1
|
Antcliffe DB, Burrell A, Boyle AJ, Gordon AC, McAuley DF, Silversides J. Sepsis subphenotypes, theragnostics and personalized sepsis care. Intensive Care Med 2025:10.1007/s00134-025-07873-6. [PMID: 40163135 DOI: 10.1007/s00134-025-07873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
Heterogeneity between critically ill patients with sepsis is a major barrier to the discovery of effective therapies. The use of machine learning techniques, coupled with improved understanding of sepsis biology, has led to the identification of patient subphenotypes. This exciting development may help overcome the problem of patient heterogeneity and lead to the identification of patient subgroups with treatable traits. Re-analyses of completed clinical trials have demonstrated that patients with different subphenotypes may respond differently to treatments. This suggests that future clinical trials that take a precision medicine approach will have a higher likelihood of identifying effective therapeutics for patients based on their subphenotype. In this review, we describe the emerging subphenotypes identified in the critically ill and outline the promising immune modulation therapies which could have a beneficial treatment effect within some of these subphenotypes. Furthermore, we will also highlight how bringing subphenotype identification to the bedside could enable a new generation of precision-medicine clinical trials.
Collapse
Affiliation(s)
- David B Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK.
- Intensive Care Unit, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK.
| | - Aidan Burrell
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), Dept. of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Andrew J Boyle
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| | - Jon Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
2
|
Rao M, McGonagill PW, Brackenridge S, Remy KE, Caldwell CC, Hotchkiss RS, Moldawer LL, Griffith TS, Badovinac VP. FUNCTIONAL IMMUNOPHENOTYPING FOR PRECISION THERAPIES IN SEPSIS. Shock 2025; 63:189-201. [PMID: 39617419 DOI: 10.1097/shk.0000000000002511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
ABSTRACT Sepsis remains a significant cause of morbidity and mortality worldwide. Although many more patients are surviving the acute event, a substantial number enters a state of persistent inflammation and immunosuppression, rendering them more vulnerable to infections. Modulating the host immune response has been a focus of sepsis research for the past 50 years, yet novel therapies have been few and far between. Although many septic patients have similar clinical phenotypes, pathways affected by the septic event differ not only between individuals but also within an individual over the course of illness. These differences ultimately impact overall immune function and response to treatment. Defining the immune state, or endotype, of an individual is critical to understanding which patients will respond to a particular therapy. In this review, we highlight current approaches to define the immune endotype and propose that these technologies may be used to "prescreen" individuals to determine which therapies are most likely to be beneficial.
Collapse
Affiliation(s)
- Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Patrick W McGonagill
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Scott Brackenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington
| | - Kenneth E Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | | | | |
Collapse
|
3
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2025; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Kolodyazhna A, Wiersinga WJ, van der Poll T. Aiming for precision: personalized medicine through sepsis subtyping. BURNS & TRAUMA 2025; 13:tkae073. [PMID: 39759543 PMCID: PMC11697112 DOI: 10.1093/burnst/tkae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/29/2024] [Indexed: 01/07/2025]
Abstract
According to the latest definition, sepsis is characterized by life-threatening organ dysfunction caused by a dysregulated host response to an infection. However, this definition fails to grasp the heterogeneous nature and the underlying dynamic pathophysiology of the syndrome. In response to this heterogeneity, efforts have been made to stratify sepsis patients into subtypes, either based on their clinical presentation or pathophysiological characteristics. Subtyping introduces the possibility of the implementation of personalized medicine, whereby each patient receives treatment tailored to their individual disease manifestation. This review explores the currently known subtypes, categorized by subphenotypes and endotypes, as well as the treatments that have been researched thus far in the context of sepsis subtypes and personalized medicine.
Collapse
Affiliation(s)
- Aryna Kolodyazhna
- Amsterdam University Medical Center, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Amsterdam University Medical Center, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Tom van der Poll
- Amsterdam University Medical Center, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Yang YY, Tsai IT, Lai CH, Chen CP, Chen C, Hsu YC. Time to positivity of Klebsiella pneumoniae in blood cultures as prognostic marker in patients with intra-abdominal infection: A retrospective study. Virulence 2024; 15:2329397. [PMID: 38548677 PMCID: PMC10984124 DOI: 10.1080/21505594.2024.2329397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/06/2024] [Indexed: 04/02/2024] Open
Abstract
Klebsiella pneumoniae is a common causative pathogen of intra-abdominal infection with concomitant bacteraemia, leading to a significant mortality risk. The time to positivity (TTP) of blood culture is postulated to be a prognostic factor in bacteraemia caused by other species. Therefore, this study aimed to investigate the prognostic value of TTP in these patients. The single-centred, retrospective, observational cohort study was conducted between 1 July 2016 and 30 June 2021. All adult emergency department patients with diagnosis of intra-abdominal infection and underwent blood culture collection which yield K. pneumoniae during this period were enrolled. A total of 196 patients were included in the study. The overall 30-day mortality rate was 12.2% (24/196), and the median TTP of the studied cohort was 12.3 h (10.5-15.8 h). TTP revealed a moderate 30-day mortality discriminative ability (area under the curve 0.73, p < 0.001). Compared with the late TTP group (>12 h, N = 109), patients in the early TTP (≤12 h, N = 87) group had a significantly higher risk of 30-day morality (21.8% vs. 4.6%, p < 0.01) and other adverse outcomes. Furthermore, TTP (odds ratio [OR] = 0.79, p = 0.02), Pitt bacteraemia score (OR = 1.30, p = 0.03), and implementation of source control (OR = 0.06, p < 0.01) were identified as independent factors related to 30-day mortality risk in patients with intra-abdominal infection and K. pneumoniae bacteraemia. Therefore, physicians can use TTP for prognosis stratification in these patients.
Collapse
Affiliation(s)
- Yong-Ye Yang
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - I-Ting Tsai
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsu Lai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Ping Chen
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chia‐Chi Chen
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yin-Chou Hsu
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Student, I-Shou University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Maiti S, Gowtham L, Rudraprasad D, Dave VP, Joseph J. Age-Associated Alterations in the Metabolome of Human Vitreous in Bacterial Endophthalmitis. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 39499509 PMCID: PMC11540026 DOI: 10.1167/iovs.65.13.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose Endophthalmitis is a severe inflammatory condition due to intraocular infections that often leads to irreversible blindness. This study aimed to understand the age-dependent metabolic alterations in the vitreous of patients with bacterial endophthalmitis. Methods The study included the vitreous metabolome of patients with bacterial endophthalmitis (group 1, n = 15) and uninfected controls (group 2, n = 14), which were further stratified into three groups according to their age: young (0-30 years), middle (31-60 years), and elderly (>60 years). Vitreous samples were subjected to untargeted metabolomic analysis using high-resolution mass spectrometry (HRMS)m and acquired mass spectrometry data were analyzed using MetaboAnalyst 6.0. The altered metabolites with log2FC of ≥2/≤2, P < 0.05, and variable importance in projection > 1 were considered significant. Results In a total of 109 endogenous metabolites identified, young and elderly patients with endophthalmitis showed 52 (elevated, 25; reduced, 27; P < 0.05) and 27 (elevated, 19; reduced, 8; P < 0.05) significantly altered metabolites, respectively, compared to their age-matched controls. Additionally, 27 metabolites were differentially expressed in young patients with endophthalmitis compared to the older group. The crucial metabolic pathways dysregulated in the older infected population were de novo purine synthesis and salvage, carnitine, polyamine (spermidine), lipids (prostaglandins), and amino acid (taurine, methionine, histidine) which could possibly be attributed to the increased disease severity and inflammation observed in a clinical setting. Conclusions Despite the erratic metabolic changes observed in the younger group infected with endophthalmitis when compared to age-matched controls, dysregulation in the specific pathways such as purine, carnitine, arachidonic acid, and polyamine metabolism could possibly alter the immunological exacerbation observed in the older group.
Collapse
Affiliation(s)
- Sreyasi Maiti
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Center for Doctoral Studies, Manipal Academy of Higher Education, Karnataka, India
| | - Lakshminarayanan Gowtham
- Dr Chigurupati Nageswara Rao Ocular Pharmacology Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Dhanwini Rudraprasad
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Center for Doctoral Studies, Manipal Academy of Higher Education, Karnataka, India
| | - Vivek P. Dave
- Srimati Kanuri Santhamma Center for Vitreoretinal Disease, LV Prasad Eye Institute, Hyderabad, India
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
7
|
Vymazal O, Papatheodorou I, Andrejčinová I, Bosáková V, Vascelli G, Bendíčková K, Zelante T, Hortová-Kohoutková M, Frič J. Calcineurin-NFAT signaling controls neutrophils' ability of chemoattraction upon fungal infection. J Leukoc Biol 2024; 116:816-829. [PMID: 38648505 DOI: 10.1093/jleuko/qiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Calcineurin-nuclear factor of activated T cells (CN-NFAT) inhibitors are widely clinically used drugs for immunosuppression, but besides their required T cell response inhibition, they also undesirably affect innate immune cells. Disruption of innate immune cell function can explain the observed susceptibility of CN-NFAT inhibitor-treated patients to opportunistic fungal infections. Neutrophils play an essential role in innate immunity as a defense against pathogens; however, the effect of CN-NFAT inhibitors on neutrophil function was poorly described. Thus, we tested the response of human neutrophils to opportunistic fungal pathogens, namely Candida albicans and Aspergillus fumigatus, in the presence of CN-NFAT inhibitors. Here, we report that the NFAT pathway members were expressed in neutrophils and mediated part of the neutrophil response to pathogens. Upon pathogen exposure, neutrophils underwent profound transcriptomic changes with subsequent production of effector molecules. Importantly, genes and proteins involved in the regulation of the immune response and chemotaxis, including the chemokines CCL2, CCL3, and CCL4 were significantly upregulated. The presence of CN-NFAT inhibitors attenuated the expression of these chemokines and impaired the ability of neutrophils to chemoattract other immune cells. Our results amend knowledge about the impact of CN-NFAT inhibition in human neutrophils.
Collapse
Affiliation(s)
- Ondrej Vymazal
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ioanna Papatheodorou
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Gianluca Vascelli
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Teresa Zelante
- Section of Immunology and General Pathology, Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi 1/8, Perugia, 06132, Italy
| | - Marcela Hortová-Kohoutková
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 664/53, Brno, 602 00, Czech Republic
- International Clinical Research Center, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, Prague 2, 128 00, Czech Republic
| |
Collapse
|
8
|
Yao H, Xiao Z, Liu S, Gao X, Wu Z, Li D, Yi Z, Zhou H, Zhang W. Screening of novel disease genes of sepsis-induced myocardial Disfunction by RNA sequencing and bioinformatics analysis. Genomics 2024; 116:110911. [PMID: 39111545 DOI: 10.1016/j.ygeno.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND There is still a lack of effective treatment for sepsis-induced myocardial dysfunction (SIMD), while the pathogenesis of SIMD still remains largely unexplained. METHODS RNA sequencing results (GSE267388 and GSE79962) were used for cross-species integrative analysis. Bioinformatic analyses were used to delve into function, tissue- and cell- specificity, and interactions of genes. External datasets and qRT-PCR experiments were used for validation. L1000 FWD was used to predict targeted drugs, and 3D structure files were used for molecular docking. RESULTS Based on bioinformatic analyses, ten differentially expressed genes were selected as genes of interest, seven of which were verified to be significantly differential expression. Bucladesine was considered as a potential targeted drug for SIMD, which banded to seven target proteins primarily by forming hydrogen bonds. CONCLUSION It was considered that Cebpd, Timp1, Pnp, Osmr, Tgm2, Cp, and Asb2 were novel disease genes, while bucladesine was a potential therapeutic drug, of SIMD.
