers for diagnosis, prognosis, and therapeutic regimen determinants. In this review, the authors shed light on the structure and functional roles of circRNAs and, most importantly, highlight the promising roles of circRNAs in HCC immunomodulation and their potential as promising biomarkers and immunotherapeutic regimen determinants.
Collapse
Affiliation(s)
- Tasneem Abaza
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mostafa K. Abd El-Aziz
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71631, Egypt
| | - Kerolos Ashraf Daniel
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 11835, Egypt
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt;
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (M.P.)
| | - Rana A. Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), Cairo 11835, Egypt; (T.A.); (M.K.A.E.-A.); (K.A.D.)
| |
Collapse
|
21
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
22
|
Han X, Vollmer D, Enioutina EY. Immunomodulatory Effects of Modified Bovine Colostrum, Whey, and Their Combination with Other Natural Products: Effects on Human Peripheral Blood Mononuclear Cells. CURRENT THERAPEUTIC RESEARCH 2023; 99:100720. [PMID: 37885900 PMCID: PMC10598499 DOI: 10.1016/j.curtheres.2023.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Background Many natural products have immunomodulatory properties. However, the mechanism of immunomodulatory activities are poorly understood. Objectives This study evaluated the influence of bovine colostrum products, a whey product, or their combinations with other natural products on human peripheral blood mononuclear cells' (PBMC) ability to produce cytokines upon activation. Methods PBMCs were pretreated with ultrafiltered colostrum, nano-filtered bovine colostrum, egg yolk extract, a botanical blend, colostrum + egg yolk extract, colostrum + egg yolk + botanical blend, and fermented whey and then stimulated with lipopolysaccharide or phytohemagglutinin. Cytokine production was measured by the Luminex assay. Results All study products demonstrated immunomodulatory properties by regulating cytokines production by activated PBMCs. Ultrafiltered colostrum alone displayed the highest immune stimulatory activity. It stimulated proinflammatory cytokine production by lipopolysaccharide-activated PBMCs and suppressed cytokine production by phytohemagglutinin-activated cells. Other study products mainly suppressed cytokine release by both cell types. The immunomodulatory properties depended upon the dose of the products used in the study. Conclusions All tested products modulated innate and adaptive immune cell activities. Most of the products demonstrated anti-inflammatory properties, except ultrafiltered colostrum, which stimulated the lipopolysaccharide-activated PBMC production of inflammatory cytokines. These products can be potentially used to support overall immune health.
Collapse
Affiliation(s)
| | | | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
23
|
Zhu M, Chen D, Ruan C, Yang P, Zhu J, Zhang R, Li Y. CircRNAs: A Promising Star for Treatment and Prognosis in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:14194. [PMID: 37762497 PMCID: PMC10532269 DOI: 10.3390/ijms241814194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
CircRNAs are a class of endogenous long non-coding RNAs with a single-stranded circular structure. Most circRNAs are relatively stable, highly conserved, and specifically expressed in tissue during the cell and developmental stages. Many circRNAs have been discovered in OSCC. OSCC is one of the most severe and frequent forms of head and neck cancer today, with a poor prognosis and low overall survival rate. Due to its prevalence, OSCC is a global health concern, characterized by genetic and epigenomic changes. However, the mechanism remains vague. With the advancement of biotechnology, a large number of circRNAs have been discovered in mammalian cells. CircRNAs are dysregulated in OSCC tissues and thus associated with the clinicopathological characteristics and prognosis of OSCC patients. Research studies have demonstrated that circRNAs can serve as biomarkers for OSCC diagnosis and treatment. Here, we summarized the properties, functions, and biogenesis of circRNAs, focusing on the progress of current research on circRNAs in OSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.Z.); (D.C.); (C.R.); (J.Z.)
| |
Collapse
|
24
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Dong Y, Gao Q, Chen Y, Zhang Z, Du Y, Liu Y, Zhang G, Li S, Wang G, Chen X, Liu H, Han L, Ye Y. Identification of CircRNA signature associated with tumor immune infiltration to predict therapeutic efficacy of immunotherapy. Nat Commun 2023; 14:2540. [PMID: 37137884 PMCID: PMC10156742 DOI: 10.1038/s41467-023-38232-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Circular RNAs (circRNAs) play important roles in the regulation of cancer. However, the clinical implications and regulatory networks of circRNAs in cancer patients receiving immune checkpoint blockades (ICB) have not been fully elucidated. Here, we characterize circRNA expression profiles in two independent cohorts of 157 ICB-treated advanced melanoma patients and reveal overall overexpression of circRNAs in ICB non-responders in both pre-treatment and early during therapy. Then, we construct circRNA-miRNA-mRNA regulatory networks to reveal circRNA-related signaling pathways in the context of ICB treatment. Further, we construct an ICB-related circRNA signature (ICBcircSig) score model based on progression-free survival-related circRNAs to predict immunotherapy efficacy. Mechanistically, the overexpression of ICBcircSig circTMTC3 and circFAM117B could increase PD-L1 expression via the miR-142-5p/PD-L1 axis, thus reducing T cell activity and leading to immune escape. Overall, our study characterizes circRNA profiles and regulatory networks in ICB-treated patients, and highlights the clinical utility of circRNAs as predictive biomarkers of immunotherapy.
Collapse
Affiliation(s)
- Yu Dong
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Lin Gang Laboratory, Shanghai, 200025, China
| | - Qian Gao
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200433, P. R. China
| | - Yanhua Du
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Guangxiong Zhang
- Lin Gang Laboratory, Shanghai, 200025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 201620, China
| | - Gaoyang Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiang Chen
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China.
| | - Hong Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
26
|
Yu LL, Xiao Q, Yu B, Lv QL, Liu ZQ, Yin JY. CircRNAs in tumor immunity and immunotherapy: Perspectives from innate and adaptive immunity. Cancer Lett 2023; 564:216219. [PMID: 37146937 DOI: 10.1016/j.canlet.2023.216219] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Tumor immunotherapy is a new therapeutic approach that has been evolving in the last decade and has dramatically changed the treatment options for cancer. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) with high stability, tissue-specific and cell-specific expression. There is growing evidence that circRNAs are involved in the regulation of both adaptive and innate immunity. They play important roles in tumor immunotherapy by affecting macrophage, NK and T cell function. The high stability and tissue specificity make them ideal candidate biomarkers for therapeutic effects. CircRNAs also represent one of promising targets or adjuvant for immunotherapy. Investigations in this field progress rapidly and provide essential support for the diagnosis, prognosis and treatment guidance of cancers in the future. In this review, we summarize the role of circRNAs on tumor immunity from the viewpoint of innate and adaptive immunity, and explore the role of circRNAs in tumor immunotherapy.
