1
|
Tomescu C, Ochoa-Ortiz A, Lu LD, Kong H, Riley JL, Montaner LJ. Gene-modified NK cells expressing CD64 and preloaded with HIV-specific BNAbs target autologous HIV-1-infected CD4+ T cells by ADCC. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:253-264. [PMID: 40073240 PMCID: PMC11878998 DOI: 10.1093/jimmun/vkae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/19/2024] [Indexed: 03/14/2025]
Abstract
Natural killer (NK) cells can efficiently mediate antibody-dependent cellular cytotoxicity (ADCC) of antibody coated target cells via the low-affinity Fc-receptor, CD16, but cannot retain antibodies over time. To increase antibody retention and facilitate targeted ADCC, we genetically modified human NK cells with the high-affinity Fc receptor, CD64, so that we could preload them with HIV-specific broadly neutralizing antibodies (BNAbs) and enhance their capacity to target HIV-infected cells via ADCC. Purified NK cells from the peripheral blood of control donors or persons living with HIV were activated with interleukin (IL)-2/IL-15/IL-21 cytokines and transduced with a lentivirus encoding CD64. High levels of CD64 surface expression were maintained for multiple weeks on NK cells and CD64-transduced NK cells were phenotypically similar to control NK cells with strong expression of CD56, CD16, NKG2A, NKp46, CD69, HLA-DR, CD38, and CD57. CD64-transduced NK cells exhibited significantly greater capacity to bind HIV-specific BNAbs in short-term antibody binding assay as well as retain the BNAbs over time (1-wk antibody retention assay) compared with control NK cells only expressing CD16. BNAb-preloaded CD64-transduced NK cells showed a significantly enhanced capacity to mediate ADCC against autologous HIV-1-infected CD4+ primary T cells in both a short-term 4 h degranulation assay as well as a 24 h HIV p24 HIV elimination assay when compared with control NK cells. A chimeric CD64 enhanced NK cell strategy (NuKEs [NK Enhancement Strategy]) retaining bound HIV-specific BNAbs represents a novel autologous primary NK cell immunotherapy strategy against HIV through targeted ADCC.
Collapse
Affiliation(s)
- Costin Tomescu
- HIV Immunopathogenesis Laboratory, BEAT-HIV Delaney Collaboratory, Wistar Institute, Philadelphia, PA, United States
| | - Adiana Ochoa-Ortiz
- HIV Immunopathogenesis Laboratory, BEAT-HIV Delaney Collaboratory, Wistar Institute, Philadelphia, PA, United States
| | - Lily D Lu
- Molecular Screening and Protein Expression Facility, Wistar Institute, Philadelphia, PA, United States
| | - Hong Kong
- Center for Cellular Immunotherapies, BEAT-HIV Delaney Collaboratory, Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - James L Riley
- Center for Cellular Immunotherapies, BEAT-HIV Delaney Collaboratory, Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Luis J Montaner
- HIV Immunopathogenesis Laboratory, BEAT-HIV Delaney Collaboratory, Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
2
|
Gutierrez-Valdes N, Cunyat F, Balieu J, Walet-Balieu ML, Paul MJ, de Groot J, Blanco-Perera A, Carrillo J, Lerouge P, Seters MJV, Joensuu JJ, Bardor M, Ma J, Blanco J, Ritala A. Production and characterization of novel Anti-HIV Fc-fusion proteins in plant-based systems: Nicotiana benthamiana & tobacco BY-2 cell suspension. N Biotechnol 2024; 83:142-154. [PMID: 39142626 DOI: 10.1016/j.nbt.2024.08.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.