Collapse
Affiliation(s)
- Hanyi Yao
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zixi Xiao
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shufang Liu
- Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xingjian Gao
- Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zehong Wu
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Dongping Li
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhangqing Yi
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haojie Zhou
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Weizhi Zhang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
9
|
Antcliffe DB, Mi Y, Santhakumaran S, Burnham KL, Prevost AT, Ward JK, Marshall TJ, Bradley C, Al-Beidh F, Hutton P, McKechnie S, Davenport EE, Hinds CJ, O'Kane CM, McAuley DF, Shankar-Hari M, Gordon AC, Knight JC. Patient stratification using plasma cytokines and their regulators in sepsis: relationship to outcomes, treatment effect and leucocyte transcriptomic subphenotypes. Thorax 2024; 79:515-523. [PMID: 38471792 PMCID: PMC11137467 DOI: 10.1136/thorax-2023-220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
RATIONALE Heterogeneity of the host response within sepsis, acute respiratory distress syndrome (ARDS) and more widely critical illness, limits discovery and targeting of immunomodulatory therapies. Clustering approaches using clinical and circulating biomarkers have defined hyper-inflammatory and hypo-inflammatory subphenotypes in ARDS associated with differential treatment response. It is unknown if similar subphenotypes exist in sepsis populations where leucocyte transcriptomic-defined subphenotypes have been reported. OBJECTIVES We investigated whether inflammatory clusters based on cytokine protein abundance were seen in sepsis, and the relationships with previously described transcriptomic subphenotypes. METHODS Hierarchical cluster and latent class analysis were applied to an observational study (UK Genomic Advances in Sepsis (GAinS)) (n=124 patients) and two clinical trial datasets (VANISH, n=155 and LeoPARDS, n=484) in which the plasma protein abundance of 65, 21, 11 circulating cytokines, cytokine receptors and regulators were quantified. Clinical features, outcomes, response to trial treatments and assignment to transcriptomic subphenotypes were compared between inflammatory clusters. MEASUREMENTS AND MAIN RESULTS We identified two (UK GAinS, VANISH) or three (LeoPARDS) inflammatory clusters. A group with high levels of pro-inflammatory and anti-inflammatory cytokines was seen that was associated with worse organ dysfunction and survival. No interaction between inflammatory clusters and trial treatment response was found. We found variable overlap of inflammatory clusters and leucocyte transcriptomic subphenotypes. CONCLUSIONS These findings demonstrate that differences in response at the level of cytokine biology show clustering related to severity, but not treatment response, and may provide complementary information to transcriptomic sepsis subphenotypes. TRIAL REGISTRATION NUMBER ISRCTN20769191, ISRCTN12776039.
Collapse
Affiliation(s)
- David Benjamin Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Centre for Perioperative and Critical Care Research, Imperial College Healthcare NHS Trust, London, UK
| | - Yuxin Mi
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Shalini Santhakumaran
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - A Toby Prevost
- Nightingale-Saunders Clinical Trials and Epidemiology Unit, King's College London, London, UK
| | - Josie K Ward
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Timothy J Marshall
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- Central Clinical School Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Bradley
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Farah Al-Beidh
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Paula Hutton
- Adult Intensive Care Unit, John Radcliffe Hospital, Oxford, UK
| | | | | | - Charles J Hinds
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Daniel Francis McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
- Northern Ireland Clinical Trials Unit, Royal Hospitals, Belfast, UK
| | - Manu Shankar-Hari
- The Queen's Medical Research Institute, The University of Edinburgh College of Medicine and Veterinary Medicine, Edinburgh, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
- Centre for Perioperative and Critical Care Research, Imperial College Healthcare NHS Trust, London, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Chang YT, Lin CY, Chen CJ, Hwang E, Alshetaili A, Yu HP, Fang JY. Neutrophil-targeted combinatorial nanosystems for suppressing bacteremia-associated hyperinflammation and MRSA infection to improve survival rates. Acta Biomater 2024; 174:331-344. [PMID: 38061677 DOI: 10.1016/j.actbio.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 01/02/2024]
Abstract
There is currently no specific and effective treatment for bacteremia-mediated sepsis. Hence, this study engineered a combinatorial nanosystem containing neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles to enable the dual mitigation of bacteremia-associated inflammation and methicillin-resistant Staphylococcus aureus (MRSA) infection. The targeted nanoparticles were developed by conjugating anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibody fragment on the nanoparticulate surface. The particle size and zeta potential of the as-prepared nanosystem were about 200 nm and -25 mV, respectively. The antibody-conjugated nanoparticles showed a three-fold increase in neutrophil internalization compared to the unfunctionalized nanoparticles. As a selective phosphodiesterase (PDE) 4 inhibitor, the roflumilast in the nanocarriers largely inhibited cytokine/chemokine release from the activated neutrophils. The fusidic acid-loaded nanocarriers were vital to eliminate biofilm MRSA colony by 3 log units. The nanoparticles drastically decreased the intracellular bacterial count compared to the free antibiotic. The in vivo mouse bioimaging demonstrated prolonged retention of the nanosystem in the circulation with limited organ distribution and liver metabolism. In the mouse bacteremia model, the multifunctional nanosystem produced a 1‒2 log reduction of MRSA burden in peripheral organs and blood. The functionalized nanosystem arrested the cytokine/chemokine overexpression greater than the unfunctionalized nanocarriers and free drugs. The combinatory nanosystem also extended the median survival time from 50 to 103 h. No toxicity from the nanoformulation was found based on histology and serum biochemistry. Furthermore, our data proved that the active neutrophil targeting by the versatile nanosystem efficiently alleviated MRSA infection and organ dysfunction caused by bacteremia. STATEMENT OF SIGNIFICANCE: Bacteremia-mediated sepsis poses a significant challenge in clinical practice, as there is currently no specific and effective treatment available. In our study, we have developed a novel combinatorial nanosystem to address this issue. Our nanosystem consists of neutrophil-targeted roflumilast-loaded nanocarriers and non-targeted fusidic acid-loaded nanoparticles, enabling the simultaneous mitigation of bacteremia-associated inflammation and MRSA infection. Our nanosystem demonstrated the decreased neutrophil activation, effective inhibition of cytokine release, elimination of MRSA biofilm colonies, and reduced intracellular bacterial counts. In vivo experiments showed prolonged circulation, limited organ distribution, and increased survival rates in a mouse bacteremia model. Importantly, our nanosystem exhibited no toxicity based on comprehensive assessments.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Sun B, Lei M, Zhang J, Kang H, Liu H, Zhou F. Acute lung injury caused by sepsis: how does it happen? Front Med (Lausanne) 2023; 10:1289194. [PMID: 38076268 PMCID: PMC10702758 DOI: 10.3389/fmed.2023.1289194] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2024] Open
Abstract
Sepsis is a systemic inflammatory disease caused by severe infections that involves multiple systemic organs, among which the lung is the most susceptible, leaving patients highly vulnerable to acute lung injury (ALI). Refractory hypoxemia and respiratory distress are classic clinical symptoms of ALI caused by sepsis, which has a mortality rate of 40%. Despite the extensive research on the mechanisms of ALI caused by sepsis, the exact pathological process is not fully understood. This article reviews the research advances in the pathogenesis of ALI caused by sepsis by focusing on the treatment regimens adopted in clinical practice for the corresponding molecular mechanisms. This review can not only contribute to theories on the pathogenesis of ALI caused by sepsis, but also recommend new treatment strategies for related injuries.
Collapse
Affiliation(s)
- Baisheng Sun
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Mingxing Lei
- Department of Orthopedic Surgery, Hainan Hospital of Chinese PLA General Hospital, Beijing, China
- Department of Orthopedic Surgery, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiaqi Zhang
- Medical School of Chinese PLA, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hui Liu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical Engineering Laboratory of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Nejtek T, Müller M, Moravec M, Průcha M, Zazula R. Bacteremia in Patients with Sepsis in the ICU: Does It Make a Difference? Microorganisms 2023; 11:2357. [PMID: 37764201 PMCID: PMC10534394 DOI: 10.3390/microorganisms11092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis (and septic shock) is on of the most common causes of death worldwide. Bacteremia often, but not necessarily, occurs in septic patients, but the impact of true bacteremia on a patient's clinical characteristics and outcome remains unclear. The main aim of this study was to compare the characteristics and outcome of a well-defined cohort of 258 septic patients with and without bacteremia treated in the intensive care unit (ICU) of a tertiary center hospital in Prague, Czech Republic. As expected, more frequently, bacteremia was present in patients without previous antibiotic treatment. A higher proportion of bacteremia was observed in patients with infective endocarditis as well as catheter-related and soft tissue infections in contrast to respiratory sepsis. Multivariant analysis showed increased severity of clinical status and higher Charlson comorbidity index (CCI) as variables with significant influence on mortality. Bacteremia appears to be associated with higher mortality rates and length of ICU stay in comparison with nonbacteremic counterparts, but this difference did not reach statistical significance. The presence of bacteremia, apart from previous antibiotic treatment, may be related to the site of infection.
Collapse
Affiliation(s)
- Tomáš Nejtek
- Department of Epidemiology, Faculty of Military Science, University of Defence, 500 01 Hradec Králové, Czech Republic;
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (R.Z.)
| | - Martin Müller
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (R.Z.)
| | - Michal Moravec
- Department of Epidemiology, Faculty of Military Science, University of Defence, 500 01 Hradec Králové, Czech Republic;
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (R.Z.)
| | - Miroslav Průcha
- Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, 150 00 Prague, Czech Republic;
| | - Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer University Hospital, 140 59 Prague, Czech Republic; (M.M.); (R.Z.)
| |
Collapse
|
13
|
Zivkovic AR, Schmidt K, Hofer S, Brenner T, Weigand MA, Decker SO. Non-Neuronal Acetylcholinesterase Activity Shows Limited Utility for Early Detection of Sepsis. Biomedicines 2023; 11:2111. [PMID: 37626609 PMCID: PMC10452709 DOI: 10.3390/biomedicines11082111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Sepsis is a severe systemic inflammatory condition characterized by rapid clinical deterioration and organ dysfunction. The cholinergic system has been implicated in modulating the inflammatory response. Acetylcholinesterase (AChE), an enzyme primarily responsible for the hydrolysis of acetylcholine, has been proposed as a potential early indicator of sepsis onset. However, the exact role of non-neuronal AChE activity in sepsis and its correlation with disease severity and patient outcomes remain unclear. This study aimed to investigate the involvement of AChE activity in sepsis and evaluate its association with disease severity and clinical outcomes. (2) Methods: A prospective study included 43 septic patients. AChE activity was measured at sepsis detection, as well as 7 and 28 days later. Inflammatory biomarkers, disease severity scores, and patient outcomes were evaluated. (3) Results: AChE activity remained stable for 7 days and decreased at 28 days. However, there was no correlation between initial AChE activity and inflammatory biomarkers, disease severity scores, ICU stay, or hospital stay. (4) Conclusions: Non-neuronal AChE activity may not reliably indicate early sepsis or predict disease severity.