Collapse
Affiliation(s)
- Lu-Lu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Bing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
| | - Qiao-Li Lv
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, PR China; National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
27
|
Zou YC, Wu J, Zhao C, Luo ZR. Analysis of circular RNA expression profile of pathological bone formation in ankylosing spondylitis. Int J Rheum Dis 2023. [PMID: 36876652 DOI: 10.1111/1756-185x.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
OBJECTIVE To screen and analyze the function of specific CircRNAs involved in pathological bone formation in patients with ankylosing spondylitis (AS). METHODS From September 2019 to October 2020, hip capsule tissues obtained from 3 patients with AS developed hip joint fusion and 3 patients with femoral neck fracture (FNF) were obtained. The circular RNA expressions of hip capsule were analyzed by Arraystar CircRNA chip. qRT-PCR analysis wan performed to identify the expression patterns of differentially expression CircRNAs. RESULTS Our findings showed that there were 25 up-regulated and 39 down-regulated differential CircRNAs. Among these CircRNAs, we screened 10 highest up-regulatedCircRNAs and 13 lowest down-regulated CircRNAs (Fold Change≥2,P<0.05). In further verification analysis, hsa_circ_0067103, hsa_circ_0004496, and hsa_circ_0002649, ACTG1 were significantly upregulated, while hsa_circ_0020273, hsa_circ_0005699, and hsa_circ_0048764 were markly downregulated in AS tissue than FNF controls. CONCLUSION The expression of CircRNAs involved of pathological bone formation in AS were significantly different from those of control group. These differentially expressed Circular RNAs may be closely related to the occurrence and development of pathological bone formation in AS.
Collapse
Affiliation(s)
- Yu-Cong Zou
- The 5th People's Hospital of Foshan, Foshan, China
| | - Juan Wu
- Department of Rehabilitation, Suining Central Hospital, Suining, China
| | - Chang Zhao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zi-Rui Luo
- The 5th People's Hospital of Foshan, Foshan, China
| |
Collapse
|
28
|
Whole transcriptome analysis of HCT-8 cells infected by Cryptosporidium parvum. Parasit Vectors 2022; 15:441. [PMID: 36434735 PMCID: PMC9700907 DOI: 10.1186/s13071-022-05565-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cryptosporidium species are zoonotic protozoans that are important causes of diarrhoeal disease in both humans and animals. Non-coding RNAs (ncRNAs) play an important role in the innate immune defense against Cryptosporidium infection, but the underlying molecular mechanisms in the interaction between human ileocecal adenocarcinoma (HCT-8) cells and Cryptosporidium species have not been entirely revealed. METHODS The expression profiles of messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) in the early phase of infection of HCT-8 cells with Cryptosporidium parvum and at 3 and 12 h post infection were analyzed using the RNA-sequencing technique. The biological functions of differentially expressed RNAs (dif-RNAs) were discovered through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The targeting relationships between three ncRNAs and mRNAs were analyzed using bioinformatics methods, followed by building a competing endogenous RNA (ceRNA) regulatory network centered on miRNAs. RESULTS After strictly filtering the raw data, our analysis revealed 393 dif-lncRNAs, 69 dif-miRNAs and 115 dif-mRNAs at 3 hpi, and 450 dif-lncRNAs, 129 dif-miRNAs, 117 dif-mRNAs and one dif-circRNA at 12 hpi. Of these, 94 dif-lncRNAs, 24 dif-miRNAs and 22 dif-mRNAs were detected at both post-infection time points. Eleven dif-lncRNAs, seven dif-miRNAs, eight dif-mRNAs and one circRNA were randomly selected and confirmed using the quantitative real-time PCR. Bioinformatics analyses showed that the dif-mRNAs were significantly enriched in nutritional absorption, metabolic processes and metabolism-related pathways, while the dif-lncRNAs were mainly involved in the pathways related to the infection and pathogenicity of C. parvum (e.g. tight junction protein) and immune-related pathways (e.g. cell adhesion molecules). In contrast, dif-miRNAs and dif-circRNA were significantly enriched in apoptosis and apoptosis-related pathways. Among the downregulated RNAs, the miRNAs has-miR-324-3p and hsa-miR-3127-5p appear to be crucial miRNAs which could negatively regulate circRNA, lncRNA and mRNA. CONCLUSIONS The whole transcriptome profiles of HCT-8 cells infected with C. parvum were obtained in this study. The results of the GO and KEGG pathway analyses suggest significant roles for these dif-RNAs during the course of C. parvum infection. A ceRNA regulation network containing miRNA at its center was constructed for the first time, with hsa-miR-324-3p and hsa-miR-3127-5p being the crucial miRNAs. These findings provide novel insights into the responses of human intestinal epithelial cells to C. parvum infection.
Collapse
|
29
|
CircRNAs in Tumor Radioresistance. Biomolecules 2022; 12:biom12111586. [DOI: 10.3390/biom12111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/09/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous, non-coding RNAs, which are derived from host genes that are present in several species and can be involved in the progression of various diseases. circRNAs’ leading role is to act as RNA sponges. In recent years, the other roles of circRNAs have been discovered, such as regulating transcription and translation, regulating host genes, and even being translated into proteins. As some tumor cells are no longer radiosensitive, tumor radioresistance has since become a challenge in treating tumors. In recent years, circRNAs are differentially expressed in tumor cells and can be used as biological markers of tumors. In addition, circRNAs can regulate the radiosensitivity of tumors. Here, we list the mechanisms of circRNAs in glioma, nasopharyngeal carcinoma, and non-small cell lung cancer; further, these studies also provide new ideas for the purposes of eliminating radioresistance in tumors.
