1
|
Zhan C, Zhu Y, Fok MR, Jin L, Han B, Lin Y. Proteome-Wide Mendelian Randomisation Identifies Causal Links of Plasma Proteins With Periodontitis. Int Dent J 2024; 74:1258-1265. [PMID: 38729796 PMCID: PMC11551566 DOI: 10.1016/j.identj.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Periodontitis is a complex and multifactorial disease and it is challenging to decipher its underlying causes and mechanisms. This study attempted to explore potential circulating proteins in connection to periodontitis through proteome-wide Mendelian randomisation (MR). METHODS We analysed 1722 circulating proteins to identify prospective drug targets for tackling periodontitis, using the genomic dataset from the FinnGen study. Two-sample MR was conducted to evaluate the bidirectional relationship between circulating proteins and periodontitis risk. A dataset from the UK Biobank was used to validate the findings. Single-cell analysis was performed to assess the cellular expression of the identified proteins within gingival tissues. RESULTS MR analyses found that genetically predicted circulating levels of von Willebrand factor A domain-containing 1 (von Willebrand factor A domain containing 1 [VWA1], odds ratios: 0.94, 95% CI 0.92-0.97, P = 1.28 × 10-5) were inversely associated with periodontitis. In contrast, the level of growth differentiation factor 15 (growth differentiation factor 15 [GDF15], odds ratios: 1.05, 95% CI 1.02-1.07, P = 2.12 × 10-5) might be associated with an increased risk of periodontitis. Single-cell analysis indicated that VWA1 was primarily expressed in endothelial cells of healthy gingival tissues, while the main source of GDF15 was not derived from periodontal cells. CONCLUSIONS The present study suggests that certain plasma proteins like VWA1 and GDF15 may be potentially indicative of the risk and susceptibility to periodontitis. These proteins could possibly be the potential therapeutic targets for treating periodontitis, and further investigation is highly warranted.
Collapse
Affiliation(s)
- Chaoning Zhan
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yuexin Zhu
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Melissa Rachel Fok
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Bing Han
- Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Chan JSF, Tabatabaei Dakhili SA, Lorenzana-Carrillo MA, Gopal K, Pulente SM, Greenwell AA, Yang K, Saed CT, Stenlund MJ, Ferrari SR, Mangra-Bala IA, Shafaati T, Bhat RK, Eaton F, Overduin M, Jørgensen SB, Steinberg GR, Mulvihill EE, Sutendra G, Ussher JR. Growth differentiation factor 15 alleviates diastolic dysfunction in mice with experimental diabetic cardiomyopathy. Cell Rep 2024; 43:114573. [PMID: 39093701 DOI: 10.1016/j.celrep.2024.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Growth differentiation factor 15 (GDF15) is a peptide with utility in obesity, as it decreases appetite and promotes weight loss. Because obesity increases the risk for type 2 diabetes (T2D) and cardiovascular disease, it is imperative to understand the cardiovascular actions of GDF15, especially since elevated GDF15 levels are an established biomarker for heart failure. As weight loss should be encouraged in the early stages of obesity-related prediabetes/T2D, where diabetic cardiomyopathy is often present, we assessed whether treatment with GDF15 influences its pathology. We observed that GDF15 treatment alleviates diastolic dysfunction in mice with T2D independent of weight loss. This cardioprotection was associated with a reduction in cardiac inflammation, which was likely mediated via indirect actions, as direct treatment of adult mouse cardiomyocytes and differentiated THP-1 human macrophages with GDF15 failed to alleviate lipopolysaccharide-induced inflammation. Therapeutic manipulation of GDF15 action may thus have utility for both obesity and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jordan S F Chan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Maria Areli Lorenzana-Carrillo
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Serena M Pulente
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Kunyan Yang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Christina T Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Magnus J Stenlund
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Sally R Ferrari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Indiresh A Mangra-Bala
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Tanin Shafaati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Rakesh K Bhat
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Michael Overduin
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity, Diabetes Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Gopinath Sutendra
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada.
| |
Collapse
|
3
|
Lu P, Fan J, Li B, Wang X, Song M. A novel protein encoded by circLARP1B promotes the proliferation and migration of vascular smooth muscle cells by suppressing cAMP signaling. Atherosclerosis 2024; 395:117575. [PMID: 38851155 DOI: 10.1016/j.atherosclerosis.2024.117575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND AND AIMS Circular RNA (circRNA) is closely related to atherosclerosis (AS) incidence and progression, but its regulatory mechanism in AS needs further elucidation. AS development is significantly influenced by abnormal vascular smooth muscle cells (VSMCs) growth and migration. This study explored the potential protein role of circLARP1B in VSMC proliferation and migration. METHODS We performed whole-transcriptome sequencing in human normal arterial intima and advanced atherosclerotic plaques to screen for differentially expressed circRNAs. The sequencing results were combined with database analysis to screen for circRNAs with coding ability. Real-time quantitative polymerase chain reaction was utilized to assess circLARP1B expression levels in atherosclerotic plaque tissues and cells. circLARP1B-243aa function and pathway in VSMCs growth and migration were studied by scratch, transwell, 5-ethynyl-2'-deoxyuridine, cell counting kit-8, and Western blot experiments. RESULTS We found that circLARP1B was downregulated in atherosclerotic plaque tissue and promoted the proliferation and migration of VSMCs. circLARP1B encodes a novel protein with a length of 243 amino acids. Through functional experiments, we confirmed the role of circLARP1B-243aa in enhancing VSMCs migration and proliferation. Mechanistically, circLARP1B-243aa promotes VSMCs migration and growth by upregulating phosphodiesterase 4C to inhibit the cyclic adenosine monophosphate signaling pathway. CONCLUSIONS Our results suggested that circLARP1B could promote VSMCs growth and migration through the encoded protein circLARP1B-243aa. Therefore, it could be a treatment target and biomarker for AS.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Cell Proliferation
- Cell Movement
- Humans
- RNA, Circular/metabolism
- RNA, Circular/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Signal Transduction
- Cyclic AMP/metabolism
- SS-B Antigen
- Cells, Cultured
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Plaque, Atherosclerotic
- Male
Collapse
Affiliation(s)
- Peng Lu
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Jidan Fan
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China
| | - Ben Li
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China.
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, PR China.
| | - Meijuan Song
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China.
| |
Collapse
|
4
|
Dogon G, Rigal E, Potel E, Josse M, Rochette L, Bejot Y, Vergely C. Growth/differentiation factor 15 (GDF15) expression in the heart after myocardial infarction and cardioprotective effect of pre-ischemic rGDF15 administration. Sci Rep 2024; 14:12949. [PMID: 38839839 PMCID: PMC11153639 DOI: 10.1038/s41598-024-63880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Growth/differentiation factor-15 (GDF15) is considered an unfavourable prognostic biomarker for cardiovascular disease in clinical data, while experimental studies suggest it has cardioprotective potential. This study focuses on the direct cardiac effects of GDF15 during ischemia-reperfusion injury in Wistar male rats, employing concentrations relevant to patients at high cardiovascular risk. Initially, we examined circulating levels and heart tissue expression of GDF15 in rats subjected to ischemia-reperfusion and sham operations in vivo. We then evaluated the cardiac effects of GDF15 both in vivo and ex vivo, administering recombinant GDF15 either before 30 min of ischemia (preconditioning) or at the onset of reperfusion (postconditioning). We compared infarct size and cardiac contractile recovery between control and rGDF15-treated rats. Contrary to our expectations, ischemia-reperfusion did not increase GDF15 plasma levels compared to sham-operated rats. However, cardiac protein and mRNA expression increased in the infarcted zone of the ischemic heart after 24 h of reperfusion. Notably, preconditioning with rGDF15 had a cardioprotective effect, reducing infarct size both in vivo (65 ± 5% in control vs. 42 ± 6% in rGDF15 groups) and ex vivo (60 ± 4% in control vs. 45 ± 4% in rGDF15 groups), while enhancing cardiac contractile recovery ex vivo. However, postconditioning with rGDF15 did not alter infarct size or the recovery of contractile parameters in vivo or ex vivo. These novel findings reveal that the short-term exogenous administration of rGDF15 before ischemia, at physiologically relevant levels, protects the heart against ischemia-reperfusion injury in both in vivo and ex vivo settings. The ex vivo results indicate that rGDF15 operates independently of the inflammatory, endocrine and nervous systems, suggesting direct and potent cardioprotective properties against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Geoffrey Dogon
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculty of Health Sciences, University of Burgundy, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Eve Rigal
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculty of Health Sciences, University of Burgundy, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Eliot Potel
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculty of Health Sciences, University of Burgundy, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Marie Josse
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculty of Health Sciences, University of Burgundy, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Luc Rochette
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculty of Health Sciences, University of Burgundy, 7 Bd Jeanne d'Arc, 21000, Dijon, France
| | - Yannick Bejot
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculty of Health Sciences, University of Burgundy, 7 Bd Jeanne d'Arc, 21000, Dijon, France
- Department of Neurology, Dijon University Hospital, Dijon, France
| | - Catherine Vergely
- Research Team: Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculty of Health Sciences, University of Burgundy, 7 Bd Jeanne d'Arc, 21000, Dijon, France.
| |
Collapse
|
5
|
von Rauchhaupt E, Klaus M, Ribeiro A, Honarpisheh M, Li C, Liu M, Köhler P, Adamowicz K, Schmaderer C, Lindenmeyer M, Steiger S, Anders HJ, Lech M. GDF-15 Suppresses Puromycin Aminonucleoside-Induced Podocyte Injury by Reducing Endoplasmic Reticulum Stress and Glomerular Inflammation. Cells 2024; 13:637. [PMID: 38607075 PMCID: PMC11011265 DOI: 10.3390/cells13070637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024] Open
Abstract
GDF15, also known as MIC1, is a member of the TGF-beta superfamily. Previous studies reported elevated serum levels of GDF15 in patients with kidney disorder, and its association with kidney disease progression, while other studies identified GDF15 to have protective effects. To investigate the potential protective role of GDF15 on podocytes, we first performed in vitro studies using a Gdf15-deficient podocyte cell line. The lack of GDF15 intensified puromycin aminonucleoside (PAN)-triggered endoplasmic reticulum stress and induced cell death in cultivated podocytes. This was evidenced by elevated expressions of Xbp1 and ER-associated chaperones, alongside AnnexinV/PI staining and LDH release. Additionally, we subjected mice to nephrotoxic PAN treatment. Our observations revealed a noteworthy increase in both GDF15 expression and secretion subsequent to PAN administration. Gdf15 knockout mice displayed a moderate loss of WT1+ cells (podocytes) in the glomeruli compared to wild-type controls. However, this finding could not be substantiated through digital evaluation. The parameters of kidney function, including serum BUN, creatinine, and albumin-creatinine ratio (ACR), were increased in Gdf15 knockout mice as compared to wild-type mice upon PAN treatment. This was associated with an increase in the number of glomerular macrophages, neutrophils, inflammatory cytokines, and chemokines in Gdf15-deficient mice. In summary, our findings unveil a novel renoprotective effect of GDF15 during kidney injury and inflammation by promoting podocyte survival and regulating endoplasmic reticulum stress in podocytes, and, subsequently, the infiltration of inflammatory cells via paracrine effects on surrounding glomerular cells.