Collapse
Affiliation(s)
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Stefan Hofer
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine I and Pain Therapy, Westpfalz Hospital, 67661 Kaiserslautern, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sebastian O. Decker
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Tu Y, Liu J, Kong D, Guo X, Li J, Long Z, Peng J, Wang Z, Wu H, Liu P, Liu R, Yu W, Li W. Irisin drives macrophage anti-inflammatory differentiation via JAK2-STAT6-dependent activation of PPARγ and Nrf2 signaling. Free Radic Biol Med 2023; 201:98-110. [PMID: 36940733 DOI: 10.1016/j.freeradbiomed.2023.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Irisin is an exercise-induced myokine that alleviates inflammation and obesity. The induction of anti-inflammatory (M2) macrophage is facilitated for treatment of sepsis and associated lung damage. However, whether irisin drives macrophage M2 polarization remains unclear. Here, we found that irisin induced-macrophage anti-inflammatory differentiation in vivo using an LPS-induced septic mice model and in vitro using RAW64.7 cells and bone marrow-derived macrophages (BMDMs). Irisin also promoted the expression, phosphorylation, and nuclear translocation of peroxisome proliferator-activated receptor gamma (PPAR-γ) and nuclear factor-erythroid 2-related factor 2 (Nrf2). Inhibition or knockdown of PPAR-γ and Nrf2 abolished irisin-induced accumulation of M2 macrophage markers, such as interleukin (IL)-10 and Arginase 1. Furthermore, dual-luciferase reporter and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays confirmed that STAT6 boosts PPAR-γ and Nrf2 transcription by binding to their DNA promoters in irisin-stimulated macrophages. In contrast, STAT6 shRNA blocked the irisin-induced activation of Pparγ, Nrf2, and related downstream genes. Moreover, the interaction of irisin with its ligand integrin αVβ5 remarkably promoted Janus kinase 2 (JAK2) phosphorylation, while inhibition or knockdown of integrin αVβ5 and JAK2 attenuated the activation of STAT6, PPAR-γ, and Nrf2 signaling. Interestingly, co-immunoprecipitation (Co-IP) assay also revealed that the binding between JAK2 and integrin αVβ5 is critical for irisin-induced macrophage anti-inflammatory differentiation by enhancing the activation of the JAK2-STAT6 pathway. In conclusion, irisin boosted M2 macrophage differentiation by inducing JAK2-STAT6-dependent transcriptional activation of the PPAR-γ-related anti-inflammatory system and Nrf2-related antioxidant genes. The findings of this study suggest that the administration of irisin is a novel and promising therapeutic strategy for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yongmei Tu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China; School of Public Health, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712000, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Deqin Kong
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaojie Guo
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiawei Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi Long
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhao Wang
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Penghui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Weihua Yu
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wenli Li
- Department of Toxicology, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Astrocytes in the pathophysiology of neuroinfection. Essays Biochem 2023; 67:131-145. [PMID: 36562155 DOI: 10.1042/ebc20220082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Key homeostasis providing cells in the central nervous system (CNS) are astrocytes, which belong to the class of cells known as atroglia, a highly heterogeneous type of neuroglia and a prominent element of the brain defence. Diseases evolve due to altered homeostatic state, associated with pathology-induced astroglia remodelling represented by reactive astrocytes, astroglial atrophy and astrodegeneration. These features are hallmarks of most infectious insults, mediated by bacteria, protozoa and viruses; they are also prominent in the systemic infection. The COVID-19 pandemic revived the focus into neurotropic viruses such as SARS-CoV2 (Coronaviridae) but also the Flaviviridae viruses including tick-borne encephalitis (TBEV) and Zika virus (ZIKV) causing the epidemic in South America prior to COVID-19. Astrocytes provide a key response to neurotropic infections in the CNS. Astrocytes form a parenchymal part of the blood-brain barrier, the site of virus entry into the CNS. Astrocytes exhibit aerobic glycolysis, a form of metabolism characteristic of highly morphologically plastic cells, like cancer cells, hence a suitable milieu for multiplication of infectious agent, including viral particles. However, why the protection afforded by astrocytes fails in some circumstances is an open question to be studied in the future.
Collapse
|
16
|
Chin LK, Yang JY, Chousterman B, Jung S, Kim DG, Kim DH, Lee S, Castro CM, Weissleder R, Park SG, Im H. Dual-Enhanced Plasmonic Biosensing for Point-of-Care Sepsis Detection. ACS NANO 2023; 17:3610-3619. [PMID: 36745820 PMCID: PMC10150330 DOI: 10.1021/acsnano.2c10371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid, sensitive, simultaneous quantification of multiple biomarkers in point-of-care (POC) settings could improve the diagnosis and management of sepsis, a common, potentially life-threatening condition. Compared to high-end commercial analytical systems, POC systems are often limited by low sensitivity, limited multiplexing capability, or low throughput. Here, we report an ultrasensitive, multiplexed plasmonic sensing technology integrating chemifluorescence signal enhancement with plasmon-enhanced fluorescence detection. Using a portable imaging system, the dual chemical and plasmonic amplification enabled rapid analysis of multiple cytokine biomarkers in 1 h with sub-pg/mL sensitivities. Furthermore, we also developed a plasmonic sensing chip based on nanoparticle-spiked gold nanodimple structures fabricated by wafer-scale batch processes. We used the system to detect six cytokines directly from clinical plasma samples (n = 20) and showed 100% accuracy for sepsis detection. The described technology could be employed in rapid, ultrasensitive, multiplexed plasmonic sensing in POC settings for myriad clinical conditions.
Collapse
Affiliation(s)
- Lip Ket Chin
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Jun-Yeong Yang
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Benjamin Chousterman
- Département d’Anesthésie-Réanimation, Hôpital Lariboisière, AP-HP, 75010, Paris, France
| | - Sunghoon Jung
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Do-Geun Kim
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Dong-Ho Kim
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Seunghun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Republic of Korea
- Corresponding authors: Hyungsoon Im (), Sung-Gyu Park ()
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Corresponding authors: Hyungsoon Im (), Sung-Gyu Park ()
| |
Collapse
|
17
|
Mosevoll KA, Hansen BA, Gundersen IM, Reikvam H, Bruserud Ø, Bruserud Ø, Wendelbo Ø. Systemic Metabolomic Profiles in Adult Patients with Bacterial Sepsis: Characterization of Patient Heterogeneity at the Time of Diagnosis. Biomolecules 2023; 13:biom13020223. [PMID: 36830594 PMCID: PMC9953377 DOI: 10.3390/biom13020223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is a dysregulated host response to infection that causes potentially life-threatening organ dysfunction. We investigated the serum metabolomic profile at hospital admission for patients with bacterial sepsis. The study included 60 patients; 35 patients fulfilled the most recent 2016 Sepsis-3 criteria whereas the remaining 25 patients only fulfilled the previous Sepsis-2 criteria and could therefore be classified as having systemic inflammatory response syndrome (SIRS). A total of 1011 identified metabolites were detected in our serum samples. Ninety-seven metabolites differed significantly when comparing Sepsis-3 and Sepsis-2/SIRS patients; 40 of these metabolites constituted a heterogeneous group of amino acid metabolites/peptides. When comparing patients with and without bacteremia, we identified 51 metabolites that differed significantly, including 16 lipid metabolites and 11 amino acid metabolites. Furthermore, 42 metabolites showed a highly significant association with the maximal total Sequential Organ Failure Assessment (SOFA )score during the course of the disease (i.e., Pearson's correlation test, p-value < 0.005, and correlation factor > 0.6); these top-ranked metabolites included 23 amino acid metabolites and a subset of pregnenolone/progestin metabolites. Unsupervised hierarchical clustering analyses based on all 42 top-ranked SOFA correlated metabolites or the subset of 23 top-ranked amino acid metabolites showed that most Sepsis-3 patients differed from Sepsis-2/SIRS patients in their systemic metabolic profile at the time of hospital admission. However, a minority of Sepsis-3 patients showed similarities with the Sepsis-2/SIRS metabolic profile even though several of them showed a high total SOFA score. To conclude, Sepsis-3 patients are heterogeneous with regard to their metabolic profile at the time of hospitalization.
Collapse
Affiliation(s)
- Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Bent Are Hansen
- Department of Medicine, Central Hospital for Sogn and Fjordane, 6812 Førde, Norway
| | - Ingunn Margareetta Gundersen
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Correspondence:
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
18
|
Chang CM, Hsieh MS, Yang CJ, How CK, Chen PC, Meng YH. Effects of empiric antibiotic treatment based on hospital cumulative antibiograms in patients with bacteraemic sepsis: a retrospective cohort study. Clin Microbiol Infect 2023:S1198-743X(23)00005-8. [PMID: 36641052 DOI: 10.1016/j.cmi.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To assess the effects of empiric antibiotics with different degrees of appropriateness based on hospital cumulative antibiograms in patients with bacteraemic sepsis presenting to the emergency department (ED). METHODS This retrospective cohort study included adult patients with sepsis and positive blood culture reports in the ED from February 2016 to December 2018. Based on isolated pathogens and empiric antibiotics which the patients received, these patients were divided into two groups using a cut-off of 70% for overall antimicrobial susceptibility (OAS) on hospital cumulative antibiograms 6 months prior to ED admission. Multivariate regression and sensitivity analyses were performed. RESULTS In this study, 1055 patients were included. We used multivariate regression models which were adjusted for age, sex, co-morbidities, site of infection, organ dysfunction, and septic shock. Empiric antibiotics with OAS of ≥70% were associated with reduced in-hospital deaths (adjusted odds ratio, 0.46; 95% CI, 0.28-0.77) and 30-day mortality (adjusted odds ratio, 0.53; 95% CI, 0.33-0.86). They were more likely to result in a shortened length of intensive care unit stay by 1.60 days (95% CI, -3.00 to -0.20). CONCLUSIONS Treatment with empiric antibiotics with OAS of ≥70% based on hospital cumulative antibiograms is associated with lower mortality and shorter length of intensive care unit stay in patients with bacteraemic sepsis in the ED.
