1
|
Boiko JR, Hill GR. Chronic Graft-versus-host Disease: Immune Insights, Therapeutic Advances, and Parallels for Solid Organ Transplantation. Transplantation 2024:00007890-990000000-00959. [PMID: 39682018 DOI: 10.1097/tp.0000000000005298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Chronic graft-versus-host disease remains a frequent and morbid outcome of allogeneic hematopoietic cell transplantation, in which the donor-derived immune system attacks healthy recipient tissue. Preceding tissue damage mediated by chemoradiotherapy and alloreactive T cells compromise central and peripheral tolerance mechanisms, leading to aberrant donor T cell and germinal center B cell differentiation, culminating in pathogenic macrophage infiltration and differentiation in a target tissue, with ensuant fibrosis. This process results in a heterogeneous clinical syndrome with significant morbidity and mortality, frequently requiring prolonged therapy. In this review, we discuss the processes that interrupt immune tolerance, the subsequent clinical manifestations, and new Food and Drug Administration-approved therapeutic approaches that have been born from a greater understanding of disease pathogenesis in preclinical systems, linking to parallel processes following solid organ transplantation.
Collapse
Affiliation(s)
- Julie R Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Charmetant X, Pettigrew GJ, Thaunat O. Allorecognition Unveiled: Integrating Recent Breakthroughs Into the Current Paradigm. Transpl Int 2024; 37:13523. [PMID: 39588197 PMCID: PMC11586167 DOI: 10.3389/ti.2024.13523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
In transplantation, genetic differences between donor and recipient trigger immune responses that cause graft rejection. Allorecognition, the process by which the immune system discriminates allogeneic grafts, targets major histocompatibility complex (MHC) and minor histocompatibility antigens. Historically, it was believed that allorecognition was solely mediated by the recipient's adaptive immune system recognizing donor-specific alloantigens. However, recent research has shown significant roles for innate immune components, such as lymphoid and myeloid cells, which are sometimes triggered by the mere absence of a self-protein in the graft. This review integrates recent breakthroughs into the current allorecognition paradigm based on the well-established direct and indirect pathways, emphasizing the semi-direct pathway where recipient antigen-presenting cells (APCs) acquire donor MHC molecules, and the inverted direct pathway where donor CD4+ T cells within the graft activate recipient B cells to produce donor-specific antibodies (DSAs). The review also explores the role of natural killer (NK) cells in both promoting and inhibiting graft rejection, highlighting their dual role in innate allorecognition. Additionally, it discusses the emerging understanding of myeloid cell-mediated allorecognition and its implications for initiating adaptive immune responses. These insights aim to provide a more comprehensive understanding of allorecognition, potentially leading to improved transplant outcomes.
Collapse
Affiliation(s)
- Xavier Charmetant
- Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Faculty of Medicine, Claude Bernard University (Lyon 1), Villeurbanne, France
| | - Gavin J. Pettigrew
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Thaunat
- Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Lyon-Est Faculty of Medicine, Claude Bernard University (Lyon 1), Villeurbanne, France
| |
Collapse
|
3
|
Benichou G, Lancia HH. Intercellular transfer of MHC molecules in T cell alloimmunity and allotransplantation. Biomed J 2024; 47:100749. [PMID: 38797478 PMCID: PMC11414654 DOI: 10.1016/j.bj.2024.100749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
After transplantation of allogeneic tissues and organs, recognition by recipient T cells of donor MHC molecules initiates the pro-inflammatory adaptive immune response leading to allograft rejection. T cell allorecognition has long been known to be mediated via two distinct pathways: the direct pathway in which T cells recognize intact allogeneic MHC molecules displayed on donor cells and the indirect pathway whereby T cells recognize donor MHC peptides processed and presented by recipient antigen-presenting cells (APCs). It is believed that direct allorecognition is the driving force behind early acute allograft rejection while indirect allorecognition is involved in chronic allograft rejection, a progressive condition characterized by graft vasculopathy and tissue fibrosis. Recently, we and others have reported that after transplantation of allogeneic skin and organs, donor MHC molecules are transferred from donor cells to the host's APCs via trogocytosis or extracellular vesicles. Recipient APCs having captured donor MHC molecules can either present them to T cells in their intact form on their surface (semi-direct pathway) or the form of peptides bound to self-MHC molecules (indirect pathway). The present article provides an overview of recent studies evaluating the role of intercellular exchange of MHC molecules in T cell alloimmunity and its contribution to allograft rejection and tolerance.
