1
|
Shaukat A, Aleem MT, Munir F, Gao F, Su RW. An overview of the role of steroid hormones in various parasitic infections. J Reprod Immunol 2025; 169:104533. [PMID: 40267633 DOI: 10.1016/j.jri.2025.104533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
There is a close relationship among hormones, neuropeptides, neurotransmitters, and cytokines that modify the host immune response through various effector mechanisms, including both humoral and cellular immunity. Interruption of this communication balance leads to infection or greater vulnerability to disease. The relationship between host and parasite is complex, and there is significant communication, interaction, and biochemical co-evolution. In parasitic infection, the role of various hormones has been proven and there are also reports on parasites the direct effect of hormones. Numerous parasites produce the secretion of molecules that affect the immunological and physiological responses in the host, including intermediaries and vectors. In contrast, the parasite secretes various factors that change the hormone host levels. In a few cases, the parasite's status hormones have negative and positive influences. On the other hand, the influences are indirectly intermediated through the host's immune system. In vertebrates, the occurrence of parasites also has a main effect on the host endocrine status and a normal suite of processes ruled through hormones. This procedure comprises host growth, establishment, transformation, and reproduction. Therefore, considering the mechanism involved in immuno-endocrine variation and its influences on parasites is critical for emerging new drugs, vaccine target finding, and inventing new therapies for numerous infections. Males are usually more vulnerable to parasitic diseases as compared to females. These sex differentiation can reflect the suppressive properties of testosterone and the excessive effects of estradiol on immune function. For defining the T-cell-driven immunity T. spiralis infection is a perfect model and also provides the crucial visions that can affect potential helminths therapies currently in development. Conflicting host variables regulate the efficiency of such treatment and have recognized the host-derived sex steroid hormones as the main factor in the growth of immunity. This study categorized the role of circulating steroid hormones as an immune regulator in various parasitic diseases.
Collapse
Affiliation(s)
- Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Ren-Wei Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
MAFFEZZOLI MICHELE, GIUDICE GIULIACLAIRE, IOVANE GIACOMO, MANINI MARTINA, RAPACCHI ELENA, CARUSO GIUSEPPE, SIMONI NICOLA, FERRETTI STEFANIA, PULIATTI STEFANO, CAMPOBASSO DAVIDE, BUTI SEBASTIANO. The effect of concomitant drugs on oncological outcomes in patients treated with immunotherapy for metastatic urothelial carcinoma: a narrative review. Oncol Res 2025; 33:741-757. [PMID: 40191722 PMCID: PMC11964881 DOI: 10.32604/or.2024.057278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 04/09/2025] Open
Abstract
Background immune checkpoint inhibitors (ICIs) have revolutionized the treatment of metastatic urothelial carcinoma (mUC), significantly improving survival outcomes. However, a subset of patients do not respond to ICIs, prompting research into potential predictive factors. Commonly prescribed medications such as corticosteroids, proton-pump inhibitors (PPIs), antibiotics (Abs), antihypertensives, and analgesics may influence ICI effectiveness. Methods we conducted a literature search on PubMed to investigate the impact of concomitant medications on the outcomes of patients with mUC, treated with ICIs. We selected the most relevant studies and performed a narrative review. Results corticosteroids, PPIs and Abs have been associated with reduced survival in ICI-treated patients, including those with mUC. In contrast, antihypertensive agents like renin-angiotensin system inhibitors and beta-blockers may enhance ICI efficacy, though evidence remains inconclusive. The impact of other medications, such as statins, metformin, and analgesics, on ICI outcomes is less clear, with some data suggesting a detrimental impact on immune response. Conclusions this narrative review synthesizes current evidence on how concomitant medications affect outcomes in mUC patients treated with ICIs.
Collapse
Affiliation(s)
- MICHELE MAFFEZZOLI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIULIA CLAIRE GIUDICE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - GIACOMO IOVANE
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - MARTINA MANINI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| | - ELENA RAPACCHI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - GIUSEPPE CARUSO
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
| | - NICOLA SIMONI
- Radiotherapy Unit, University Hospital of Parma, Parma, 43126, Italy
| | - STEFANIA FERRETTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | - STEFANO PULIATTI
- Department of Urology, University of Modena and Reggio Emilia, Modena, 41124, Italy
| | | | - SEBASTIANO BUTI
- Medical Oncology Unit, University Hospital of Parma, Parma, 43126, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43126, Italy
| |
Collapse
|
3
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2025; 25:41-58. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
4
|
Nowacka A, Śniegocka M, Śniegocki M, Ziółkowska E, Bożiłow D, Smuczyński W. Multifaced Nature of Yohimbine-A Promising Therapeutic Potential or a Risk? Int J Mol Sci 2024; 25:12856. [PMID: 39684567 DOI: 10.3390/ijms252312856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
A natural compound derived from the Pausinystalia yohimbe tree-yohimbine, has a rich history of use in traditional medicine and is currently being explored for its potential therapeutic applications. This indole alkaloid primarily acts as an antagonist of α2-adrenergic receptors. Initially recognized for its purported aphrodisiac properties, yohimbine has been investigated for a wide range of applications, including sports or the treatment of erectile dysfunction and metabolic disorders. However, toxicological concerns exist, particularly at higher doses. Ongoing researches help to fully assess yohimbine's efficacy and safety profile and to explore strategies for enhancing its bioavailability and reducing toxicity. This review examines the multifaceted nature of yohimbine, delving into both its promising therapeutic potential and the associated risks.
Collapse
Affiliation(s)
- Agnieszka Nowacka
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Martyna Śniegocka
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Maciej Śniegocki
- Department of Neurosurgery, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Ewa Ziółkowska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dominika Bożiłow
- Anaesthesiology and Intensive Care Clinical Ward, The 10th Military Research Hospital and Polyclinic, ul. Powstańców Warszawy 5, 85-681 Bydgoszcz, Poland
| | - Wojciech Smuczyński
- Department of Physiotherapy, Nicolas Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, ul. Techników 3, 85-801 Bydgoszcz, Poland
| |
Collapse
|
5
|
Mutonga MBG, Shewarega A, Gross M, Kahl VH, Madoff DC. Investigating synergy between beta-blockers and transarterial chemoembolization in the treatment of hepatocellular carcinoma: preliminary data from a propensity matched analysis. Clin Imaging 2024; 115:110283. [PMID: 39278042 DOI: 10.1016/j.clinimag.2024.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/02/2024] [Accepted: 08/31/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Favorable clinical outcomes have been reported with the adjunct use of beta-blockers in cancer treatment, hypothetically secondary to their anti-angiogenic/anti-proliferative effects. Hereby, we investigate whether there is synergy between beta-blockers and TACE in the treatment of HCC. METHODS 36 HCC patients on beta-blockers (mean dose of 48 mg daily) at the time of first-line treatment with TACE at our institution were retrospectively identified out of a cohort of 221 patients between 2008 and 2019. Using propensity scoring, a matched cohort of 36 patients not exposed to beta-blockers was generated based on age, gender, ethnicity, etiology of liver disease, BCLC, child Pugh score, PS/ECOG, cirrhosis, largest mass treated, type of TACE and treated liver segments. Tumor response was assessed at 1st and 2nd post-TACE imaging timepoints (1.4 and 4.1 months on average respectively). Variables were compared using chi-square test and Student's t-test. Kaplan-Meier transplant-free survival plots were generated using IBM® SPSS® software. Cox regression analysis was used to evaluate survival predictors. A p values < 0.05 was considered significant. RESULTS Comparing the control and beta-blocker cohorts, there were no differences in baseline characteristics, post-TACE imaging timepoints, tumor response or transplant free survival (p > 0.05). Tumor size was found to be a predictor of survival when the two cohorts were combined (p = 0.03). CONCLUSION Transplant-free survival and HCC response to first-line TACE treatment were similar in the control and beta-blocker groups. Large tumor sizes were associated with higher mortality in combined analysis of the cohorts.
Collapse
Affiliation(s)
- Martin B G Mutonga
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, United States
| | - Annabella Shewarega
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, United States; Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (ÄoR), Essen, Germany
| | - Moritz Gross
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Vinzent H Kahl
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, United States; Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, United States; Department of Surgery, Section of Surgical Oncology, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
6
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
7
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
8
|
Gutierrez-Leal I, Caballero-Hernández D, Orozco-Flores AA, Gomez-Flores R, Quistián-Martínez D, Tamez-Guerra P, Tamez-Guerra R, Rodríguez-Padilla C. Role of the sympathetic nervous system in cancer-associated cachexia and tumor progression in tumor-bearing BALB/c mice. BMC Neurosci 2024; 25:37. [PMID: 39174899 PMCID: PMC11342617 DOI: 10.1186/s12868-024-00887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Adipose and muscle tissue wasting outlines the cachectic process during tumor progression. The sympathetic nervous system (SNS) is known to promote tumor progression and research suggests that it might also contribute to cancer-associated cachexia (CAC) energetic expenditure through fat wasting. METHODS We sympathectomized L5178Y-R tumor-bearing male BALB/c mice by intraperitoneally administering 6-hydroxydopamine to evaluate morphometric, inflammatory, and molecular indicators of CAC and tumor progression. RESULTS Tumor burden was associated with cachexia indicators, including a 10.5% body mass index (BMI) decrease, 40.19% interscapular, 54% inguinal, and 37.17% visceral adipose tissue loss, a 12% food intake decrease, and significant (p = 0.038 and p = 0.0037) increases in the plasmatic inflammatory cytokines IL-6 and IFN-γ respectively. Sympathectomy of tumor-bearing mice was associated with attenuated BMI and visceral adipose tissue loss, decreased interscapular Ucp-1 gene expression to basal levels, and 2.6-fold reduction in Mmp-9 relative gene expression, as compared with the unsympathectomized mice control group. CONCLUSION The SNS contributes to CAC-associated morphometric and adipose tissue alterations and promotes tumor progression in a murine model.