Collapse
Affiliation(s)
- Chia-Ming Chang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Emergency Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Ming-Shun Hsieh
- Department of Emergency Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Emergency Medicine, Taipei Veterans General Hospital Taoyuan Branch, Taoyuan, Taiwan
| | - Chi-Ju Yang
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Emergency Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Environmental and Occupational Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Hsiang Meng
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Emergency Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
19
|
Patients with Bacterial Sepsis Are Heterogeneous with Regard to Their Systemic Lipidomic Profiles. Metabolites 2022; 13:metabo13010052. [PMID: 36676977 PMCID: PMC9864715 DOI: 10.3390/metabo13010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In the present study, we investigated the systemic/serum lipidomic profile at the time of hospital admission for patients with bacterial sepsis. The study included 60 patients; 35 patients fulfilled the most recent 2016 Sepsis-3 criteria (referred to as Sepsis-3) whereas the remaining 25 patients had sepsis only according to the previous Sepsis-2 definition and could be classified as having Systemic Inflammatory Response Syndrome (SIRS). A total of 966 lipid metabolites were identified. Patients fulfilling the Sepsis-3 criteria differed from the Sepsis-2 patients with regard to only 15 lipid metabolites, and especially sphingolipids metabolism differed between these patient subsets. A total of only 43 metabolites differed between patients with and without bacteremia, including 12 lysophosphatidylcholines and 18 triacylglycerols (15 C18/C20 fatty acid metabolites decreased and three C14 myristate acid metabolites that were increased in bacteremia). Unsupervised hierarchical clustering analyses based on the identified sphingolipids, phosphatidylcholine and triacylglycerols showed that (i) the majority of Sepsis-3 patients differed from SIRS patients especially with regard to lysophosphatidylcholine levels; (ii) the minority of Sepsis-3 patients that clustered together with the majority of SIRS patients showed lower Sequential Organ Failure Assessment (SOFA) scores than the other Sepsis-3 patients; and (iii) the variation between the patients in the identified/altered sphingolipid and triacylglycerol metabolites further increased the heterogeneity of Sepsis-3 patients with regard to their systemic lipidomic profile at the time of diagnosis. To conclude, patients fulfilling the Sepsis-3 criteria differ with regard to their metabolic profile, and this variation depends on disease severity.
Collapse
|
20
|
Komorowski M, Green A, Tatham KC, Seymour C, Antcliffe D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine 2022; 86:104394. [PMID: 36470834 PMCID: PMC9783125 DOI: 10.1016/j.ebiom.2022.104394] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Over the last years, there have been advances in the use of data-driven techniques to improve the definition, early recognition, subtypes characterisation, prognostication and treatment personalisation of sepsis. Some of those involve the discovery or evaluation of biomarkers or digital signatures of sepsis or sepsis sub-phenotypes. It is hoped that their identification may improve timeliness and accuracy of diagnosis, suggest physiological pathways and therapeutic targets, inform targeted recruitment into clinical trials, and optimise clinical management. Given the complexities of the sepsis response, panels of biomarkers or models combining biomarkers and clinical data are necessary, as well as specific data analysis methods, which broadly fall under the scope of machine learning. This narrative review gives a brief overview of the main machine learning techniques (mainly in the realms of supervised and unsupervised methods) and published applications that have been used to create sepsis diagnostic tools and identify biomarkers.
Collapse
Affiliation(s)
- Matthieu Komorowski
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom,Corresponding author.
| | - Ashleigh Green
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kate C. Tatham
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom,Anaesthetics, Perioperative Medicine and Pain Department, Royal Marsden NHS Foundation Trust, 203 Fulham Rd, London, SW3 6JJ, United Kingdom
| | - Christopher Seymour
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Antcliffe
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
21
|
Mohammed Y, Goodlett DR, Cheng MP, Vinh DC, Lee TC, Mcgeer A, Sweet D, Tran K, Lee T, Murthy S, Boyd JH, Singer J, Walley KR, Patrick DM, Quan C, Ismail S, Amar L, Pal A, Bassawon R, Fesdekjian L, Gou K, Lamontagne F, Marshall J, Haljan G, Fowler R, Winston BW, Russell JA. Longitudinal Plasma Proteomics Analysis Reveals Novel Candidate Biomarkers in Acute COVID-19. J Proteome Res 2022; 21:975-992. [PMID: 35143212 PMCID: PMC8864781 DOI: 10.1021/acs.jproteome.1c00863] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/15/2022]
Abstract
The host response to COVID-19 pathophysiology over the first few days of infection remains largely unclear, especially the mechanisms in the blood compartment. We report on a longitudinal proteomic analysis of acute-phase COVID-19 patients, for which we used blood plasma, multiple reaction monitoring with internal standards, and data-independent acquisition. We measured samples on admission for 49 patients, of which 21 had additional samples on days 2, 4, 7, and 14 after admission. We also measured 30 externally obtained samples from healthy individuals for comparison at baseline. The 31 proteins differentiated in abundance between acute COVID-19 patients and healthy controls belonged to acute inflammatory response, complement activation, regulation of inflammatory response, and regulation of protein activation cascade. The longitudinal analysis showed distinct profiles revealing increased levels of multiple lipid-associated functions, a rapid decrease followed by recovery for complement activation, humoral immune response, and acute inflammatory response-related proteins, and level fluctuation in the regulation of smooth muscle cell proliferation, secretory mechanisms, and platelet degranulation. Three proteins were differentiated between survivors and nonsurvivors. Finally, increased levels of fructose-bisphosphate aldolase B were determined in patients with exposure to angiotensin receptor blockers versus decreased levels in those exposed to angiotensin-converting enzyme inhibitors. Data are available via ProteomeXchange PXD029437.
Collapse
Affiliation(s)
- Yassene Mohammed
- Genome BC Proteomics Centre, University
of Victoria, Victoria V8Z 5N3, British Columbia,
Canada
- Center for Proteomics and Metabolomics,
Leiden University Medical Center, Leiden 2333 ZA,
Netherlands
| | - David R. Goodlett
- Genome BC Proteomics Centre, University
of Victoria, Victoria V8Z 5N3, British Columbia,
Canada
- Department of Biochemistry and Microbiology,
University of Victoria, Victoria V8W 2Y2, British Columbia,
Canada
- International Centre for Cancer Vaccine Science,
University of Gdansk, Gdansk 80-822, European Union,
Poland
| | - Matthew P. Cheng
- Division of Infectious Diseases (Department of
Medicine), Division of Medical Microbiology (Department of Pathology and Laboratory
Medicine), McGill University Health Centre, Montreal H4A 3J1,
Quebec, Canada
| | - Donald C. Vinh
- Division of Infectious Diseases (Department of
Medicine), Division of Medical Microbiology (Department of Pathology and Laboratory
Medicine), McGill University Health Centre, Montreal H4A 3J1,
Quebec, Canada
| | - Todd C. Lee
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Allison Mcgeer
- Mt. Sinai Hospital and University of
Toronto, University Avenue, Toronto M5G 1X5, Ontario,
Canada
| | - David Sweet
- Division of Critical Care Medicine, Department of
Emergency Medicine, Vancouver General Hospital and University of British
Columbia, Vancouver V5Z 1M9, British Columbia,
Canada
| | - Karen Tran
- Division of General Internal Medicine,
Vancouver General Hospital and University of British
Columbia, Vancouver V5Z 1M9, British Columbia,
Canada
| | - Terry Lee
- Centre for Health Evaluation and Outcome Science
(CHEOS), St. Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver V6Z 1Y6, British Columbia,
Canada
| | - Srinivas Murthy
- BC Children’s Hospital,
University of British Columbia, Vancouver V6H 3N1, British Columbia,
Canada
| | - John H. Boyd
- Centre for Heart Lung Innovation, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
| | - Joel Singer
- Centre for Health Evaluation and Outcome Science
(CHEOS), St. Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver V6Z 1Y6, British Columbia,
Canada
| | - Keith R. Walley
- Centre for Heart Lung Innovation, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
| | - David M. Patrick
- British Columbia Centre for Disease
Control (BCCDC) and University of British Columbia, Vancouver V5Z 4R4,
British Columbia, Canada
| | - Curtis Quan
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Sara Ismail
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Laetitia Amar
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Aditya Pal
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Rayhaan Bassawon
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Lara Fesdekjian
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | - Karine Gou
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
| | | | - John Marshall
- Department of Surgery, St.
Michael’s Hospital, Toronto M5B 1W8, Ontario,
Canada
| | - Greg Haljan
- Division of Critical Care, Surrey
Memorial Hospital and University of British Columbia, Surrey V3V 1Z2,
British Columbia, Canada
| | - Robert Fowler
- Sunnybrook Health Sciences
Centre, Toronto M4N 3M5, Ontario, Canada
| | - Brent W. Winston
- Departments of Critical Care Medicine, Medicine and
Biochemistry and Molecular Biology, University of Calgary,
Calgary T2N 4N1, Alberta, Canada
| | - James A. Russell
- Centre for Heart Lung Innovation, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
| | - ARBs CORONA I
- Genome BC Proteomics Centre, University
of Victoria, Victoria V8Z 5N3, British Columbia,
Canada
- Center for Proteomics and Metabolomics,
Leiden University Medical Center, Leiden 2333 ZA,
Netherlands
- Department of Biochemistry and Microbiology,
University of Victoria, Victoria V8W 2Y2, British Columbia,
Canada
- International Centre for Cancer Vaccine Science,
University of Gdansk, Gdansk 80-822, European Union,
Poland
- Department of Medicine, McGill
University, Montreal H4A 3J1, Quebec, Canada
- Mt. Sinai Hospital and University of
Toronto, University Avenue, Toronto M5G 1X5, Ontario,
Canada
- Division of Critical Care Medicine, Department of
Emergency Medicine, Vancouver General Hospital and University of British
Columbia, Vancouver V5Z 1M9, British Columbia,
Canada
- Division of General Internal Medicine,
Vancouver General Hospital and University of British
Columbia, Vancouver V5Z 1M9, British Columbia,
Canada
- Centre for Health Evaluation and Outcome Science
(CHEOS), St. Paul’s Hospital, University of British
Columbia, 1081 Burrard Street, Vancouver V6Z 1Y6, British Columbia,
Canada
- BC Children’s Hospital,
University of British Columbia, Vancouver V6H 3N1, British Columbia,
Canada
- Centre for Heart Lung Innovation, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- Division of Critical Care Medicine, St.
Paul’s Hospital, University of British Columbia, 1081 Burrard
Street, Vancouver V6Z 1Y6, British Columbia, Canada
- British Columbia Centre for Disease
Control (BCCDC) and University of British Columbia, Vancouver V5Z 4R4,
British Columbia, Canada
- University of Sherbrooke,
Sherbrooke J1K 2R1, Quebec, Canada
- Department of Surgery, St.