Collapse
Affiliation(s)
- Ekaterina von Rauchhaupt
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Martin Klaus
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Andrea Ribeiro
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Mohsen Honarpisheh
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Chenyu Li
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Min Liu
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Paulina Köhler
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University, 30-387 Krakow, Poland;
| | - Christoph Schmaderer
- Klinikum Rechts der Isar, Department of Nephrology, Technical University Munich, 81675 Munich, Germany;
| | - Maja Lindenmeyer
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stefanie Steiger
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Hans-Joachim Anders
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| | - Maciej Lech
- Department of Medicine IV, Renal Division, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (E.v.R.); (M.K.); (A.R.); (M.H.); (C.L.); (M.L.); (P.K.); (S.S.); (H.-J.A.)
| |
Collapse
|
6
|
Wan Y, Fu J. GDF15 as a key disease target and biomarker: linking chronic lung diseases and ageing. Mol Cell Biochem 2024; 479:453-466. [PMID: 37093513 PMCID: PMC10123484 DOI: 10.1007/s11010-023-04743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-beta superfamily, is expressed in several human organs. In particular, it is highly expressed in the placenta, prostate, and liver. The expression of GDF15 increases under cellular stress and pathological conditions. Although numerous transcription factors directly up-regulate the expression of GDF15, the receptors and downstream mediators of GDF15 signal transduction in most tissues have not yet been determined. Glial cell-derived neurotrophic factor family receptor α-like protein was recently identified as a specific receptor that plays a mediating role in anorexia. However, the specific receptors of GDF15 in other tissues and organs remain unclear. As a marker of cell stress, GDF15 appears to exert different effects under different pathological conditions. Cell senescence may be an important pathogenetic process and could be used to assess the progression of various lung diseases, including COVID-19. As a key member of the senescence-associated secretory phenotype protein repertoire, GDF15 seems to be associated with mitochondrial dysfunction, although the specific molecular mechanism linking GDF15 expression with ageing remains to be elucidated. Here, we focus on research progress linking GDF15 expression with the pathogenesis of various chronic lung diseases, including neonatal bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and pulmonary hypertension, suggesting that GDF15 may be a key biomarker for diagnosis and prognosis. Thus, in this review, we aimed to provide new insights into the molecular biological mechanism and emerging clinical data associated with GDF15 in lung-related diseases, while highlighting promising research and clinical prospects.
Collapse
Affiliation(s)
- Yang Wan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Guo M, Zhao H. Growth differentiation factor-15 may be a novel biomarker in pancreatic cancer: A review. Medicine (Baltimore) 2024; 103:e36594. [PMID: 38335385 PMCID: PMC10860926 DOI: 10.1097/md.0000000000036594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 02/12/2024] Open
Abstract
Pancreatic cancer is a highly malignant and invasive gastrointestinal tumor that is often diagnosed at an advanced stage with a poor prognosis and high mortality. Currently, carbohydrate antigen199(CA199) is the only biomarker approved by the FDA for the diagnosis of pancreatic cancer, but it has great limitations. Growth differentiation factor-15 (GDF-15) is expected to be a novel biomarker for the diagnosis, efficacy prediction, and prognosis assessment of pancreatic cancer patients. In this paper, we searched the keywords GDF-15, macrophage inhibitory cytokine-1 (MIC-1), CA199, pancreatic cancer, and tumor markers in PubMed and Web of Science, searched related articles, and read and analyzed the retrieved papers. Finally, we systematically described the characteristics, mechanism of action, and clinical value of GDF-15, aiming to provide help for the detection and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Meng Guo
- Shanghai Jiaotong University School of Medicine affiliated Tongren Hospital, Shanghai, China
| | - Hui Zhao
- Shanghai Jiaotong University School of Medicine affiliated Tongren Hospital, Shanghai, China
| |
Collapse
|
8
|
Li S, Abu Omar A, Greasley A, Wang B, Wang TZ, Chahal S, Thapa RK, Quan D, Skaro A, Liu K, Zheng X. Circular RNA MAP2K2-modified immunosuppressive dendritic cells for preventing alloimmune rejection in organ transplantation. Bioeng Transl Med 2024; 9:e10615. [PMID: 38193111 PMCID: PMC10771550 DOI: 10.1002/btm2.10615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 01/10/2024] Open
Abstract
Long-term patient and graft survival has been achieved in organ transplantation but at the expense of toxic side effects that are associated with long-term use of nonspecific immunosuppressive drugs. Discovering new regulators of dendritic cells is the key for development of an ideal treatment to prevent immune rejection. We hypothesized that knockdown of circMAP2K2 induces immunosuppressive DCs and that treatment with circMAP2K2 silenced-DCs can prevent alloimmune rejection. DCs were cultured and transfected with siRNA for circMAP2K2. circMAP2K2 levels were measured by qRT-PCR. DC's maturation and immune function were assessed by flow cytometry and mixed lymphocyte reactions. The function of circMAP2K2 was illustrated by a series of RIP and IP. The therapeutics of engineered DCs was tested in a mouse heart transplantation model. We found that circMAP2K2 was highly expressed in mature DCs. Knockdown of circMAP2K2 reduced expression of MHCII, CD40 and CD80, attenuated the ability of DCs to activate allogeneic naïve T cells, and enhanced CD4+CD25+FOXP3+ regulatory T cells (Treg). circMAP2K2-induced immunosuppressive DCs by interacting with SENP3. Treatment with circMAP2K2-knockdown DCs attenuated alloimmune rejection and prolonged allograft survival in a murine heart transplantation model. The immune suppression induced in vivo was donor-antigen specific. In conclusion, knockdown of circMAP2K2 can induce immunosuppressive DCs which are able to inhibit overactive immune response, highlighting a new promising therapeutic approach for immune disorder diseases.
Collapse
Affiliation(s)
- Shuailong Li
- Department of Cardiovascular SurgeryThe Second Norman Bethune Hospital of Jilin UniversityChangchunChina
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
| | - Amal Abu Omar
- Department of SurgeryWestern UniversityLondonOntarioCanada
| | - Adam Greasley
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
| | - Bowen Wang
- Department of Cardiovascular SurgeryThe Second Norman Bethune Hospital of Jilin UniversityChangchunChina
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
| | - Tan Ze Wang
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
| | - Serina Chahal
- Department of Microbiology and Immunology OncologyWestern UniversityLondonOntarioCanada
| | | | - Douglas Quan
- Department of SurgeryWestern UniversityLondonOntarioCanada
| | - Anton Skaro
- Department of SurgeryWestern UniversityLondonOntarioCanada
| | - Kexiang Liu
- Department of Cardiovascular SurgeryThe Second Norman Bethune Hospital of Jilin UniversityChangchunChina
| | - Xiufen Zheng
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
- Department of SurgeryWestern UniversityLondonOntarioCanada
- Department of Microbiology and Immunology OncologyWestern UniversityLondonOntarioCanada
- Department of OncologyWestern UniversityLondonOntarioCanada
- Lawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
9
|
Xie B, Tang W, Wen S, Chen F, Yang C, Wang M, Yang Y, Liang W. GDF-15 Inhibits ADP-Induced Human Platelet Aggregation through the GFRAL/RET Signaling Complex. Biomolecules 2023; 14:38. [PMID: 38254638 PMCID: PMC10813690 DOI: 10.3390/biom14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Growth differentiation factor-15 (GDF-15) is proposed to be strongly associated with several cardiovascular diseases, such as heart failure and atherosclerosis. Moreover, some recent studies have reported an association between GDF-15 and platelet activation. In this study, we isolated peripheral blood platelets from healthy volunteers and evaluated the effect of GDF-15 on adenosine diphosphate (ADP)-induced platelet activation using the platelet aggregation assay. Subsequently, we detected the expression of GDF-15-related receptors on platelets, including the epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), transforming growth factor-beta receptor I (TGF-βRI), transforming growth factor-beta receptor II (TGF-βRII), glial-cell-line-derived neurotrophic factor family receptor α-like (GFRAL), and those rearranged during transfection (RET). Then, we screened for GDF-15 receptors using the GDF-15-related receptor microarray comprising these recombinant proteins. We also performed the immunoprecipitation assay to investigate the interaction between GDF-15 and the receptors on platelets. For the further exploration of signaling pathways, we investigated the effects of GDF-15 on the extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and Janus kinase 2 (JAK2) pathways. We also investigated the effects of GDF-15 on the ERK and AKT pathways and platelet aggregation in the presence or absence of RET agonists or inhibition. Our study revealed that GDF-15 can dose-independently inhibit ADP-induced human platelet aggregation and that the binding partner of GDF-15 on platelets is GFRAL. We also found that GDF-15 inhibits ADP-induced AKT and ERK activation in platelets. Meanwhile, our results revealed that the inhibitory effects of GDF-15 can be mediated by the GFRAL/RET complex. These findings reveal the novel inhibitory mechanism of ADP-induced platelet activation by GDF-15.
Collapse
Affiliation(s)
- Baikang Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjing Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuang Wen
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Fen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (B.X.); (W.T.); (F.C.); (M.W.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Zheng P, Zhang W, Wang J, Gong Q, Xu N, Chen N. Bioinformatics and functional experiments reveal that MRC2 inhibits atrial fibrillation via the PPAR signaling pathway. J Thorac Dis 2023; 15:5625-5639. [PMID: 37969297 PMCID: PMC10636429 DOI: 10.21037/jtd-23-1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 11/17/2023]
Abstract
Background Atrial fibrillation (AF) is a prevalent cardiac arrhythmia that requires improved clinical markers to increase diagnostic accuracy and provide insight into its pathogenesis. Although some biomarkers are available, new ones need to be discovered to better capture the complex physiology of AF. However, their limitations are still not fully addressed. Bioinformatics and functional studies can help find new clinical markers and improve the understanding of AF, meeting the need for early diagnosis and individualized treatment. Methods To identify AF-related differentially expressed genes (DEGs), We applied the messenger RNA (mRNA) expression profile retrieved in Series Matrix File format from the GSE143924 microarray dataset obtained from the Gene Expression Omnibus (GEO) database, and then used weighted gene co-expression network analysis (WGCNA) to identify the overlapping genes. These genes were analyzed by enrichment analysis, expression analysis and others to obtain the hub gene. Additionally, the potential signaling pathway of hub gene in AF was explored and verified by functional experiments, like quantitative real-time polymerase chain reaction (qRT-PCR), cell counting kit-8 (CCK-8), flow cytometry, and Western blotting (WB) assay. Results From the GSE143924 data (410 DEGs) and tan module (57 genes), 10 overlapping genes were identified. A central down-regulated gene in AF, MRC2, was identified through bioinformatics analysis. based on these results, it was hypothesized that the PPAR signaling pathway is related to the mechanism of action of MRC2 in AF. Moreover, over-MRC2 markedly reduced the growth speed of angiotensin II (Ang II)-induced human cardiac fibroblasts (HCFs) and increased apoptosis. Conversely, knockdown of MRC2 promoted HCFs cell proliferation number. Additionally, MRC2 over-expression increased the protein expression level of PPARα, PPARγ, CPT-1, and SIRT3 in Ang II-induced HCFs. Conclusions While meeting the need for new biomarkers in the diagnosis and prognosis of AF, this study reveals the inherent limitations of current biomarkers. We identified MRC2 as a key player as an inhibitory gene in AF, highlighting its role in suppressing AF progression through the PPAR signaling pathway. MRC2 may not only serve as a diagnostic indicator, but also as a promising therapeutic target for patients with AF, which is expected to be applied in clinical practice and open up new avenues for individualized interventions.