Collapse
Affiliation(s)
- Gilles Benichou
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA.
| | - Hyshem H Lancia
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, MA, USA
| |
Collapse
|
4
|
Basu S, Dudreuilh C, Shah S, Sanchez-Fueyo A, Lombardi G, Dorling A. Activation and Regulation of Indirect Alloresponses in Transplanted Patients With Donor Specific Antibodies and Chronic Rejection. Transpl Int 2024; 37:13196. [PMID: 39228658 PMCID: PMC11368725 DOI: 10.3389/ti.2024.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Following transplantation, human CD4+T cells can respond to alloantigen using three distinct pathways. Direct and semi-direct responses are considered potent, but brief, so contribute mostly to acute rejection. Indirect responses are persistent and prolonged, involve B cells as critical antigen presenting cells, and are an absolute requirement for development of donor specific antibody, so more often mediate chronic rejection. Novel in vitro techniques have furthered our understanding by mimicking in vivo germinal centre processes, including B cell antigen presentation to CD4+ T cells and effector cytokine responses following challenge with donor specific peptides. In this review we outline recent data detailing the contribution of CD4+ T follicular helper cells and antigen presenting B cells to donor specific antibody formation and antibody mediated rejection. Furthermore, multi-parametric flow cytometry analyses have revealed specific endogenous regulatory T and B subsets each capable of suppressing distinct aspects of the indirect response, including CD4+ T cell cytokine production, B cell maturation into plasmablasts and antibody production, and germinal centre maturation. These data underpin novel opportunities to control these aberrant processes either by targeting molecules critical to indirect alloresponses or potentiating suppression via exogenous regulatory cell therapy.
Collapse
Affiliation(s)
- Sumoyee Basu
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Caroline Dudreuilh
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Transplantation, Renal and Urology Directorate, Guy’s and St Thomas’ NHS Foundation Trust, Guy’s Hospital, London, United Kingdom
| | - Sapna Shah
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Renal Unit, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberto Sanchez-Fueyo
- Department of Inflammation Biology, King’s College London, London, United Kingdom
- Liver Sciences, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, King’s College London, London, United Kingdom
- Department of Inflammation Biology, King’s College London, London, United Kingdom
| |
Collapse
|
5
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
6
|
Samson C, Thiolat A, Moktefi A, Cohen JL, Pilon C, Grimbert P. Belatacept inhibit human B cell germinal center development in immunodeficient mice. Sci Rep 2023; 13:13816. [PMID: 37620431 PMCID: PMC10449885 DOI: 10.1038/s41598-023-40700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The humoral response mediated by alloantibodies directed against donor HLA molecules (DSAs) is one of the main causes of graft loss in kidney transplantation. Understanding the pathophysiology leading to humoral kidney rejection as the development of therapeutic tools is therefore a main objective in the field of solid organ transplantation and necessitate adapted experimental models. Among the immunosuppressive agents used in renal transplantation, belatacept, a fusion protein targeting T costimulatory molecules has shown its ability to prevent more efficiently the secretion of DSA by different mechanisms including a direct action on plasma cells but also on B lymphocytes and follicular helper T lymphocytes (Tfh) cooperation. This cellular cooperation occurs within germinal centers (GC), the seat of B lymphocytes differentiation. Here, we aimed to develop a dedicated mouse model in which human GC would be functional to study the effect of belatacept on GC formation and the ability of B lymphocytes to secrete immunoglobulin. We next demonstrate that belatacept inhibits the formation of these GCs, by inhibiting the frequency of Tfh and B lymphocytes. This alters the B maturation and therefore the generation of plasma cells and consequently, immunoglobulin secretion.
Collapse
Affiliation(s)
- Chloé Samson
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France
- Inserm, U955, 94000, Créteil, France
| | - Allan Thiolat
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France
- Inserm, U955, 94000, Créteil, France
| | - Anissa Moktefi
- Groupe Hospitalo-Universitaire Chenevier Mondor, Service d'Anatomopathologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000, Créteil, France
| | - José L Cohen
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France
- Inserm, U955, 94000, Créteil, France
- Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération Hospitalo-Universitaire TRUE, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000, Créteil, France
| | - Caroline Pilon
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France
- Inserm, U955, 94000, Créteil, France
- Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération Hospitalo-Universitaire TRUE, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000, Créteil, France
| | - Philippe Grimbert
- Université Paris-Est, UMR_U955, UPEC, 94000, Créteil, France.