Michael’s Hospital, Toronto M5B 1W8, Ontario,
Canada
- Division of Critical Care, Surrey
Memorial Hospital and University of British Columbia, Surrey V3V 1Z2,
British Columbia, Canada
- Sunnybrook Health Sciences
Centre, Toronto M4N 3M5, Ontario, Canada
- Departments of Critical Care Medicine, Medicine and
Biochemistry and Molecular Biology, University of Calgary,
Calgary T2N 4N1, Alberta, Canada
- Division of Infectious Diseases (Department of
Medicine), Division of Medical Microbiology (Department of Pathology and Laboratory
Medicine), McGill University Health Centre, Montreal H4A 3J1,
Quebec, Canada
| |
Collapse
|
22
|
Rahn S, Becker-Pauly C. Meprin and ADAM proteases as triggers of systemic inflammation in sepsis. FEBS Lett 2022; 596:534-556. [PMID: 34762736 DOI: 10.1002/1873-3468.14225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Systemic inflammatory disorders (SIDs) comprise a broad range of diseases characterized by dysregulated excessive innate immune responses. Severe forms of SIDs can lead to organ failure and death, and their increasing incidence represents a major issue for the healthcare system. Protease-mediated ectodomain shedding of cytokines and their receptors represents a central mechanism in the regulation of inflammatory responses. The metalloprotease A disintegrin and metalloproteinase (ADAM) 17 is the best-characterized ectodomain sheddase capable of releasing TNF-α and soluble IL-6 receptor, which are decisive factors of systemic inflammation. Recently, meprin metalloproteases were also identified as IL-6 receptor sheddases and activators of the pro-inflammatory cytokines IL-1β and IL-18. In different mouse models of SID, particularly those mimicking a sepsis-like phenotype, ADAM17 and meprins have been found to promote disease progression. In this review, we summarize the role of ADAM10, ADAM17, and meprins in the onset and progression of sepsis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Sascha Rahn
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany
| | | |
Collapse
|
23
|
Zhang Y, Li L, Yan Y, Qi H, Qin J, Ren L, Zhang R. A risk score for early predicting bloodstream infections in febrile obstetric patients: a pilot study. Arch Gynecol Obstet 2021; 306:85-92. [PMID: 34604915 DOI: 10.1007/s00404-021-06269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Early prediction of bloodstream infections (BSI) among obstetric patients remains to be a challenge for clinicians. The objective of this study was to develop a risk score and assess its discriminative ability in febrile obstetric patients in a maternal intensive care unit (ICU). METHODS Between May 2015 and August 2020, a total of 497 febrile obstetric patients were categorized into BSI group (n = 276) and Non-BSI group (n = 221) based on the result of blood cultures. White blood cell count, C-reactive protein (CRP), procalcitonin (PCT), time of interval from amniorrhea to fever (IFAF) and maximum body temperature (Tmax) were compared between the two groups. All patients were divided into training set (n = 298) and validation set (n = 199). The risk score was established using univariate and multivariate logistic regression from patients in the training set, and its discriminative ability was tested among patients in the validation set. RESULTS The levels of neutrophil, CRP, PCT, IFAF and Tmax were significantly higher in BSI group than those in Non-BSI group. PROM, Tmax, neutrophil and CRP acted as independent predictive factors for BSI in the training set. The area under the receiver operating characteristic curve of risk score for early prediction of BSI in the training, validation set and the whole population was 0.829 (95% CI 0.783-0.876), 0.848 (95% CI 0.792-0.903) and 0.838 (95% CI 0.803-0.873), respectively. CONCLUSION The risk score has a feasible discriminatory ability in early prediction of BSI in febrile obstetric patients.
Collapse
Affiliation(s)
- Yaozong Zhang
- Department of Intensive Care Medicine, Chongqing Health Centre for Women and Children, 120 Longshan Road, Chongqing, 400013, China.
| | - Lan Li
- Department of Intensive Care Medicine, Chongqing Health Centre for Women and Children, 120 Longshan Road, Chongqing, 400013, China
| | - Yunsheng Yan
- Department of Intensive Care Medicine, Chongqing Health Centre for Women and Children, 120 Longshan Road, Chongqing, 400013, China
| | - Haifeng Qi
- Department of Intensive Care Medicine, Chongqing Health Centre for Women and Children, 120 Longshan Road, Chongqing, 400013, China
| | - Jiali Qin
- Department of Intensive Care Medicine, Chongqing Health Centre for Women and Children, 120 Longshan Road, Chongqing, 400013, China
| | - Li Ren
- Department of Obstetrics and Gynecology, Chongqing Health Centre for Women and Children, Chongqing, China
| | - Ruoxuan Zhang
- Department of Medicine, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Cui W, Chen J, Yu F, Liu W, He M. GYY4137 protected the integrity of the blood-brain barrier via activation of the Nrf2/ARE pathway in mice with sepsis. FASEB J 2021; 35:e21710. [PMID: 34143548 DOI: 10.1096/fj.202100074r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Injury to the blood-brain barrier (BBB) plays a vital role in sepsis-associated encephalopathy (SAE), which is one of the most common complications of sepsis. GYY4137, a new synthetic compound of hydrogen sulfide (H2 S), has extensive biological benefits. In this study, we focused on the protective effects of GYY4137 on the BBB in septic mice and the underlying mechanisms. The results suggested that whether administrated at the same time or 3 hours after LPS injection, GYY4137 both significantly alleviated the clinical symptoms and the long-term prognosis. Besides, GYY4137 improved the pathological abnormalities of septic mice. Moreover, the degradation of tight junctions in the BBB was considerably inhibited by GYY4137. In addition, GYY4137 significantly attenuated inflammation and apoptosis in the brain. Furthermore, GYY4137 activated the Nrf2/ARE pathway through the sulfhydrylation of Keap1 and inhibited oxidative stress. ML385, the specific inhibitor of Nrf2, significantly reversed the protective effects of GYY4137 in sepsis mice. In conclusion, this study indicated that through the sulfhydrylation of Keap1, GYY4137 activated the Nrf2/ARE pathway and exerted anti-inflammatory, anti-apoptotic and antioxidant effects in septic mice that consequently protected the integrity of the BBB and improved the clinical outcome of sepsis. Our findings suggest that GYY4137 might be a promising agent for the treatment of SAE.
Collapse
Affiliation(s)
- Wei Cui
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Feng Yu
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenhong Liu
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Maolin He
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Bloch O, Perl SH, Lazarovitch T, Zelnik-Yovel D, Love I, Mendel-Cohen L, Goltsman G, Flor H, Rapoport MJ. Hyper-Activation of Endogenous GLP-1 System to Gram-negative Sepsis Is Associated With Early Innate Immune Response and Modulated by Diabetes. Shock 2021; 55:796-805. [PMID: 33079891 DOI: 10.1097/shk.0000000000001683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Culture-positive gram-negative sepsis induces greater magnitude of early innate immunity /inflammatory response compared with culture-negative sepsis. We previously demonstrated increased activation of anti-inflammatory Glucagon Like Peptide-1 (GLP-1) hormone in initial phase of sepsis more pronounced in diabetes patients. However, whether GLP-1 system is hyperactivated during the early innate immune response to gram-negative sepsis and modulated by diabetes remains unknown. OBJECTIVES Total and active GLP-1, soluble Dipeptidyl peptidase 4 (sDPP-4) enzyme, and innate immunity markers presepsin (sCD14) and procalcitonin (PCT) in plasma were determined by ELISA on admission and after 2 to 4 days in 37 adult patients with and without type 2 diabetes and gram-negative or culture-negative sepsis of different severity. RESULTS Severe but not non-severe sepsis was associated with markedly increased GLP-1 system response, which correlated with PCT and the organ dysfunction marker lactate. Culture-positive gram-negative bacteria but not culture-negative sepsis induced hyper-activation of GLP-1 system, which correlated with increased innate immune markers sCD14, PCT, and lactate. GLP-1 inhibitory enzyme sDPP-4 was down regulated by sepsis and correlated negatively with sCD14 in gram-negative sepsis. Diabetic patients demonstrated increased GLP-1 response but significantly weaker innate immune response to severe and gram-negative sepsis. CONCLUSIONS Early stage of gram-negative sepsis is characterized by endogenous GLP-1 system hyperactivity associated with over activation of innate immune response and organ dysfunction, which are modulated by diabetes. Total GLP-1 may be novel marker for rapid diagnosis of gram-negative sepsis and its severity.
Collapse
Affiliation(s)
- Olga Bloch
- Diabetes and Autoimmunity Research Laboratory, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Sivan H Perl
- Department 'C' of Internal Medicine, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Tsilia Lazarovitch
- Laboratory of Microbiology, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Dana Zelnik-Yovel
- Department 'C' of Internal Medicine, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Itamar Love
- Department 'C' of Internal Medicine, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Lior Mendel-Cohen
- Department 'C' of Internal Medicine, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Galina Goltsman
- Department 'C' of Internal Medicine, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Hadar Flor
- Department 'C' of Internal Medicine, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| | - Micha J Rapoport
- Diabetes and Autoimmunity Research Laboratory, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
- Department 'C' of Internal Medicine, Yitzhak Shamir Medical Center Affiliated to Sackler Medical School Tel Aviv University, Zerifin, Israel
| |
Collapse
|
26
|
Matrix metalloproteinase MMP-8, TIMP-1 and MMP-8/TIMP-1 ratio in plasma in methicillin-sensitive Staphylococcus aureus bacteremia. PLoS One 2021; 16:e0252046. [PMID: 34043679 PMCID: PMC8158883 DOI: 10.1371/journal.pone.0252046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background Matrix metalloproteinase-8 (MMP-8) and tissue inhibitor of metalloproteinases-1 (TIMP-1) have been shown to predict prognosis in sepsis. However, MMP-8 and TIMP-1 in Staphylococcus aureus bacteremia (SAB) lacks evaluation and their role in the pathogenesis of SAB is unclear. Methods MMP-8 and TIMP-1 and MMP-8/TIMP-1 molar ratio were determined at days 3, 5 and 28 from positive blood cultures in patients with methicillin-sensitive SAB and the connection to disease severity and early mortality was determined. Results Altogether 395 SAB patients were included. Patients with severe sepsis or infection focus presented higher MMP-8 levels at day 3 and 5 (p<0.01). Higher day 3 and 5 MMP-8 levels were associated to mortality at day 14 and 28 (p<0.01) and day 90 (p<0.05). Day 3 MMP-8 cut-off value of 203 ng/ml predicted death within 14 days with an area under the curve (AUC) of 0.70 (95% CI 0.57–0.82) (p<0.01). Day 5 MMP-8 cut-off value of 239 ng/ml predicted death within 14 days with an AUC of 0.76 (95% CI 0.65–0.87) (p<0.001). The results for MMP-8/TIMP-1 resembled that of MMP-8. TIMP-1 had no prognostic impact. In Cox regression analysis day 3 or 5 MMP-8 or day 3 MMP-8/TIMP-1 had no prognostic impact whereas day 5 MMP-8/TIMP-1 predicted mortality within 14 days (HR, 4.71; CI, 95% 1.67–13.3; p<0.01). Conclusion MMP-8 and MMP-8/TIMP-1 ratio were high 3–5 days after MS-SAB diagnosis in patients with an infection focus, severe sepsis or mortality within 14 days suggesting that matrix metalloproteinase activation might play a role in severe SAB.
Collapse
|
27
|
Thorgersen EB, Asvall J, Frøysnes IS, Schjalm C, Larsen SG, Dueland S, Andersson Y, Fodstad Ø, Mollnes TE, Flatmark K. Increased Local Inflammatory Response to MOC31PE Immunotoxin After Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy. Ann Surg Oncol 2021; 28:5252-5262. [PMID: 34019185 PMCID: PMC8349350 DOI: 10.1245/s10434-021-10022-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022]
Abstract
Background Despite extensive cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS-HIPEC), most patients with resectable peritoneal metastases from colorectal cancer experience disease relapse. MOC31PE immunotoxin is being explored as a novel treatment option for these patients. MOC31PE targets the cancer-associated epithelial cell adhesion molecule, and kills cancer cells by distinct mechanisms, simultaneously causing immune activation by induction of immunogenic cell death (ICD). Methods Systemic and local cytokine responses were analyzed in serum and intraperitoneal fluid samples collected the first three postoperative days from clinically comparable patients undergoing CRS-HIPEC with (n = 12) or without (n = 26) intraperitoneal instillation of MOC31PE. A broad panel of 27 pro- and antiinflammatory interleukins, chemokines, interferons, and growth factors was analyzed using multiplex technology. Results The time course and magnitude of the systemic and local postoperative cytokine response after CRS-HIPEC were highly compartmentalized, with modest systemic responses contrasting substantial intraperitoneal responses. Administration of MOC31PE resulted in changes that were broader and of higher magnitude compared with CRS-HIPEC alone. Significantly increased levels of innate proinflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF) as well as an interesting time response curve for the strong T-cell stimulator interferon (IFN)-γ and its associated chemokine interferon gamma-induced protein/chemokine (C-X-C motif) ligand 10 (IP-10) were detected, all associated with ICD. Conclusions Our study revealed a predominately local rather than systemic inflammatory response to CRS-HIPEC, which was strongly enhanced by MOC31PE treatment. The MOC31PE-induced intraperitoneal inflammatory reaction could contribute to improve remnant cancer cell killing, but the mechanisms remain to be elucidated in future studies. Supplementary Information The online version contains supplementary material available at 10.1245/s10434-021-10022-0.