Collapse
Affiliation(s)
- Pengxiang Zheng
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Zhang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiahong Wang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qunlin Gong
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Xu
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Guo Y, Zhang Y, Yu J, Dong Y, Chen Z, Zhu C, Hong X, Xie Z, Zhang M, Wang S, Liang Y, He X, Ju W, Chen M. Novel ceRNA network construction associated with programmed cell death in acute rejection of heart allograft in mice. Front Immunol 2023; 14:1184409. [PMID: 37753085 PMCID: PMC10518384 DOI: 10.3389/fimmu.2023.1184409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background T cell-mediated acute rejection(AR) after heart transplantation(HT) ultimately results in graft failure and is a common indication for secondary transplantation. It's a serious threat to heart transplant recipients. This study aimed to explore the novel lncRNA-miRNA-mRNA networks that contributed to AR in a mouse heart transplantation model. Methods The donor heart from Babl/C mice was transplanted to C57BL/6 mice with heterotopic implantation to the abdominal cavity. The control group was syngeneic heart transplantation with the same kind of mice donor. The whole-transcriptome sequencing was performed to obtain differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in mouse heart allograft. The biological functions of ceRNA networks was analyzed by GO and KEGG enrichment. Differentially expressed ceRNA involved in programmed cell death were further verified with qRT-PCR testing. Results Lots of DEmRNAs, DEmiRNAs and DElncRNAs were identified in acute rejection and control after heart transplantation, including up-regulated 4754 DEmRNAs, 1634 DElncRNAs, 182 DEmiRNAs, and down-regulated 4365 DEmRNAs, 1761 DElncRNAs, 132 DEmiRNAs. Based on the ceRNA theory, lncRNA-miRNA-mRNA regulatory networks were constructed in allograft acute rejection response. The functional enrichment analysis indicate that the down-regulated mRNAs are mainly involved in cardiac muscle cell contraction, potassium channel activity, etc. and the up-regulated mRNAs are mainly involved in T cell differentiation and mononuclear cell migration, etc. The KEGG pathway enrichment analysis showed that the down-regulated DEmRNAs were mainly enriched in adrenergic signaling, axon guidance, calcium signaling pathway, etc. The up-regulated DEmRNAs were enriched in the adhesion function, chemokine signaling pathway, apoptosis, etc. Four lncRNA-mediated ceRNA regulatory pathways, Pvt1/miR-30c-5p/Pdgfc, 1700071M16Rik/miR-145a-3p/Pdgfc, 1700071M16Rik/miR-145a-3p/Tox, 1700071M16Rik/miR-145a-3p/Themis2, were finally validated. In addition, increased expression of PVT1, 1700071M16Rik, Tox and Themis2 may be considered as potential diagnostic gene biomarkers in AR. Conclusion We speculated that Pvt1/miR-30c-5p/Pdgfc, 1700071M16Rik/miR-145a-3p/Pdgfc, 1700071M16Rik/miR-145a-3p/Tox and 1700071M16Rik/miR-145a-3p/Themis2 interaction pairs may serve as potential biomarkers in AR after HT.
Collapse
Affiliation(s)
- Yiwen Guo
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yixi Zhang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Yu
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yuqi Dong
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhitao Chen
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Chuchen Zhu
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xitao Hong
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhonghao Xie
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Min Zhang
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shuai Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yichen Liang
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- The First Affiliated Hospital, Sun Yat-Sen University, Organ Transplant Centre, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
12
|
Yang Y, Zhang Y, Ren J, Feng K, Li Z, Huang T, Cai Y. Identification of Colon Immune Cell Marker Genes Using Machine Learning Methods. Life (Basel) 2023; 13:1876. [PMID: 37763280 PMCID: PMC10532943 DOI: 10.3390/life13091876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Immune cell infiltration that occurs at the site of colon tumors influences the course of cancer. Different immune cell compositions in the microenvironment lead to different immune responses and different therapeutic effects. This study analyzed single-cell RNA sequencing data in a normal colon with the aim of screening genetic markers of 25 candidate immune cell types and revealing quantitative differences between them. The dataset contains 25 classes of immune cells, 41,650 cells in total, and each cell is expressed by 22,164 genes at the expression level. They were fed into a machine learning-based stream. The five feature ranking algorithms (last absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, minimum redundancy maximum relevance, and random forest) were first used to analyze the importance of gene features, yielding five feature lists. Then, incremental feature selection and two classification algorithms (decision tree and random forest) were combined to filter the most important genetic markers from each list. For different immune cell subtypes, their marker genes, such as KLRB1 in CD4 T cells, RPL30 in B cell IGA plasma cells, and JCHAIN in IgG producing B cells, were identified. They were confirmed to be differentially expressed in different immune cells and involved in immune processes. In addition, quantitative rules were summarized by using the decision tree algorithm to distinguish candidate immune cell types. These results provide a reference for exploring the cell composition of the colon cancer microenvironment and for clinical immunotherapy.
Collapse
Affiliation(s)
- Yong Yang
- Qianwei Hospital of Jilin Province, Changchun 130012, China;
| | - Yuhang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Jingxin Ren
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China;
| | - Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun 130052, China;
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
13
|
Iglesias P, Silvestre RA, Díez JJ. Growth differentiation factor 15 (GDF-15) in endocrinology. Endocrine 2023; 81:419-431. [PMID: 37129758 DOI: 10.1007/s12020-023-03377-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Human growth differentiation factor 15 (GDF-15) is a widely distributed protein that has shown to play multiple roles in both physiological and pathological conditions. In healthy individuals, GDF-15 is mainly expressed in the placenta, followed by the prostate, although low levels of expression have also been detected in different organs. GDF-15 acts through a recently identified receptor called glial-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) which signals through the rearranged during transfection (RET) tyrosine kinase receptor. The effects of GDF-15 are pleiotropic and include appetite regulation, and actions on metabolism, pregnancy, cell survival, immune response, and inflammation. GDF-15 also plays different roles in the pathophysiology of cardiovascular disease, autoimmunity, cancer-associated anorexia/cachexia, and diabetes. In recent years, several studies have reported a link between GDF-15 and the endocrine system. In this review, we up-date and summarize the relevant investigations of the relationships between GDF-15 and different endocrine conditions. We also assess the potential pathogenic role and potential therapeutic applications of GDF-15 in the field of endocrinology.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain.
| | - Ramona A Silvestre
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
- Department of Clinical Biochemistry, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Physiology, Medical School, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan J Díez
- Department of Endocrinology and Nutrition, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Madrid, Spain
| |
Collapse
|
14
|
Haake M, Haack B, Schäfer T, Harter PN, Mattavelli G, Eiring P, Vashist N, Wedekink F, Genssler S, Fischer B, Dahlhoff J, Mokhtari F, Kuzkina A, Welters MJP, Benz TM, Sorger L, Thiemann V, Almanzar G, Selle M, Thein K, Späth J, Gonzalez MC, Reitinger C, Ipsen-Escobedo A, Wistuba-Hamprecht K, Eichler K, Filipski K, Zeiner PS, Beschorner R, Goedemans R, Gogolla FH, Hackl H, Rooswinkel RW, Thiem A, Roche PR, Joshi H, Pühringer D, Wöckel A, Diessner JE, Rüdiger M, Leo E, Cheng PF, Levesque MP, Goebeler M, Sauer M, Nimmerjahn F, Schuberth-Wagner C, von Felten S, Mittelbronn M, Mehling M, Beilhack A, van der Burg SH, Riedel A, Weide B, Dummer R, Wischhusen J. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat Commun 2023; 14:4253. [PMID: 37474523 PMCID: PMC10359308 DOI: 10.1038/s41467-023-39817-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.
Collapse
Affiliation(s)
- Markus Haake
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Beatrice Haack
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Tina Schäfer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Center for Neuropathology and Prion Research, Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Neha Vashist
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Florian Wedekink
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Birgitt Fischer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Julia Dahlhoff
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Fatemeh Mokhtari
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Anastasia Kuzkina
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Tamara M Benz
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Lena Sorger
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Vincent Thiemann
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Giovanni Almanzar
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Martina Selle
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Klara Thein
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Jacob Späth
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Carmen Reitinger
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Section for Clinical Bioinformatics, Department of Internal Medicine I, University Medical Center Tübingen, Tübingen, Germany
| | - Kristin Eichler
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Katharina Filipski
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Pia S Zeiner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rudi Beschorner
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Renske Goedemans
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Falk Hagen Gogolla
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | | | - Alexander Thiem
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | - Paula Romer Roche
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Hemant Joshi
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Dirk Pühringer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Joachim E Diessner
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Eugen Leo
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Phil F Cheng
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | | | - Stefanie von Felten
- oikostat GmbH, Statistical Analyses and Consulting, Lucerne, Switzerland
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001, Zürich, Switzerland
| | - Michel Mittelbronn
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Matthias Mehling
- Department of Biomedicine and Neurology Department, University Hospital Basel, 4031, Basel, Switzerland
| | - Andreas Beilhack
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | | | - Jörg Wischhusen
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
15
|
Zhang J, He L, Wang Z, Shao S, Qiao P, Zhang J, Zhang K, Li C, Zhang Y, Wang G, Li M. Decreasing GDF15 Promotes Inflammatory Signals and Neutrophil Infiltration in Psoriasis Models. J Invest Dermatol 2023; 143:419-430.e8. [PMID: 36049542 DOI: 10.1016/j.jid.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Psoriasis is driven by the interplay between hyperproliferative keratinocytes and infiltrating inflammatory cells. GDF15, a member of the TGF-β superfamily, has been implicated in cachexia, metabolic control, and cancer invasion. However, the expression and immunomodulatory role of GDF15 in inflammatory diseases has not been clarified. In this study, we report that GDF15 is decreased in the epidermis of patients with psoriasis and in an imiquimod-induced psoriasis-like mouse model. TNF-α suppresses GDF15 expression in keratinocytes by inhibiting the protein level of the transcription factor GATA2. GDF15 deficiency aggravates the development of psoriatic lesions, as evidenced by more severe skin inflammation in imiquimod-treated Gdf15-knockout (Gdf15‒/‒) mice compared with that in wild-type mice. Importantly, GDF15 limited the synthesis of a panel of keratinocyte cytokines and chemokines by inhibiting TAK1/NF-κB activation and directly inhibited neutrophil adhesion and migration by inhibiting the activation of the small GTPase Rap1. Epidermal hyperplasia, infiltration of neutrophils, and transcripts of psoriasis-related markers in imiquimod-induced psoriasiform dermatitis were significantly alleviated by a topical supplement of recombinant murine GDF15. In summary, our study revealed an unexpected role of GDF15 in keratinocyte and neutrophil function in the skin of psoriasis, implying its therapeutic potential in treating psoriasis.