Collapse
Affiliation(s)
- Isaias Gutierrez-Leal
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, NL, 66451, Mexico
| | - Diana Caballero-Hernández
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, NL, 66451, Mexico.
| | - Alonso A Orozco-Flores
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, NL, 66451, Mexico
| | - Ricardo Gomez-Flores
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, NL, 66451, Mexico
| | - Deyanira Quistián-Martínez
- Facultad de Ciencias Biológicas, Departamento de Botánica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, 66451, Mexico
| | - Patricia Tamez-Guerra
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, NL, 66451, Mexico
| | - Reyes Tamez-Guerra
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, NL, 66451, Mexico
| | - Cristina Rodríguez-Padilla
- Facultad de Ciencias Biológicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Apartado postal 46 F, San Nicolás de los Garza, NL, 66451, Mexico
| |
Collapse
|
9
|
Wang L, Ge J, Han H, Jia Y, Qin Y. Crosstalk between the nervous system and tumor microenvironment: Functional aspects and potential therapeutic strategies. Cancer Lett 2024; 594:216986. [PMID: 38797233 DOI: 10.1016/j.canlet.2024.216986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Recent advancements in understanding the tumor microenvironment (TME) have highlighted the critical role of the nervous system in cancer progression. This review comprehensively examines how the nervous system influences various aspects of tumorigenesis, including growth, motility, immune response, angiogenesis, and the behavior of cancer-associated fibroblasts (CAFs). We delineate the neurodevelopmental mechanisms associated with cancer, such as the secretion of neurotrophins and exosomes by cancer cells. Furthermore, we explore the emerging therapeutic strategy of targeting nerves associated with tumors. Evidence supporting this approach includes studies demonstrating direct tumor growth inhibition, enhanced efficacy of immunotherapy when combined with nervous system-modulating drugs, and the suppression of tumor blood vessel formation through nerve targeting. Finally, we discuss the current challenges in this field and emphasize the need for further exploration within cancer neuroscience.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Jingjing Ge
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, PR China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yongxu Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Zhengzhou, 450052, PR China.
| |
Collapse
|
10
|
Levi J, Guglielmetti C, Henrich TJ, Yoon JC, Gokhale PC, Reardon DA, Packiasamy J, Huynh L, Cabrera H, Ruzevich M, Blecha J, Peluso MJ, Huynh TL, An SM, Dornan M, Belanger AP, Nguyen QD, Seo Y, Song H, Chaumeil MM, VanBrocklin HF, Chae HD. [ 18F]F-AraG imaging reveals association between neuroinflammation and brown- and bone marrow adipose tissue. Commun Biol 2024; 7:793. [PMID: 38951146 PMCID: PMC11217368 DOI: 10.1038/s42003-024-06494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, CA, USA.
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | | | | | | | - Lyna Huynh
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | - Hilda Cabrera
- CellSight Technologies Incorporated, San Francisco, CA, USA
| | | | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Peluso
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Mark Dornan
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anthony P Belanger
- Molecular Cancer Imaging Facility, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Quang-Dé Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hong Song
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hee-Don Chae
- CellSight Technologies Incorporated, San Francisco, CA, USA
| |
Collapse
|
11
|
Mandal SK, Yadav P, Sheth RA. The Neuroimmune Axis and Its Therapeutic Potential for Primary Liver Cancer. Int J Mol Sci 2024; 25:6237. [PMID: 38892423 PMCID: PMC11172507 DOI: 10.3390/ijms25116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The autonomic nervous system plays an integral role in motion and sensation as well as the physiologic function of visceral organs. The nervous system additionally plays a key role in primary liver diseases. Until recently, however, the impact of nerves on cancer development, progression, and metastasis has been unappreciated. This review highlights recent advances in understanding neuroanatomical networks within solid organs and their mechanistic influence on organ function, specifically in the liver and liver cancer. We discuss the interaction between the autonomic nervous system, including sympathetic and parasympathetic nerves, and the liver. We also examine how sympathetic innervation affects metabolic functions and diseases like nonalcoholic fatty liver disease (NAFLD). We also delve into the neurobiology of the liver, the interplay between cancer and nerves, and the neural regulation of the immune response. We emphasize the influence of the neuroimmune axis in cancer progression and the potential of targeted interventions like neurolysis to improve cancer treatment outcomes, especially for hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | | | - Rahul A. Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1471, Houston, TX 77030-4009, USA; (S.K.M.); (P.Y.)
| |
Collapse
|
12
|
Switzer B, Puzanov I, Gandhi S, Repasky EA. Targeting beta-adrenergic receptor pathways in melanoma: how stress modulates oncogenic immunity. Melanoma Res 2024; 34:89-95. [PMID: 38051781 PMCID: PMC10906201 DOI: 10.1097/cmr.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
The intricate pathways of the sympathetic nervous system hold an inherently protective role in the setting of acute stress. This is achieved through dynamic immunomodulatory and neurobiological networks. However, excessive and chronic exposure to these stress-induced stimuli appears to cause physiologic dysfunction through several mechanisms that may impair psychosocial, neurologic, and immunologic health. Numerous preclinical observations have identified the beta-2 adrenergic receptor (β2-AR) subtype to possess the strongest impact on immune dysfunction in the setting of chronic stressful stimuli. This prolonged expression of β2-ARs appears to suppress immune surveillance and promote tumorigenesis within multiple cancer types. This occurs through several pathways, including (1) decreasing the frequency and function of CD8 + T-cells infiltrating the tumor microenvironment (TME) via inhibition of metabolic reprogramming during T cell activation, and (2) establishing an immunosuppressive profile within the TME including promotion of an exhausted T cell phenotype while simultaneously enhancing local and paracrine metastatic potential. The use of nonselective β-AR antagonists appears to reverse many chronic stress-induced tumorigenic pathways and may also provide an additive therapeutic benefit for various immune checkpoint modulating agents including commonly utilized immune checkpoint inhibitors. Here we review the translational and clinical observations highlighting the foundational hypotheses that chronic stress-induced β-AR signaling promotes a pro-tumoral immunophenotype and that blockade of these pathways may augment the therapeutic response of immune checkpoint inhibition within the scope of melanoma.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
13
|
Tao ZY, Wang L, Zhu WY, Zhang G, Su YX. Lingual Denervation Improves the Efficacy of Anti-PD-1 Immunotherapy in Oral Squamous Cell Carcinomas by Downregulating TGFβ Signaling. CANCER RESEARCH COMMUNICATIONS 2024; 4:418-430. [PMID: 38324026 PMCID: PMC10868515 DOI: 10.1158/2767-9764.crc-23-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Intratumoral nerve infiltration relates to tumor progression and poor survival in oral squamous cell carcinoma (OSCC). How neural involvement regulates antitumor immunity has not been well characterized. This study aims to investigate molecular mechanisms of regulating tumor aggressiveness and impairing antitumor immunity by nerve-derived factors. EXPERIMENTAL DESIGN We performed the surgical lingual denervation in an immunocompetent mouse OSCC model to investigate its effect on tumor growth and the efficacy of anti-PD-1 immunotherapy. A trigeminal ganglion neuron and OSCC cell coculture system was established to investigate the proliferation, migration, and invasion of tumor cells and the PD-L1 expression. Both the neuron-tumor cell coculture in vitro model and the OSCC animal model were explored. RESULTS Lingual denervation slowed down tumor growth and improved the efficacy of anti-PD-1 treatment in the OSCC model. Coculturing with neurons not only enhanced the proliferation, migration, and invasion but also upregulated TGFβ-SMAD2 signaling and PD-L1 expression of tumor cells. Treatment with the TGFβ signaling inhibitor galunisertib reversed nerve-derived tumor aggressiveness and downregulated PD-L1 on tumor cells. Similarly, lingual denervation in vivo decreased TGFβ and PD-L1 expression and increased CD8+ T-cell infiltration and the expression of IFNγ and TNFα within tumor. CONCLUSIONS Neural involvement enhanced tumor aggressiveness through upregulating TGFβ signaling and PD-L1 expression in OSCC, while denervation of OSCC inhibited tumor growth, downregulated TGFβ signaling, enhanced activities of CD8+ T cells, and improved the efficacy of anti-PD-1 immunotherapy. This study will encourage further research focusing on denervation as a potential adjuvant therapeutic approach in OSCC. SIGNIFICANCE This study revealed the specific mechanisms for nerve-derived cancer progression and impaired antitumor immunity in OSCC, providing a novel insight into the cancer-neuron-immune network as well as pointing the way for new strategies targeting nerve-cancer cross-talk as a potential adjuvant therapeutic approach for OSCC.
Collapse
Affiliation(s)
- Zhuo-Ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Leilei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Wang-Yong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Gao Zhang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Fuller-Shavel N, Krell J. Integrative Oncology Approaches to Supporting Immune Checkpoint Inhibitor Treatment of Solid Tumours. Curr Oncol Rep 2024; 26:164-174. [PMID: 38194216 PMCID: PMC10890979 DOI: 10.1007/s11912-023-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW The goal of this review was to examine the role and practical applications of integrative oncology strategies in supporting immune checkpoint inhibitor (ICI) treatment of adult solid tumours. RECENT FINDINGS Beyond tumour-intrinsic factors, several patient-associated factors affect ICI response, including germline genetics, systemic inflammation, the gut microbiota, and diet. Current promising supportive interventions include a Mediterranean-style diet with over 20 g of fibre, regular exercise, use of live biotherapeutics, minimisation of PPI and antibiotic use, and ensuring vitamin D repletion, with many other integrative oncology approaches under study. Caution around medical cannabis use in patients on ICIs is advised due to previously documented adverse impact on overall survival, while VAE (Viscum album extract) therapy studies have not highlighted any safety concerns so far. With expanding ICI use, it is important to investigate and apply low-cost integrative oncology strategies to support better treatment outcomes and minimise adverse events. Further research may lead to pre-treatment assessment of both tumour and patient-associated biomarkers and personalised multimodal prehabilitation care plans, as well as on-treatment support with targeted nutrition, physical activity, and supplementation regimes, including both systemic inflammation and gut microbiome modulating strategies. Given the emerging understanding of chronic stress impact on ICI treatment outcomes, mind-body approaches require further investigation.
Collapse
Affiliation(s)
- Nina Fuller-Shavel
- Synthesis Clinic, Winchester, UK.
- British Society for Integrative Oncology (BSIO), Midhurst, UK.
- Oncio CIC, Stockbridge, UK.
| | | |
Collapse
|
15
|
Raggini E, Mattavelli D, Zigliani G, Bossi P, Piazza C. Measuring financial toxicity in head and neck cancer: a systematic review. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2024; 44:1-12. [PMID: 38420716 PMCID: PMC10914354 DOI: 10.14639/0392-100x-n2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/26/2023] [Indexed: 03/02/2024]
Abstract
Objective The current study systematically reviews the literature about financial toxicity (FT) in head and neck cancer patients. Three databases were reviewed: PubMed, Scopus and Web of Science. Methods Full text English papers published from 2000 to 2022 reporting on quantitative results about FT in head and neck cancer survivors collected through structured questionnaires or interviews were included. Results Twenty-seven articles were included. Most of the articles were published after 2015 and from United States. There was a slight prevalence of papers dealing with oropharyngeal cancer, squamous-cell carcinoma and locally advanced head and neck cancer. Measures of FT were obtained through validated questionnaires like COST, FIT and FDQ. Collected data were mostly referrable to financial spending, financial resources, psychosocial aspect, support seeking, coping care and coping lifestyle subdomain. FT scores by COST were found to be worse in the COVID era. Financial counseling and adequate information about the costs of treatment were two effective strategies to mitigate FT. Conclusions FT is a relatively new challenge in head and neck cancer treatment, whose expenses are higher than therapies for other cancers. A universal method to assess FT and a unified guideline for the administration of questionnaires are needed to mitigate FT and to improve patient outcomes.