Collapse
Affiliation(s)
- Ebbe Billmann Thorgersen
- Department of Gastroenterological Surgery, Oslo University Hospital The Radium Hospital, Oslo, Norway. .,Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | - Jørund Asvall
- Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ida Storhaug Frøysnes
- Department of Tumor Biology, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stein Gunnar Larsen
- Department of Gastroenterological Surgery, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Yvonne Andersson
- Department of Tumor Biology, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Oslo University Hospital The Radium Hospital, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjersti Flatmark
- Department of Gastroenterological Surgery, Oslo University Hospital The Radium Hospital, Oslo, Norway.,Department of Tumor Biology, Oslo University Hospital The Radium Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Yuan X, Chen G, Guo D, Xu L, Gu Y. Polydatin Alleviates Septic Myocardial Injury by Promoting SIRT6-Mediated Autophagy. Inflammation 2021; 43:785-795. [PMID: 32394287 DOI: 10.1007/s10753-019-01153-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is a life-threatening condition. Polydatin (PD), a small natural compound from Polygonum cuspidatum, possesses antioxidant and anti-inflammatory properties. However, the protective mechanism of PD on sepsis-induced acute myocardial damage is still unclear. The aim of this study was to investigate the effect and mechanism of action of PD on lipopolysaccharide (LPS)-induced H9c2 cells and in a rat model of sepsis, and explored the role of PD-upregulated sirtuin (SIRT)6. LPS-induced H9c2 cells were used to simulate sepsis. Cecal ligation and puncture (CLP)-induced sepsis in rats were used to verify the protective effect of PD. ELISA, western blotting, immunofluorescence, immunohistochemistry, and flow cytometry were used to study the protective mechanism of PD against septic myocardial injury. PD pretreatment suppressed LPS-induced H9c2 cell apoptosis by promotion of SIRT6-mediated autophagy. Downregulation of SIRT6 or inhibition of autophagy reversed the protective effect of PD on LPS-induced apoptosis. PD pretreatment also suppressed LPS-induced inflammatory factor expression. CLP-induced sepsis in rats showed that PD pretreatment decreased CLP-induced myocardial apoptosis and serum tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 expression. 3-Methyladenine (autophagy inhibitor) pretreatment prevented the protective effect of PD on septic cardiomyopathy. SIRT6 expression was increased with PD treatment, which confirmed that PD attenuates septic cardiomyopathy by promotion of SIRT6-mediated autophagy. All these results indicate that PD has potential therapeutic effects that alleviate septic myocardial injury by promotion of SIRT6-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.,Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, 750004, China
| | - Guo Chen
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China
| | - Dongfeng Guo
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| | - Lei Xu
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| | - Yongfeng Gu
- Department of Emergency Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, China.
| |
Collapse
|
29
|
Almalki WH. The sepsis induced defective aggravation of immune cells: a translational science underling chemico-biological interactions from altered bioenergetics and/or cellular metabolism to organ dysfunction. Mol Cell Biochem 2021; 476:2337-2344. [PMID: 33586093 DOI: 10.1007/s11010-021-04066-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/11/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is described as a systemic immune response of the body to an infectious process that might result in dysfunctional organs that may lead to death. In clinical practice, sepsis is considered a medical emergency. The initial event in sepsis caused by a deregulated host response towards harmful microorganisms that leads to an aggravated systemic inflammatory response syndrome (SIRS) to tackle with pathogen invasion and a compensatory anti-inflammatory response syndrome (CARS) that lasts for several days. The inflammatory response and the cellular damage as well as the risk of an organ dysfunction are in direct proportion. Even though, the pathogenesis of sepsis remains unclear, many studies have shown evidence of role of oxidants and antioxidants in sepsis. The altered innate and adaptive immune cell and upregulated production and release of cytokines and chemokines most probably due to involvement of JAK-STAT pathway, disturbance in redox homeostasis due to low clearance of lactate and other oxidative stressors, contributes to sepsis process to organ dysfunction which contribute to increase rates of mortality among these patients. Hence, the treatment strategies for sepsis include antibiotics, ventilator and blood glucose management and other strategies for resuscitation are rapidly progressing. In the current review, we mainly concentrate on throwing light on the main molecular aspects and chemico-biological interactions that shows involvement in pathways manipulating alteration in physiology of immune cells (innate and adaptive) that change the bioenergetics/cellular metabolism to organ dysfunction and correlation of these altered pathway, improve the understating for new therapeutic target for sepsis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, UMM AL-QURA UNIVERSITY, Makkah, Saudi Arabia.
| |
Collapse
|
30
|
Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020; 46:751-775. [PMID: 31612270 PMCID: PMC7427761 DOI: 10.1007/s00068-019-01235-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
In 1994, the "danger model" argued that adaptive immune responses are driven rather by molecules released upon tissue damage than by the recognition of "strange" molecules. Thus, an alternative to the "self versus non-self recognition model" has been provided. The model, which suggests that the immune system discriminates dangerous from safe molecules, has established the basis for the future designation of damage-associated molecular patterns (DAMPs), a term that was coined by Walter G. Land, Seong, and Matzinger. The pathological importance of DAMPs is barely somewhere else evident as in the posttraumatic or post-surgical inflammation and regeneration. Since DAMPs have been identified to trigger specific immune responses and inflammation, which is not necessarily detrimental but also regenerative, it still remains difficult to describe their "friend or foe" role in the posttraumatic immunogenicity and healing process. DAMPs can be used as biomarkers to indicate and/or to monitor a disease or injury severity, but they also may serve as clinically applicable parameters for optimized indication of the timing for, i.e., secondary surgeries. While experimental studies allow the detection of these biomarkers on different levels including cellular, tissue, and circulatory milieu, this is not always easily transferable to the human situation. Thus, in this review, we focus on the recent literature dealing with the pathophysiological importance of DAMPs after traumatic injury. Since dysregulated inflammation in traumatized patients always implies disturbed resolution of inflammation, so-called model of suppressing/inhibiting inducible DAMPs (SAMPs) will be very briefly introduced. Thus, an update on this topic in the field of trauma will be provided.
Collapse
Affiliation(s)
- Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590, Frankfurt, Germany.
| | - Walter Gottlieb Land
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Bruserud Ø, Aarstad HH, Tvedt THA. Combined C-Reactive Protein and Novel Inflammatory Parameters as a Predictor in Cancer-What Can We Learn from the Hematological Experience? Cancers (Basel) 2020; 12:cancers12071966. [PMID: 32707721 PMCID: PMC7409204 DOI: 10.3390/cancers12071966] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The acute phase reaction is a systemic response to acute or chronic inflammation. The serum level of C-reactive protein (CRP) is the only acute phase biomarker widely used in routine clinical practice, including its uses for prognostics and therapy monitoring in cancer patients. Although Interleukin 6 (IL6) is a main trigger of the acute phase reactions, a series of acute phase reactants can contribute (e.g., other members in IL6 family or IL1 subfamily, and tumor necrosis factor α). However, the experience from patients receiving intensive chemotherapy for hematological malignancies has shown that, besides CRP, other biomarkers (e.g., cytokines, soluble cytokine receptors, soluble adhesion molecules) also have altered systemic levels as a part of the acute phase reaction in these immunocompromised patients. Furthermore, CRP and white blood cell counts can serve as a dual prognostic predictor in solid tumors and hematological malignancies. Recent studies also suggest that biomarker profiles as well as alternative inflammatory mediators should be further developed to optimize the predictive utility in cancer patients. Finally, the experience from allogeneic stem cell transplantation suggests that selected acute phase reactants together with specific markers of organ damages are useful for predicting or diagnosing graft versus host disease. Acute phase proteins may also be useful to identify patients (at risk of) developing severe immune-mediated toxicity after anticancer immunotherapy. To conclude, future studies of acute phase predictors in human malignancies should not only investigate the conventional inflammatory mediators (e.g., CRP, white blood cell counts) but also combinations of novel inflammatory parameters with specific markers of organ damages.
Collapse
Affiliation(s)
- Øystein Bruserud
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway;
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Correspondence: ; Tel.: +47-5597-2997
| | - Helene Hersvik Aarstad
- Section for Hematology, Institute of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway;
| | | |
Collapse
|
32
|
Tsujimoto H, Horiguchi H, Matsumoto Y, Takahata R, Shinomiya N, Yamori T, Miyazaki H, Ono S, Saitoh D, Kishi Y, Ueno H. A Potential Mechanism of Tumor Progression during Systemic Infections Via the Hepatocyte Growth Factor (HGF)/c-Met Signaling Pathway. J Clin Med 2020; 9:jcm9072074. [PMID: 32630328 PMCID: PMC7408644 DOI: 10.3390/jcm9072074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 02/04/2023] Open
Abstract
Background: Increasing evidence has demonstrated that postoperative infectious complications (PICs) after digestive surgery are significantly associated with negative long-term outcomes; however, precise mechanisms of how PICs affect the poor long-term survival remain unclear. Here, we focused on the hepatocyte growth factor (HGF)/c-Met signaling pathway as one of those mechanisms. Methods: In the clinical setting, serum HGF levels were measured in the patients with sepsis and those with PICs after undergoing esophagectomy. Using a liver metastasis mouse model with cecal ligation and puncture (CLP), expressions of HGF and the roles of the HGF/c-Met pathway in the progression of tumor cells were examined. Results: Serum HGF levels were very high in the patients with intra-abdominal infection on postoperative days (PODs) 1, 3, and 5; similarly, compared to the patients without PICs, those with PICs had significantly higher serum HGF levels on 1, 3, and 5 days after esophagectomy. The patients with PICs showed poorer overall survival than those without PICs, and the patients with high serum HGF levels on POD 3 showed poorer prognosis than those with low HGF levels. Similarly, at 24 and 72 h after operation, serum levels of HGF in CLP mice were significantly higher than those in sham-operated mice. Intraperitoneal injection of mouse recombinant HGF significantly promoted liver metastases in sham-operated mice on 14 days after surgery. Knocking down c-Met expression on NL17 tumor cells by RNAi technology significantly inhibited the promotion of CLP-induced liver metastases. Conclusions: Infections after surgery increased serum HGF levels in the clinical as well as experimental settings. Induction of high serum HGF levels by CLP promoted liver metastases in a murine liver metastasis model, suggesting the involvement of the HGF/c-Met signaling pathway in tumor promotion mechanisms. Thus, targeting the HGF/c-Met signaling pathway may be a promising approach for malignant tumors, particularly in the patients with PICs.