Collapse
Affiliation(s)
- Jieyu Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China; Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei He
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Zhaowei Wang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jine Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kuo Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Caixia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingqi Zhang
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meng Li
- The State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
16
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
17
|
Wang X, Zhou H, Liu Q, Cheng P, Zhao T, Yang T, Zhao Y, Sha W, Zhao Y, Qu H. Targeting regulatory T cells for cardiovascular diseases. Front Immunol 2023; 14:1126761. [PMID: 36911741 PMCID: PMC9995594 DOI: 10.3389/fimmu.2023.1126761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. The CVDs are accompanied by inflammatory progression, resulting in innate and adaptive immune responses. Regulatory T cells (Tregs) have an immunosuppressive function and are one of the subsets of CD4+T cells that play a crucial role in inflammatory diseases. Whether using Tregs as a biomarker for CVDs or targeting Tregs to exert cardioprotective functions by regulating immune balance, suppressing inflammation, suppressing cardiac and vascular remodeling, mediating immune tolerance, and promoting cardiac regeneration in the treatment of CVDs has become an emerging research focus. However, Tregs have plasticity, and this plastic Tregs lose immunosuppressive function and produce toxic effects on target organs in some diseases. This review aims to provide an overview of Tregs' role and related mechanisms in CVDs, and reports on the research of plasticity Tregs in CVDs, to lay a foundation for further studies targeting Tregs in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Gonzalez C, Cimini M, Cheng Z, Benedict C, Wang C, Trungcao M, Mallaredy V, Rajan S, Garikipati VNS, Kishore R. Role of circular RNA cdr1as in modulation of macrophage phenotype. Life Sci 2022; 309:121003. [PMID: 36181865 PMCID: PMC9888537 DOI: 10.1016/j.lfs.2022.121003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/02/2023]
Abstract
AIMS Macrophages are crucial for the initiation and resolution of an inflammatory response. Non-coding circular RNAs are ubiquitously expressed in mammalian tissue, highly conserved among species, and recently implicated in the regulation of macrophage activation. We sought to determine whether circRNAs modulate monocyte/macrophage biology and function. MATERIALS AND METHODS We performed circRNA microarray analyses to assess transcriptome changes using RNA isolated from bone marrow derived macrophages polarized to a pro-inflammatory phenotype (INFγ + TNFα) or an anti-inflammatory phenotype (IL-10, IL-4, and TGF-β). Among differentially expressed circRNAs, circ-Cdr1as was chosen for further investigation. Additionally, we performed loss or gain of function studies to investigate if circ-Cdr1as is involved in phenotypic switching. For gain of function, we overexpressed circ-Cdr1as using pc3.1 plasmid with laccase2 flanking regions to promote circularization. For loss of function, we used a lentiviral short hairpin RNA targeting the circ-Cdr1as splicing junction. KEY FINDINGS Among circRNAs that are highly conserved and differentially expressed in pro- and anti-inflammatory lineages, circ-Cdr1as was one of the most downregulated in pro-inflammatory macrophages and significantly upregulated in anti-inflammatory macrophages in vitro. Overexpression of circ-Cdr1as increased transcription of anti-inflammatory markers and percentage of CD206+ cells in naïve and pro-inflammatory macrophages in vitro. Meanwhile, knockdown decreased transcription of anti-inflammatory markers and increased the percentage of CD86+ cells in naïve and anti-inflammatory macrophages in vitro. SIGNIFICANCE This study suggests that circ-Cdr1as plays a key role in regulating anti-inflammatory phenotype of macrophages and may potentially be developed as an anti-inflammatory regulator in tissue inflammation.
Collapse
Affiliation(s)
- Carolina Gonzalez
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America,Corresponding author at: Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, MERB-953 3500 N Broad Street, Philadelphia, PA 19140, United States of America. (C. Gonzalez), (R. Kishore)
| | - Maria Cimini
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Zhongjian Cheng
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Cindy Benedict
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Chunlin Wang
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - May Trungcao
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Vandana Mallaredy
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Sudarsan Rajan
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Venkata Naga Srikanth Garikipati
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Raj Kishore
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America,Corresponding author at: Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, MERB-953 3500 N Broad Street, Philadelphia, PA 19140, United States of America. (C. Gonzalez), (R. Kishore)
| |
Collapse
|
19
|
Yao X, Zhang Q. Function and Clinical Significance of Circular RNAs in Thyroid Cancer. Front Mol Biosci 2022; 9:925389. [PMID: 35936780 PMCID: PMC9353217 DOI: 10.3389/fmolb.2022.925389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2022] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer (TC) is the leading cause and mortality of endocrine malignancies worldwide. Tumourigenesis involves multiple molecules including circular RNAs (circRNAs). circRNAs with covalently closed single-stranded structures have been identified as a type of regulatory RNA because of their high stability, abundance, and tissue/developmental stage-specific expression. Accumulating evidence has demonstrated that various circRNAs are aberrantly expressed in thyroid tissues, cells, exosomes, and body fluids in patients with TC. CircRNAs have been identified as either oncogenic or tumour suppressor roles in regulating tumourigenesis, tumour metabolism, metastasis, ferroptosis, and chemoradiation resistance in TC. Importantly, circRNAs exert pivotal effects on TC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA-binding proteins, and translating functional peptides. Recent studies have suggested that many different circRNAs are associated with certain clinicopathological features, implying that the altered expression of circRNAs may be characteristic of TC. The purpose of this review is to provide an overview of recent advances on the dysregulation, functions, molecular mechanisms and potential clinical applications of circRNAs in TC. This review also aimes to improve our understanding of the functions of circRNAs in the initiation and progression of cancer, and to discuss the future perspectives on strategies targeting circRNAs in TC.
Collapse
|
20
|
Mishra R, Saha P, Datla SR, Mellacheruvu P, Gunasekaran M, Guru SA, Fu X, Chen L, Bolli R, Sharma S, Kaushal S. Transplanted allogeneic cardiac progenitor cells secrete GDF-15 and stimulate an active immune remodeling process in the ischemic myocardium. J Transl Med 2022; 20:323. [PMID: 35864544 PMCID: PMC9306063 DOI: 10.1186/s12967-022-03534-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite promising results in clinical studies, the mechanism for the beneficial effects of allogenic cell-based therapies remains unclear. Macrophages are not only critical mediators of inflammation but also critical players in cardiac remodeling. We hypothesized that transplanted allogenic rat cardiac progenitor cells (rCPCs) augment T-regulatory cells which ultimately promote proliferation of M2 like macrophages by an as-yet undefined mechanism. METHODS AND RESULTS To test this hypothesis, we used crossover rat strains for exploring the mechanism of myocardial repair by allogenic CPCs. Human CPCs (hCPCs) were isolated from adult patients undergoing coronary artery bypass grafting, and rat CPCs (rCPCs) were isolated from male Wistar-Kyoto (WKY) rat hearts. Allogenic rCPCs suppressed the proliferation of T-cells observed in mixed lymphocyte reactions in vitro. Transplanted syngeneic or allogeneic rCPCs significantly increased cardiac function in a rat myocardial infarct (MI) model, whereas xenogeneic CPCs did not. Allogeneic rCPCs stimulated immunomodulatory responses by specifically increasing T-regulatory cells and M2 polarization, while maintaining their cardiac recovery potential and safety profile. Mechanistically, we confirmed the inactivation of NF-kB in Treg cells and increased M2 macrophages in the myocardium after MI by transplanted CPCs derived GDF15 and it's uptake by CD48 receptor on immune cells. CONCLUSION Collectively, these findings strongly support the active immunomodulatory properties and robust therapeutic potential of allogenic CPCs in post-MI cardiac dysfunction.
Collapse
Affiliation(s)
- Rachana Mishra
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Progyaparamita Saha
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Srinivasa Raju Datla
- grid.411024.20000 0001 2175 4264Department of Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Pranav Mellacheruvu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Muthukumar Gunasekaran
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Sameer Ahmad Guru
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Xubin Fu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Ling Chen
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Roberto Bolli
- grid.266623.50000 0001 2113 1622Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, Louisville, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| |
Collapse
|
21
|
Zhang Y, Jiao Z, Chen M, Shen B, Shuai Z. Roles of Non-Coding RNAs in Primary Biliary Cholangitis. Front Mol Biosci 2022; 9:915993. [PMID: 35874606 PMCID: PMC9305664 DOI: 10.3389/fmolb.2022.915993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune-mediated chronic cholestatic liver disease, fatigue, and skin itching are the most common clinical symptoms. Its main pathological feature is the progressive damage and destruction of bile duct epithelial cells. Non-coding RNA (NcRNA, mainly including microRNA, long non-coding RNA and circular RNA) plays a role in the pathological and biological processes of various diseases, especially autoimmune diseases. Many validated ncRNAs are expected to be biomarkers for the diagnosis or treatment of PBC. This review will elucidate the pathogenesis of PBC and help to identify potential ncRNA biomarkers for PBC.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziying Jiao
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Shen
- Department of Physiology, School of Basic Medicine of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Zongwen Shuai,
| |
Collapse
|
22
|
Ala M, Eftekhar SP. The Footprint of Kynurenine Pathway in Cardiovascular Diseases. Int J Tryptophan Res 2022; 15:11786469221096643. [PMID: 35784899 PMCID: PMC9248048 DOI: 10.1177/11786469221096643] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
Kynurenine pathway is the main route of tryptophan metabolism and produces several metabolites with various biologic properties. It has been uncovered that several cardiovascular diseases are associated with the overactivation of kynurenine pathway and kynurenine and its metabolites have diagnostic and prognostic value in cardiovascular diseases. Furthermore, it was found that several kynurenine metabolites can differently affect cardiovascular health. For instance, preclinical studies have shown that kynurenine, xanthurenic acid and cis-WOOH decrease blood pressure; kynurenine and 3-hydroxyanthranilic acid prevent atherosclerosis; kynurenic acid supplementation and kynurenine 3-monooxygenase (KMO) inhibition improve the outcome of stroke. Indoleamine 2,3-dioxygenase (IDO) overactivity and increased kynurenine levels improve cardiac and vascular transplantation outcomes, whereas exacerbating the outcome of myocardial ischemia, post-ischemic myocardial remodeling, and abdominal aorta aneurysm. IDO inhibition and KMO inhibition are also protective against viral myocarditis. In addition, dysregulation of kynurenine pathway is observed in several conditions such as senescence, depression, diabetes, chronic kidney disease (CKD), cirrhosis, and cancer closely connected to cardiovascular dysfunction. It is worth defining the exact effect of each metabolite of kynurenine pathway on cardiovascular health. This narrative review is the first review that separately discusses the involvement of kynurenine pathway in different cardiovascular diseases and dissects the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
23
|
NGR-modified PEG-PLGA micelles containing Shikonin enhance targeting of dendritic cells for therapy of allergic rhinitis. Int Immunopharmacol 2022; 107:108649. [DOI: 10.1016/j.intimp.2022.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 02/20/2022] [Indexed: 11/23/2022]
|
24
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
25
|
Gu J, Su C, Huang F, Zhao Y, Li J. Past, Present and Future: The Relationship Between Circular RNA and Immunity. Front Immunol 2022; 13:894707. [PMID: 35693804 PMCID: PMC9174805 DOI: 10.3389/fimmu.2022.894707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
The immune system has evolved since the birth of humans. However, immune-related diseases have not yet been overcome due to the lack of expected indicators and targeting specificity of current medical technology, subjecting patients to very uncomfortable physical and mental experiences and high medical costs. Therefore, the requirements for treatments with higher specificity and indicative ability are raised. Fortunately, the discovery of and continuous research investigating circular RNAs (circRNAs) represent a promising method among numerous methods. Although circRNAs wear regarded as metabolic wastes when discovered, as a type of noncoding RNA (ncRNA) with a ring structure and wide distribution range in the human body, circRNAs shine brilliantly in medical research by virtue of their special nature and structure-determined functions, such as high stability, wide distribution, high detection sensitivity, acceptable reproducibility and individual differences. Based on research investigating the role of circRNAs in immunity, we systematically discuss the hotspots of the roles of circRNAs in immune-related diseases, including expression profile analyses, potential biomarker research, ncRNA axis/network construction, impacts on phenotypes, therapeutic target seeking, maintenance of nucleic acid stability and protein binding research. In addition, we summarize the current situation of and problems associated with circRNAs in immune research, highlight the applications and prospects of circRNAs in the treatment of immune-related diseases, and provide new insight into future directions and new strategies for laboratory research and clinical applications.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwei Zhao
- Chengdu Blood Center, Blood Research Laboratory, Chengdu, China
- *Correspondence: Jing Li, ; Yuwei Zhao,
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jing Li, ; Yuwei Zhao,
| |
Collapse
|
26
|
Extracellular Vesicle-Derived circITGB1 Regulates Dendritic Cell Maturation and Cardiac Inflammation via miR-342-3p/NFAM1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8392313. [PMID: 35615580 PMCID: PMC9126660 DOI: 10.1155/2022/8392313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/05/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
Acute myocardial infarction (AMI) is a complication of atherosclerosis-related cardiovascular illness that is caused by prolonged ischemia. Circular RNAs (circRNAs) are concentrated in extracellular vesicles (EVs) and have been linked to cardiovascular disease. However, additional research is needed into the expression and function of circRNAs in AMI. In this study, circITGB1 (has_circRNA_0018146), derived from exon 1 of the ITGB1 gene localized on chromosome 10, was shown to be considerably increased in plasma from patients with AMI compared to healthy controls, as demonstrated by the comparison of EV-circRNA expression patterns. Using a luciferase screening assay and a biotin-labeled circITGB1 probe to identify microRNA(s) complementary to circITGB1 sequences, we discovered that circITGB1 competitively binds to miR-342-3p and inhibits its expression, which in turn increase the expression of NFAT activating molecule 1 (NFAM1). Based on western blotting and immunological studies, circITGB1 controls dendritic cell maturation by targeting miR-342-3p and NFAM1. circITGB1 also exacerbated cardiac damage and regulated miR-342-3p and NFAM1 expression in a mouse AMI model. This implies that EV-circITGB1 is involved in dendritic cell maturation and cardiac damage via miR-342-3p/NFAM1, and that is linked to AMI-associated pathogenic processes.