Collapse
Affiliation(s)
- Elisa Raggini
- Unit of Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| | - Gabriele Zigliani
- Unit of Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Cesare Piazza
- Unit of Otorhinolaryngology – Head and Neck Surgery, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| |
Collapse
|
16
|
Pasha A, Tondo A, Favre C, Calvani M. Inside the Biology of the β3-Adrenoceptor. Biomolecules 2024; 14:159. [PMID: 38397396 PMCID: PMC10887351 DOI: 10.3390/biom14020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Since the first discovery in 1989, the β3-adrenoceptor (β3-AR) has gained great attention because it showed the ability to regulate many physiologic and metabolic activities, such as thermogenesis and lipolysis in brown and white adipose tissue, respectively (BAT, WAT), negative inotropic effects in cardiomyocytes, and relaxation of the blood vessels and the urinary bladder. The β3-AR has been suggested as a potential target for cancer treatment, both in adult and pediatric tumors, since under hypoxia its upregulation in the tumor microenvironment (TME) regulates stromal cell differentiation, tumor growth and metastases, signifying that its agonism/antagonism could be useful for clinical benefits. Promising results in cancer research have proposed the β3-AR being targeted for the treatment of many conditions, with some drugs, at present, undergoing phase II and III clinical trials. In this review, we report the scientific journey followed by the research from the β3-Ars' discovery, with focus on the β3-Ars' role in cancer initiation and progression that elects it an intriguing target for novel antineoplastic approaches. The overview highlights the great potential of the β3-AR, both in physiologic and pathologic conditions, with the intention to display the possible benefits of β3-AR modulation in cancer reality.
Collapse
Affiliation(s)
- Amada Pasha
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Claudio Favre
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| | - Maura Calvani
- Department of Pediatric Hematology–Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (A.P.); (A.T.); (C.F.)
| |
Collapse
|
17
|
Fraterman I, Reijers ILM, Dimitriadis P, Broeks A, Gonzalez M, Menzies AMM, Lopez-Yurda M, Kapiteijn E, van der Veldt AAM, Suijkerbuijk KPM, Hospers GAP, Long GV, Blank CU, van de Poll-Franse LV. Association between pretreatment emotional distress and neoadjuvant immune checkpoint blockade response in melanoma. Nat Med 2023; 29:3090-3099. [PMID: 37957378 DOI: 10.1038/s41591-023-02631-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Neoadjuvant immune checkpoint blockade (ICB) outperforms adjuvant ICB for treatment of stage IIIB-D melanoma, but potential biomarkers of response, such as interferon-gamma (IFNγ) signature and tumor mutational burden (TMB), are insufficient. Preclinical studies suggest that emotional distress (ED) can negatively affect antitumor immune responses via β-adrenergic or glucocorticoid signaling. We performed a post hoc analysis evaluating the association between pretreatment ED and clinical responses after neoadjuvant ICB treatment in patients with stage IIIB-D melanoma in the phase 2 PRADO trial ( NCT02977052 ). The European Organisation for Research and Treatment of Cancer scale for emotional functioning was used to identify patients with ED (n = 28) versus those without (n = 60). Pretreatment ED was significantly associated with reduced major pathologic responses (46% versus 65%, adjusted odds ratio 0.20, P = 0.038) after adjusting for IFNγ signature and TMB, reduced 2-year relapse-free survival (74% versus 91%, adjusted hazard ratio 3.81, P = 0.034) and reduced 2-year distant metastasis-free survival (78% versus 95%, adjusted hazard ratio 4.33, P = 0.040) after adjusting for IFNγ signature. RNA sequencing analyses of baseline patient samples could not identify clear β-adrenergic- or glucocorticoid-driven mechanisms associated with these reduced outcomes. Pretreatment ED may be a marker associated with clinical responses after neoadjuvant ICB in melanoma and warrants further investigation. ClinicalTrials.gov registration: NCT02977052 .
Collapse
Affiliation(s)
- Itske Fraterman
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Irene L M Reijers
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Petros Dimitriadis
- Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Annegien Broeks
- Core Facility and Molecular Pathology & Biobanking Department, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - M Gonzalez
- Melanoma Institute of Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - A M M Menzies
- Melanoma Institute of Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Marta Lopez-Yurda
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid A M van der Veldt
- Departments of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Geke A P Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Georgina V Long
- Melanoma Institute of Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Lonneke V van de Poll-Franse
- Department of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, the Netherlands.
- Department of Medical and Clinical Psychology, Center of Research on Psychological and Somatic Disorders (CoRPS), Tilburg University, Tilburg, the Netherlands.
| |
Collapse
|
18
|
Wayland JL, Doll JR, Lawson MJ, Stankiewicz TE, Oates JR, Sawada K, Damen MSMA, Alarcon PC, Haslam DB, Trout AT, DeFranco EA, Klepper CM, Woo JG, Moreno-Fernandez ME, Mouzaki M, Divanovic S. Thermoneutral Housing Enables Studies of Vertical Transmission of Obesogenic Diet-Driven Metabolic Diseases. Nutrients 2023; 15:4958. [PMID: 38068816 PMCID: PMC10708424 DOI: 10.3390/nu15234958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Vertical transmission of obesity is a critical contributor to the unabated obesity pandemic and the associated surge in metabolic diseases. Existing experimental models insufficiently recapitulate "human-like" obesity phenotypes, limiting the discovery of how severe obesity in pregnancy instructs vertical transmission of obesity. Here, via utility of thermoneutral housing and obesogenic diet feeding coupled to syngeneic mating of WT obese female and lean male mice on a C57BL/6 background, we present a tractable, more "human-like" approach to specifically investigate how maternal obesity contributes to offspring health. Using this model, we found that maternal obesity decreased neonatal survival, increased offspring adiposity, and accelerated offspring predisposition to obesity and metabolic disease. We also show that severe maternal obesity was sufficient to skew offspring microbiome and create a proinflammatory gestational environment that correlated with inflammatory changes in the offspring in utero and adulthood. Analysis of a human birth cohort study of mothers with and without obesity and their infants was consistent with mouse study findings of maternal inflammation and offspring weight gain propensity. Together, our results show that dietary induction of obesity in female mice coupled to thermoneutral housing can be used for future mechanistic interrogations of obesity and metabolic disease in pregnancy and vertical transmission of pathogenic traits.
Collapse
Affiliation(s)
- Jennifer L. Wayland
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica R. Doll
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew J. Lawson
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Traci E. Stankiewicz
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jarren R. Oates
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Keisuke Sawada
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michelle S. M. A. Damen
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pablo C. Alarcon
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David B. Haslam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Andrew T. Trout
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Emily A. DeFranco
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Corie M. Klepper
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica G. Woo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marialena Mouzaki
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Yuan D, Hu J, Ju X, Putz EM, Zheng S, Koda S, Sun G, Deng X, Xu Z, Nie W, Zhao Y, Li X, Dougall WC, Shao S, Chen Y, Tang R, Zheng K, Yan J. NMDAR antagonists suppress tumor progression by regulating tumor-associated macrophages. Proc Natl Acad Sci U S A 2023; 120:e2302126120. [PMID: 37967215 PMCID: PMC10666127 DOI: 10.1073/pnas.2302126120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Neurotransmitter receptors are increasingly recognized to play important roles in anti-tumor immunity. The expression of the ion channel N-methyl-D-aspartate receptor (NMDAR) on macrophages was reported, but the role of NMDAR on macrophages in the tumor microenvironment (TME) remains unknown. Here, we show that the activation of NMDAR triggered calcium influx and reactive oxygen species production, which fueled immunosuppressive activities in tumor-associated macrophages (TAMs) in the hepatocellular sarcoma and fibrosarcoma tumor settings. NMDAR antagonists, MK-801, memantine, and magnesium, effectively suppressed these processes in TAMs. Single-cell RNA sequencing analysis revealed that blocking NMDAR functionally and metabolically altered TAM phenotypes, such that they could better promote T cell- and Natural killer (NK) cell-mediated anti-tumor immunity. Treatment with NMDAR antagonists in combination with anti-PD-1 antibody led to the elimination of the majority of established preclinical liver tumors. Thus, our study uncovered an unknown role for NMDAR in regulating macrophages in the TME of hepatocellular sarcoma and provided a rationale for targeting NMDAR for tumor immunotherapy.
Collapse
Affiliation(s)
- Dongchen Yuan
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Jing Hu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
- Department of Genetics, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Xiaoman Ju
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute, Medical University of Vienna, Vienna1210, Austria
| | - Simin Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Stephane Koda
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Guowei Sun
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Xiaoran Deng
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu211166, China
| | - Wei Nie
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu210023, China
| | - Xianyang Li
- Department of Research and Development, OriCell Therapeutics Co. Ltd, Shanghai200131, China
| | - William C. Dougall
- Translational Oncology Discovery Group, QIMR Berghofer Medical Research Institute, Brisbane4702, Australia
| | - Simin Shao
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Yan Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Renxian Tang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Kuiyang Zheng
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| | - Juming Yan
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu221004, China
| |
Collapse
|
20
|
Wu S, Guan W, Zhao H, Li G, Zhou Y, Shi B, Zhang X. Prognostic role of short-term heart rate variability and deceleration/acceleration capacities of heart rate in extensive-stage small cell lung cancer. Front Physiol 2023; 14:1277383. [PMID: 38028778 PMCID: PMC10663334 DOI: 10.3389/fphys.2023.1277383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Prior research suggests that autonomic modulation investigated by heart rate variability (HRV) might act as a novel predictive biomarker for cancer prognosis, such as in breast cancer and pancreatic cancer. It is not clear whether there is a correlation between autonomic modulation and prognosis in patients with extensive-stage small cell lung cancer (ES-SCLC). Therefore, the purpose of the study was to examine the association between short-term HRV, deceleration capacity (DC) and acceleration capacity (AC) of heart rate and overall survival in patients with ES-SCLC. Methods: We recruited 40 patients with ES-SCLC, and 39 were included in the final analysis. A 5-min resting electrocardiogram of patients with ES-SCLC was collected using a microelectrocardiogram recorder to analyse short-term HRV, DC and AC. The following HRV parameters were used: standard deviation of the normal-normal intervals (SDNN) and root mean square of successive interval differences (RMSSD). Overall survival of patients with ES-SCLC was defined as time from the date of electrocardiogram measurement to the date of death or the last follow-up. Follow-up was last performed on 07 June 2023. There was a median follow-up time of 42.2 months. Results: Univariate analysis revealed that the HRV parameter SDNN, as well as DC significantly predicted the overall survival of ES-SCLC patients (all p < 0.05). Multivariate analysis showed that the HRV parameters SDNN (hazard ratio = 5.254, 95% CI: 1.817-15.189, p = 0.002), RMSSD (hazard ratio = 3.024, 95% CI: 1.093-8.372, p = 0.033), as well as DC (hazard ratio = 3.909, 95% CI: 1.353-11.293, p = 0.012) were independent prognostic factors in ES-SCLC patients. Conclusion: Decreased HRV parameters (SDNN, RMSSD) and DC are independently associated with shorter overall survival in ES-SCLC patients. Autonomic nervous system function (assessed based on HRV and DC) may be a new biomarker for evaluating the prognosis of patients with ES-SCLC.