Collapse
Affiliation(s)
- Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.H.); (Y.M.); (R.T.); (S.O.); (Y.K.); (H.U.)
- Correspondence: ; Tel.: +81-4-2995-1637
| | - Hiroyuki Horiguchi
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.H.); (Y.M.); (R.T.); (S.O.); (Y.K.); (H.U.)
| | - Yusuke Matsumoto
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.H.); (Y.M.); (R.T.); (S.O.); (Y.K.); (H.U.)
| | - Risa Takahata
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.H.); (Y.M.); (R.T.); (S.O.); (Y.K.); (H.U.)
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan;
| | - Takao Yamori
- Pharmaceuticals and Medical Devices Agency, 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan;
| | - Hiromi Miyazaki
- Division of Traumatology, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.M.); (D.S.)
| | - Satoshi Ono
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.H.); (Y.M.); (R.T.); (S.O.); (Y.K.); (H.U.)
| | - Daizoh Saitoh
- Division of Traumatology, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.M.); (D.S.)
| | - Yoji Kishi
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.H.); (Y.M.); (R.T.); (S.O.); (Y.K.); (H.U.)
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa 359-8513, Japan; (H.H.); (Y.M.); (R.T.); (S.O.); (Y.K.); (H.U.)
| |
Collapse
|
33
|
Biomarkers of inflammation and the etiology of sepsis. Biochem Soc Trans 2020; 48:1-14. [PMID: 32049312 DOI: 10.1042/bst20190029] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
Sepsis is characterized as a life-threatening organ dysfunction syndrome that is caused by a dysregulated host response to infection. The main etiological causes of sepsis are bacterial, fungal, and viral infections. Last decades clinical and preclinical research contributed to a better understanding of pathophysiology of sepsis. The dysregulated host response in sepsis is complex, with both pathogen-related factors contributing to disease, as well as immune-cell mediated inflammatory responses that can lead to adverse outcomes in early or advanced stages of disease. Due to its heterogenous nature, clinical diagnosis remains challenging and sepsis-specific treatment options are still lacking. Classification and early identification of patient subgroups may aid clinical decisions and improve outcome in sepsis patients. The initial clinical presentation is rather similar in sepsis of different etiologies, however, inflammatory profiles may be able to distinguish between different etiologies of infections. In this review, we summarize the role and the discriminating potency of host-derived inflammatory biomarkers in the context of the main etiological types of sepsis.
Collapse
|
34
|
Association of Systemic Inflammatory Response Syndrome with Bacteremia in Patients with Sepsis. ACTA ACUST UNITED AC 2020; 40:51-56. [PMID: 31605591 DOI: 10.2478/prilozi-2019-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to evaluate the usability of systemic inflammatory response syndrome (SIRS) and commonly used biochemical parameters as predictors for positive blood culture in patients with sepsis. The study included 313 patients aged ≥18 years with severe sepsis and septic shock consecutively admitted in the Intensive Care Unit (ICU) of the University Clinic for Infectious Diseases in Skopje, Republic of North Macedonia. The study took place from January 1, 2011 to December 31, 2017. We recorded demographic variables, common laboratory tests, SIRS parameters, site of infection, comorbidities and Sequential Organ Failure Assessment (SOFA) score. Blood cultures were positive in 65 (20.8%) patients with sepsis. Gram-positive bacteria were isolated from 35 (53.8%) patients. From the evaluated variables in this study, only the presence of four SIRS parameters was associated with bacteremia, finding that will help to predict bacteremia and initiate early appropriate therapy in septic patients.
Collapse
|
35
|
Komori A, Abe T, Kushimoto S, Ogura H, Shiraishi A, Saitoh D, Fujishima S, Mayumi T, Naito T, Hifumi T, Shiino Y, Nakada TA, Tarui T, Otomo Y, Okamoto K, Umemura Y, Kotani J, Sakamoto Y, Sasaki J, Shiraishi SI, Takuma K, Tsuruta R, Hagiwara A, Yamakawa K, Masuno T, Takeyama N, Yamashita N, Ikeda H, Ueyama M, Fujimi S, Gando S. Characteristics and outcomes of bacteremia among ICU-admitted patients with severe sepsis. Sci Rep 2020; 10:2983. [PMID: 32076046 PMCID: PMC7031517 DOI: 10.1038/s41598-020-59830-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The clinical implications of bacteremia among septic patients remain unclear, although a vast amount of data have been accumulated on sepsis. We aimed to compare the clinical characteristics and outcomes of severe sepsis patients with and without bacteremia. This secondary analysis of a multicenter, prospective cohort study included 59 intensive care units (ICUs) in Japan between January 2016 and March 2017. The study cohort comprised 1,184 adults (aged ≥ 16 years) who were admitted to an ICU with severe sepsis and diagnosed according to the Sepsis-2 criteria. Of 1,167 patients included in the analysis, 636 (54.5%) had bacteremia. Those with bacteremia had significantly higher rates of septic shock (66.4% vs. 58.9%, p = 0.01) and higher sepsis severity scores, including the Acute Physiology and Chronic Health Evaluation (APACHE) II and the Sequential Organ Failure Assessment (SOFA). No significant difference in in-hospital mortality was seen between patients with and without bacteremia (25.6% vs. 21.0%, p = 0.08). In conclusion, half of severe sepsis patients in ICUs have bacteremia. Although patients with bacteremia had more severe state, between-group differences in patient-centered outcomes, such as in-hospital mortality, have not been fully elucidated.
Collapse
Affiliation(s)
- Akira Komori
- Department of General Medicine, Juntendo University, Tokyo, Japan
| | - Toshikazu Abe
- Department of General Medicine, Juntendo University, Tokyo, Japan. .,Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan. .,Department of Health Services Research, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiko Mayumi
- Department of Emergency Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Toshio Naito
- Department of General Medicine, Juntendo University, Tokyo, Japan
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Yasukazu Shiino
- Department of Acute Medicine, Kawasaki Medical School, Kurashiki, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takehiko Tarui
- Department of Trauma and Critical Care Medicine, Kyorin University School of Medicine, Mitaka, Japan
| | - Yasuhiro Otomo
- Trauma and Acute Critical Care Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohji Okamoto
- Department of Surgery, Center for Gastroenterology and Liver Disease, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
| | - Yutaka Umemura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Joji Kotani
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichiro Sakamoto
- Emergency and Critical Care Medicine, Saga University Hospital, Saga, Japan
| | - Junichi Sasaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shin-Ichiro Shiraishi
- Department of Emergency and Critical Care Medicine, Aizu Chuo Hospital, Aizuwakamatsu, Japan
| | - Kiyotsugu Takuma
- Emergency & Critical Care Center, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Japan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency & Critical Care Center, Yamaguchi University Hospital, Ube, Japan
| | - Akiyoshi Hagiwara
- Department of Emergency Medicine, Niizashiki Chuo General Hospital, Niiza, Japan
| | - Kazuma Yamakawa
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Tomohiko Masuno
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | - Naoshi Takeyama
- Advanced Critical Care Center, Aichi Medical University Hospital, Nagakute, Japan
| | - Norio Yamashita
- Advanced Emergency Medical Service Center, Kurume University Hospital, Kurume, Japan
| | - Hiroto Ikeda
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Masashi Ueyama
- Department of Trauma, Critical Care Medicine, and Burn Center, Japan Community Healthcare Organization, Chukyo Hospital, Nagoya, Japan
| | - Satoshi Fujimi
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Satoshi Gando
- Division of Acute and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Acute and Critical Care Medicine, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | | |
Collapse
|
36
|
Franza L, Costantini B, Corrado G, Spanu T, Covino M, Ojetti V, Quagliozzi L, Biscione A, Taccari F, Fagotti A, Scambia G, Tamburrini E. Risk factors for bloodstream infections in gynecological cancer. Int J Gynecol Cancer 2020; 30:245-251. [PMID: 31915135 DOI: 10.1136/ijgc-2019-000861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Infections are a threat to frail patients as they have a higher risk of developing serious complications from bloodstream pathogens. The aim of this study was to determine which factors can predict or diagnose bloodstream infections in patients with an underlying gynecologic malignancy. MATERIALS AND METHODS Between July 2016 and December 2017, 68 patients visiting the emergency room with an underlying gynecologic malignancy were evaluated. Variables concerning underlying disease, invasive procedures, and laboratory and clinical parameters were analyzed. Patients were divided into three groups based on their blood and urine specimens (positive blood specimens, positive urine specimens, and no positive specimens; patients who had both positive blood and urine specimens were included in the group of positive blood specimens). Risk factors for surgical site infections, recent (<30 days) surgery, and chemotherapy were studied separately. RESULTS 68 patients were included in the analysis. Mean age was 55.6 years (standard deviation 14.1). 44% of patients had ovarian cancer, 35% cervical cancer, 12% endometrial cancer, and 9% had other cancer types. In total, 96% of all patients had undergone surgery. Patients who had been treated with chemotherapy were at a higher risk of developing bloodstream infection (P=0.04; odds ratio (OR)=7.9). C reactive protein, bilirubin, and oxygen saturation (SO2) were significantly different between patients with an underlying infection and those who had none. Only C reactive protein maintained its significance in a linear model, with a cut-off of 180 mg/L (linear regression, P=0.03; OR=4). CONCLUSIONS Chemotherapy is a risk factor for the development of bloodstream infections in patients with an underlying gynecologic malignancy; C reactive protein could be a useful tool in making this diagnosis.