Collapse
|
27
|
Feng H, Xiong X, Chen Z, Luo N, Wu Y. MALAT1 Induces Food Allergy by Promoting Release of IL-6 from Dendritic Cells and Suppressing the Immunomodulatory Function of Tregs. J Asthma Allergy 2022; 15:529-544. [PMID: 35515816 PMCID: PMC9064454 DOI: 10.2147/jaa.s341742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Background Dendritic cells (DCs) comprise a valuable target for immune-modulation in food allergy (FA). Long noncoding RNA (lncRNA), metastasis associated lung adenocarcinoma transcript 1 (MALAT1) has immunomodulatory capacities and may influence the outcome of DC antigen presentation. However, the precise molecular mechanisms underlying the implication of MALAT1 in FA remain unclear. Methods BALB/c mice were sensitized to ovalbumin in accordance with a model of FA protocol and injected with adenovirus. After modeling, immunohistochemistry was performed to analyze the jejunal tissues of FA mice and hematoxylin-eosin staining and toluidine blue staining were performed to detect inflammation and mast cell numbers. Ovalbumin-sensitized mice were monitored for symptoms of diarrhea and rectal temperature. Immature DCs were stimulated by oxidized low density lipoprotein to trigger their maturation. Results MALAT1 was found highly expressed in mice with FA, and its silencing relieved allergic reactions with reduction in intestinal inflammatory cells and mast cells in FA mice. MALAT1 aggravated symptoms by downregulating zinc finger protein 36 (ZFP36). MALAT1 also downregulated ZFP36 expression to promote interleukin-6 (IL-6) secretion by DCs and maturation of DCs, with increased serum-specific immunoglobulin E (IgE) and IgG1 levels. Conclusion Together, these data suggested that therapeutically blocking MALAT1 in FA could reduce the severity of FA by decreasing secretion of IL-6 by DCs and suppressing the immunomodulation of Tregs.
Collapse
Affiliation(s)
- Hua Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
- School of Public Health, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Zhuo Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Nan Luo
- School of Public Health, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Yongning Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China
- China National Center for Food Safety Risk Assessment, Beijing, 100022, People’s Republic of China
- Chinese Academy of Medical Science Research Unit, Beijing, 100730, People’s Republic of China
- Correspondence: Yongning Wu, State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330000, People’s Republic of China, Tel +86-10-52165589, Email
| |
Collapse
|
28
|
Serebrovska ZO, Xi L, Tumanovska LV, Shysh AM, Goncharov SV, Khetsuriani M, Kozak TO, Pashevin DA, Dosenko VE, Virko SV, Kholin VA, Grib ON, Utko NA, Egorov E, Polischuk AO, Serebrovska TV. Response of Circulating Inflammatory Markers to Intermittent Hypoxia-Hyperoxia Training in Healthy Elderly People and Patients with Mild Cognitive Impairment. Life (Basel) 2022; 12:life12030432. [PMID: 35330183 PMCID: PMC8953753 DOI: 10.3390/life12030432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Intermittent hypoxia-hyperoxia training (IHHT) is a non-pharmacological therapeutic modality for management of some chronic- and age-related pathologies, such as Alzheimer’s disease (AD). Our previous studies demonstrated significant improvement of cognitive function after IHHT in the patients with mild cognitive impairment (MCI). The present study further investigated the effects of IHHT on pro-inflammatory factors in healthy elderly individuals and patients with early signs of AD. Twenty-nine subjects (13 healthy subjects without signs of cognitive impairment syndrome and 16 patients diagnosed with MCI; age 52 to 76 years) were divided into four groups: Healthy+Sham (n = 7), Healthy+IHHT (n = 6), MCI+Sham (n = 6), and MCI+IHHT (n = 10). IHHT was carried out 5 days per week for 3 weeks (total 15 sessions), and each daily session included 4 cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Decline in cognitive function indices was observed initially in both MCI+Sham and MCI+IHHT groups. The sham training did not alter any of the parameters, whereas IHHT resulted in improvement in latency of cognitive evoked potentials, along with elevation in APP110, GDF15 expression, and MMP9 activity in both healthy subjects and those with MCI. Increased MMP2 activity, HMGB1, and P-selectin expression and decreased NETs formation and Aβ expression were also observed in the MCI+IHHT group. There was a negative correlation between MoCA score and the plasma GDF15 expression (R = −0.5799, p < 0.05) before the initiation of IHHT. The enhanced expression of GDF15 was also associated with longer latency of the event-related potentials P330 and N200 (R = 0.6263, p < 0.05 and R = 0.5715, p < 0.05, respectively). In conclusion, IHHT upregulated circulating levels of some inflammatory markers, which may represent potential triggers for cellular adaptive reprogramming, leading to therapeutic effects against cognitive dysfunction and neuropathological changes during progression of AD. Further investigation is needed to clarify if there is a causative relationship between the improved cognitive function and the elevated inflammatory markers following IHHT.
Collapse
Affiliation(s)
- Zoya O. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
- Correspondence: (Z.O.S.); (L.X.)
| | - Lei Xi
- Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
- Correspondence: (Z.O.S.); (L.X.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Angela M. Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Michael Khetsuriani
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Taisia O. Kozak
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Denis A. Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Victor E. Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Virko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, 41 Nauki Ave., 03028 Kyiv, Ukraine;
| | - Viktor A. Kholin
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Oksana N. Grib
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Natalie A. Utko
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Egor Egorov
- CELLGYM Technologies GmbH, 14193 Berlin, Germany;
| | - Anna O. Polischuk
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Tetiana V. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| |
Collapse
|
29
|
Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front Immunol 2022; 13:820350. [PMID: 35251002 PMCID: PMC8888851 DOI: 10.3389/fimmu.2022.820350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-β superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Carolina Berini
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Léna Royston
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada.,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
30
|
Pence BD. Growth Differentiation Factor-15 in Immunity and Aging. FRONTIERS IN AGING 2022; 3:837575. [PMID: 35821815 PMCID: PMC9261309 DOI: 10.3389/fragi.2022.837575] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022]
Abstract
Aging increases susceptibility to and severity of a variety of chronic and infectious diseases. Underlying this is dysfunction of the immune system, including chronic increases in low-grade inflammation (inflammaging) and age-related immunosuppression (immunosenescence). Growth differentiation factor-15 (GDF-15) is a stress-, infection-, and inflammation-induced cytokine which is increased in aging and suppresses immune responses. This mini review briefly covers existing knowledge on the immunoregulatory and anti-inflammatory roles of GDF-15, as well as its potential importance in aging and immune function.
Collapse
|
31
|
Yang F, Fan X, Liu Y, Shen Y, Zhao S, Zheng Y, Men R, Xie Y, Yang L. Long Noncoding RNA and Circular RNA Expression Profiles of Monocyte-Derived Dendritic Cells in Autoimmune Hepatitis. Front Pharmacol 2021; 12:792138. [PMID: 34938195 PMCID: PMC8685411 DOI: 10.3389/fphar.2021.792138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease caused by disruption of liver immune homeostasis. The effect of dendritic cells (DCs) on the pathogenesis of AIH is not fully understood. Long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) have been shown to play critical roles in the regulation of cell function. In this study, we analyzed the immunophenotypic characteristics of DCs in the peripheral blood. The percentage of mature DCs was higher in AIH patients than in healthy controls (HCs), and the proportion of mature DCs decreased after treatment. We isolated monocyte-derived DCs (moDCs) from the peripheral blood, obtained whole RNA-sequencing (RNA-seq) data for the moDCs from the two groups, and identified differentially expressed (DE) lncRNAs, circRNAs, miRNAs and mRNAs. In addition, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for the DE mRNAs and constructed competing endogenous RNA (ceRNA) networks. ENST00000543334, hsa_circ_0000279, and hsa_circ_0005076 were selected and validated by RT-qPCR. These results provide a possible molecular mechanism of DCs in the pathogenesis of AIH and identify some potential therapeutic targets.