Collapse
Affiliation(s)
- Shuang Wu
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Weizheng Guan
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Zhao
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Guangqiao Li
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Yufu Zhou
- Department of Radiation Oncology, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, China
| | - Bo Shi
- School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, China
- Anhui Key Laboratory of Computational Medicine and Intelligent Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Oncology, Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, Jiangsu, China
| |
Collapse
|
21
|
Lempesis IG, Georgakopoulou VE, Papalexis P, Chrousos GP, Spandidos DA. Role of stress in the pathogenesis of cancer (Review). Int J Oncol 2023; 63:124. [PMID: 37711028 PMCID: PMC10552722 DOI: 10.3892/ijo.2023.5572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Stress is a state of disrupted homeostasis, triggered by intrinsic or extrinsic factors, the stressors, which are counteracted by various physiological and behavioural adaptive responses. Stress has been linked to cancer development and incidence for decades; however, epidemiological studies and clinical trials have yielded contradictory results. The present review discusses the effects of stress on cancer development and the various underlying mechanisms. Animal studies have revealed a clear link between stress and cancer progression, revealing molecular, cellular and endocrine processes that are implicated in these effects. Thus, stress hormones, their receptor systems and their intracellular molecular pathways mediate the effects of stress on cancer initiation, progression and the development of metastases. The mechanisms linking stress and cancer progression can either be indirect, mediated by changes in the cancer microenvironment or immune system dysregulation, or direct, through the binding of neuroendocrine stress‑related signalling molecules to cancer cell receptors. Stress affects numerous anti‑ and pro‑cancer immune system components, including host resistance to metastasis, tumour retention and/or immune suppression. Chronic psychological stress through the elevation of catecholamine levels may increase cancer cell death resistance. On the whole, stress is linked to cancer development and incidence, with psychological stressors playing a crucial role. Animal studies have revealed a better link than human ones, with stress‑related hormones influencing tumour development, migration, invasion and cell proliferation. Randomized controlled trials are required to further evaluate the long‑term cancer outcomes of stress and its management.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pathophysiology, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Georgios P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
22
|
Tajaldini M, Poorkhani A, Amiriani T, Amiriani A, Javid H, Aref P, Ahmadi F, Sadani S, Khori V. Strategy of targeting the tumor microenvironment via inhibition of fibroblast/fibrosis remodeling new era to cancer chemo-immunotherapy resistance. Eur J Pharmacol 2023; 957:175991. [PMID: 37619785 DOI: 10.1016/j.ejphar.2023.175991] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The use of repurposing drugs that may have neoplastic and anticancer effects increases the efficiency and decrease resistance to chemotherapy drugs through a biochemical and mechanical transduction mechanisms through modulation of fibroblast/fibrosis remodeling in tumor microenvironment (TME). Interestingly, fibroblast/fibrosis remodeling plays a vital role in mediating cancer metastasis and drug resistance after immune chemotherapy. The most essential hypothesis for induction of chemo-immunotherapy resistance is via activation of fibroblast/fibrosis remodeling and preventing the infiltration of T cells after is mainly due to the interference between cytoskeleton, mechanical, biochemical, metabolic, vascular, and remodeling signaling pathways in TME. The structural components of the tumor that can be targeted in the fibroblast/fibrosis remodeling include the depletion of the TME components, targeting the cancer-associated fibroblasts and tumor associated macrophages, alleviating the mechanical stress within the ECM, and normalizing the blood vessels. It has also been found that during immune-chemotherapy, TME injury and fibroblast/fibrosis remodeling causes the up-regulation of inhibitory signals and down-regulation of activated signals, which results in immune escape or chemo-resistance of the tumor. In this regard, repurposing or neo-adjuvant drugs with various transduction signaling mechanisms, including anti-fibrotic effects, are used to target the TME and fibroblast/fibrosis signaling pathway such as angiotensin 2, transforming growth factor-beta, physical barriers of the TME, cytokines and metabolic factors which finally led to the reverse of the chemo-resistance. Consistent to many repurposing drugs such as pirfenidone, metformin, losartan, tranilast, dexamethasone and pentoxifylline are used to decrease immune-suppression by abrogation of TME inhibitory signal that stimulates the immune system and increases efficiency and reduces resistance to chemotherapy drugs. To overcome immunosuppression based on fibroblast/fibrosis remodeling, in this review, we focus on inhibitory signal transduction, which is the physical barrier, alleviates mechanical stress and prevents mechano-metabolic activation.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amirhossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciencess, Catastega Institue of Medical Sciences, Mashhad, Iran
| | - Parham Aref
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farahnazsadat Ahmadi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Sadani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
23
|
Español P, Rovira R, Caruana P, Luna-Guibourg R, Soler C, Teixeira N, Rodríguez F, Gallardo A, Edwards M, Porta O, Gámez M, Sánchez O, Llurba E, Corchero JL, Céspedes MV. Dopamine receptors D1 and D2 show prognostic significance and potential therapeutic applications for endometrial cancer patients. Gynecol Oncol 2023; 176:25-35. [PMID: 37437489 DOI: 10.1016/j.ygyno.2023.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Catecholaminergic signaling has been a target for therapy in different type of cancers. In this work, we characterized the ADRβ2, DRD1 and DRD2 expression in healthy tissue and endometrial tumors to evaluate their prognostic significance in endometrial cancer (EC), unraveling their possible application as an antitumor therapy. METHODS 109 EC patients were included. The expression of the ADRβ2, DRD1 and DRD2 proteins was evaluated by immunohistochemistry and univariate and multivariate analysis to assess their association with clinic-pathological and outcome variables. Finally, HEC1A and AN3CA EC cell lines were exposed to different concentrations of selective dopaminergic agents alone or in combination to study their effects on cellular viability. RESULTS ADRβ2 protein expression was not associated with clinico-pathological parameters or prognosis. DRD1 protein expression was reduced in tumors samples but showed a significant inverse association with tumor size and stage. DRD2 protein expression was significantly associated with non-endometrioid EC, high grade tumors, tumor size, worse disease-free survival (HR = 3.47 (95%CI:1.35-8.88)) and overall survival (HR = 2.98 (95%CI:1.40-6.34)). The DRD1 agonist fenoldopam showed a reduction of cellular viability in HEC1A and AN3CA cells. The exposure to domperidone, a DRD2 antagonist, significantly reduced cell viability compared to the control. Finally, DRD1 agonism and DRD2 antagonism combination induced a significant reduction in cell viability of the AN3CA cells compared to monotherapy, close to being an additive response than a synergistic effect (CI of 1.1 at 0.5% Fa). CONCLUSION DRD1 and DRD2 expression levels showed a significant association with clinico-pathological parameters. Both the combined activation of DRD1 and blockage of DRD2 may form an innovative strategy to inhibit tumor growth in EC.
Collapse
Affiliation(s)
- Pia Español
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; Department of Obstetrics and Gynecology, Hospital Universitari Son Espases, Palma 07120, Spain.
| | - Ramon Rovira
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Pablo Caruana
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Rocío Luna-Guibourg
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Cristina Soler
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Natalia Teixeira
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Francisco Rodríguez
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Maria Edwards
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Oriol Porta
- Department of Obstetrics and Gynecology, University Hospital Mútua Terrassa, Terrassa 08221, Spain
| | - Maria Gámez
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Olga Sánchez
- Women and Perinatal Health Research group. Department of Obstetrics and Gynecology. Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Primary care interventions to prevent maternal and child chronic diseases of Perinatal and developmental origin network (RICORS), Instituto Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; Women and Perinatal Health Research group. Department of Obstetrics and Gynecology. Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Primary care interventions to prevent maternal and child chronic diseases of Perinatal and developmental origin network (RICORS), Instituto Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Luis Corchero
- Institut de Biotecnologia i de Biomedicina and Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - María Virtudes Céspedes
- Gynecologic and Oncology Peritoneal group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; Primary care interventions to prevent maternal and child chronic diseases of Perinatal and developmental origin network (RICORS), Instituto Salud Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
Schuster C, Akslen LA, Straume O. β2-adrenergic receptor expression in patients receiving bevacizumab therapy for metastatic melanoma. Cancer Med 2023; 12:17891-17900. [PMID: 37551424 PMCID: PMC10524038 DOI: 10.1002/cam4.6424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) was initially known as vascular permeability factor and identified as a driver of tumour angiogenesis. Recently, its role in supporting an immunosuppressive tumour microenvironment was demonstrated, and anti-VEGF treatment combined with immune checkpoint blockade is currently investigated. Further, beta-adrenergic signalling as a modifier of cancer hallmarks like immune response, angiogenesis and metastasis gained increased attention during past years. METHODS Focusing on the aspect of immunosuppression in upregulated beta-adrenergic signalling, we investigated predictive markers in patients with metastatic melanoma who received bevacizumab monotherapy, a specific VEGF-A binding antibody. We explored the expression of beta-2 adrenergic receptor (β2-AR), interleukin 6-receptor (IL6-R), cyclooxygenase 2 (COX2) and VEGF-A by immunohistochemistry in melanoma to assess the correlation between these proteins in melanoma cells and response to treatment. RESULTS Strong β2-AR expression in metastases was associated with clinical benefit of bevacizumab. Furthermore, expression of the latter was positively linked to expression of VEGF-A and COX2. β2-AR expression in melanoma metastasis appears to distinguish a subgroup of patients that might benefit from anti-VEGF treatment. CONCLUSION Our results strengthen further exploration of anti-VEGF therapy in combination with immune checkpoint blockade in clinical studies and the investigation of β2-AR as predictive marker.