Collapse
|
30
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Shen C, Li Z, Zhang Y, Zhang Z, Wu Z, Da L, Yang S, Wang Z, Zhang Y, Qie Y, Zhao G, Lin Y, Huang S, Zhou M, Hu H. Identification of a dysregulated CircRNA-associated gene signature for predicting prognosis, immune landscape, and drug candidates in bladder cancer. Front Oncol 2022; 12:1018285. [PMID: 36300085 PMCID: PMC9589509 DOI: 10.3389/fonc.2022.1018285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidences have demonstrated that circular RNA (circRNAs) plays a an essential regulatory role in initiation, progression and immunotherapy resistance of various cancers. However, circRNAs have rarely been studied in bladder cancer (BCa). The purpose of this research is to explore new circRNAs and their potential mechanisms in BCa. A novel ceRNA-regulated network, including 87 differentially expressed circRNAs (DE-circRNAs), 126 DE-miRNAs, and 217 DE-mRNAs was constructed to better understanding the biological processes using Cytoscape 3.7.1 based on our previously high-throughput circRNA sequencing and five GEO datasets. Subsequently, five randomly selected circRNAs (upregulated circ_0001681; downregulated circ_0000643, circ_0001798, circ_0006117 and circ_0067900) in 20 pairs of BCa and paracancerous tissues were confirmed using qRT-PCR. Functional analysis results determined that 772 GO functions and 32 KEGG pathways were enriched in the ceRNA network. Ten genes (PFKFB4, EDNRA, GSN, GAS1, PAPPA, DTL, TGFBI, PRSS8, RGS1 and TCF4) were selected for signature construction among the ceRNA network. The Human Protein Atlas (HPA) expression of these genes were consistent with the above sequencing data. Notably, the model was validated in multiple external datasets (GSE13507, GSE31684, GSE48075, IMvigor210 and GSE32894). The immune-infiltration was evaluated by 7 published algorithms (i.e., TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL and EPIC). Next, Correlations between riskscore or risk groups and clinicopathological data, overall survival, recognized immunoregulatory cells or common chemotherapeutic agents of BCa patients were performed using wilcox rank test, chi-square test, cox regression and spearman’s correlation analysis; and, these results are significant. According to R package “GSVA” and “clusterProfiler”, the most significantly enriched HALLMARK and KEGG pathway was separately the ‘Epithelial Mesenchymal Transition’ and ‘Ecm Receptor Interaction’ in the high- vs. low-risk group. Additionally, the functional experiments in vitro also revealed that the overexpression of has_circ_0067900 significantly impaired the proliferation, migration, and invasion capacities of BCa cells. Collectively, the results of the current study provide a novel landscape of circRNA-associated ceRNA-regulated network in BCa. The ceRNA-associated gene model which was constructed presented a high predictive performance for the prognosis, immunotherapeutic responsiveness, and chemotherapeutic sensitivity of BCa. And, has_circ_0067900 was originally proposed as tumor suppressor for patients with BCa.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yinglang Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - La Da
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zejin Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gangjian Zhao
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuda Lin
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shiwang Huang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mingli Zhou
- Department of Neuromuscular Diseases, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Hailong Hu,
| |
Collapse
|
32
|
The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm 2022; 2022:6125698. [PMID: 36248190 PMCID: PMC9553461 DOI: 10.1155/2022/6125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
Collapse
|
33
|
Niu ZS, Wang WH. Circular RNAs in hepatocellular carcinoma: Recent advances. World J Gastrointest Oncol 2022; 14:1067-1085. [PMID: 35949213 PMCID: PMC9244981 DOI: 10.4251/wjgo.v14.i6.1067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) have covalently closed loop structures at both ends, exhibiting characteristics dissimilar to those of linear RNAs. Emerging evidence suggests that aberrantly expressed circRNAs play crucial roles in hepatocellular carcinoma (HCC) by affecting the proliferation, apoptosis and invasive capacity of HCC cells. Certain circRNAs may be used as biomarkers to diagnose and predict the prognosis of HCC. Therefore, circRNAs are expected to become novel biomarkers and therapeutic targets for HCC. Herein, we briefly review the characteristics and biological functions of circRNAs, focusing on their roles in HCC to provide new insights for the early diagnosis and targeted therapy of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
34
|
Gu J, Su C, Huang F, Zhao Y, Li J. Past, Present and Future: The Relationship Between Circular RNA and Immunity. Front Immunol 2022; 13:894707. [PMID: 35693804 PMCID: PMC9174805 DOI: 10.3389/fimmu.2022.894707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
The immune system has evolved since the birth of humans. However, immune-related diseases have not yet been overcome due to the lack of expected indicators and targeting specificity of current medical technology, subjecting patients to very uncomfortable physical and mental experiences and high medical costs. Therefore, the requirements for treatments with higher specificity and indicative ability are raised. Fortunately, the discovery of and continuous research investigating circular RNAs (circRNAs) represent a promising method among numerous methods. Although circRNAs wear regarded as metabolic wastes when discovered, as a type of noncoding RNA (ncRNA) with a ring structure and wide distribution range in the human body, circRNAs shine brilliantly in medical research by virtue of their special nature and structure-determined functions, such as high stability, wide distribution, high detection sensitivity, acceptable reproducibility and individual differences. Based on research investigating the role of circRNAs in immunity, we systematically discuss the hotspots of the roles of circRNAs in immune-related diseases, including expression profile analyses, potential biomarker research, ncRNA axis/network construction, impacts on phenotypes, therapeutic target seeking, maintenance of nucleic acid stability and protein binding research. In addition, we summarize the current situation of and problems associated with circRNAs in immune research, highlight the applications and prospects of circRNAs in the treatment of immune-related diseases, and provide new insight into future directions and new strategies for laboratory research and clinical applications.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Zhao
- Chengdu Blood Center, Blood Research Laboratory, Chengdu, China
- *Correspondence: Jing Li, ; Yuwei Zhao,
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jing Li, ; Yuwei Zhao,
| |
Collapse
|
35
|
Slim MA, van Mourik N, Dionne JC, Oczkowski SJW, Netea MG, Pickkers P, Giamarellos-Bourboulis EJ, Müller MCA, van der Poll T, Wiersinga WJ, Vlaar APJ, van Vught LA. Personalised immunotherapy in sepsis: a scoping review protocol. BMJ Open 2022; 12:e060411. [PMID: 35534059 PMCID: PMC9086601 DOI: 10.1136/bmjopen-2021-060411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Sepsis, a life-threatening organ dysfunction syndrome occurring in the context of severe infections, remains a major burden on global health with high morbidity and high mortality rates. Despite recent advances in the understanding of its pathophysiology, the treatment of sepsis remains supportive of nature with few interventions specifically designed for treating this complex syndrome. The focus of sepsis trials has increasingly shifted towards targeting excessive inflammation and immunosuppression using immunomodulatory agents. However, it remains uncertain how to identify patients that could benefit from such treatment, whether treatments can be tailored to an individual's immune profile, or at which stage of the disease the intervention should be initiated. In this scoping review, we provide a comprehensive overview of current available literature on immunostimulatory and immunosuppressive therapies against sepsis. METHODS AND ANALYSIS The aim of this scoping review is to describe and summarise current literature evaluating immunotherapy in adult patients with sepsis. The review will be performed using the framework formulated by Arksey and O'Malley. A comprehensive literature and study collection will be executed by searching PubMed, Embase, Cochrane CENTRAL and ClinicalTrials.gov to identify clinical trials and cohort studies concerning immunotherapy in adult patients with sepsis. Screening will be performed independently and in duplicate by two reviewers who will also independently extract data into prespecified spreadsheets. We will summarise evidence in tabular format with descriptive statistics. The reported evidence will convey knowledge on the types of immunotherapies studied, and currently being studied, in adult patients with sepsis. ETHICS AND DISSEMINATION Approval from a medical ethics committee is not required. Once completed, the review will be submitted for publication in a peer-reviewed journal. These results will be of value to clinicians and researchers with an interest in advancing sepsis care.