Collapse
Affiliation(s)
- Fan Yang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yifeng Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shen
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shenglan Zhao
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoting Men
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Silva-Bermudez LS, Sevastyanova TN, Schmuttermaier C, De La Torre C, Schumacher L, Klüter H, Kzhyshkowska J. Titanium Nanoparticles Enhance Production and Suppress Stabilin-1-Mediated Clearance of GDF-15 in Human Primary Macrophages. Front Immunol 2021; 12:760577. [PMID: 34975851 PMCID: PMC8714923 DOI: 10.3389/fimmu.2021.760577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Macrophages are key innate immune cells that mediate implant acceptance or rejection. Titanium implants degrade over time inside the body, which results in the release of implant wear-off particles. Titanium nanoparticles (TiNPs) favor pro-inflammatory macrophage polarization (M1) and lower tolerogenic activation (M2). GDF-15 regulates immune tolerance and fibrosis and is endocytosed by stabilin-1. How TiNPs affect the healing activities of macrophages and their release of circulating cytokines is an open question in regenerative medicine. In this study for the first time, we identified the transcriptional program induced and suppressed by TiNPs in human pro-inflammatory and healing macrophages. Microarray analysis revealed that TiNPs altered the expression of 5098 genes in M1 (IFN-γ-stimulated) and 4380 genes in M2 (IL-4–stimulated) macrophages. 1980 genes were differentially regulated in both M1 and M2. Affymetrix analysis, confirmed by RT-PCR, demonstrated that TiNPs upregulate expression of GDF-15 and suppress stabilin-1, scavenger receptor of GDF-15. TiNPs also significantly stimulated GDF-15 protein secretion in inflammatory and healing macrophages. Flow cytometry demonstrated, that scavenging activity of stabilin-1 was significantly suppressed by TiNPs. Confocal microscopy analysis showed that TiNPs impair internalization of stabilin-1 ligand acLDL and its transport to the endocytic pathway. Our data demonstrate that TiNPs have a dual effect on the GDF-15/stabilin-1 interaction in macrophage system, by increasing the production of GDF-15 and suppressing stabilin-1-mediated clearance function. In summary, this process can result in a significant increase of GDF-15 in the extracellular space and in circulation leading to unbalanced pro-fibrotic reactions and implant complications.
Collapse
Affiliation(s)
- Lina S. Silva-Bermudez
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Tatyana N. Sevastyanova
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christina Schmuttermaier
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina De La Torre
- Microarray Analytics – NGS Core Facility (IKC), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Leonie Schumacher
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- *Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
33
|
Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev 2021; 64:71-83. [PMID: 34836750 DOI: 10.1016/j.cytogfr.2021.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
Abstract
Growth differentiation factor 15 or macrophage inhibitory cytokine-1 (GDF15/MIC-1) is a divergent member of the transforming growth factor β superfamily and has a diverse pathophysiological roles in cancers, cardiometabolic disorders, and other diseases. GDF15 controls hematopoietic growth, energy homeostasis, adipose tissue metabolism, body growth, bone remodeling, and response to stress signals. The role of GDF15 in cancer development and progression is complicated and depends on the specific cancer type, stage, and tumor microenvironment. Recently, research on GDF15 and GDF15-associated signaling has accelerated due to the identification of the GDF15 receptor: glial cell line-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL). Therapeutic interventions to target GDF15 and/or GFRAL revealed the mechanisms that drive its activity and might improve overall outcomes of patients with metabolic disorders and cancer. This review highlights the structure and functions of GDF15 and its receptor, emphasizing the pleiotropic role of GDF15 in obesity, tumorigenesis, metastasis, immunomodulation, and cachexia.
Collapse
|
34
|
Zheng S, Chen Y, Wang Z, Che Y, Wu Q, Yuan S, Zhong X. Combination of matrine and tacrolimus alleviates acute rejection in murine heart transplantation by inhibiting DCs maturation through ROS/ERK/NF-κB pathway. Int Immunopharmacol 2021; 101:108218. [PMID: 34673300 DOI: 10.1016/j.intimp.2021.108218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022]
Abstract
Matrine, an alkaloid derived from traditional Chinese herbs, has been confirmed to regulate immunity and exert anti-inflammatory effects. Matrine injection has been widely used in clinic therapy for anti-tumor and anti-inflammatory diseases. Heart transplantation(HT) is the only solution for the end-stage heart failure, but it is restricted by the cardiac allograft rejection. One of the important pathophysiological processes of post-transplantation rejection is inflammatory cell infiltration. Matrine has been shown to exert a positive protective effect against oxidative stress injury and inflammation, which likely benefits allograft survival. However, it remains unclear whether matrine inhibits alloimmunity or allograft rejection. In this study, we established the heart transplantation model in mouse and extracted bone marrow-derived dendritic cells (BMDCs) to explore the function and mechanism of matrine in heart transplantation. Moreover, combination treatment with matrine and tacrolimus(FK506) had a synergistic effect in preventing acute rejection of heart transplants. Here we found that matrine can prolong the survival of post-transplant and inhibit inflammatory cell infiltration in transplanted hearts of mice. At the same time, matrine increased Treg ratio and decreased CD4+/CD8 + ratio in mice. More importantly, matrine inhibited DCs maturation in mice and reduced oxidative damage and apoptosis in allograft hearts. Furthermore, matrine also downregulated NF-κB pathway and upregulated ERK1/2 signaling pathway. Overall, our study reveals a novel immunosuppressive agent that has the potential to reduce the side effects of existing immunosuppressive agents when used in combination with them.
Collapse
Affiliation(s)
- Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China.
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan 430060, Hubei, China; Cardiovascular Surgery Laboratory, Renmin Hospital of Wuhan University, 9# Zhangzhidong Road, Wuhan 430000, Hubei Province, China
| |
Collapse
|
35
|
Liu Y, Wang X, Yang F, Zheng Y, Ye T, Yang L. Immunomodulatory Role and Therapeutic Potential of Non-Coding RNAs Mediated by Dendritic Cells in Autoimmune and Immune Tolerance-Related Diseases. Front Immunol 2021; 12:678918. [PMID: 34394079 PMCID: PMC8360493 DOI: 10.3389/fimmu.2021.678918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.
Collapse
Affiliation(s)
- Yifeng Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoze Wang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Wang B, Zhou Q, Li T, Li S, Greasley A, Skaro A, Quan D, Min W, Liu K, Zheng X. Preventing alloimmune rejection using circular RNA FSCN1-silenced dendritic cells in heart transplantation. J Heart Lung Transplant 2021; 40:584-594. [PMID: 34052126 DOI: 10.1016/j.healun.2021.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND While heart transplantation is used as a standard treatment for heart failure, transplant rejection continues to pose a challenge. Recent evidence has shown that circular RNA (circRNA) is a new type of gene regulator in cell development. Our aim was to demonstrate that treatment with tolerogenic dendritic cells (Tol-DCs) generated by circular RNA FSCN1 (circFSCN1) silencing could prevent alloimmune rejection and prolong heart graft survival in heart transplantation. METHODS Bone marrow-derived DCs were transfected with circFSCN1 siRNA in vitro. The circFSCN1 level was measured by qRT-PCR. DC maturation was determined by flow cytometry. Mixed lymphocyte reactions (MLRs) were conducted to assess the function of DCs to activate T cells and to generate regulatory T cells (Tregs). In situ RNA hybridization and fluorescent microscopy were performed to detect the distribution of circFSCN1 in DCs. A heterotopic allogeneic murine heart transplantation was conducted where recipients were pre-treated with donor derived circFSCN1-silenced Tol-DCs. Heartbeat was monitored to assess immune rejection. RESULTS Exonic circFSCN1 was highly expressed in the cytoplasm of mature DCs. Knockdown of circFSCN1 using siRNA arrested DCs at an immature state, impaired DC's ability to activate T cells and enhanced Treg generation. Treatment with circFSCN1-silenced Tol-DCs prevented alloimmune rejection, prolonged allograft survival, reduced fibrosis, and induced Tregs in vivo. CONCLUSIONS Knockdown of circFSCN1 induces Tol-DCs and treatment with these Tol-DCs prevents alloimmune rejection and prolongs allograft survival. This is a promising therapeutic target to combat transplant rejection in heart transplantation and increases our understanding of circRNA in the immune system.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jilin University, Changchun, China; Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Qinfeng Zhou
- Department of Surgery, Western University, London, Ontario Canada
| | - Toni Li
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada; School of Medicine, Queen's University, Kingston, Canada
| | - Shuailong Li
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jilin University, Changchun, China; Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Adam Greasley
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada
| | - Anton Skaro
- Department of Surgery, Western University, London, Ontario Canada
| | - Douglas Quan
- Department of Surgery, Western University, London, Ontario Canada
| | - Weiping Min
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada; Department of Surgery, Western University, London, Ontario Canada; Lawson Health Research Institute, London, Ontario Canada; Department of Oncology, Western University, London, Ontario Canada
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jilin University, Changchun, China
| | - Xiufen Zheng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario Canada; Department of Surgery, Western University, London, Ontario Canada; Lawson Health Research Institute, London, Ontario Canada; Department of Oncology, Western University, London, Ontario Canada.
| |
Collapse
|
37
|
Sansonetti M, De Windt LJ. Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure. Cardiovasc Res 2021; 118:2058-2073. [PMID: 34097013 DOI: 10.1093/cvr/cvab192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is among the most progressive diseases and a leading cause of morbidity. Despite several advances in cardiovascular therapies, pharmacological treatments are limited to relieve symptoms without curing cardiac injury. Multiple observations point to the involvement of immune cells as key drivers in the pathophysiology of heart failure. In particular, there is a growing recognition that heart failure is related to a prolonged and insufficiently repressed inflammatory response leading to molecular, cellular, and functional cardiac alterations. Over the last decades, non-coding RNAs are recognized as prominent mediators of the cardiac inflammation, affecting the function of several immune cells. In the current review, we explore the contribution of the diverse immune cells in the progression of heart failure, revealing mechanistic functions for non-coding RNAs in cardiac immune cells as a new and exciting field of investigation.
Collapse
Affiliation(s)
- Marida Sansonetti
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| | - Leon J De Windt
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
38
|
Suzuki A, Guerrini MM, Yamamoto K. Functional genomics of autoimmune diseases. Ann Rheum Dis 2021; 80:689-697. [PMID: 33408079 DOI: 10.1136/annrheumdis-2019-216794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
For more than a decade, genome-wide association studies have been applied to autoimmune diseases and have expanded our understanding on the pathogeneses. Genetic risk factors associated with diseases and traits are essentially causative. However, elucidation of the biological mechanism of disease from genetic factors is challenging. In fact, it is difficult to identify the causal variant among multiple variants located on the same haplotype or linkage disequilibrium block and thus the responsible biological genes remain elusive. Recently, multiple studies have revealed that the majority of risk variants locate in the non-coding region of the genome and they are the most likely to regulate gene expression such as quantitative trait loci. Enhancer, promoter and long non-coding RNA appear to be the main target mechanisms of the risk variants. In this review, we discuss functional genetics to challenge these puzzles.