Collapse
Affiliation(s)
- Cornelia Schuster
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Lars A. Akslen
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Oddbjørn Straume
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| |
Collapse
|
25
|
Ascierto PA, Agarwala SS, Warner AB, Ernstoff MS, Fox BA, Gajewski TF, Galon J, Garbe C, Gastman BR, Gershenwald JE, Kalinski P, Krogsgaard M, Leidner RS, Lo RS, Menzies AM, Michielin O, Poulikakos PI, Weber JS, Caracò C, Osman I, Puzanov I, Thurin M. Perspectives in Melanoma: meeting report from the Melanoma Bridge (December 1st-3rd, 2022-Naples, Italy). J Transl Med 2023; 21:508. [PMID: 37507765 PMCID: PMC10375730 DOI: 10.1186/s12967-023-04325-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Outcomes for patients with melanoma have improved over the past decade with the clinical development and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treatment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immunotherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new combinations treatment under development for melanoma provides options for the number of patients to achieve a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, the Melanoma Bridge Congress (Dec 1st-3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included sessions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, and combination treatment strategies.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | | | | | - Marc S Ernstoff
- ImmunoOncology Branch (IOB), Developmental Therapeutics Program, Cancer Therapy and Diagnosis Division, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Bernard A Fox
- Robert W. Franz Cancer Center, Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Thomas F Gajewski
- Department of Pathology and Department of Medicine (Section of Hematology/Oncology), University of Chicago, Chicago, IL, USA
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006, Paris, France
- Centre de Recherche Des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Brian R Gastman
- Department of Surgery, School of Medicine, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center and Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rom S Leidner
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Roger S Lo
- Jonsson Comprehensive Cancer Center David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Olivier Michielin
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Poulikos I Poulikakos
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, a NCI-Funded Comprehensive Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Corrado Caracò
- Division of Surgery of Melanoma and Skin Cancer, Istituto Nazionale Tumori "Fondazione Pascale" IRCCS, Naples, Italy
| | - Iman Osman
- Rudolf L, Baer, New York University Langone Medical Center, New York, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Magdalena Thurin
- Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
26
|
Wawszczyk J, Wolan R, Smolik S, Kapral M. In vitro and in silico study on the effect of carvedilol and sorafenib alone and in combination on the growth and inflammatory response of melanoma cells. Saudi Pharm J 2023; 31:1306-1316. [PMID: 37323921 PMCID: PMC10265481 DOI: 10.1016/j.jsps.2023.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Melanoma is an aggressive skin cancer. Increasing evidence has shown the role of β-adrenergic receptors in the pathogenesis of melanoma. Carvedilol is a widely used non-selective β-AR antagonist with potential anticancer activity. The purpose of the study was to estimate the influence of carvedilol and sorafenib alone and in combination on the growth and inflammatory response of C32 and A2058 melanoma cells. Furthermore, this study also aimed to predict the probable interaction of carvedilol and sorafenib when administered together. Predictive study of the interaction of carvedilol and sorafenib was performed using the ChemDIS-Mixture system. Carvedilol and sorafenib alone and in combination showed a growth inhibitory effect on cells. The greatest synergistic antiproliferative effect on both cell lines was observed at Car 5 μM combined with Sor 5 μM. Analysis in silico identified diseases, proteins, and metabolic pathways that can be affected by the interaction of carvedilol and sorafenib. The results obtained demonstrated that carvedilol and sorafenib modulated the secretion of IL-8 by IL-1β-stimulated by melanoma cell lines but the use of a combination of both drugs did not intensify the effect. In summary, the results presented indicate that the combination of carvedilol and sorafenib may have a promising anticancer effect on melanoma cells.
Collapse
|
27
|
Mellgard G, Patel VG, Zhong X, Joshi H, Qin Q, Wang B, Parikh A, Jun T, Alerasool P, Garcia P, Gogerly-Moragoda M, Leiter A, Gallagher EJ, Oh WK, Galsky MD, Tsao CK. Effect of concurrent beta-blocker use in patients receiving immune checkpoint inhibitors for advanced solid tumors. J Cancer Res Clin Oncol 2023; 149:2833-2841. [PMID: 35788726 PMCID: PMC10739778 DOI: 10.1007/s00432-022-04159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Stress-induced adrenergic signaling can suppress the immune system. In animal models, pharmacological beta-blockade stimulates CD8 + T-cell activity and improves clinical activity of immune checkpoint blockade (ICB) in inhibiting tumor growth. Herein, we investigated the effect of BB on clinical outcomes of patients receiving ICB in advanced solid tumors. METHODS We retrospectively evaluated patients with solid tumors treated with ICB at our institution from January 1, 2011 to April 28, 2017. The primary clinical outcome was disease control. Secondary clinical outcomes were overall survival (OS), and duration of therapy (DoT). The primary predictor was use of BB. Association between disease control status and BB use was assessed in univariable and multivariable logistic regression. OS was calculated using hazard ratios of BB-recipient patients vs. BB non-recipient patients via Cox proportional hazards regression models. All tests were two-sided at a significance level of 0.05. RESULTS Of 339 identified patients receiving ICB, 109 (32%) also received BB. In covariate-adjusted analysis, odds of disease control were significantly higher among BB recipients compared to BB-non-recipients (2.79; [1.54-5.03]; P = 0.001). While we did not observe significant association of OS with the use of BB overall, significant association with better OS was observed for the urothelial carcinoma cohort (HR: 0.24; [0.09, 0.62]; P = 0.0031). CONCLUSIONS Concurrent use of BB may enhance the clinical activity of ICB and influence overall survival, particularly in patients with urothelial carcinoma. Our findings warrant further investigation to understand the interaction of beta adrenergic signaling and antitumor immune activity and explore a combination strategy.
Collapse
Affiliation(s)
- George Mellgard
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA
| | - Vaibhav G Patel
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA.
| | - Xiaobo Zhong
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Himanshu Joshi
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Qian Qin
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Southwestern, Dallas, USA
| | - Bo Wang
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA
| | - Anish Parikh
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA
- Division of Medical Oncology, Department of Medicine, The Ohio State University Comprehensive Cancer Center-James Cancer Hospital, Columbus, OH, USA
| | | | | | - Philip Garcia
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA
| | - Mahalya Gogerly-Moragoda
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA
| | - Amanda Leiter
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emily J Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, USA
| | - William K Oh
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Che-Kai Tsao
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1128, New York, NY, 10029, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
28
|
Hylander BL, Qiao G, Cortes Gomez E, Singh P, Repasky EA. Housing temperature plays a critical role in determining gut microbiome composition in research mice: Implications for experimental reproducibility. Biochimie 2023; 210:71-81. [PMID: 36693616 PMCID: PMC10953156 DOI: 10.1016/j.biochi.2023.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Preclinical mouse models are widely used for studying mechanisms of disease and responses to therapeutics, however there is concern about the lack of experimental reproducibility and failure to predict translational success. The gut microbiome has emerged as a regulator of metabolism and immunological processes in health and disease. The gut microbiome of mice differs by supplier and this affects experimental outcomes. We have previously reported that the mandated, mildly cool housing temperature for research mice (22°-26 °C) induces chronic adrenergic stress which suppresses anti-tumor immunity and promotes tumor growth compared to thermoneutral housing (30 °C). Therefore, we wondered how housing temperature affects the microbiome. Here, we demonstrate that the gut microbiome of BALB/c mice is easily modulated by a few degrees difference in temperature. Our results reveal significant differences between the gut microbiome of mice housed at 22°-23 °C vs. 30 °C. Although the genera vary, we consistently observed an enrichment of members of the family Lachnospiraceae when mice are housed at 22°-23 °C. These findings demonstrate that adrenergic stress and need for increased energy harvest to support thermogenesis, in addition to other factors such as diet, modulates the gut microbiome and this could be one mechanism by which housing temperature affects experimental outcomes. Additionally, tumor growth in mice housed at 30 °C also increases the proportion of Lachnospiraceae. The idea that stress can alter the gut microbiome and cause differences in experimental outcomes is applicable to mouse studies in general and is a variable that has significant potential to affect experimental reproducibility.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Eduardo Cortes Gomez
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Prashant Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
29
|
Scheff NN, Harris AL, Li J, Horan NL, Kubik MW, Kim SW, Nilsen ML. Pretreatment pain predicts perineural invasion in patients with head and neck squamous cell carcinoma. Support Care Cancer 2023; 31:405. [PMID: 37341777 PMCID: PMC11460562 DOI: 10.1007/s00520-023-07872-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVES Perineural invasion (PNI) in head and neck cancer (HNC) is a distinct pathological feature used to indicate aggressive tumor behavior and drive treatment strategies. Our study examined the prevalence and predictors of PNI in HNC patients stratified by tumor site. STUDY DESIGN AND METHODS A retrospective analysis of head and neck squamous cell carcinoma (HNSCC) patients who underwent surgical resection at the University of Pittsburgh Medical Center between 2015 and 2018 was performed. Pretreatment pain was assessed at least 1 week before surgery using the Functional Assessment of Cancer Therapy-Head and Neck (FACT-H&N). Demographics, clinical characteristics, and concomitant medications were obtained from medical records. Patients with cancers at the oropharynx and non-oropharynx (i.e., cancer at oral cavity, mandible, larynx) sites were separately analyzed. Tumor blocks were obtained from 10 patients for histological evaluation of intertumoral nerve presence. RESULTS A total of 292 patients (202 males, median age = 60.94 ± 11.06) were assessed. Pain and PNI were significantly associated with higher T stage (p < 0.001) and tumor site (p < 0.001); patients with non-oropharynx tumors reported more pain and had a higher incidence of PNI compared to oropharynx tumors. However, multivariable analysis identified pain as a significant variable uniquely associated with PNI for both tumor sites. Evaluation of nerve presence in tumor tissue showed 5-fold higher nerve density in T2 oral cavity tumors compared to oropharyngeal tumors. CONCLUSIONS Our study finds that PNI is associated with pretreatment pain and tumor stage. These data support the need for additional research into the impact of tumor location when investigating targeted therapies of tumor regression.
Collapse
Affiliation(s)
- Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alexandria L Harris
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jinhong Li
- Department of Biostatistics, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Nicole L Horan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark W Kubik
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Seungwon W Kim
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Marci L Nilsen
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA.