- Inserm, U955, 94000, Créteil, France.
- Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Fédération Hospitalo-Universitaire TRUE, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000, Créteil, France.
- Groupe Hospitalo-Universitaire Chenevier Mondor, Service de Néphrologie-Transplantation, AP-HP, 94000, Créteil, France.
| |
Collapse
|
7
|
Xia Y, Jin S, Wu Y. Small-molecule BCL6 inhibitor protects chronic cardiac transplant rejection and inhibits T follicular helper cell expansion and humoral response. Front Pharmacol 2023; 14:1140703. [PMID: 37007047 PMCID: PMC10063191 DOI: 10.3389/fphar.2023.1140703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Background: B cell lymphoma 6 (BCL6) is an important transcription factor of T follicular helper (Tfh) cells, which regulate the humoral response by supporting the maturation of germinal center B cells and plasma cells. The aim of this study is to investigate the expansion of T follicular helper cells and the effect of the BCL6 inhibitor FX1 in acute and chronic cardiac transplant rejection models.Methods: A mouse model of acute and chronic cardiac transplant rejection was established. Splenocytes were collected at different time points after transplantation for CXCR5+PD-1+ and CXCR5+BCL6+ Tfh cells detection by flow cytometry (FCM). Next, we treated the cardiac transplant with BCL6 inhibitor FX1 and the survival of grafts was recorded. The hematoxylin and eosin, Elastica van Gieson, and Masson staining of cardiac grafts was performed for the pathological analysis. Furthermore, the proportion and number of CD4+ T cells, effector CD4+ T cells (CD44+CD62L−), proliferating CD4+ T cells (Ki67+), and Tfh cells in the spleen were detected by FCM. The cells related to humoral response (plasma cells, germinal center B cells, IgG1+ B cells) and donor-specific antibody were also detected.Results: We found that the Tfh cells were significantly increased in the recipient mice on day 14 post transplantation. During the acute cardiac transplant rejection, even the BCL6 inhibitor FX1 did not prolong the survival or attenuate the immune response of cardiac graft, the expansion of Tfh cell expansion inhibit. During the chronic cardiac transplant rejection, FX1 prolonged survival of cardiac graft, and prevented occlusion and fibrosis of vascular in cardiac grafts. FX1 also decreased the proportion and number of splenic CD4+ T cells, effector CD4+ T cells, proliferating CD4+ T cells, and Tfh cells in mice with chronic rejection. Moreover, FX1 also inhibited the proportion and number of splenic plasma cells, germinal center B cells, IgG1+ B cells, and the donor-specific antibody in recipient mice.Conclusion: We found BCL6 inhibitor FX1 protects chronic cardiac transplant rejection and inhibits the expansion of Tfh cells and the humoral response, which suggest that BCL6 is a potential therapeutic target of the treatment for chronic cardiac transplant rejection.
Collapse
Affiliation(s)
- Yuxuan Xia
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
- *Correspondence: Yuming Wu,
| |
Collapse
|
8
|
Schmitz R, Fitch ZW, Manook M, Schroder PM, Choi AY, Olaso D, Yoon J, Bae Y, Shaw BI, Song M, Kuchibhatla M, Farris AB, Kirk A, Kwun J, Knechtle SJ. Belatacept-Based Maintenance Immunosuppression Controls the Post-Transplant Humoral Immune Response in Highly Sensitized Nonhuman Primates. KIDNEY360 2022; 3:2116-2130. [PMID: 36591367 PMCID: PMC9802566 DOI: 10.34067/kid.0001732022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Preexisting donor-specific antibodies (DSA) to MHC antigens increase the risk of antibody-mediated rejection (AMR) in sensitized transplant recipients and reduces graft survival. Pretransplant desensitization with costimulation blockade and proteasome inhibition has facilitated transplantation in our preclinical nonhuman primate (NHP) model. However, long-term graft survival is limited by rebound of DSA after transplantation. In this study, we performed kidney transplants between highly sensitized, maximally MHC-mismatched NHPs (n=14). At kidney transplantation, primates received T cell depletion with rhesus-specific anti-thymocyte globulin (rhATG; n=10) or monoclonal anti-CD4 and anti-CD8 antibodies (n=4). Maintenance immunosuppression consisted of belatacept and tacrolimus (n=5) or belatacept and rapamycin (n=9) with steroids. Rebound of DSA post-kidney transplantation was significantly reduced compared with maintenance immunosuppression with tacrolimus, mycophenolate, and steroids. Protocol lymph node biopsy specimens showed a decrease in germinal center activity, with low frequencies of T follicular helper cells and class-switched B cells after kidney transplantation. Combined belatacept and rapamycin was superior in controlling viral reactivation, enabling weaning of ganciclovir prophylaxis. Tacrolimus was associated with increased morbidity that included cytomegalovirus and parvovirus viremia and post-transplant lymphoproliferative disorder. All primates in the tacrolimus/belatacept group failed discontinuation of antiviral therapy. Overall, belatacept-based immunosuppression increased AMR-free graft survival by controlling post-transplant humoral responses in highly sensitized NHP recipients and should be further investigated in a human clinical trial.