Collapse
Affiliation(s)
- Laura Franza
- Emergency Medicine, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
- Department of Infectious Diseases, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Barbara Costantini
- Department for Women's and Children's Health and Public Health, Gynecologic Oncology Unit, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Giacomo Corrado
- Department for Women's and Children's Health and Public Health, Gynecologic Oncology Unit, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Teresa Spanu
- Institute of Microbiology, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Marcello Covino
- Emergency Medicine, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Veronica Ojetti
- Emergency Medicine, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Lorena Quagliozzi
- Department for Women's and Children's Health and Public Health, Gynecologic Oncology Unit, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Antonella Biscione
- Department for Women's and Children's Health and Public Health, Gynecologic Oncology Unit, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Francesco Taccari
- Department of Infectious Diseases, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| | - Anna Fagotti
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A Gemelli IRCCS, Roma, Italy
| | - Enrica Tamburrini
- Department of Infectious Diseases, Policlinico Universitario Agostino Gemelli, Roma, Lazio, Italy
| |
Collapse
|
37
|
Hill GW, Gillum TL, Lee BJ, Romano PA, Schall ZJ, Kuennen MR. Reduced inflammatory and phagocytotic responses following normobaric hypoxia exercise despite evidence supporting greater immune challenge. Appl Physiol Nutr Metab 2019; 45:628-640. [PMID: 31751149 DOI: 10.1139/apnm-2019-0657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined changes in immune markers following sustained treadmill exercise in normobaric hypoxia. Ten subjects performed 1 h of treadmill exercise (65% maximal oxygen uptake) under normoxic (NORM: fraction of inspired oxygen (FIO2) = 20.9%) and normobaric hypoxic (HYP: FIO2 = 13.5%) conditions. Blood samples, collected before, after (Post), 1 h after (1-Post), and 4 h after (4-Post) exercise, were assayed for plasma cytokines (interleukin (IL)-1RA/IL-1β/IL-8/tumor necrosis factor alpha (TNF-α)) and markers of leukocyte activation (macrophage inflammatory protein-1β (MIP-1β)/myeloperoxidase (MPO)/soluble intercellular adhesion molecule-1 (sICAM-1)) using ELISA. Pro- to anti-inflammatory cytokine ratios (TNF-α/IL-1RA; IL-1β/IL-1RA) were calculated. Peripheral blood mononuclear cells (PBMC) were analyzed for changes in inflammatory status (phosphorylated nuclear factor kappa B/nuclear factor kappa B) using Western Blot. Data were analyzed with 2-way (condition × time) repeated-measure ANOVAs with Newman-Keuls post hoc tests. MIP-1β was elevated at 1-Post HYP exercise (+11%; p < 0.01) but did not increase following exercise in NORM. TNF-α/IL-1RA and IL-1β/IL-1RA ratios were both reduced (p < 0.05) following HYP exercise (-16% and -52%, respectively, at 1-Post and -7% and -32%, respectively, at 4-Post). IL-8 increased (p < 0.05) at Post and 1-Post NORM (+33% and +57%, respectively) and HYP (+60% and +83%, respectively) exercise, but was not different between conditions (p > 0.05). Interestingly, plasma sICAM-1 did not increase (p > 0.05) following NORM exercise but was increased (p < 0.05) at Post (+17%), 1-Post (+16%), and 4-Post (+14%) HYP exercise. There was also a delayed peak in plasma MPO concentrations following HYP exercise and PBMC exhibited a reduced (p < 0.05) inflammatory capacity at Post (-38%) and 1-Post (-49%). Novelty Following HYP exercise, participants exhibited (i) circulatory bias towards anti-inflammation; (ii) elevated sICAM; (iii) delayed peak in plasma MPO; and (iv) diminished inflammatory response in PBMC. Collectively, these data suggest immunosuppression. This is undesirable, given that elevated MIP-1β (reported here) and elevated intestinal fatty acid binding protein (reported previously) both suggest higher lipopolysaccharide concentrations following HYP exercise.
Collapse
Affiliation(s)
- Garrett W Hill
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA 92504, USA
| | - Ben J Lee
- Occupational Performance Research Group, University of Chichester, Chichester PO19 6PE, UK
| | - Phebe A Romano
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Zach J Schall
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| |
Collapse
|
38
|
Potjo M, Theron AJ, Cockeran R, Sipholi NN, Steel HC, Bale TV, Meyer PW, Anderson R, Tintinger GR. Interleukin-10 and interleukin-1 receptor antagonist distinguish between patients with sepsis and the systemic inflammatory response syndrome (SIRS). Cytokine 2019; 120:227-233. [DOI: 10.1016/j.cyto.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022]
|
39
|
Köhler J, Maletzki C, Koczan D, Frank M, Trepesch C, Revenko AS, Crosby JR, Macleod AR, Mikkat S, Oehmcke-Hecht S. The contact system proteases play disparate roles in streptococcal sepsis. Haematologica 2019; 105:1424-1435. [PMID: 31320552 PMCID: PMC7193472 DOI: 10.3324/haematol.2019.223545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 11/09/2022] Open
Abstract
Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.
Collapse
Affiliation(s)
- Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III -Hematology, Oncology, Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Center for Medical Research - Core Facility Micro-Array-Technologie, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany
| | - Carolin Trepesch
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Jeffrey R Crosby
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - A Robert Macleod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
40
|
Giannakopoulou CE, Sotiriou A, Dettoraki M, Yang M, Perlikos F, Toumpanakis D, Prezerakos G, Koutsourelakis I, Kastis GA, Vassilakopoulou V, Mizi E, Papalois A, Greer JJ, Vassilakopoulos T. Regulation of breathing pattern by IL-10. Am J Physiol Regul Integr Comp Physiol 2019; 317:R190-R202. [PMID: 31091151 DOI: 10.1152/ajpregu.00065.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proinflammatory cytokines like interleukin-1β (IL-1β) affect the control of breathing. Our aim is to determine the effect of the anti-inflammatory cytokine IL-10 οn the control of breathing. IL-10 knockout mice (IL-10-/-, n = 10) and wild-type mice (IL-10+/+, n = 10) were exposed to the following test gases: hyperoxic hypercapnia 7% CO2-93% O2, normoxic hypercapnia 7% CO2-21% O2, hypoxic hypercapnia 7% CO2-10% O2, and hypoxic normocapnia 3% CO2-10% O2. The ventilatory function was assessed using whole body plethysmography. Recombinant mouse IL-10 (rIL-10; 10 μg/kg) was administered intraperitoneally to wild-type mice (n = 10) 30 min before the onset of gas challenge. IL-10 was administered in neonatal medullary slices (10-30 ng/ml, n = 8). We found that IL-10-/- mice exhibited consistently increased frequency and reduced tidal volume compared with IL-10+/+ mice during room air breathing and in all test gases (by 23.62 to 33.2%, P < 0.05 and -36.23 to -41.69%, P < 0.05, respectively). In all inspired gases, the minute ventilation of IL-10-/- mice was lower than IL-10+/+ (by -15.67 to -22.74%, P < 0.05). The rapid shallow breathing index was higher in IL-10-/- mice compared with IL-10+/+ mice in all inspired gases (by 50.25 to 57.5%, P < 0.05). The intraperitoneal injection of rIL-10 caused reduction of the respiratory rate and augmentation of the tidal volume in room air and also in all inspired gases (by -12.22 to -29.53 and 32.18 to 45.11%, P < 0.05, respectively). IL-10 administration in neonatal rat (n = 8) in vitro rhythmically active medullary slice preparations did not affect either rhythmicity or peak amplitude of hypoglossal nerve discharge. In conclusion, IL-10 may induce a slower and deeper pattern of breathing.
Collapse
Affiliation(s)
- Charoula Eleni Giannakopoulou
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Adamantia Sotiriou
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Maria Dettoraki
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Michael Yang
- Experimental Research Center, ELPEN Pharmaceuticals, Attica, Greece
| | - Fotis Perlikos
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Dimitrios Toumpanakis
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Georgios Prezerakos
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Ioannis Koutsourelakis
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Georgios A Kastis
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Vyronia Vassilakopoulou
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | - Eleftheria Mizi
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| | | | - John J Greer
- Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, Alberta , Canada
| | - Theodoros Vassilakopoulos
- Department of Critical Care and Pulmonary Services and Marianthi Simou Applied Biomedical Research and Training Center, University of Athens Medical School , Athens , Greece
| |
Collapse
|
41
|
Astroglia in Sepsis Associated Encephalopathy. Neurochem Res 2019; 45:83-99. [PMID: 30778837 PMCID: PMC7089215 DOI: 10.1007/s11064-019-02743-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Cellular pathophysiology of sepsis associated encephalopathy (SAE) remains poorly characterised. Brain pathology in SAE, which is manifested by impaired perception, consciousness and cognition, results from multifactorial events, including high levels of systemic cytokines, microbial components and endotoxins, which all damage the brain barriers, instigate neuroinflammation and cause homeostatic failure. Astrocytes, being the principal homeostatic cells of the central nervous system contribute to the brain defence against infection. Forming multifunctional anatomical barriers, astroglial cells maintain brain-systemic interfaces and restrict the damage to the nervous tissue. Astrocytes detect, produce and integrate inflammatory signals between immune cells and cells of brain parenchyma, thus regulating brain immune response. In SAE astrocytes are present in both reactive and astrogliopathic states; balance between these states define evolution of pathology and neurological outcomes. In humans pathophysiology of SAE is complicated by frequent presence of comorbidities, as well as age-related remodelling of the brain tissue with senescence of astroglia; these confounding factors further impact upon SAE progression and neurological deficits.
Collapse
|
42
|
Sanja M, Jozsef P, Sanja PG, Ivana C, Ivana G, Lana G, Gordana S, Renata L, Lepej Snjezana Z. Cytokines and statin therapy in chronic obstructive pulmonary disease patients. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:533-538. [PMID: 30278779 DOI: 10.1080/00365513.2018.1514464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines are biological response modifiers involved in the pathophysiology of chronic obstructive pulmonary disease (COPD). This study investigated the potential use of cytokines as disease severity biomarkers in COPD patients and the possible effect of statin therapy on cytokine expression. Possible associations between cytokines, body mass index (BMI) and smoking have also been studied. Cytokines IFN-γ, IL-2, IL-12 p70, TNF-α, TNF-β, IL-4, IL-5, IL-6, IL-10, IL-1β and IL-8 were measured in the plasma of 100 clinically stable COPD patients using a fluorescent bead immunoassay on a flow cytometer. When patients were grouped according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage (A-D), no significant differences in cytokine concentrations were found (p > .05). Significantly decreased concentrations of IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12p70 and TNF-α were found in COPD patients receiving statin therapy in comparison with COPD patients not receiving statin therapy (p < .05). COPD patients with increased BMI (>25) had decreased IL-2 (p=.038), IL-8 (p = .039) and IL-10 (p = .005) concentrations compared to normal BMI (20-25) patients. Current COPD smokers had increased concentrations of IL-5 (p = .037) compared to former COPD smokers. Hierarchical cluster analysis showed several patterns of measured cytokines in serum of patients with stable COPD. Statin therapy is associated with decreased expression of selected Th1 and Th2 cytokines in COPD, and this effect could be of relevance in COPD patients with increased cardiovascular risk. Concentrations of Th1 and Th2 cytokines in plasma cannot be used as biomarkers of disease severity or progression of COPD.
Collapse
Affiliation(s)
- Marevic Sanja
- a Department of Medical Biochemistry and Hematology , University Hospital for Infectious Diseases ''Dr. Fran Mihaljevic'' , Zagreb , Croatia
| | - Petrik Jozsef
- b Faculty of Pharmacy and Biochemistry, Department of Medical Biochemistry and Hematology , University of Zagreb , Zagreb , Croatia
| | - Popovic Grle Sanja
- c Clinic for Lung Diseases, Jordanovac , University Hospital Centre Zagreb , Zagreb , Croatia
| | - Cepelak Ivana
- c Clinic for Lung Diseases, Jordanovac , University Hospital Centre Zagreb , Zagreb , Croatia
| | - Grgic Ivana
- d Department of Molecular Diagnostics and Flow Cytometry , University Hospital for Infectious Diseases ''Dr. Fran Mihaljevic'' , Zagreb , Croatia
| | - Gorenec Lana
- d Department of Molecular Diagnostics and Flow Cytometry , University Hospital for Infectious Diseases ''Dr. Fran Mihaljevic'' , Zagreb , Croatia
| | | | - Laskaj Renata
- a Department of Medical Biochemistry and Hematology , University Hospital for Infectious Diseases ''Dr. Fran Mihaljevic'' , Zagreb , Croatia
| | - Zidovec Lepej Snjezana
- d Department of Molecular Diagnostics and Flow Cytometry , University Hospital for Infectious Diseases ''Dr. Fran Mihaljevic'' , Zagreb , Croatia
| |
Collapse
|