Collapse
Affiliation(s)
- Noemi Gutierrez-Valdes
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | - Francesc Cunyat
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Marie-Laure Walet-Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Matthew J Paul
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jonas de Groot
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | | | - Jorge Carrillo
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | | | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Julian Ma
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Julià Blanco
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland.
| |
Collapse
|
3
|
Hiner CR, Mueller AL, Su H, Goldstein H. Interventions during Early Infection: Opening a Window for an HIV Cure? Viruses 2024; 16:1588. [PMID: 39459922 PMCID: PMC11512236 DOI: 10.3390/v16101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Although combination antiretroviral therapy (ART) has been a landmark achievement for the treatment of human immunodeficiency virus (HIV), an HIV cure has remained elusive. Elimination of latent HIV reservoirs that persist throughout HIV infection is the most challenging barrier to an HIV cure. The progressive HIV infection is marked by the increasing size and diversity of latent HIV reservoirs until an effective immune response is mobilized, which can control but not eliminate HIV infection. The stalemate between HIV replication and the immune response is manifested by the establishment of a viral set point. ART initiation during the early stage limits HIV reservoir development, preserves immune function, improves the quality of life, and may lead to ART-free viral remission in a few people living with HIV (PLWH). However, for the overwhelming majority of PLWH, early ART initiation alone does not cure HIV, and lifelong ART is needed to sustain viral suppression. A critical area of research is focused on determining whether HIV could be functionally cured if additional treatments are provided alongside early ART. Several HIV interventions including Block and Lock, Shock and Kill, broadly neutralizing antibody (bNAb) therapy, adoptive CD8+ T cell therapy, and gene therapy have demonstrated delayed viral rebound and/or viral remission in animal models and/or some PLWH. Whether or not their application during early infection can improve the success of HIV remission is less studied. Herein, we review the current state of clinical and investigative HIV interventions and discuss their potential to improve the likelihood of post-treatment remission if initiated during early infection.
Collapse
Affiliation(s)
- Christopher R. Hiner
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - April L. Mueller
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Hang Su
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
| | - Harris Goldstein
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (C.R.H.); (A.L.M.)
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Suryawanshi P, Bagul R, Shete A, Thakar M. Anti-HIV-1 ADCC and HIV-1 Env Can Be Partners in Reducing Latent HIV Reservoir. Front Immunol 2021; 12:663919. [PMID: 33995393 PMCID: PMC8119992 DOI: 10.3389/fimmu.2021.663919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 01/02/2023] Open
Abstract
Background Persistence of HIV reservoir even in suppressive ART is the key obstacle in HIV-1 cure. We evaluated the ability of HIV-1 C Env to reactivate the latently infected resting memory CD4 cells and the ability of polyclonal HIV antibodies mediating ADCC to lyse the reactivated targets. Methodology HIV-1 antibodies from 25 HIV infected individuals (14 ADCC responders and 11 non-responders) were tested against the Env-C reactivated primary cells; CD4+ and CD4+CD45RO+ memory T cells in the presence of autologous or heterologous effector cells using multicolor flow cytometry. The frequencies of p24+ve target cells were measured to determine the reactivation and antibody mediated lysis. Results Increase in the frequency of p24 expressing cells (P < 0.01 in all cases) after Env-C stimulation of target cells indicated reactivation. When these reactivated targets were mixed with effector cells and HIV-1 antibodies, the frequencies of p24 expressing targets were decreased significantly when the ADCC mediating antibodies (P < 0.01 in all cases) were added but not when the antibodies from ADCC non-responders or HIV negative individuals were added. In parallel, the NK cell activation was also increased only when ADCC mediating antibodies were added. Conclusion The study showed that the HIV-1 Env could act as latency reversal agent (LRA), and only ADCC mediating antibodies could lyse the reactivated HIV reservoirs. The short stimulation cycle used in this study could be useful in testing LRAs as well as immune mediated lysis of reactivated reservoirs. The observations have further implication in designing antibody mediated immunotherapy for eradication of latent HIV reservoir.