Collapse
Affiliation(s)
- Robin Schmitz
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Zachary W. Fitch
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Miriam Manook
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Paul M. Schroder
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Ashley Y. Choi
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Danae Olaso
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Janghoon Yoon
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Yeeun Bae
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Brian I. Shaw
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Mingqing Song
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Maragatha Kuchibhatla
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Alton B. Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Allan Kirk
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Stuart J. Knechtle
- Department of Surgery, Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
9
|
Louis K, Macedo C, Lefaucheur C, Metes D. Adaptive immune cell responses as therapeutic targets in antibody-mediated organ rejection. Trends Mol Med 2022; 28:237-250. [PMID: 35093288 PMCID: PMC8882148 DOI: 10.1016/j.molmed.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 01/17/2023]
Abstract
Humoral alloimmunity of organ transplant recipient to donor can lead to antibody-mediated rejection (ABMR), causing thousands of organ transplants to fail each year worldwide. However, the mechanisms of adaptive immune cell responses at the basis of humoral alloimmunity have not been entirely understood. In this review, we discuss how recent investigations have uncovered the key contributions of T follicular helper (TFH) and B cells and their coordinated actions in driving donor-specific antibody generation and immune progression towards ABMR. We show how recognition of the role of TFH-B cell interactions may allow the elaboration of improved clinical strategies for immune monitoring and the identification of novel therapeutic targets to tackle ABMR that will ultimately improve organ transplant survival.
Collapse
Affiliation(s)
- Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale UMR 976, Université de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carmen Lefaucheur
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR 970, Université de Paris, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010113. [PMID: 35054506 PMCID: PMC8780861 DOI: 10.3390/life12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/16/2022]
Abstract
Reproduction in certain deep-sea anglerfishes involves the permanent attachment of dwarf males to much larger females and fusion of their tissues leading to the establishment of a shared circulatory system. This unusual phenomenon of sexual parasitism enables anglerfishes to maximize reproductive success in the vast and deep oceans, where females and males otherwise rarely meet. An even more surprising phenomenon relates to the observation that joining of genetically disparate male and female anglerfishes does not evoke a strong anti-graft immune rejection response, which occurs in vertebrates following allogeneic parabiosis. Recent studies demonstrated that the evolutionary processes that led to the unique mating strategy of anglerfishes coevolved with genetic changes that resulted in loss of functional genes encoding critical components of the adaptive immune system. These genetic alterations enabled anglerfishes to tolerate the histoincompatible tissue antigens of their mate and prevent the occurrence of reciprocal graft rejection responses. While the exact mechanisms by which anglerfishes defend themselves against pathogens have not yet been deciphered, it is speculated that during evolution, anglerfishes adopted new immune strategies that compensate for the loss of B and T lymphocyte functions and enable them to resist infection by pathogens.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
11
|
Louis K, Fadakar P, Macedo C, Yamada M, Lucas M, Gu X, Zeevi A, Randhawa P, Lefaucheur C, Metes D. Concomitant loss of regulatory T and B cells is a distinguishing immune feature of antibody-mediated rejection in kidney transplantation. Kidney Int 2022; 101:1003-1016. [PMID: 35090879 PMCID: PMC9038633 DOI: 10.1016/j.kint.2021.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Although considerable advances have been made in understanding the cellular effector mechanisms responsible for donor-specific antibody generation leading to antibody-mediated rejection (ABMR), the identification of cellular regulators of such immune responses is lacking. To clarify this, we used high dimensional flow cytometry to concomitantly profile and track the two major subsets of regulatory lymphocytes in blood: T regulatory (TREG) and transitional B cells in a cohort of 96 kidney transplant recipients. Additionally, we established co-culture assays to address their respective capacity to suppress antibody responses in vitro. TREG and transitional B cells were found to be potent suppressors of T follicular helper-mediated B-cell differentiation into plasmablast and antibody generation. TREG and transitional B cells were both durably expanded in patients who did not develop donor-specific antibody post-transplant. However, patients who manifested donor-specific antibody and progressed to ABMR displayed a marked and persistent numerical reduction in TREG and transitional B cells. Strikingly, specific cell clusters expressing the transcription factor T-bet were selectively depleted in both TREG and transitional B-cell compartments in patients with ABMR. Importantly, the coordinated loss of these T-bet+CXCR5+TREG and T-bet+CD21- transitional B-cell clusters was correlated with increased and inflammatory donor specific antibody responses, more extensive microvascular inflammation and a higher rate of kidney allograft loss. Thus, our study identified coordinated and persistent defects in regulatory T- and B-cell responses in patients undergoing ABMR, which may contribute to their loss of humoral immune regulation, and warrant timely therapeutic interventions to replenish and sustain TREG and transitional B cells in these patients.