- Department of Acute and Tertiary Care, University of Pittsburgh, School of Nursing, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Chen HY, Zhao W, Na'ara S, Gleber-Netto FO, Xie T, Ali S, Thompson ZM, Buell J, Stafford H, Nagarajan P, Davies M, Wong MK, Migden MR, Sharma P, Myers JN, Gross ND, Amit M. Beta-Blocker Use Is Associated With Worse Relapse-Free Survival in Patients With Head and Neck Cancer. JCO Precis Oncol 2023; 7:e2200490. [PMID: 37285560 PMCID: PMC10309540 DOI: 10.1200/po.22.00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 04/13/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE Although beta-blockers (BBs) have been hypothesized to exert a beneficial effect on cancer survival through inhibition of beta-adrenergic signaling pathways, clinical data on this issue have been inconsistent. We investigated the impact of BBs on survival outcomes and efficacy of immunotherapy in patients with head and neck squamous cell carcinoma (HNSCC), non-small-cell lung cancer (NSCLC), melanoma, or squamous cell carcinoma of the skin (skin SCC), independent of comorbidity status or cancer treatment regimen. METHODS Patients (N = 4,192) younger than 65 years with HNSCC, NSCLC, melanoma, or skin SCC treated at MD Anderson Cancer Center from 2010 to 2021 were included. Overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS) were calculated. Kaplan-Meier and multivariate analyses adjusting for age, sex, TNM staging, comorbidities, and treatment modalities were performed to assess the effect of BBs on survival outcomes. RESULTS In patients with HNSCC (n = 682), BB use was associated with worse OS and DFS (OS: adjusted hazard ratio [aHR], 1.67; 95% CI, 1.06 to 2.62; P = .027; DFS: aHR, 1.67; 95% CI, 1.06 to 2.63; P = .027), with DSS trending to significance (DSS: aHR, 1.52; 95% CI, 0.96 to 2.41; P = .072). Negative effects of BBs were not observed in the patients with NSCLC (n = 2,037), melanoma (n = 1,331), or skin SCC (n = 123). Furthermore, decreased response to cancer treatment was observed in patients with HNSCC with BB use (aHR, 2.47; 95% CI, 1.14 to 5.38; P = .022). CONCLUSION The effect of BBs on cancer survival outcomes is heterogeneous and varies according to cancer type and immunotherapy status. In this study, BB intake was associated with worse DSS and DFS in patients with head and neck cancer not treated with immunotherapy, but not in patients with NSCLC or skin cancer.
Collapse
Affiliation(s)
- Hannah Y. Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Weilu Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shorook Na'ara
- Department of Otolaryngology—Head and Neck Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | | | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shahrukh Ali
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zachary M. Thompson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jane Buell
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Haleigh Stafford
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Michael Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael K. Wong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael R. Migden
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Neil D. Gross
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
31
|
Abstract
The nervous system regulates tissue stem and precursor populations throughout life. Parallel to roles in development, the nervous system is emerging as a critical regulator of cancer, from oncogenesis to malignant growth and metastatic spread. Various preclinical models in a range of malignancies have demonstrated that nervous system activity can control cancer initiation and powerfully influence cancer progression and metastasis. Just as the nervous system can regulate cancer progression, cancer also remodels and hijacks nervous system structure and function. Interactions between the nervous system and cancer occur both in the local tumour microenvironment and systemically. Neurons and glial cells communicate directly with malignant cells in the tumour microenvironment through paracrine factors and, in some cases, through neuron-to-cancer cell synapses. Additionally, indirect interactions occur at a distance through circulating signals and through influences on immune cell trafficking and function. Such cross-talk among the nervous system, immune system and cancer-both systemically and in the local tumour microenvironment-regulates pro-tumour inflammation and anti-cancer immunity. Elucidating the neuroscience of cancer, which calls for interdisciplinary collaboration among the fields of neuroscience, developmental biology, immunology and cancer biology, may advance effective therapies for many of the most difficult to treat malignancies.
Collapse
Affiliation(s)
- Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Ammons DT, MacDonald CR, Chow L, Repasky EA, Dow S. Chronic adrenergic stress and generation of myeloid-derived suppressor cells: Implications for cancer immunotherapy in dogs. Vet Comp Oncol 2023; 21:159-165. [PMID: 36876492 DOI: 10.1111/vco.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Recent studies have highlighted a key role played by the sympathetic nervous system (SNS) and adrenergic stress in mediating immune suppression associated with chronic inflammation in cancer and other diseases. The connection between chronic SNS activation, adrenergic stress and immune suppression is linked in part to the ability of catecholamines to stimulate the bone marrow release and differentiation of myeloid-derived suppressor cells (MDSC). Rodent model studies have revealed an important role for β-adrenergic receptor signalling in suppression of cancer immunity in mice subjected to chronic stresses, including thermal stress. Importantly, therapeutic blockade of beta-adrenergic responses by drugs such as propranolol can partially reverse the generation and differentiation of MDSC, and partly restore tumour immunity. Clinical trials in both humans and dogs with cancer have demonstrated that propranolol blockade can improve responses to radiation therapy, cancer vaccines and immune checkpoint inhibitors. Thus, the SNS stress response has become an important new target to relieve immune suppression in cancer and other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Dylan T Ammons
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Microbiology, Immunology, and Pathology, Fort Collins, Colorado, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lyndah Chow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Steven Dow
- Flint Animal Cancer Center, Fort Collins, Colorado, USA
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
33
|
Almenara S, Lozano-Ruiz B, Herrera I, Gimenez P, Miralles C, Bellot P, Rodriguez M, Palazon JM, Tarín F, Sarmiento H, Francés R, Gonzalez-Navajas JM, Pascual S, Zapater P. Immune changes over time and survival in patients with cirrhosis treated with non-selective beta-blockers: A prospective longitudinal study. Biomed Pharmacother 2023; 163:114885. [PMID: 37201262 DOI: 10.1016/j.biopha.2023.114885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/03/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Treatment with non-selective beta-blockers (NSBB) has been associated with anti-inflammatory and anti-cancer effects in patients with cirrhosis. This study aims to analyze the impact of chronic NSBB treatment on immune activation and disease progression in stable outpatients with cirrhosis. METHODS In this prospective follow-up of 150 patients with cirrhosis, 39 received treatment with NSBB. Blood samples were taken every 6-9 months, and immune and adrenergic variables were measured. Mixed linear models were used to assess the effect of NSBB on these variables over time. Multivariate Cox regression was used to study associations with adverse clinical events (hepatocellular carcinoma, death, or liver transplant). RESULTS Median follow-up was 1635 days. NSBB treatment was associated with significantly lower levels of IL-6 (β - 4.7; 95% confidence interval [CI] -6.9, -2.6) throughout the study. During follow-up, 11 patients developed hepatocellular carcinoma, 32 died, and 4 underwent liver transplant. Patients with higher concentrations of IL-10, IL-6 and IFN-γ developed more clinical events. Event-free survival was significantly better in patients treated with NSBB (hazard ratio 0.36, 95% CI 0.18, 0.71) in a multivariate Cox regression adjusted for Child-Pugh-Score, esophageal varices, and platelets. CONCLUSION Chronic treatment with NSBB in patients with stable cirrhosis gives rise to a different state of immune activation, characterized by lower concentrations of IL-6 over time, and it is associated with a reduced risk of adverse event (death, hepatocellular carcinoma, or transplant), after controlling for disease severity.
Collapse
Affiliation(s)
- Susana Almenara
- CIBERehd, Health Institute Carlos III, Madrid, Spain; Clinical Pharmacology Unit. Alicante General University Hospital, Alicante, Spain; Institute of Research, Development, and Innovation in Healthcare Biotechnology of Elche (IDiBE), University Miguel Hernández de Elche, Spain; Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Beatriz Lozano-Ruiz
- CIBERehd, Health Institute Carlos III, Madrid, Spain; Institute of Research, Development, and Innovation in Healthcare Biotechnology of Elche (IDiBE), University Miguel Hernández de Elche, Spain
| | - Ivan Herrera
- Liver Unit. Alicante General University Hospital, Alicante, Spain
| | - Paula Gimenez
- CIBERehd, Health Institute Carlos III, Madrid, Spain
| | | | - Pablo Bellot
- Liver Unit. Alicante General University Hospital, Alicante, Spain
| | - Maria Rodriguez
- Liver Unit. Alicante General University Hospital, Alicante, Spain
| | - Jose M Palazon
- Liver Unit. Alicante General University Hospital, Alicante, Spain
| | - Fabián Tarín
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain; Hematology Department. Alicante General University Hospital, Alicante, Spain
| | - Héctor Sarmiento
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain; Hematology Department. Alicante General University Hospital, Alicante, Spain
| | - Rubén Francés
- CIBERehd, Health Institute Carlos III, Madrid, Spain; Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain; Clinical Medicine Department, University Miguel Hernández de Elche, Alicante, Spain
| | - Jose Manuel Gonzalez-Navajas
- CIBERehd, Health Institute Carlos III, Madrid, Spain; Institute of Research, Development, and Innovation in Healthcare Biotechnology of Elche (IDiBE), University Miguel Hernández de Elche, Spain; Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Sonia Pascual
- CIBERehd, Health Institute Carlos III, Madrid, Spain; Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain; Liver Unit. Alicante General University Hospital, Alicante, Spain
| | - Pedro Zapater
- CIBERehd, Health Institute Carlos III, Madrid, Spain; Clinical Pharmacology Unit. Alicante General University Hospital, Alicante, Spain; Institute of Research, Development, and Innovation in Healthcare Biotechnology of Elche (IDiBE), University Miguel Hernández de Elche, Spain; Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain.
| |
Collapse
|
34
|
Xiao L, Li X, Fang C, Yu J, Chen T. Neurotransmitters: promising immune modulators in the tumor microenvironment. Front Immunol 2023; 14:1118637. [PMID: 37215113 PMCID: PMC10196476 DOI: 10.3389/fimmu.2023.1118637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
The tumor microenvironment (TME) is modified by its cellular or acellular components throughout the whole period of tumor development. The dynamic modulation can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Hence, the focus of cancer research and intervention has gradually shifted to TME components and their interactions. Accumulated evidence indicates neural and immune factors play a distinct role in modulating TME synergistically. Among the complicated interactions, neurotransmitters, the traditional neural regulators, mediate some crucial regulatory functions. Nevertheless, knowledge of the exact mechanisms is still scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a great prospect to reveal the molecular mechanism by which the interplay between the nervous and immune systems regulate cancer progression for laying a vivid landscape of tumor development and improving clinical treatment.
Collapse
Affiliation(s)
- Luxi Xiao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xunjun Li
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuanfa Fang
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Jiang Yu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
35
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Bruno G, Nastasi N, Subbiani A, Boaretto A, Ciullini Mannurita S, Mattei G, Nardini P, Della Bella C, Magi A, Pini A, De Marco E, Tondo A, Favre C, Calvani M. β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Ther 2023:10.1038/s41417-023-00599-x. [PMID: 36854895 DOI: 10.1038/s41417-023-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Neuroblastoma (NB) is a heterogeneous extracranial tumor occurring in childhood. A distinctive feature of NB tumors is their neuroendocrine ability to secrete catecholamines, which in turn, via β-adrenergic receptors ligation, may affect different signaling pathways in tumor microenvironment (TME). It was previously demonstrated that specific antagonism of β3-adrenergic receptor (β3-AR) on NB tumor cells affected tumor growth and progression. Here, in a murine syngeneic model of NB, we aimed to investigate whether the β3-AR modulation influenced the host immune system response against tumor. Results demonstrated that β3-AR antagonism lead to an immune response reactivation, partially dependent on the PD-1/PD-L1 signaling axis involvement. Indeed, β3-AR blockade on tumor-infiltrating lymphocytes (TILs) dampened their ability to secrete IFN-γ, which in turn reduced the PD-L1 expression, caused by TILs infiltration, on NB tumor cells. Further investigations, through a genomic analysis on NB patients, showed that high ADRB3 gene expression correlates with worse clinical outcome compared to the low expression group, and that ADRB3 gene expression affects different immune-related pathways. Overall, results indicate that β3-AR in NB TME is able to modulate the interaction between tumor and host immune system, and that its antagonism hits multiple pro-tumoral signaling pathways.