Collapse
Affiliation(s)
- Poonam Suryawanshi
- Deaprtment of Immunology and Serology, ICMR-National AIDS Research Institute, Pune, India.,Faculty of Health Sciences, Symbiosis International University (SIU), Pune, India
| | - Rajani Bagul
- Deaprtment of Immunology and Serology, ICMR-National AIDS Research Institute, Pune, India
| | - Ashwini Shete
- Deaprtment of Immunology and Serology, ICMR-National AIDS Research Institute, Pune, India
| | - Madhuri Thakar
- Deaprtment of Immunology and Serology, ICMR-National AIDS Research Institute, Pune, India
| |
Collapse
|
6
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
7
|
Muñoz-Basagoiti J, Perez-Zsolt D, Carrillo J, Blanco J, Clotet B, Izquierdo-Useros N. SARS-CoV-2 Cellular Infection and Therapeutic Opportunities: Lessons Learned from Ebola Virus. MEMBRANES 2021; 11:64. [PMID: 33477477 PMCID: PMC7830673 DOI: 10.3390/membranes11010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
Viruses rely on the cellular machinery to replicate and propagate within newly infected individuals. Thus, viral entry into the host cell sets up the stage for productive infection and disease progression. Different viruses exploit distinct cellular receptors for viral entry; however, numerous viral internalization mechanisms are shared by very diverse viral families. Such is the case of Ebola virus (EBOV), which belongs to the filoviridae family, and the recently emerged coronavirus SARS-CoV-2. These two highly pathogenic viruses can exploit very similar endocytic routes to productively infect target cells. This convergence has sped up the experimental assessment of clinical therapies against SARS-CoV-2 previously found to be effective for EBOV, and facilitated their expedited clinical testing. Here we review how the viral entry processes and subsequent replication and egress strategies of EBOV and SARS-CoV-2 can overlap, and how our previous knowledge on antivirals, antibodies, and vaccines against EBOV has boosted the search for effective countermeasures against the new coronavirus. As preparedness is key to contain forthcoming pandemics, lessons learned over the years by combating life-threatening viruses should help us to quickly deploy effective tools against novel emerging viruses.
Collapse
Affiliation(s)
- Jordana Muñoz-Basagoiti
- IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain; (J.M.-B.); (D.P.-Z.); (J.C.); (J.B.); (B.C.)
| | - Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain; (J.M.-B.); (D.P.-Z.); (J.C.); (J.B.); (B.C.)
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain; (J.M.-B.); (D.P.-Z.); (J.C.); (J.B.); (B.C.)
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain; (J.M.-B.); (D.P.-Z.); (J.C.); (J.B.); (B.C.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic (UVic-UCC), 08500 Vic, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain; (J.M.-B.); (D.P.-Z.); (J.C.); (J.B.); (B.C.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic (UVic-UCC), 08500 Vic, Spain
- Infectious Diseases Department, Germans Trias i Pujol Hospital, 08916 Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain; (J.M.-B.); (D.P.-Z.); (J.C.); (J.B.); (B.C.)
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The global pandemic caused by the severe acute respiratory virus coronavirus 2 (SARS-CoV-2) has a male bias in mortality likely driven by both gender and sex-based differences between male and female individuals. This is consistent with sex and gender-based features of HIV infection and overlap between the two diseases will highlight potential mechanistic pathways of disease and guide research questions and policy interventions. In this review, the emerging findings from SARS-CoV-2 infection will be placed in the context of sex and gender research in the more mature HIV epidemic. RECENT FINDINGS This review will focus on the new field of literature on prevention, immunopathogenesis and treatment of SARS-CoV-2 referencing relevant articles in HIV for context from a broader time period, consistent with the evolving understanding of sex and gender in HIV infection. Sex-specific features of epidemiology and immunopathogenesis reported in COVID-19 disease will be discussed and potential sex and gender-specific factors of relevance to prevention and treatment will be emphasized. SUMMARY Multilayered impacts of sex and gender on HIV infection have illuminated pathways of disease and identified important goals for public health interventions. SARS-CoV-2 has strong evidence for a male bias in disease severity and exploring that difference will yield important insights.