Collapse
|
12
|
Muir L, Jaffer A, Rees-Spear C, Gopalan V, Chang FY, Fernando R, Vaitkute G, Roustan C, Rosa A, Earl C, Rajakaruna GK, Cherepanov P, Salama A, McCoy LE, Motallebzadeh R. Neutralizing Antibody Responses After SARS-CoV-2 Infection in End-Stage Kidney Disease and Protection Against Reinfection. Kidney Int Rep 2021; 6:1799-1809. [PMID: 33942026 PMCID: PMC8081267 DOI: 10.1016/j.ekir.2021.03.902] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Patients with end-stage kidney disease (ESKD) represent a vulnerable group with multiple risk factors that are associated with poor outcomes after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite established susceptibility to infectious complications and the importance of humoral immunity in protection against SARS-CoV-2, few studies have investigated the humoral immune response to SARS-CoV-2 within this population. Here, we evaluate the seroprevalence of SARS-CoV-2 in patients awaiting renal transplantation and determine whether seroconverted patients with ESKD have durable and functional neutralizing activity against SARS-CoV-2. METHODS Serum samples were obtained from 164 patients with ESKD by August 2020. Humoral immune responses were evaluated by SARS-CoV-2 spike S1 subunit and nucleoprotein semiquantitative enzyme-linked immunosorbent assay (ELISA) and SARS-CoV-2 spike pseudotype neutralization assay. RESULTS All patients with ESKD with reverse-transcriptase polymerase chain reaction (RT-PCR)-confirmed infection (n = 17) except for 1 individual seroconverted against SARS-CoV-2. Overall seroprevalence (anti-S1 and/or anti-N IgG) was 36% and was higher in patients on hemodialysis (44.2%). A total of 35.6% of individuals who seroconverted were asymptomatic. Seroconversion in the absence of a neutralizing antibody (nAb) titer was observed in 12 patients, all of whom were asymptomatic. Repeat measurements at a median of 93 days from baseline sampling revealed that most individuals retained detectable responses although a significant drop in S1, N and nAb titers was observed. CONCLUSION Patients with ESKD, including those who develop asymptomatic disease, routinely seroconvert and produce detectable nAb titers against SARS-CoV-2. Although IgG levels wane over time, the neutralizing antibodies remain detectable in most patients, suggesting some level of protection is likely maintained, particularly in those who originally develop stronger responses.