Collapse
Affiliation(s)
- Gennaro Bruno
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy. .,Department of Health Sciences, University of Florence, Florence, Italy.
| | - Nicoletta Nastasi
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Angela Subbiani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alessia Boaretto
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuela De Marco
- Pediatric Hematology and Oncology, University Hospital of Pisa, Pisa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Maura Calvani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
37
|
ß-Adrenoreceptors in Human Cancers. Int J Mol Sci 2023; 24:ijms24043671. [PMID: 36835082 PMCID: PMC9964924 DOI: 10.3390/ijms24043671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer is the leading cause of death and represents a significant economic burden worldwide. The numbers are constantly growing as a result of increasing life expectancy, toxic environmental factors, and adoption of Western lifestyle. Among lifestyle factors, stress and the related signaling pathways have recently been implicated in the development of tumors. Here we present some epidemiological and preclinical data concerning stress-related activation of the ß-adrenoreceptors (ß-ARs), which contributes to the formation, sequential transformation, and migration of different tumor cell types. We focused our survey on research results for breast and lung cancer, melanoma, and gliomas published in the past five years. Based on the converging evidence, we present a conceptual framework of how cancer cells hijack a physiological mechanism involving ß-ARs toward a positive modulation of their own survival. In addition, we also highlight the potential contribution of ß-AR activation to tumorigenesis and metastasis formation. Finally, we outline the antitumor effects of targeting the ß-adrenergic signaling pathways, methods for which primarily include repurposed ß-blocker drugs. However, we also call attention to the emerging (though as yet largely explorative) method of chemogenetics, which has a great potential in suppressing tumor growth either by selectively modulating neuronal cell groups involved in stress responses affecting cancer cells or by directly manipulating specific (e.g., the ß-AR) receptors on a tumor and its microenvironment.
Collapse
|
38
|
Norepinephrine inhibits CD8 + T-cell infiltration and function, inducing anti-PD-1 mAb resistance in lung adenocarcinoma. Br J Cancer 2023; 128:1223-1235. [PMID: 36646807 PMCID: PMC10050078 DOI: 10.1038/s41416-022-02132-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mental stress-induced neurotransmitters can affect the immune system in various ways. Therefore, a better understanding of the role of neurotransmitters in the tumour immune microenvironment is expected to promote the development of novel anti-tumour therapies. METHODS In this study, we analysed the plasma levels of neurotransmitters in anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb)-resistance patients and sensitive patients, to identify significantly different neurotransmitters. Subsequently, animal experiments and experiments in vitro were used to reveal the specific mechanism of norepinephrine's (NE) effect on immunotherapy. RESULTS The plasma NE levels were higher in anti-PD-1 mAb-resistance patients, which may be the main cause of anti-PD-1 mAb resistance. Then, from the perspective of the immunosuppressive microenvironment to explore the specific mechanism of NE-induced anti-PD-1 mAb resistance, we found that NE can affect the secretion of C-X-C Motif Chemokine Ligand 9 (CXCL9) and adenosine (ADO) in tumour cells, thereby inhibiting chemotaxis and function of CD8+ T cells. Notably, the WNT7A/β-catenin signalling pathway plays a crucial role in this progression. CONCLUSION NE can affect the secretion of CXCL9 and ADO in tumour cells, thereby inhibiting chemotaxis and the function of CD8+ T cells and inducing anti-PD-1 mAb resistance in lung adenocarcinoma (LUAD).
Collapse
|
39
|
Yan X, Liu P, Li D, Hu R, Tao M, Zhu S, Wu W, Yang M, Qu X. Novel evidence for the prognostic impact of β-blockers in solid cancer patients receiving immune checkpoint inhibitors. Int Immunopharmacol 2022; 113:109383. [DOI: 10.1016/j.intimp.2022.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
40
|
Jabir NR, Firoz CK, Zughaibi TA, Alsaadi MA, Abuzenadah AM, Al-Asmari AI, Alsaieedi A, Ahmed BA, Ramu AK, Tabrez S. A literature perspective on the pharmacological applications of yohimbine. Ann Med 2022; 54:2861-2875. [PMID: 36263866 PMCID: PMC9590431 DOI: 10.1080/07853890.2022.2131330] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Phytochemicals have garnered much attention because they are useful in managing several human diseases. Yohimbine is one such phytochemical with significant pharmacological potential and could be exploited for research by medicinal chemists. It is an indole alkaloid obtained from various natural/synthetic sources.Aims and Results: The research on yohimbine started early, and its use as a stimulant and aphrodisiac by humans has been reported for a long time. The pharmacological activity of yohimbine is mediated by the combined action of the central and peripheral nervous systems. It selectively blocks the pre and postsynaptic α2-adrenergic receptors and has a moderate affinity for α1 and α2 subtypes. Yohimbine also binds to other behaviourally relevant monoaminergic receptors in the following order: α-2 NE > 5HT-1A>, 5HT-1B > 1-D > D3 > D2 receptors.Conclusion: The current review highlights some significant findings that contribute to developing yohimbine-based drugs. It also highlights the therapeutic potential of yohimbine against selected human diseases. However, further research is recommended on the pharmacokinetics, molecular mechanisms, and drug safety requirements using well-designed randomized clinical trials to produce yohimbine as a pharmaceutical agent for human use.Key MessagesYohimbine is a natural indole alkaloid with significant pharmacological potential.Humans have used it as a stimulant and aphrodisiac from a relatively early time.It blocks the pre- and postsynaptic α2-adrenergic receptors that could be exploited for managing erectile dysfunction, myocardial dysfunction, inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Chelapram K Firoz
- Department of Medical Laboratory Technology, MIMS College of Allied Health Sciences, ASTER MIMS Academy, Malappuram, Kerala University of Health Sciences, Kerala, India
| | - Torki A Zughaibi
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Abdullah Alsaadi
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Ibrahim Al-Asmari
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, King Abdul-Aziz Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Arun Kumar Ramu
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Shams Tabrez
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Chen Y, Qian Y, Huang W, Zhang Y, Wu M, Cheng Y, Yang N, Liu Y. Chronic stress promotes tumor immune evasion via the suppression of MHC-I expression and the upregulation of PD-L1. Am J Cancer Res 2022; 12:5286-5299. [PMID: 36504904 PMCID: PMC9729909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic stress induces cancer initiation and progression via regulation of diverse cancer risk factors including immune evasion. Our previous research demonstrated that β-adrenergic blockade with propranolol almost completely reversed the accelerated tumor growth induced by chronic restraint stress, but the underlying mechanism of immune escape remains largely unknown. In the present study, a chronic restraint stress paradigm was applied to the H22 hepatocellular carcinoma (HCC) bearing mice to mimic the psychological stress. We observed that chronic restraint stress significantly promoted HCC growth and tumor escape from T cell surveillance. Chronic restraint stress reduced intratumor MHC-I expression and enhanced PD-L1 expression, whereas propranolol rectified the changes of MHC-I and PD-L1. Under chronic stress, the activated MAPK pathway suppressed MHC-I production by inactivating STAT1/IRF1 signaling pathway, and promoted PD-L1 translation by elevating eIF2α phosphorylation. These findings support the crucial role of β-adrenergic signaling cascade in the tumor escape from T cell surveillance under chronic restraint stress.
Collapse
Affiliation(s)
- Yuzhu Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Yazhi Qian
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Yi Zhang
- Medical College, Tibet UniversityLhasa, Tibet Autonomous Region, China
| | - Mo Wu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Yinlong Cheng
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijing, China,Medical College, Tibet UniversityLhasa, Tibet Autonomous Region, China
| |
Collapse
|
42
|
Zhou S, Li J, Yu J, Wang Y, Wang Z, He Z, Ouyang D, Liu H, Wang Y. Tumor microenvironment adrenergic nerves blockade liposomes for cancer therapy. J Control Release 2022; 351:656-666. [DOI: 10.1016/j.jconrel.2022.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/18/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
|
43
|
Liu Y, Tian S, Ning B, Huang T, Li Y, Wei Y. Stress and cancer: The mechanisms of immune dysregulation and management. Front Immunol 2022; 13:1032294. [PMID: 36275706 PMCID: PMC9579304 DOI: 10.3389/fimmu.2022.1032294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in the understanding of psychoneuroimmunology in the past decade have emphasized the notion that stress and cancer are interlinked closely. Durable chronic stress accelerated tumorigenesis and progression, which is unfavorable for clinical outcomes of cancer patients. Available evidence has provided unprecedented knowledge about the role and mechanisms of chronic stress in carcinogenesis, the most well-known one is dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). With abnormal activation of neuroendocrine system, stress-related hormones contribute to increased oncogenes expression, exacerbated chronic inflammation and impaired immunologic function. In addition, accumulating studies have demonstrated that diverse stress interventions including pharmacological approaches, physical exercises and psychological relaxation have been administered to assist in mental disorders reduction and life quality improvement in cancer patients. In this review, we systematically summarize the connection and mechanisms in the stress-immune-cancer axis identified by animal and clinical studies, as well as conclude the effectiveness and deficiencies of existing stress management strategies.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Ajmal I, Farooq MA, Abbas SQ, Shah J, Majid M, Jiang W. Isoprenaline and salbutamol inhibit pyroptosis and promote mitochondrial biogenesis in arthritic chondrocytes by downregulating β-arrestin and GRK2. Front Pharmacol 2022; 13:996321. [PMID: 36188601 PMCID: PMC9519065 DOI: 10.3389/fphar.2022.996321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis and osteoarthritis overlap many molecular mechanisms of cartilage destruction. Wear and tear in cartilage is chondrocyte-mediated, where chondrocytes act both as effector and target cells. In current study, role of β2-AR was studied in chondrocytes both in vitro and in vivo. High grade inflammation in vitro and in vivo disease models led to decline in anti-inflammatory β2-AR signaling and use of β2-AR agonist attenuated arthritis symptoms. Detailed analysis in chondrocytes revealed that Isoprenaline (ISO) and Salbutamol (SBT) increased cell viability and relative Bcl-2 expression, meanwhile, decreased proteins levels of TNF-α, IL-6 and IL-8 in arthritic chondrocytes when compared with control, respectively. SBT preserved physiological concentration of antioxidant enzymes (CAT, POD, SOD and GSH) in cartilage homogenates and ISO inhibited IL-1β-mediated genotoxicity in arthritic chondrocytes. Moreover, β2-AR agonist increased mitochondrial biogenesis and proteoglycan biosynthesis by upregulating the gene expression of PGC1-α, NRF2 and COL2A1, Acan, respectively. ISO and SBT inhibited extracellular matrix (ECM) degradation by downregulating the gene expression of MMP1, MMP3, MMP9 and ADAMTS5 in vitro and in vivo study. In mechanism, β2-AR agonists decreased β-arrestin and GRK2 pathway, and as a result mice receiving SBT did not exhibit severe disease. Hence our data suggest β2-AR agonist administered at disease onset can inhibit receptor internalization by downregulating the expression of β-arrestin and GRK2 in chondrocytes.