Collapse
Affiliation(s)
- Marleen A Slim
- Intensive Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Niels van Mourik
- Intensive Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Joanna C Dionne
- Medicine, McMaster University, Hamilton, Ontario, Canada
- The Guidelines in Intensive Care Development and Evaluation (GUIDE) Group, Research Institute St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Division of Gastroenterology, McMaster University, Hamilton, Ontario, Canada
| | - Simon J W Oczkowski
- Medicine, McMaster University, Hamilton, Ontario, Canada
- The Guidelines in Intensive Care Development and Evaluation (GUIDE) Group, Research Institute St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - M G Netea
- Internal Medicine, Radboudumc, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | | | | | | | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Internal Medicine, Division of Infectious Diseases, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Internal Medicine, Division of Infectious Diseases, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | | | - Lonneke A van Vught
- Intensive Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Chen F, Zhang H, Wang J. Circular RNA CircSHKBP1 accelerates the proliferation, invasion, angiogenesis, and stem cell-like properties via modulation of microR-766-5p/high mobility group AT-hook 2 axis in laryngeal squamous cell carcinoma. Bioengineered 2022; 13:11551-11563. [PMID: 35502885 PMCID: PMC9275975 DOI: 10.1080/21655979.2022.2068922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignancy in head and neck. Circular SHKBP1 (circSHKBP) exerts momentous functions in the occurrence of many cancers including LSCC. Thus, we investigated the oncogenic capacities of circSHKBP1 in LSCC, and revealed the underlying mechanism as a competing endogenous RNA. The expression levels of circSHKBP1, miR-766-5p, and high mobility group AT-hook 2 (HMGA2) were examined by quantitative real-time PCR and their influences on the overall survival were measured by Kaplan–Meier method. The correlations between circSHKBP1 and miR-766-5p or HMGA2 were detected by Spearman’s rank correlation analysis. In vitro, the influences of circSHKBP1/miR-766-5p/HMGA2 axis on the tumorigenesis of LSCC were examined by CCK-8, transwell, sphere formation, and angiogenesis assays, respectively. circSHKBP1 expression was up-regulated in the LSCC specimens and cell lines. And elevated circSHKBP1 expression was closely linked to poor prognosis. Silencing circSHKBP1 expression restrained cell proliferation, invasion, angiogenesis, stem cell-like properties and tumor growth. We observed that miR-766-5p was down-regulated and negatively correlated to circSHKBP1 in LSCC samples. However, HMGA2 was highly expressed and positively associated with circSHKBP1 in these specimens. Importantly, the levels of circSHKBP1, miR-766-5p, and HMGA2 were closely associated with patients’ clinical parameters including lymph nodes metastasis and TNM stages. Mechanistic analysis clarified that circSHKBP1 sponged miR-766-5p to regulate HMGA2, the target of miR-766-5p. Moreover, miR-766-5p inhibition and overexpression of HMGA2 rescued the tumor-suppressing roles of circSHKBP1 downregulation in LSCC. In conclusion, circSHKBP1 accelerated the tumorigenesis of LSCC via modulating HMGA2 by targeting miR-766-5p.
Collapse
Affiliation(s)
- Fu Chen
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Haiyan Zhang
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jie Wang
- Department of Radiation Oncology, Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
37
|
Haskey N, Ye J, Estaki M, Verdugo Meza AA, Barnett JA, Yousefi M, Birnie BW, Gruenheid S, Ghosh S, Gibson DL. A Mediterranean-like fat blend protects against the development of severe colitis in the mucin-2 deficient murine model. Gut Microbes 2022; 14:2055441. [PMID: 35471119 PMCID: PMC9045830 DOI: 10.1080/19490976.2022.2055441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is a growing appreciation that the interaction between diet, the gut microbiota and the immune system contribute to the development and progression of inflammatory bowel disease (IBD). A mounting body of scientific evidence suggests that high-fat diets exacerbate IBD; however, there is a lack of information on how specific types of fat impact colitis. The Mediterranean diet (MD) is considered a health-promoting diet containing approximately 40% total fat. It is not known if the blend of fats found in the MD contributes to its beneficial protective effects. Mice deficient in the mucin 2 gene (Muc 2-/-) were weaned to 40% fat, isocaloric, isonitrogenous diets. We compared the MD fat blend (high monounsaturated, 2:1 n-6:n-3 polyunsaturated and moderate saturated fat) to diets composed of corn oil (CO, n-6 polyunsaturated-rich), olive oil (monounsaturated-rich) or milk fat (MF, saturated-rich) on spontaneous colitis development in Muc2-/- mice. The MD resulted in lower clinical and histopathological scores and induced tolerogenic CD103+ CD11b+ dendritic, Th22 and IL-17+ IL-22+ cells necessary for intestinal barrier repair. The MD was associated with beneficial microbes and associated with higher cecal acetic acid levels negatively correlated with colitogenic microbes like Akkermansia muciniphila. In contrast, CO showed a higher prevalence of mucin-degraders including A. muciniphila and Enterobacteriaceae, which have been associated with colitis. A dietary blend of fats mimicking the MD, reduces disease activity, inflammation-related biomarkers and improves metabolic parameters in the Muc2-/- mouse model. Our findings suggest that the MD fat blend could be incorporated into a maintenance diet for colitis.
Collapse
Affiliation(s)
- Natasha Haskey
- Department of Biology, University of British Columbia - Okanagan Campus; Kelowna, British Columbia, Canada
| | - Jiayu Ye
- Department of Biology, University of British Columbia - Okanagan Campus; Kelowna, British Columbia, Canada
| | - Mehrbod Estaki
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Andrea A. Verdugo Meza
- Department of Biology, University of British Columbia - Okanagan Campus; Kelowna, British Columbia, Canada
| | - Jacqueline A. Barnett
- Department of Biology, University of British Columbia - Okanagan Campus; Kelowna, British Columbia, Canada
| | - Mitra Yousefi
- The Center for Phenogenomics Infection & McGill University Research Centre on Complex Traits; McGill University, Montreal, Quebec, Canada
| | - Blake W. Birnie
- Department of Medicine, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Samantha Gruenheid
- Associate Professor - Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia - Okanagan Campus; Kelowna, British Columbia, Canada
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia - Okanagan Campus; Kelowna, British Columbia, Canada,Department of Medicine, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada,CONTACT Deanna L. Gibson ASC 368, 3187University Way Kelowna, BCCanadaV1V 1V7250-807-8790; 250-807-8001
| |
Collapse
|
38
|
Abdeljaoued S, Arfa S, Kroemer M, Ben Khelil M, Vienot A, Heyd B, Loyon R, Doussot A, Borg C. Tissue-resident memory T cells in gastrointestinal cancer immunology and immunotherapy: ready for prime time? J Immunother Cancer 2022; 10:jitc-2021-003472. [PMID: 35470231 PMCID: PMC9039405 DOI: 10.1136/jitc-2021-003472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident memory T (TRM) cells have emerged as immune sentinels that patrol the tissue microenvironment and orchestrate localized antitumor immunity in various solid cancers. Recent studies have revealed that TRM cells are key players in cancer immunosurveillance, and their involvement has been linked to favorable responses to immunotherapy as well as general better clinical outcome in cancer patients. In this review, we provide an overview of the major advances and recent findings regarding TRM cells phenotype, transcriptional and epigenetic regulation in cancer with a special focus on gastrointestinal tumors. Finally, we highlight the exciting clinical implication of TRM cells in these types of tumors.