Collapse
Affiliation(s)
- Luke Muir
- UCL Institute of Immunity & Transplantation, University College London, London, UK
- UCL Division of Infection & Immunity, University College London, London, UK
| | - Aneesa Jaffer
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
| | - Chloe Rees-Spear
- UCL Institute of Immunity & Transplantation, University College London, London, UK
- UCL Division of Infection & Immunity, University College London, London, UK
| | - Vignesh Gopalan
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
| | - Fernando Y. Chang
- Research Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Raymond Fernando
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
| | - Gintare Vaitkute
- Research Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | - Gayathri K. Rajakaruna
- Centre for Transplantation, Department of Renal Medicine, University College London, London, UK
| | | | - Alan Salama
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
- Centre for Transplantation, Department of Renal Medicine, University College London, London, UK
| | - Laura E. McCoy
- UCL Institute of Immunity & Transplantation, University College London, London, UK
- UCL Division of Infection & Immunity, University College London, London, UK
| | - Reza Motallebzadeh
- UCL Institute of Immunity & Transplantation, University College London, London, UK
- Department of Nephrology & Transplantation, Royal Free London NHS Trust, London, UK
- Research Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
- Centre for Transplantation, Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
13
|
Steines L, Poth H, Schuster A, Amann K, Banas B, Bergler T. Disruption of Tfh:B Cell Interactions Prevents Antibody-Mediated Rejection in a Kidney Transplant Model in Rats: Impact of Calcineurin Inhibitor Dose. Front Immunol 2021; 12:657894. [PMID: 34135891 PMCID: PMC8201497 DOI: 10.3389/fimmu.2021.657894] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
We aimed to investigate the mechanisms of humoral immune activation in ABMR using a MHC-mismatched rat kidney transplant model. We applied low dose cyclosporine A (loCNI) to allow donor-specific antibody (DSA) formation and rejection and high dose cyclosporine A (hiCNI) for non-rejection. DSA and leukocyte subsets were measured by flow cytometry. Germinal centers (GC), T follicular helper cells (Tfh), plasma cells and interleukin-21 (IL-21) expression were analyzed by immunofluorescence microscopy. Expression of important costimulatory molecules and cytokines was measured by qRT-PCR. Allograft rejection was evaluated by a nephropathologist. We found that DSA formation correlated with GC frequency and expansion, and that GC size was linked to the number of activated Tfh. In hiCNI, GC and activated Tfh were virtually absent, resulting in fewer plasma cells and no DSA or ABMR. Expression of B cell activating T cell cytokine IL-21 was substantially inhibited in hiCNI, but not in loCNI. In addition, hiCNI showed lower expression of ICOS ligand and IL-6, which stimulate Tfh differentiation and maintenance. Overall, Tfh:B cell crosstalk was controlled only by hiCNI treatment, preventing the development of DSA and ABMR. Additional strategies targeting Tfh:B cell interactions are needed for preventing alloantibody formation and ABMR.
Collapse
Affiliation(s)
- Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Helen Poth
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Mohammed MT, Cai S, Hanson BL, Zhang H, Clement RL, Daccache J, Cavazzoni CB, Blazar BR, Alessandrini A, Rennke HG, Chandraker A, Sage PT. Follicular T cells mediate donor-specific antibody and rejection after solid organ transplantation. Am J Transplant 2021; 21:1893-1901. [PMID: 33421294 PMCID: PMC8096660 DOI: 10.1111/ajt.16484] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/09/2020] [Accepted: 01/01/2021] [Indexed: 01/25/2023]
Abstract
Following solid organ transplantation, a substantial proportion of chronic allograft loss is attributed to the formation of donor-specific antibodies (DSAs) and antibody-mediated rejection (AbMR). The frequency and phenotype of T follicular helper (Tfh) and T follicular regulatory (Tfr) cells is altered in the setting of kidney transplantation, particularly in patients who develop AbMR. However, the roles of Tfh and Tfr cells in AbMR after solid organ transplantation is unclear. We developed mouse models to inducibly and potently perturb Tfh and Tfr cells to assess the roles of these cells in the development of DSA and AbMR. We found that Tfh cells are required for both de novo DSA responses as well as augmentation of DSA following presensitization. Using orthotopic allogeneic kidney transplantation models, we found that deletion of Tfh cells at the time of transplantation resulted in less severe transplant rejection. Furthermore, using inducible Tfr cell deletion strategies we found that Tfr cells inhibit de novo DSA formation but only have a minor role in controlling kidney transplant rejection. These studies demonstrate that Tfh cells promote, whereas Tfr cells inhibit, DSA to control rejection after kidney transplantation. Therefore, targeting these cells represent a new therapeutic strategy to prevent and treat AbMR.