Collapse
Affiliation(s)
- Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Predicting Antibody Neutralization Efficacy in Hypermutated Epitopes Using Monte Carlo Simulations. Polymers (Basel) 2020; 12:polym12102392. [PMID: 33080783 PMCID: PMC7602999 DOI: 10.3390/polym12102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022] Open
Abstract
Human Immunodeficiency Virus 1 (HIV-1) evades adaptive immunity by means of its extremely high mutation rate, which allows the HIV envelope glycoprotein to continuously escape from the action of antibodies. However, some broadly neutralizing antibodies (bNAbs) targeting specific viral regions show the ability to block the infectivity of a large number of viral variants. The discovery of these antibodies opens new avenues in anti-HIV therapy; however, they are still suboptimal tools as their amplitude of action ranges between 50% and 90% of viral variants. In this context, being able to discriminate between sensitive and resistant strains to an antibody would be of great interest for the design of optimal clinical antibody treatments and to engineer potent bNAbs for clinical use. Here, we describe a hierarchical procedure to predict the antibody neutralization efficacy of multiple viral isolates to three well-known anti-CD4bs bNAbs: VRC01, NIH45-46 and 3BNC117. Our method consists of simulating the three-dimensional binding process between the gp120 and the antibody by using Protein Energy Landscape Exploration (PELE), a Monte Carlo stochastic approach. Our results clearly indicate that the binding profiles of sensitive and resistant strains to a bNAb behave differently, showing the latter’s weaker binding profiles, that can be exploited for predicting antibody neutralization efficacy in hypermutated HIV-1 strains.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The review recalls recent findings regarding the induction of vaccinal effects by HIV-1 broadly neutralizing antibodies (bNAbs) and highlights potential therapeutic strategies to exploit such immunomodulatory properties. RECENT FINDINGS Studies in different animal models have shown that mAbs can generate long-lasting protective immunity. Induction of this vaccinal effect by HIV-1 bNAbs has also been more recently reported in animal models of HIV-1 infection. Notably, bNAbs treatment of macaques infected with the chimeric simian-human immunodeficiency virus (SHIV) improved both humoral and cellular adaptive immune responses that contributed to disease control. Importantly, this concept has been extended to HIV-1-infected patients as enhancement of humoral responses was recently reported in HIV-1 patients treated with bNAbs. Studies aiming at elucidating the mechanisms underlying these immunomodulatory properties of bNAbs have identified a role for immune complexes in shaping immune responses against HIV-1. They also highlight different Fc (fragment crystallizable) region effector functions that might be required for the enhancement of HIV-1 immune responses upon bNAbs treatment. SUMMARY HIV-1 bNAbs can elicit protective adaptive immune responses through mechanisms involving multiple cellular and molecular actors of the immune system. Harnessing these mechanisms will be crucial to achieve protective immunity against HIV-1 infection by bNAbs.
Collapse
|
11
|
Zhang Y, Shen Y, Yin L, Qi T, Jia X, Lu H, Zhang L. Plasma Membrane Proteomic Profile Discovers Macrophage-capping Protein Related to Latent HIV-1. Curr HIV Res 2020; 17:42-52. [PMID: 31057110 DOI: 10.2174/1570162x17666190506155222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Due to the persistence of latent HIV-infected cellular reservoirs, HIV virus can not be eradicated completely. OBJECTIVE To identify proteins related to HIV latency, we performed a subcellular proteomic study in HIV latent cell lines. METHODS An established HIV-1 latent cell model (J-Lat Tat-GFP Clone A7 cells, A7 cells) and its parental cell line (Jurkat cells) were used. The plasma membrane (PM) fraction from cultured cells was enriched through aqueous two-phase partition. PM proteins were extracted and then separated using two-dimensional electrophoresis (2DE). Differentially expressed proteins were identified by mass spectrometry, and verified by western blotting. RESULTS Thirteen non-redundant proteins were identified to be differentially expressed in the A7 PM fraction compared to those in the Jurkat PM. Eight had a PM location through Gene Ontology (GO) analysis. A differential protein network of CAPG-ACTR3-CD3D was detected to have interactions with HIV Vpr, Tat, gp160, etc. through STRING software analysis. One of the differential proteins (Macrophage-capping protein (CAPG)) was verified by western blotting to be down- regulated in two cell lines and HIV resting CD4+ T cells negatively selected from patients. CONCLUSION We identified 13 proteins in A7 compared to Jurkat cells. CAPG may be a potential biomarker related to HIV latency.