Collapse
Affiliation(s)
- Syrine Abdeljaoued
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France .,Clinical Investigational Center, CIC-1431, Besançon, France
| | - Sara Arfa
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Marie Kroemer
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Clinical Investigational Center, CIC-1431, Besançon, France.,Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Myriam Ben Khelil
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France
| | - Angélique Vienot
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Bruno Heyd
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Romain Loyon
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France
| | - Alexandre Doussot
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Clinical Investigational Center, CIC-1431, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
39
|
Chen SX, Greif C, Gibson RS, Porter ML, Kimball AB. Advances in biologic and small molecule therapies for hidradenitis suppurativa. Expert Opin Pharmacother 2022; 23:959-978. [PMID: 35470765 DOI: 10.1080/14656566.2022.2070429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hidradenitis suppurativa (HS) is a chronic, debilitating inflammatory skin disorder characterized by painful nodules, abscesses, fistulae, and scarring with a predilection for flexural regions. Several biologics and small molecule inhibitors are being evaluated in clinical trials for treatment. AREAS COVERED The authors discuss the data available from clinical trials and smaller, high-quality studies for existing and emerging biologic and small molecule inhibitor therapies for treatment of HS. Biologics discussed include TNFα, IL-17, IL-23, IL-12/23, and IL-1 inhibitors. Small molecule inhibitors discussed include PDE4, JAK, TYK, IFX-1, and complement cascade inhibitors. Pharmacokinetics and pharmacodynamics for these drugs are also described. EXPERT OPINION Trial data and our own experience have shown that about half of HS patients experience improvement with adalimumab. However, there is a significant need for pharmacotherapies with higher efficacy goals as in those used for psoriasis. Many biologics and small molecule inhibitors are being tested in clinical trials. The landscape of upcoming therapies for hidradenitis suppurativa appears promising.
Collapse
Affiliation(s)
- Stella X Chen
- Department of Dermatology, Massachusetts General Hospital, Harvard Combined Dermatology Residency Program, Boston, MA, USA
| | - Charlotte Greif
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ruby S Gibson
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martina L Porter
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Alexa B Kimball
- Clinical Laboratory for Epidemiology and Applied Research in Skin (CLEARS), Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Chen C, Xia C, Tang H, Jiang Y, Wang S, Zhang X, Huang T, Yuan X, Wang J, Peng L. Circular RNAs Involve in Immunity of Digestive Cancers From Bench to Bedside: A Review. Front Immunol 2022; 13:833058. [PMID: 35464462 PMCID: PMC9020258 DOI: 10.3389/fimmu.2022.833058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system plays a complex role in tumor formation and development. On the one hand, immune surveillance can inhibit the growth of tumors; on the other hand, immune evasion of tumors can create conditions conducive for tumor development and growth. CircRNAs are endogenous non-coding RNAs with a covalently closed loop structure that are abundantly expressed in eukaryotic organisms. They are characterized by stable structure, rich diversity, and high evolutionary conservation. In particular, circRNAs play a vital role in the occurrence, development, and treatment of tumors through their unique functions. Recently, the incidence and mortality of digestive cancers, especially those of gastric cancer, colorectal cancer, and liver cancer, have remained high. However, the functions of circRNAs in digestive cancers immunity are less known. The relationship between circRNAs and digestive tumor immunity is systematically discussed in our paper for the first time. CircRNA can influence the immune microenvironment of gastrointestinal tumors to promote their occurrence and development by acting as a miRNA molecular sponge, interacting with proteins, and regulating selective splicing. The circRNA vaccine even provides a new idea for tumor immunotherapy. Future studies should be focused on the location, transportation, and degradation mechanisms of circRNA in living cells and the relationship between circRNA and tumor immunity. This paper provides a new idea for the diagnosis and treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Chunyue Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Congcong Xia
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Tang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yirun Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Xin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Tao Huang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumour Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junpu Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Li Peng, ; Junpu Wang,
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Li Peng, ; Junpu Wang,
| |
Collapse
|
41
|
Haghighat S, Siadat SD, Akhavan Sepahi A, Mahdavi M. Recombinant PBP2a/autolysin conjugate as PLGA-based nanovaccine induced humoral responses with opsonophagocytosis activity, and protection versus methicillin-resistant Staphylococcus aureus infection. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:442-450. [PMID: 35656080 PMCID: PMC9150805 DOI: 10.22038/ijbms.2022.59992.13303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Objectives Methicillin-resistant Staphylococcus aureus (MRSA) reasons extreme infections, can resist various conventional antimicrobial agents, and cause morbidity and mortality worldwide. Vaccination seems to help modulate MRSA infections. Nanovaccine is considered a novel strategy in vaccine technology. The primary purpose of the present study was to develop a conjugate vaccine based on recombinant PBP2a and MRSA autolysin formulated in PLGA as a nanoparticle capable of enhancing protective responses against MRSA in the murine model. Materials and Methods Recombinant PBP2a and autolysin have been expressed and purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity column and characterized by SDS-PAGE and western blot. PLGA was bound to recombinant proteins by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC) and adipic acid dihydrazide (ADH) as a linker and spacer, respectively. Conjugation of recombinant proteins to PLGA was confirmed by the AFM assay, zeta potential, and size distribution, and its efficacy was evaluated in mice. Total IgG, IgG1, IgG2a, IgG2b, and IgM titers were analyzed to assess immune responses. Lastly, the bioactivity of antibodies was tested by using the opsonophagocytosis assay. Results Mice immunized with the r-PBP2a-r-autolysin-PLGA nanovaccine led to increased levels of opsonic antibodies and IgG1, IgG2a, IgG2b, and IgM when compared with other experimental groups. Our results confirmed that vaccination with nanovaccine could reduce the mortality rate against the sub-lethal dose of MRSA challenge. Furthermore, the nanovaccine could eliminate MRSA from the kidney of infected mice. Conclusion This study may provide valuable insights into the protective power of the r-PBP2a-r-autolysin-PLGA conjugate vaccine against MRSA infection.