Collapse
Affiliation(s)
- Mostafa T. Mohammed
- Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt,Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Songjie Cai
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Benjamin L. Hanson
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Rachel L. Clement
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Joe Daccache
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, 55455
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
| | - Helmut G. Rennke
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| |
Collapse
|
15
|
Kim MY, Brennan DC. Therapies for Chronic Allograft Rejection. Front Pharmacol 2021; 12:651222. [PMID: 33935762 PMCID: PMC8082459 DOI: 10.3389/fphar.2021.651222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Remarkable advances have been made in the pathophysiology, diagnosis, and treatment of antibody-mediated rejection (ABMR) over the past decades, leading to improved graft outcomes. However, long-term failure is still high and effective treatment for chronic ABMR, an important cause of graft failure, has not yet been identified. Chronic ABMR has a relatively different phenotype from active ABMR and is a slowly progressive disease in which graft injury is mainly caused by de novo donor specific antibodies (DSA). Since most trials of current immunosuppressive therapies for rejection have focused on active ABMR, treatment strategies based on those data might be less effective in chronic ABMR. A better understanding of chronic ABMR may serve as a bridge in establishing treatment strategies to improve graft outcomes. In this in-depth review, we focus on the pathophysiology and characteristics of chronic ABMR along with the newly revised Banff criteria in 2017. In addition, in terms of chronic ABMR, we identify the reasons for the resistance of current immunosuppressive therapies and look at ongoing research that could play a role in setting better treatment strategies in the future. Finally, we review non-invasive biomarkers as tools to monitor for rejection.
Collapse
Affiliation(s)
| | - Daniel C. Brennan
- Department of Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
La Muraglia GM, Zeng S, Crichton ES, Wagener ME, Ford ML, Badell IR. Superior inhibition of alloantibody responses with selective CD28 blockade is CTLA-4 dependent and T follicular helper cell specific. Am J Transplant 2021; 21:73-86. [PMID: 32406182 PMCID: PMC7665991 DOI: 10.1111/ajt.16004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023]
Abstract
Anti-donor antibodies cause immunologic injury in transplantation. CD28 blockade with CTLA-4-Ig has the ability to reduce the incidence of these donor-specific antibodies (DSA), but its mechanism is suboptimal for the inhibition of alloimmunity in that CTLA-4-Ig blocks both CD28 costimulation and CTLA-4 coinhibition. Thus selective CD28 blockade that spares CTLA-4 has potential to result in improved inhibition of humoral alloimmunity. To test this possibility, we utilized a full allogeneic mismatch murine transplant model and T follicular helper (Tfh):B cell co-culture system. We observed that selective blockade with an anti-CD28 domain antibody (dAb) compared to CTLA-4-Ig led to superior inhibition of Tfh cell, germinal center, and DSA responses in vivo and better control of B cell responses in vitro. CTLA-4 blockade enhanced the humoral alloresponse and, in combination with anti-CD28 dAb, abrogated the effects of selective blockade. This CTLA-4-dependent inhibition was Tfh cell specific in that CTLA-4 expression by Tfh cells was necessary and sufficient for the improved humoral inhibition observed with selective CD28 blockade. As CD28 blockade attracts interest for control of alloantibodies in the clinic, these data support selective CD28 blockade as a superior strategy to address DSA via the sparing of CTLA-4 and more potent targeting of Tfh cells.
Collapse
Affiliation(s)
| | - Susan Zeng
- Emory Transplant Center, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
17
|
Suchanek O, Clatworthy MR. Novel strategies to target the humoral alloimmune response. HLA 2020; 96:667-680. [PMID: 33022883 DOI: 10.1111/tan.14092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/24/2022]
Abstract
Antibody-mediated rejection (ABMR) represents a major cause of late allograft loss in solid organ transplantation worldwide. This process is driven by donor-specific antibodies (DSA), which develop either de-novo or, in sensitized patients, are preformed at the time of transplantation. Effective targeting of ABMR has been hampered by a lack of robust randomized controlled trials (RCT), required for the regulatory approval of new therapeutics. In this review, we discuss the evidence behind the present "standard" of care and recent progress in the development of novel strategies targeting different aspects of the alloimmune humoral response, including naïve and memory B-cell activation, the germinal centre reaction, plasma cell survival and antibody effector functions. In particular, we focus on co-stimulation blockade and its combination with next-generation proteasome inhibitors, new depleting monoclonal antibodies (anti-CD19, anti-BCMA, anti-CD38, anti-CD138), interleukin-6 blockade, complement inhibition and DSA degradation. These treatment modalities, when used in the appropriate clinical context and combination, have the potential to finally improve long-term allograft survival.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