Collapse
Affiliation(s)
- Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Matteo Maurizio Guerrini
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
39
|
Teng Y, Huang Z, Yao L, Wang Y, Li T, Guo J, Wei R, Xia L, Wu Q. Emerging roles of long non-coding RNAs in allotransplant rejection. Transpl Immunol 2021; 70:101408. [PMID: 34015462 DOI: 10.1016/j.trim.2021.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 01/10/2023]
Abstract
Allotransplantation has extensively been employed for managing end-stage organ failure and malignant tumors. Acute and chronic post-transplant rejections are major causes of late morbidity and mortality after allotransplantation. However, there are no objective diagnostic criteria and specific therapy for post-transplant rejections. Owing to key advances in high-throughput RNA sequencing techniques, a wealth of studies have disclosed that long noncoding RNA (lncRNA) expression increased or decreased evidently in biopsies, blood, plasma, urine and specific cells of rejecting patients, and the dysregulated lncRNAs affected the cellular functions and differentiation of the immune system. Hence, we present an overview of the functions of lncRNAs expressed in various immune cells related to allotransplant rejection. Moreover, our review explores the regulatory interplay of relevant lncRNAs and recipients with or without allograft rejection after solid organ transplantations or hematopoietic stem cell transplantation, then discuss whether these relevant lncRNAs can be molecular biomarkers for diagnosis and new therapeutic targets in the management of post-transplanted patients.
Collapse
Affiliation(s)
- Yao Teng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenli Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruowen Wei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Rybicki BA, Sadasivan SM, Chen Y, Kravtsov O, Palangmonthip W, Arora K, Gupta NS, Williamson S, Bobbitt K, Chitale DA, Tang D, Rundle AG, Iczkowski KA. Growth and differentiation factor 15 and NF-κB expression in benign prostatic biopsies and risk of subsequent prostate cancer detection. Cancer Med 2021; 10:3013-3025. [PMID: 33784024 PMCID: PMC8085972 DOI: 10.1002/cam4.3850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Growth and differentiation factor 15 (GDF‐15), also known as macrophage inhibitory cytokine 1 (MIC‐1), may act as both a tumor suppressor and promotor and, by regulating NF‐κB and macrophage signaling, promote early prostate carcinogenesis. To determine whether expression of these two inflammation‐related proteins affect prostate cancer susceptibility, dual immunostaining of benign prostate biopsies for GDF‐15 and NF‐κB was done in a study of 503 case‐control pairs matched on date, age, and race, nested within a historical cohort of 10,478 men. GDF‐15 and NF‐κB expression levels were positively correlated (r = 0.39; p < 0.0001), and both were significantly lower in African American (AA) compared with White men. In adjusted models that included both markers, the odds ratio (OR) for NF‐κB expression was statistically significant, OR =0.87; p = 0.03; 95% confidence interval (CI) =0.77–0.99, while GDF‐15 expression was associated with a nominally increased risk, OR =1.06; p = 0.27; 95% CI =0.96–1.17. When modeling expression levels by quartiles, the highest quartile of NF‐κB expression was associated with almost a fifty percent reduction in prostate cancer risk (OR =0.51; p = 0.03; 95% CI =0.29–0.92). In stratified models, NF‐κB had the strongest negative association with prostate cancer in non‐aggressive cases (p = 0.03), older men (p = 0.03), and in case‐control pairs with longer follow‐up (p = 0.02). Risk associated with GDF‐15 expression was best fit using nonlinear regression modeling where both first (p = 0.02) and second (p = 0.03) order GDF‐15 risk terms were associated with significantly increased risk. This modeling approach also revealed significantly increased risk associated with GDF‐15 expression for subsamples defined by AA race, aggressive disease, younger age, and in case‐control pairs with longer follow‐up. Therefore, although positively correlated in benign prostatic biopsies, NF‐κB and GDF‐15 expression appear to exert opposite effects on risk of prostate tumor development.
Collapse
Affiliation(s)
- Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Sudha M Sadasivan
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | | | - Watchareepohn Palangmonthip
- Medical College of Wisconsin, Pathology, Milwaukee, WI, USA.,Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanika Arora
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Nilesh S Gupta
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Sean Williamson
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Kevin Bobbitt
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | | | - Deliang Tang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew G Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | |
Collapse
|
41
|
Gao Y, Xu Y, Zhao S, Qian L, Song T, Zheng J, Zhang J, Chen B. Growth differentiation factor-15 promotes immune escape of ovarian cancer via targeting CD44 in dendritic cells. Exp Cell Res 2021; 402:112522. [PMID: 33771482 DOI: 10.1016/j.yexcr.2021.112522] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Immune escape is the main cause of the low response rate to immunotherapy for cancer, including ovarian cancer. Growth differentiation factor-15 (GDF-15) inhibits immune cell function. However, only few reports described the mechanism. Therefore, the aim of this study was to investigate the mechanism of immune escape regulated by GDF-15 in ovarian cancer. Ovarian cancer patients and healthy women were enrolled in this study. Immunohistochemistry and ELISA were performed to measure GDF-15 expression. Immunoprecipitation combined with mass spectrometry, surface plasmon resonance, and co-immunoprecipitation assay were used to evaluate the interaction between GDF-15 and the surface molecules of DCs. Immunofluorescence analysis, flow cytometry and transwell assay were used to evaluate additional effects of GDF-15 on DCs. The results showed that GDF-15 expression was higher in the ovarian cancer patients compared to that in the healthy women. The TIMER algorithm revealed that highly GDF-15 expression is associated with immune DC infiltration in immunoreactive high-grade serous carcinoma. A further study showed that GDF-15 suppressed DCs maturation, as well as IL-12p40 and TNF-α secretion, the length and number of protrusions and the migration. More importantly, CD44 in the surface of DCs interacted with GDF-15. The overexpression of CD44 in DCs resulted in the suppression of the inhibitory effect of GDF-15 on the length and number of DC synapses. In DCs overexpressing CD44 the inhibition of GDF-15 on the expression of CD11c, CD83 and CD86 was decreased, while in DCs with a knockdown of CD44 the inhibition was further enhanced. Knockdown of CD44 in DCs enhanced the inhibitory effect of GDF-15 on DC migration, while the overexpression of CD44 inhibited the inhibitory effect of GDF-15 on DC migration. In conclusion, the present study suggested that GDF-15 might facilitate ovarian cancer immune escape by interacting with CD44 in DCs to inhibit their function.
Collapse
Affiliation(s)
- Yunge Gao
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Shuhui Zhao
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Luomeng Qian
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Tingting Song
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, No.127 Changle Road (West), Xi'an City, Shannxi Province, 710032, China.
| |
Collapse
|
42
|
Keck S, Galati-Fournier V, Kym U, Moesch M, Usemann J, Müller I, Subotic U, Tharakan SJ, Krebs T, Stathopoulos E, Schmittenbecher P, Cholewa D, Romero P, Reingruber B, Bruder E, Group NS, Holland-Cunz S. Lack of Mucosal Cholinergic Innervation Is Associated With Increased Risk of Enterocolitis in Hirschsprung's Disease. Cell Mol Gastroenterol Hepatol 2021; 12:507-545. [PMID: 33741501 PMCID: PMC8258990 DOI: 10.1016/j.jcmgh.2021.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hirschsprung's disease (HSCR) is a congenital intestinal motility disorder defined by the absence of enteric neuronal cells (ganglia) in the distal gut. The development of HSCR-associated enterocolitis remains a life-threatening complication. Absence of enteric ganglia implicates innervation of acetylcholine-secreting (cholinergic) nerve fibers. Cholinergic signals have been reported to control excessive inflammation, but the impact on HSCR-associated enterocolitis is unknown. METHODS We enrolled 44 HSCR patients in a prospective multicenter study and grouped them according to their degree of colonic mucosal acetylcholinesterase-positive innervation into low-fiber and high-fiber patient groups. The fiber phenotype was correlated with the tissue cytokine profile as well as immune cell frequencies using Luminex analysis and fluorescence-activated cell sorting analysis of colonic tissue and immune cells. Using confocal immunofluorescence microscopy, macrophages were identified in close proximity to nerve fibers and characterized by RNA-seq analysis. Microbial dysbiosis was analyzed in colonic tissue using 16S-rDNA gene sequencing. Finally, the fiber phenotype was correlated with postoperative enterocolitis manifestation. RESULTS The presence of mucosal nerve fiber innervation correlated with reduced T-helper 17 cytokines and cell frequencies. In high-fiber tissue, macrophages co-localized with nerve fibers and expressed significantly less interleukin 23 than macrophages from low-fiber tissue. HSCR patients lacking mucosal nerve fibers showed microbial dysbiosis and had a higher incidence of postoperative enterocolitis. CONCLUSIONS The mucosal fiber phenotype might serve as a prognostic marker for enterocolitis development in HSCR patients and may offer an approach to personalized patient care and new therapeutic options.
Collapse
Affiliation(s)
- Simone Keck
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland.
| | - Virginie Galati-Fournier
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Urs Kym
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Michèle Moesch
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Jakob Usemann
- Department of Pediatric Pulmonology, University Children's Hospital Basel (UKBB), Basel, and Division of Respiratory Medicine, University Children's Hospital Zurich, Zurich, Switzerland
| | - Isabelle Müller
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Ulrike Subotic
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland; Department of Pediatric Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sasha J Tharakan
- Department of Pediatric Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Krebs
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Eleuthere Stathopoulos
- Department of Pediatric Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | | | - Dietmar Cholewa
- Department of Pediatric Surgery, University Hospital of Bern, Bern, Switzerland
| | - Philipp Romero
- Department of Pediatric Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Bertram Reingruber
- Department of Pediatric Surgery, Florence Nightingale Hospital, Düsseldorf, Germany
| | - Elisabeth Bruder
- Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Nig Study Group
- NIG Study Group, Lausanne, Switzerland; Department of Pathology, University Hospital of Lausanne (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Wang X, Ma R, Shi W, Wu Z, Shi Y. Emerging roles of circular RNAs in systemic lupus erythematosus. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:212-222. [PMID: 33767917 PMCID: PMC7973136 DOI: 10.1016/j.omtn.2021.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently closed single-stranded structures lacking 5'-3' polarity and a polyadenine tail. Over recent years, a growing body of studies have been conducted to explore the roles of circRNAs in human diseases. Systemic lupus erythematosus (SLE) is a severe autoimmune disorder characterized by the presence of autoantibodies and excessive inflammation, which impact multiple organs. Recent advances have begun to shed light on the roles of circRNAs in SLE, providing fresh insights into the pathogenesis of SLE and the latent capacity for translation into clinical applications. Here, we briefly introduce these "star molecules" and summarize their roles in SLE. In addition, we outline the limitations of the current studies and raise prospects for future research.