Collapse
Affiliation(s)
- Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran,Corresponding author: Setareh Haghighat. Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. ;
| | - Seyed Davar Siadat
- Department of Mycobacteriology & Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research(ACECR), Tehran, Iran,Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Shao Y, Qi C, Yan J, Lu R, Ye G, Guo J. Biological and clinical implications of hsa_circ_0086720 in gastric cancer and its clinical application. J Clin Lab Anal 2022; 36:e24369. [PMID: 35334500 PMCID: PMC9102612 DOI: 10.1002/jcla.24369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are thought to be vital participants in carcinogenesis and have the characteristics of being stable, specific, and well conserved. However, their clinical significance and application value in gastric cancer (GC) are still poorly understood. Hsa_circ_0086720 was found to be a dysregulated circRNA in GC by microarray screening and was further explored for its clinical significance and application. Methods Hsa_circ_0086720 was detected in GC cell lines, tissues, and plasma, and the clinicopathological correlations were investigated. The existence, stability, origin, and change in the plasma hsa_circ_0086720 level were verified in early GC patients. Moreover, receiver operating characteristic and Kaplan–Meier survival curves were constructed to analyze the diagnostic and prognostic values, and bioinformatics analysis was used to identify the potential functions. Finally, risk factors and nomogram predicting were established. Results Hsa_circ_0086720 was found to be downregulated in gastric carcinogenesis, and tissue hsa_circ_0086720 was negatively associated with perineural invasion, Borrmann type, disease‐free survival, and overall survival. Hsa_circ_0086720 was stable in circulating plasma and was actively secreted by cells in gastric carcinogenesis. As a biomarker for early GC screening, plasma hsa_circ_0086720 had good sensitivity and specificity, and its stability met the clinical application requirements. Bioinformatics analysis suggested that dysregulated hsa_circ_0086720 has important functions in gastric carcinogenesis. Univariate Cox regression analysis identified factors associated with overall survival time and disease‐free survival time. The nomograms showed good accuracy of predicting survival time. Conclusion Hsa_circ_0086720 is a novel biomarker for screening early GC and predicting the prognosis of advanced‐stage patients.
Collapse
Affiliation(s)
- Yongfu Shao
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Changlei Qi
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Rongdan Lu
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
43
|
Deneubourg C, Ramm M, Smith LJ, Baron O, Singh K, Byrne SC, Duchen MR, Gautel M, Eskelinen EL, Fanto M, Jungbluth H. The spectrum of neurodevelopmental, neuromuscular and neurodegenerative disorders due to defective autophagy. Autophagy 2022; 18:496-517. [PMID: 34130600 PMCID: PMC9037555 DOI: 10.1080/15548627.2021.1943177] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Primary dysfunction of autophagy due to Mendelian defects affecting core components of the autophagy machinery or closely related proteins have recently emerged as an important cause of genetic disease. This novel group of human disorders may present throughout life and comprises severe early-onset neurodevelopmental and more common adult-onset neurodegenerative disorders. Early-onset (or congenital) disorders of autophagy often share a recognizable "clinical signature," including variable combinations of neurological, neuromuscular and multisystem manifestations. Structural CNS abnormalities, cerebellar involvement, spasticity and peripheral nerve pathology are prominent neurological features, indicating a specific vulnerability of certain neuronal populations to autophagic disturbance. A typically biphasic disease course of late-onset neurodegeneration occurring on the background of a neurodevelopmental disorder further supports a role of autophagy in both neuronal development and maintenance. Additionally, an associated myopathy has been characterized in several conditions. The differential diagnosis comprises a wide range of other multisystem disorders, including mitochondrial, glycogen and lysosomal storage disorders, as well as ciliopathies, glycosylation and vesicular trafficking defects. The clinical overlap between the congenital disorders of autophagy and these conditions reflects the multiple roles of the proteins and/or emerging molecular connections between the pathways implicated and suggests an exciting area for future research. Therapy development for congenital disorders of autophagy is still in its infancy but may result in the identification of molecules that target autophagy more specifically than currently available compounds. The close connection with adult-onset neurodegenerative disorders highlights the relevance of research into rare early-onset neurodevelopmental conditions for much more common, age-related human diseases.Abbreviations: AC: anterior commissure; AD: Alzheimer disease; ALR: autophagic lysosomal reformation; ALS: amyotrophic lateral sclerosis; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; ASD: autism spectrum disorder; ATG: autophagy related; BIN1: bridging integrator 1; BPAN: beta-propeller protein associated neurodegeneration; CC: corpus callosum; CHMP2B: charged multivesicular body protein 2B; CHS: Chediak-Higashi syndrome; CMA: chaperone-mediated autophagy; CMT: Charcot-Marie-Tooth disease; CNM: centronuclear myopathy; CNS: central nervous system; DNM2: dynamin 2; DPR: dipeptide repeat protein; DVL3: disheveled segment polarity protein 3; EPG5: ectopic P-granules autophagy protein 5 homolog; ER: endoplasmic reticulum; ESCRT: homotypic fusion and protein sorting complex; FIG4: FIG4 phosphoinositide 5-phosphatase; FTD: frontotemporal dementia; GBA: glucocerebrosidase; GD: Gaucher disease; GRN: progranulin; GSD: glycogen storage disorder; HC: hippocampal commissure; HD: Huntington disease; HOPS: homotypic fusion and protein sorting complex; HSPP: hereditary spastic paraparesis; LAMP2A: lysosomal associated membrane protein 2A; MEAX: X-linked myopathy with excessive autophagy; mHTT: mutant huntingtin; MSS: Marinesco-Sjoegren syndrome; MTM1: myotubularin 1; MTOR: mechanistic target of rapamycin kinase; NBIA: neurodegeneration with brain iron accumulation; NCL: neuronal ceroid lipofuscinosis; NPC1: Niemann-Pick disease type 1; PD: Parkinson disease; PtdIns3P: phosphatidylinositol-3-phosphate; RAB3GAP1: RAB3 GTPase activating protein catalytic subunit 1; RAB3GAP2: RAB3 GTPase activating non-catalytic protein subunit 2; RB1: RB1-inducible coiled-coil protein 1; RHEB: ras homolog, mTORC1 binding; SCAR20: SNX14-related ataxia; SENDA: static encephalopathy of childhood with neurodegeneration in adulthood; SNX14: sorting nexin 14; SPG11: SPG11 vesicle trafficking associated, spatacsin; SQSTM1: sequestosome 1; TBC1D20: TBC1 domain family member 20; TECPR2: tectonin beta-propeller repeat containing 2; TSC1: TSC complex subunit 1; TSC2: TSC complex subunit 2; UBQLN2: ubiquilin 2; VCP: valosin-containing protein; VMA21: vacuolar ATPase assembly factor VMA21; WDFY3/ALFY: WD repeat and FYVE domain containing protein 3; WDR45: WD repeat domain 45; WDR47: WD repeat domain 47; WMS: Warburg Micro syndrome; XLMTM: X-linked myotubular myopathy; ZFYVE26: zinc finger FYVE-type containing 26.