Collapse
Affiliation(s)
- Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yinzhong Shen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tangkai Qi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
12
|
Desoubeaux G, Pelegrin M. [Monoclonal antibodies in infectious diseases: new partners in the therapeutic arsenal]. Med Sci (Paris) 2020; 35:1008-1013. [PMID: 31903909 DOI: 10.1051/medsci/2019200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Development of therapeutic antibodies for treating infectious diseases is more recent than for cancer and inflammatory diseases. To date, seven antibodies have been approved worldwide and only five in France. Medical indications are so far limited to the prophylaxis of bronchiolitis caused by respiratory syncytial virus (RSV), treatment of multidrug-resistant HIV disease, exposure to rabies and anthrax pulmonary disease, prevention of diarrhea recurrence due to Clostridium difficile, and atypical hemolytic uremic syndrome caused by Escherichia coli. In a near future, new technologies would allow accelerating the development of anti-infectious monoclonal antibodies to improve the anti-bacterial and anti-viral therapeutic arsenal.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- CHU de Tours, Parasitologie-Mycologie-Médecine tropicale, 37044 Tours, France - Université de Tours, Inserm U1100, Centre d'étude des pathologies respiratoires, Faculté de médecine, 37032 Tours, France
| | - Mireia Pelegrin
- Institut de génétique moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France - IRMB, Univ Montpellier, Inserm, CNRS, Montpellier, France
| |
Collapse
|
13
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|
14
|
|
15
|
Andreano E, Seubert A, Rappuoli R. Human monoclonal antibodies for discovery, therapy, and vaccine acceleration. Curr Opin Immunol 2019; 59:130-134. [PMID: 31450054 DOI: 10.1016/j.coi.2019.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 07/18/2019] [Indexed: 01/24/2023]
Abstract
Screening of single B cells from convalescent or vaccinated people allows the discovery of novel targets for infectious diseases and rapid production of engineered human monoclonal antibodies (mAbs) that can prevent or control infections by passive immunization. Here we propose that the development of human mAbs can also significantly accelerate vaccine development by anticipating some of the key biological and regulatory questions.
Collapse
Affiliation(s)
| | | | - Rino Rappuoli
- vAMRes Lab, Toscana Life Sciences, Siena, Italy; GSK, Siena, Italy; Imperial College, London, United Kingdom.
| |
Collapse
|
16
|
Bhatti MM, Cai AG, Theunissen JW. Binding affinities of human IgG1 and chimerized pig and rabbit derivatives to human, pig and rabbit Fc gamma receptor IIIA. PLoS One 2019; 14:e0219999. [PMID: 31323052 PMCID: PMC6641210 DOI: 10.1371/journal.pone.0219999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/05/2019] [Indexed: 11/22/2022] Open
Abstract
While pigs and rabbits are used as models for human immune diseases, FcγR binding is poorly characterized in both test species. To evaluate antibody binding to FcγRIIIA, a receptor involved in antibody-dependent cellular cytotoxicity, chimerized antibodies were generated by grafting the variable regions of a human IgG1 onto scaffolds from both species. The affinities of the parent and chimeric antibodies to the FcγRIIIA proteins from all three species were determined. While the human IgG1 and rabbit IgG had similar affinities for each FcγRIIIA with notable differences across species, pig IgG1 only bound pig FcγRIIIA with appreciable affinity. Also, the functional pig and rabbit proteins described here can be used in future experiments, such as pharmacology and mechanism of action studies.
Collapse
Affiliation(s)
- Maryam M. Bhatti
- Iconic Therapeutics, South San Francisco, CA, United States of America
| | - Allen G. Cai
- Iconic Therapeutics, South San Francisco, CA, United States of America
| | | |
Collapse
|
17
|
Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies. Viruses 2019; 11:v11030269. [PMID: 30889861 PMCID: PMC6466452 DOI: 10.3390/v11030269] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
There is broad scientific and societal consensus that finding a cure for HIV infection must be pursued. The major barrier to achieving a cure for HIV/AIDS is the capacity of the HIV virus to avoid both immune surveillance and current antiretroviral therapy (ART) by rapidly establishing latently infected cell populations, termed latent reservoirs. Here, we provide an overview of the rapidly evolving field of HIV cure/remission research, highlighting recent progress and ongoing challenges in the understanding of HIV reservoirs, the role of HIV transcription in latency and immune evasion. We review the major approaches towards a cure that are currently being explored and further argue that small molecules that inhibit HIV transcription, and therefore uncouple HIV gene expression from signals sent by the host immune response, might be a particularly promising approach to attain a cure or remission. We emphasize that a better understanding of the game of "cat and mouse" between the host immune system and the HIV virus is a crucial knowledge gap to be filled in both cure and vaccine research.
Collapse
|