Collapse
Affiliation(s)
- Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Syed Qamar Abbas
- Department of Pharmacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| | - Muhammad Majid
- Faculty of Pharmacy, Capital University of Science and Technology Islamabad, Islamabad, Pakistan
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Jaffer Shah, ; Muhammad Majid, ; Wenzheng Jiang,
| |
Collapse
|
45
|
Solernó LM, Sobol NT, Gottardo MF, Capobianco CS, Ferrero MR, Vásquez L, Alonso DF, Garona J. Propranolol blocks osteosarcoma cell cycle progression, inhibits angiogenesis and slows xenograft growth in combination with cisplatin-based chemotherapy. Sci Rep 2022; 12:15058. [PMID: 36075937 PMCID: PMC9458647 DOI: 10.1038/s41598-022-18324-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma is still associated with limited response to standard-of-care therapy and alarmingly elevated mortality rates, especially in low- and middle-income countries. Despite multiple efforts to repurpose β-blocker propranolol in oncology, its potential application in osteosarcoma management remains largely unexplored. Considering the unsatisfied clinical needs of this aggressive disease, we evaluated the antitumoral activity of propranolol using different in vitro and in vivo osteosarcoma preclinical models, alone or in addition to chemotherapy. Propranolol significantly impaired cellular growth in β2-adrenergic receptor-expressing MG-63 and U-2OS cells, and was capable of blocking growth-stimulating effects triggered by catecholamines. siRNA-mediated ADRB2 knockdown in MG-63 cells was associated with decreased cell survival and a significant attenuation of PPN anti-osteosarcoma activity. Direct cytostatic effects of propranolol were independent of apoptosis induction and were associated with reduced mitosis, G0/G1 cell cycle arrest and a significant down-regulation of cell cycle regulator Cyclin D1. Moreover, colony formation, 3D spheroid growth, cell chemotaxis and capillary-like tube formation were drastically impaired after propranolol treatment. Interestingly, anti-migratory activity of β-blocker was associated with altered actin cytoskeleton dynamics. In vivo, propranolol treatment (10 mg/kg/day i.p.) reduced the early angiogenic response triggered by MG-63 cells in nude mice. Synergistic effects were observed in vitro after combining propranolol with chemotherapeutic agent cisplatin. Sustained administration of propranolol (10 mg/kg/day i.p., five days a week), alone and especially in addition to low-dose metronomic cisplatin (2 mg/kg/day i.p., three times a week), markedly reduced xenograft progression. After histological analysis, propranolol and cisplatin combination resulted in low tumor mitotic index and increased tumor necrosis. β-blockade using propranolol seems to be an achievable and cost-effective therapeutic approach to modulate osteosarcoma aggressiveness. Further translational studies of propranolol repurposing in osteosarcoma are warranted.
Collapse
Affiliation(s)
- Luisina M Solernó
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Natasha T Sobol
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - María F Gottardo
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Carla S Capobianco
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Maximiliano R Ferrero
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Biomedicine Research Institute of Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima, Perú
| | - Daniel F Alonso
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Garona
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina. .,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina. .,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
46
|
McIlvried LA, Atherton MA, Horan NL, Goch TN, Scheff NN. Sensory Neurotransmitter Calcitonin Gene-Related Peptide Modulates Tumor Growth and Lymphocyte Infiltration in Oral Squamous Cell Carcinoma. Adv Biol (Weinh) 2022; 6:e2200019. [PMID: 35388989 PMCID: PMC9474661 DOI: 10.1002/adbi.202200019] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Indexed: 01/28/2023]
Abstract
Head and neck squamous cell carcinoma are highly innervated by peripheral sensory neurons. Local neurotransmitter release (e.g., calcitonin gene-related peptide (CGRP)) from sensory neurons innervating cancer is linked to tumorigenesis. CGRP-immunoreactive nerve presence comprised 9.53±1.9% of total nerve area across 11 HNSCC patients. A syngeneic tongue tumor transplant mouse model of oral cancer and a global Calca knockout mouse (CGRPKO ) are used to investigate the impact of CGRP signaling on tumor growth and the associated immune response in vivo. In tumor-bearing CGRPKO mice, there is a significant reduction in tumor size over time compared to wildtype mice using two different mouse oral cancer cell lines. Furthermore, tumor tissue from CGRPKO mice had a significant increase in tumor-infiltrating CD4+ T cells, cytotoxic CD8+ T cells, and NK1.1+ NK cells compared to wildtype. Fluorescent-activated cell sorting and real-time qPCR are used to confirm that CD4+ T cells are isolated from tumor-bearing wildtype mice containing a high expression of Ramp1 compared to sham mice. These data suggest that sensory neurotransmitter CGRP may modulate oral cancer progression via tumor immunosurveillance. Understanding the relationship between sensory neurons and cancer will aid in repurposing clinically available nervous system drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Lisa A McIlvried
- Department of Neurobiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Megan A Atherton
- Department of Neurobiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Nicole L Horan
- Department of Neurobiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Tori N Goch
- Hillman Cancer Center, University of Pittsburgh Medical Center, 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| | - Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, 5117 Centre Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
47
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
48
|
Kim M, Fisher DT, Bogner PN, Sharma U, Yu H, Skitzki JJ, Repasky EA. Manipulating adrenergic stress receptor signalling to enhance immunosuppression and prolong survival of vascularized composite tissue transplants. Clin Transl Med 2022; 12:e996. [PMID: 35994413 PMCID: PMC9394753 DOI: 10.1002/ctm2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Vascularized composite tissue allotransplantation (VCA) to replace limbs or faces damaged beyond repair is now possible. The resulting clear benefit to quality of life is a compelling reason to attempt this complex procedure. Unfortunately, the high doses of immunosuppressive drugs required to protect this type of allograft result in significant morbidity and mortality giving rise to ethical concerns about performing this surgery in patients with non-life-threatening conditions. Here we tested whether we could suppress anti-graft immune activity by using a safe β2 -adrenergic receptor (AR) agonist, terbutaline, to mimic the natural immune suppression generated by nervous system-induced signalling through AR. METHODS A heterotopic hind limb transplantation model was used with C57BL/6 (H-2b) as recipients and BALB/c (H-2d) mice as donors. To test the modulation of the immune response, graft survival was investigated after daily intraperitoneal injection of β2 -AR agonist with and without tacrolimus. Analyses of immune compositions and quantification of pro-inflammatory cytokines were performed to gauge functional immunomodulation. The contributions to allograft survival of β2 -AR signalling in donor and recipient tissue were investigated with β2 -AR-/- strains. RESULTS Treatment with the β2 -AR agonist delayed VCA rejection, even with a subtherapeutic dose of tacrolimus. β2 -AR agonist decreased T-cell infiltration into the transplanted grafts and decreased memory T-cell populations in recipient's circulation. In addition, decreased levels of inflammatory cytokines (IFN-γ, IL-6, TNF-α, CXCL-1/10 and CCL3/4/5/7) were detected following β2 -AR agonist treatment, and there was a decreased expression of ICAM-1 and vascular cell adhesion molecule-1 in donor stromal cells. CONCLUSIONS β2 -AR agonist can be used safely to mimic the natural suppression of immune responses, which occurs during adrenergic stress-signalling and thereby can be used in combination regimens to reduce the dose needed of toxic immunosuppressive drugs such as tacrolimus. This strategy can be further evaluated for feasibility in the clinic.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Daniel T. Fisher
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Paul N. Bogner
- Department of PathologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Umesh Sharma
- Department of Medicine, Division of CardiologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Han Yu
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Joseph J. Skitzki
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Elizabeth A. Repasky
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| |
Collapse
|
49
|
Zong C, Yang M, Guo X, Ji W. Chronic restraint stress promotes gastric epithelial malignant transformation by activating the Akt/p53 signaling pathway via ADRB2. Oncol Lett 2022; 24:300. [PMID: 35949623 PMCID: PMC9353258 DOI: 10.3892/ol.2022.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 11/06/2022] Open
Abstract
The etiology of gastric cancer is associated with infectious, environmental and dietary factors, as well as genetic background. Additionally, emerging evidence has supported the vital role of chronic emotional stress on gastric carcinogenesis; however, the underlying mechanism remains unclear. The present study aimed to investigate the effects of chronic stress and a detrimental diet on gastric malignant epithelial transformation in rats. Therefore, 26 Wistar rats were randomly divided into the following four groups: i) Control; ii) detrimental diet (DD); iii) detrimental diet with chronic restraint (DR) and iv) detrimental diet with chronic restraint and propranolol treatment (DRP). ELISA was performed to detect the serum levels of epinephrine and norepinephrine. Epithelial cell apoptosis was analyzed using the TUNEL assay. The mRNA and protein expression levels of Akt and p53 were detected using reverse transcription quantitative PCR and western blotting, respectively. Pathological changes were analyzed using hematoxylin and eosin staining (H&E). The H&E staining results showed that dysplasia in the gastric mucosa occurred in two of eight rats in the DD group and in four of five rats in the DR group, whereas no dysplasia was detected in the DRP group. The apoptotic ratios of gastric epithelial cells were significantly decreased in all treatment groups compared with the control group. Adrenoceptor β2 (ADRB2) protein expression levels were increased significantly only in the DR group and this effect was significantly reduced in the DRP group. The mRNA expression levels of Akt and p53 were significantly upregulated in the DD group, and Akt mRNA expression was further elevated in the DR group. With regard to protein expression, the levels of Akt and p-Akt were significantly increased in the DR group, whereas these effects were reversed in the DRP group. Furthermore, the ratio of p-p53/p53 protein was significantly reduced in the DD or DR groups, but was reversed in the DRP group. Collectively, the findings of the present study suggested that chronic restraint stress potentially aggravates the gastric epithelial malignant transformation induced by a detrimental diet, at least partially via the Akt/p53 signaling pathway mediated via ADRB2.
Collapse
Affiliation(s)
- Chuanju Zong
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Maoquan Yang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiaojing Guo
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
50
|
Wang J, Lu S, Meng Y, Zhou X, Fu W. Beta adrenergic blockade and clinical outcomes in patients with colorectal cancer: A systematic review and meta-analysis. Eur J Pharmacol 2022; 929:175135. [PMID: 35798050 DOI: 10.1016/j.ejphar.2022.175135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|