Collapse
Affiliation(s)
- Celine Deneubourg
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Mauricio Ramm
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Luke J. Smith
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Olga Baron
- Wolfson Centre for Age-Related Diseases, King’s College London, London, UK
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Susan C. Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| | - Michael R. Duchen
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, IoPPN, King’s College London, London, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
44
|
Kong D, Shen D, Liu Z, Zhang J, Zhang J, Geng C. Circ_0008500 Knockdown Improves Radiosensitivity and Inhibits Tumorigenesis in Breast Cancer Through the miR-758-3p/PFN2 Axis. J Mammary Gland Biol Neoplasia 2022; 27:37-52. [PMID: 35239064 DOI: 10.1007/s10911-022-09514-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most common malignancies worldwide. Circular RNAs (CircRNAs) were revealed to be implicated in the development of breast cancer. In this research, we aimed to investigate the role and underlying mechanism of circ_0008500 in the development and radiosensitivity of breast cancer. Using real-time quantitative PCR (RT-qPCR) and western blot, we found that hsa_circ_0008500 (circ_0008500) and profilin 2 (PFN2) were increased, while microRNA-758-3p (miR-758-3p) was decreased in breast cancer tissues and cells. Cell viability, the number of colonies, proliferation and apoptosis were detected using CCK-8, colony formation, EdU assays and flow cytometry, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were devoted to test the interaction between miR-758-3p and circ_0008500 or PFN2. The results showed that circ_0008500 knockdown inhibited cell growth, and facilitated cell apoptosis and radiosensitivity in breast cancer cells in vitro. Moreover, circ_0008500 regulated PFN2 expression by sponging miR-758-3p. Functionally, circ_0008500 knockdown regulated cell behaviors and radiosensitivity by targeting miR-758-3p to downregulate PFN2 expression in vitro. Additionally, in vivo tumor formation assay and immunohistochemistry (IHC) assay demonstrated that circ_0008500 knockdown enhanced the radiosensitivity and repressed tumor growth in vivo. In conclusion, circ_0008500 inhibition promoted the radiosensitivity and restrained the development of breast cancer by downregulating PFN2 expression via targeting miR-758-3p.
Collapse
Affiliation(s)
- Deyou Kong
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Dongxing Shen
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Zhikun Liu
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Jun Zhang
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Jian Zhang
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Cuizhi Geng
- Breast Center, the Fourth Hospital of Hebei Medical University, Yuhua District, No. 169 Tianshan Street, Shijiazhuang, 050035, China.
| |
Collapse
|
45
|
Elnajdy D, El-Dahiyat F. Antibiotics duration guided by biomarkers in hospitalized adult patients; a systematic review and meta-analysis. Infect Dis (Lond) 2022; 54:387-402. [PMID: 35175169 DOI: 10.1080/23744235.2022.2037701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The impact of using biomarkers to determine the duration of antibiotics therapy has been studied. However, the question remains in clinical practice whether these biomarkers are reliable to determine antibiotics duration. AIM This study is aimed to see if employing c-reactive protein (CRP) and Procalcitonin (PCT) to determine the duration of antibiotic use in hospitalized adult patients is both effective and safe. METHODS Search databases that were used are Pubmed, Cochrane library, and Embase. Only randomized controlled trials conducted in adult (≥18 years) hospitalized patients were included. The primary outcome assessed is the duration of antibiotics used. Secondary outcomes assessed are the length of hospitalization, recurrence of infection/rehospitalization, in-hospital mortality, and 28-day mortality. RESULTS For the primary outcome, which is the duration of antibiotics use, PCT guided therapy significantly decreased the duration of antibiotics used in both sepsis and respiratory tract infections. For the secondary outcomes, there was no statistically significant difference in the outcomes of length of hospitalization, recurrence of infection/rehospitalization, and 28-day mortality. However, in-hospital mortality was significantly reduced (p = .02). CRP guided reduced antibiotic use duration, but there was no statistically significant difference in other outcomes including length of hospital stay, 28-day mortality, and infection recurrence. CONCLUSION Procalcitonin-guided antibiotics therapy was shown to be effective and safe in the reduction of antibiotics duration in both sepsis and respiratory tract infections. More research is needed to prove that CRP-guided therapy is safe and effective to determine the antibiotic duration in adult hospitalized patients. REVIEW REGISTRATION NUMBER PROSPERO (CRD42021264167).
Collapse
Affiliation(s)
- Dina Elnajdy
- Clinical Pharmacy Program, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Faris El-Dahiyat
- Clinical Pharmacy Program, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| |
Collapse
|
46
|
Khan FA, Nsengimana B, Khan NH, Song Z, Ngowi EE, Wang Y, Zhang W, Ji S. Chimeric Peptides/Proteins Encoded by circRNA: An Update on Mechanisms and Functions in Human Cancers. Front Oncol 2022; 12:781270. [PMID: 35223470 PMCID: PMC8874284 DOI: 10.3389/fonc.2022.781270] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
The discovery of circular RNAs and exploration of their biological functions are increasingly attracting attention in cell bio-sciences. Owing to their unique characteristics of being highly conserved, having a relatively longer half-life, and involvement in RNA maturation, transportation, epigenetic regulation, and transcription of genes, it has been accepted that circRNAs play critical roles in the variety of cellular processes. One of the critical importance of these circRNAs is the presence of small open reading frames that enable them to encode peptides/proteins. In particular, these encoded peptides/proteins mediate essential cellular activities such as proliferation, invasion, epithelial-mesenchymal transition, and apoptosis and develop an association with the development and progression of cancers by modulating diverse signaling pathways. In addition, these peptides have potential roles as biomarkers for the prognosis of cancer and are being used as drug targets against tumorigenesis. In the present review, we thoroughly discussed the biogenesis of circRNAs and their functional mechanisms along with a special emphasis on the reported chimeric peptides/proteins encoded by circRNAs. Additionally, this review provides a perspective regarding the opportunities and challenges to the potential use of circRNAs in cancer diagnosis and therapeutic targets in clinics.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- School of Life Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Nazeer Hussain Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhenhua Song
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yunyun Wang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Weijuan Zhang
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
47
|
Dhall A, Jain S, Sharma N, Naorem LD, Kaur D, Patiyal S, Raghava GPS. In silico tools and databases for designing cancer immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:1-50. [PMID: 35305716 DOI: 10.1016/bs.apcsb.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunotherapy is a rapidly growing therapy for cancer which have numerous benefits over conventional treatments like surgery, chemotherapy, and radiation. Overall survival of cancer patients has improved significantly due to the use of immunotherapy. It acts as a novel pillar for treating different malignancies from their primary to the metastatic stage. Recent preferments in high-throughput sequencing and computational immunology leads to the development of targeted immunotherapy for precision oncology. In the last few decades, several computational methods and resources have been developed for designing immunotherapy against cancer. In this review, we have summarized cancer-associated genomic, transcriptomic, and mutation profile repositories. We have also enlisted in silico methods for the prediction of vaccine candidates, HLA binders, cytokines inducing peptides, and potential neoepitopes. Of note, we have incorporated the most important bioinformatics pipelines and resources for the designing of cancer immunotherapy. Moreover, to facilitate the scientific community, we have developed a web portal entitled ImmCancer (https://webs.iiitd.edu.in/raghava/immcancer/), comprises cancer immunotherapy tools and repositories.