Collapse
Affiliation(s)
- Xin Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education, Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.,Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Herskind C, Sticht C, Sami A, Giordano FA, Wenz F. Gene Expression Profiles Reveal Extracellular Matrix and Inflammatory Signaling in Radiation-Induced Premature Differentiation of Human Fibroblast in vitro. Front Cell Dev Biol 2021; 9:539893. [PMID: 33681189 PMCID: PMC7930333 DOI: 10.3389/fcell.2021.539893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Fibroblasts are considered to play a major role in the development of fibrotic reaction after radiotherapy and premature radiation-induced differentiation has been proposed as a cellular basis. The purpose was to relate gene expression profiles to radiation-induced phenotypic changes of human skin fibroblasts relevant for radiogenic fibrosis. Materials and Methods Exponentially growing or confluent human skin fibroblast strains were irradiated in vitro with 1–3 fractions of 4 Gy X-rays. The differentiated phenotype was detected by cytomorphological scoring and immunofluorescence microscopy. Microarray analysis was performed on Human Genome U133 plus2.0 microarrays (Affymetrix) with JMP Genomics software, and pathway analysis with Reactome R-package. The expression levels and kinetics of selected genes were validated with quantitative real-time PCR (qPCR) and Western blotting. Results Irradiation of exponentially growing fibroblast with 1 × 4 Gy resulted in phenotypic differentiation over a 5-day period. This was accompanied by downregulation of cell cycle-related genes and upregulation of collagen and other extracellular matrix (ECM)-related genes. Pathway analysis confirmed inactivation of proliferation and upregulation of ECM- and glycosaminoglycan (GAG)-related pathways. Furthermore, pathways related to inflammatory reactions were upregulated, and potential induction and signaling mechanisms were identified. Fractionated irradiation (3 × 4 Gy) of confluent cultures according to a previously published protocol for predicting the risk of fibrosis after radiotherapy showed similar downregulation but differences in upregulated genes and pathways. Conclusion Gene expression profiles after irradiation of exponentially growing cells were related to radiation-induced differentiation and inflammatory reactions, and potential signaling mechanisms. Upregulated pathways by different irradiation protocols may reflect different aspects of the fibrogenic process thus providing a model system for further hypothesis-based studies of radiation-induced fibrogenesis.
Collapse
Affiliation(s)
- Carsten Herskind
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Centre for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ahmad Sami
- Cellular and Molecular Radiation Oncology Laboratory, Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
45
|
Growth differentiation factor-15 and its role in diabetes and cardiovascular disease. Cytokine Growth Factor Rev 2020; 57:11-18. [PMID: 33317942 DOI: 10.1016/j.cytogfr.2020.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Growth differentiation factor-15 (GDF-15) is cytokine involved in the regulation of multiple systems. Because it has regularly been shown to be increased in cardiovascular disease (CVD) and diabetes, it has been suggested that GDF-15 could be used as a biomarker for these diseases and their severity. However, several studies have demonstrated that GDF-15 has a protective role in regulation of inflammation, endothelial cell function, insulin sensitivity, weight gain, and is cardioprotective in myocardial infarction (MI). While GDF-15 has been implicated in the pathophysiology of many conditions including cancer, this review focuses on the potential functions of GDF-15 and signaling pathways implicated in its role regulating metabolism, insulin sensitivity, and the cardiovascular system.
Collapse
|
46
|
Yin K, Liu X. Circ_0020397 regulates the viability of vascular smooth muscle cells by up-regulating GREM1 expression via miR-502-5p in intracranial aneurysm. Life Sci 2020; 265:118800. [PMID: 33242525 DOI: 10.1016/j.lfs.2020.118800] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
AIMS Circ_0020397 has been found to be down-regulated in intracranial aneurysm (IA), and deregulation of circ_0020397 involved in the regulation of vascular smooth muscle cells (VSMCs) proliferation. However, the mechanism by which circ_0020397 implicates in VSMC dysfunction in IA remains vague. MATERIALS AND METHODS The expression of circ_0020397, miR-502-5p and Gremlin 1 (GREM1) was detected using quantitative real-time polymerase chain reaction. Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Protein levels of proliferating cell nuclear antigen (PCNA) and GREM1 were measured using western blot. The interaction between miR-502-5p and circ_0020397 or GREM1 was confirmed by dual-luciferase reporter, RNA pull-down and RNA immunoprecipitation assay. KEY FINDINGS Circ_0020397 or GREM1 expression was decreased in VSMCs isolated from IA patients, and overexpression of circ_0020397 or GREM1 promoted VSMC viability and elevated PCNA expression level, while inhibition of them showed opposite effects. MiR-502-5p was confirmed to directly bind to circ_0020397 or GREM1, and miR-502-5p reversed the effects of circ_0020397 on VSMC viability and PCNA level. Besides, miR-502-5p overexpression suppressed VSMC viability and reduced PCNA level, while these effects were attenuated by GREM1 up-regulation. Importantly, circ_0020397 could regulate GREM1 expression via miR-502-5p in VSMCs. SIGNIFICANCE Circ_0020397 played an important role in phenotypic modulation in IA by promoting VSMC viability via miR-502-5p/GREM1 axis, suggesting a novel insight into IA pathogenesis and new targets for IA molecular therapy.
Collapse
Affiliation(s)
- Kai Yin
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xianzhi Liu
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
47
|
Zhang J, Gao C, Zhang J, Ye F. Circ_0010729 knockdown protects cardiomyocytes against hypoxic dysfunction via miR-370-3p/TRAF6 axis. EXCLI JOURNAL 2020; 19:1520-1532. [PMID: 33250684 PMCID: PMC7689242 DOI: 10.17179/excli2020-2809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/21/2020] [Indexed: 01/14/2023]
Abstract
Few studies have addressed the mechanism by which circ_0010729 regulates hypoxia-induced cell injury in cardiovascular diseases. However, its role and its regulatory mechanism in myocardial infarction remain to be explored. Cell viability, cycle, apoptosis, and migration were analyzed using cell counting kit-8 assay, flow cytometry, caspase-3 activity assay kit and transwell assay, respectively. Tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) concentrations were examined by enzyme-linked immunosorbent assay. Glucose metabolism was calculated by detecting ATP production, glucose uptake and lactate production. Levels of circ_0010729, miR-370-3p and TNF Receptor Associated Factor 6 (TRAF6) were detected using quantitative real-time polymerase chain reaction or western blot. The direct interaction between circ_0010729 and TRAF6 or miR-370-3p was verified using dual-luciferase reporter assay and RNA immunoprecipitation assay. Under hypoxia condition, cardiomyocytes suffered from cell viability suppression, cell cycle arrest, cell apoptosis promotion, migration reduction, increase of inflammatory factor IL-6 and TNF-α, as well as glycolysis inhibition. Circ_0010729 expression was up-regulated in the cardiomyocytes at different hypoxia-exposed time points. Circ_0010729 knockdown protected cardiomyocytes against hypoxic dysfunction, while circ_0010729 overexpression showed inverse effects. MiR-370-3p was confirmed to directly bind to circ_0010729 or TRAF6. MiR-370-3p inhibition attenuated the protective effects of circ_0010729 knockdown on hypoxia-modulated cardiomyocyte dysfunction. MiR-370-3p restoration protected cardiomyocytes against hypoxic injury via targeting TRAF6. Besides, circ_0010729 indirectly regulated TRAF6 expression via miR-370-3p. This study demonstrated that circ_0010729 knockdown attenuated hypoxia-induced cardiomyocyte dysfunction via miR-370-3p/TRAF6 axis, indicating a potential therapeutic target for myocardial infarction.
Collapse
Affiliation(s)
- Jingjing Zhang
- Coronary Care Unit, Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou City, Henan Procince, China
| | - Chuanyu Gao
- Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou City, Henan Procince, China
| | - Jing Zhang
- Coronary Care Unit, Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou City, Henan Procince, China
| | - Famin Ye
- Coronary Care Unit, Department of Cardiology, People's Hospital of Zhengzhou University, Zhengzhou City, Henan Procince, China
| |
Collapse
|
48
|
Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Front Immunol 2020; 11:552988. [PMID: 33123131 PMCID: PMC7573100 DOI: 10.3389/fimmu.2020.552988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over a half century, organ transplantation has become an effective method for the treatment of end-stage visceral diseases. Although the application of immunosuppressants (IS) minimizes the rate of allograft rejection, the common use of IS bring many adverse effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells, which makes a bridge between innate and adaptive immunity. Among their subsets, a small portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC). Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach transplant tolerance in animal models. In this study, we summarized the properties, ex vivo generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a substitute for IS to enable patients to achieve immune tolerance in the future.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Haozheng Cai
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, China
| | - Zixin Li
- Hunan Normal University School of Medicine, Changsha, China
| | - Shu Liu
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
49
|
Kaboli PJ, Zhang L, Xiang S, Shen J, Li M, Zhao Y, Wu X, Zhao Q, Zhang H, Lin L, Yin J, Wu Y, Wan L, Yi T, Li X, Cho CH, Li J, Xiao Z, Wen Q. Molecular Markers of Regulatory T Cells in Cancer Immunotherapy with Special Focus on Acute Myeloid Leukemia (AML) - A Systematic Review. Curr Med Chem 2020; 27:4673-4698. [PMID: 31584362 DOI: 10.2174/0929867326666191004164041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
The next-generation immunotherapy can only be effective if researchers have an in-depth understanding of the function and regulation of Treg cells in antitumor immunity combined with the discovery of new immunity targets. This can enhance clinical efficacy of future and novel therapies and reduces any adverse reactions arising from the latter. This review discusses tumor treatment strategies using regulatory T (Treg) cell therapy in a Tumor Microenvironment (TME). It also discusses factors affecting TME instability as well as relevant treatments to prevent future immune disorders. It is prognosticated that PD-1 inhibitors are risky and their adverse effects should be taken into account when they are administered to treat Acute Myeloid Leukemia (AML), lung adenocarcinoma, and prostate adenocarcinoma. In contrast, Treg molecular markers FoxP3 and CD25 analyzed here have stronger expression in almost all kinds of cancers compared with normal people. However, CD25 inhibitors are more effective compared to FoxP3 inhibitors, especially in combination with TGF-β blockade, in predicting patient survival. According to the data obtained from the Cancer Genome Atlas, we then concentrate on AML immunotherapy and discuss different therapeutic strategies including anti-CD25/IL-2, anti-CTLA-4, anti-IDO, antityrosine kinase receptor, and anti-PI3K therapies and highlight the recent advances and clinical achievements in AML immunotherapy. In order to prognosticate the risk and adverse effects of key target inhibitors (namely against CTLA-4, FoxP3, CD25, and PD-1), we finally analyzed and compared the Cancer Genome Atlas derived from ten common cancers. This review shows that Treg cells are strongly increased in AML and the comparative review of key markers shows that Tregbased immunotherapy is not effective for all kinds of cancer. Therefore, blocking CD25(+)FoxP3(+) Treg cells is suggested in AML more than other kinds of cancer; meanwhile, Treg markers studied in other cancers have also great lessons for AML immunotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Lin Wan
- Department of Hematology and Oncology, The Children's Hospital of Soochow, Jiangsu, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
50
|
Growth Differentiation Factor 15 Ameliorates Anti-Glomerular Basement Membrane Glomerulonephritis in Mice. Int J Mol Sci 2020; 21:ijms21196978. [PMID: 32977372 PMCID: PMC7583818 DOI: 10.3390/ijms21196978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. Moreover, we demonstrate the protective effects for GDF15, as GDF15-deficient mice exhibited increased proteinuria with an aggravated crescent formation and mesangial expansion in anti-GBM nephritis. Herein, GDF15 was required for the regulation of T-cell chemotactic chemokines in the kidney. In addition, we found the upregulation of the CXCR3 receptor in activated T-cells in GDF15-deficient mice. These data indicate that CXCL10/CXCR3-dependent-signaling promotes the infiltration of T cells into the organ during acute inflammation controlled by GDF15. Together, these results reveal a novel mechanism limiting the migration of lymphocytes to the site of inflammation during glomerulonephritis.
Collapse
|