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India.
| |
Collapse
|
48
|
Wen G, Zhou T, Gu W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell 2021; 12:911-946. [PMID: 33131025 PMCID: PMC8674396 DOI: 10.1007/s13238-020-00799-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA) is a novel class of single-stranded RNAs with a closed loop structure. The majority of circRNAs are formed by a back-splicing process in pre-mRNA splicing. Their expression is dynamically regulated and shows spatiotemporal patterns among cell types, tissues and developmental stages. CircRNAs have important biological functions in many physiological processes, and their aberrant expression is implicated in many human diseases. Due to their high stability, circRNAs are becoming promising biomarkers in many human diseases, such as cardiovascular diseases, autoimmune diseases and human cancers. In this review, we focus on the translational potential of using human blood circRNAs as liquid biopsy biomarkers for human diseases. We highlight their abundant expression, essential biological functions and significant correlations to human diseases in various components of peripheral blood, including whole blood, blood cells and extracellular vesicles. In addition, we summarize the current knowledge of blood circRNA biomarkers for disease diagnosis or prognosis.
Collapse
Affiliation(s)
- Guoxia Wen
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
49
|
Zhang CC, Li Y, Feng XZ, Li DB. Circular RNA circ_0001287 inhibits the proliferation, metastasis, and radiosensitivity of non-small cell lung cancer cells by sponging microRNA miR-21 and up-regulating phosphatase and tensin homolog expression. Bioengineered 2021; 12:414-425. [PMID: 33467964 PMCID: PMC8806200 DOI: 10.1080/21655979.2021.1872191] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/02/2021] [Indexed: 01/22/2023] Open
Abstract
As a type of non-coding RNA, circular RNA (circRNA) figures prominently in human cancer progression. Nonetheless, the expression, function, and regulatory mechanism of circ_0001287 in non-small cell lung cancer (NSCLC) remain obscure. In this work, quantitative real-time polymerase chain reaction (qRT-PCR) was implemented to quantify circ_0001287 and miR-21 expressions in NSCLC tissues and cells. The relationship between circ_0001287 expression and the clinicopathological parameters of NSCLC patients was examined. Cell counting kit-8 (CCK-8), 5-bromo-2©-deoxyuridine (BrdU), and Transwell experiments were conducted to detect the multiplication, migration, and invasion of NSCLC cells after circ_0001287 was overexpressed or knocked down. The survival of NSCLC cells was studied using colony formation experiment under different doses of radiation. RNA immunoprecipitation (RIP) experiment and luciferase reporter gene experiment verified the binding relationship between circ_0001287 and miR-21. Western blot was employed to examine the regulatory effects of circ_0001287 and miR-21 on phosphatase and tensin homolog (PTEN) expression. We reported that circ_0001287 expression was down-modulated in NSCLC tissues and cell lines. Besides, circ_0001287 low expression was associated with low differentiation and positive lymph node invasion of NSCLC. Circ_0001287 overexpression suppressed the multiplication, migration, invasion, and radioresistance of NSCLC cells, whereas circ_0001287 knockdown promoted the above phenotypes. Circ_0001287 could adsorb miR-21 and repress its expression, and indirectly up-modulate PTEN expression in NSCLC cells. Taken together, circ_0001287/miR-21/PTEN axis is probably involved in regulating NSCLC cell multiplication, metastasis, and radioresistance.
Collapse
Affiliation(s)
- Chuan-Cui Zhang
- Department of Respiratory, The Third People’s Hospital of Linyi, Linyi, China
| | - Yuhua Li
- Department of Oncology, The Third People’s Hospital of Linyi, Linyi, China
| | - Xian-Zhen Feng
- Department of Respiratory, The Third People’s Hospital of Linyi, Linyi, China
| | - Dian-Bo Li
- Department of Thoracic Surgery, Linyi Cancer Hospital, Linyi, China
| |
Collapse
|
50
|
Wang S, Yang X, Xie W, Fu S, Chen Q, Li Z, Zhang Z, Sun T, Gong B, Ma M. LncRNA GAPLINC Promotes Renal Cell Cancer Tumorigenesis by Targeting the miR-135b-5p/CSF1 Axis. Front Oncol 2021; 11:718532. [PMID: 34722262 PMCID: PMC8551964 DOI: 10.3389/fonc.2021.718532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are closely related to the occurrence and development of cancer. Gastric adenocarcinoma-associated, positive CD44 regulator, long intergenic noncoding RNA (GAPLINC) is a recently identified lncRNA that can actively participate in the tumorigenesis of various cancers. Here, we investigated the functional roles and mechanism of GAPLINC in renal cell carcinoma (RCC) development. Methods Differentially expressed lncRNAs between RCC tissues and normal kidney tissues were detected by using a microarray technique. RNA sequencing was applied to explore the mRNA expression profile changes after GAPLINC silencing. After gain- and loss-of-function approaches were implemented, the effect of GAPLINC on RCC in vitro and in vivo was assessed by cell proliferation and migration assays. Moreover, rescue experiments and luciferase reporter assays were used to study the interactions between GAPLINC, miR-135b-5p and CSF1. Results GAPLINC was significantly upregulated in RCC tissues and cell lines and was associated with a poor prognosis in RCC patients. Knockdown of GAPLINC repressed RCC growth in vitro and in vivo, while overexpression of GAPLINC exhibited the opposite effect. Mechanistically, we found that GAPLINC upregulates oncogene CSF1 expression by acting as a sponge of miR-135b-5p. Conclusion Taken together, our results suggest that GAPLINC is a novel prognostic marker and molecular therapeutic target for RCC.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaorong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhilong Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|