18
|
Non-invasive cardiac allograft rejection surveillance: reliability and clinical value for prevention of heart failure. Heart Fail Rev 2020; 26:319-336. [PMID: 32889634 DOI: 10.1007/s10741-020-10023-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 01/04/2023]
Abstract
Allograft rejection-related acute and chronic heart failure (HF) is a major cause of death in heart transplant recipients. Given the deleterious impact of late recognized acute rejection (AR) or non-recognized asymptomatic antibody-mediated rejection on short- and long-term allograft function improvement of AR surveillance and optimization of action strategies for confirmed AR can prevent AR-related allograft failure and delay the development of cardiac allograft vasculopathy, which is the major cause for HF after the first posttransplant year. Routine non-invasive monitoring of cardiac function can improve both detection and functional severity grading of AR. It can also be helpful in guiding the anti-AR therapy and timing of routine surveillance endomyocardial biopsies (EMBs). The combined use of EMBs with non-invasive technologies and methods, which allow detection of subclinical alterations in myocardial function (e.g., tissue Doppler imaging and speckle-tracking echocardiography), reveal alloimmune activation (e.g., screening of complement-activating donor-specific antibodies and circulating donor-derived cell-free DNA) and help in predicting the imminent risk of immune-mediated injury (e.g., gene expression profiling, screening of non-HLA antibodies, and circulating donor-derived cell-free DNA), can ensure the best possible surveillance and management of AR. This article gives an overview of the current knowledge about the reliability and clinical value of non-invasive cardiac allograft AR surveillance. Particular attention is focused on the potential usefulness of non-invasive tools and techniques for detection and functional grading of early and late ARs in asymptomatic patients. Overall, the review aimed to provide a theoretical and practical basis for those engaged in this particularly demanding up-to-date topic.
Collapse
|
19
|
Siu JH, Motallebzadeh R, Pettigrew GJ. Humoral autoimmunity after solid organ transplantation: Germinal ideas may not be natural. Cell Immunol 2020; 354:104131. [DOI: 10.1016/j.cellimm.2020.104131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
|
20
|
Swann JB, Holland SJ, Petersen M, Pietsch TW, Boehm T. The immunogenetics of sexual parasitism. Science 2020; 369:1608-1615. [PMID: 32732279 DOI: 10.1126/science.aaz9445] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/17/2020] [Indexed: 01/29/2023]
Abstract
Sexual parasitism has evolved as a distinctive mode of reproduction among deep-sea anglerfishes. The permanent attachment of males to host females observed in these species represents a form of anatomical joining, which is otherwise unknown in nature. Pronounced modifications to immune facilities are associated with this reproductive trait. The genomes of species with temporarily attaching males lack functional aicda genes that underpin affinity maturation of antibodies. Permanent attachment is associated with additional alterations, culminating in the loss of functional rag genes in some species, abolishing somatic diversification of antigen receptor genes, the hallmark of canonical adaptive immunity. In anglerfishes, coevolution of innate and adaptive immunity has been disentangled, implying that an alternative form of immunity supported the emergence of this evolutionarily successful group of vertebrates.
Collapse
Affiliation(s)
- Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| | - Stephen J Holland
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Malte Petersen
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany
| | - Theodore W Pietsch
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105-5020, USA
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany.
| |
Collapse
|
21
|
Louis K, Macedo C, Bailly E, Lau L, Ramaswami B, Marrari M, Landsittel D, Chang A, Chandran U, Fadakar P, Yamada M, Chalasani G, Randhawa P, Zeevi A, Singh H, Lefaucheur C, Metes D. Coordinated Circulating T Follicular Helper and Activated B Cell Responses Underlie the Onset of Antibody-Mediated Rejection in Kidney Transplantation. J Am Soc Nephrol 2020; 31:2457-2474. [PMID: 32723838 DOI: 10.1681/asn.2020030320] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although antibody-mediated rejection (ABMR) has been long recognized as a leading cause of allograft failure after kidney transplantation, the cellular and molecular processes underlying the induction of deleterious donor-specific antibody (DSA) responses remain poorly understood. METHODS Using high-dimensional flow cytometry, in vitro assays, and RNA sequencing, we concomitantly investigated the role of T follicular helper (TFH) cells and B cells during ABMR in 105 kidney transplant recipients. RESULTS There were 54 patients without DSAs; of those with DSAs, ABMR emerged in 20 patients, but not in 31 patients. We identified proliferating populations of circulating TFH cells and activated B cells emerging in blood of patients undergoing ABMR. Although these circulating TFH cells comprised heterogeneous phenotypes, they were dominated by activated (ICOS+PD-1+) and early memory precursor (CCR7+CD127+) subsets, and were enriched for the transcription factors IRF4 and c-Maf. These circulating TFH cells produced large amounts of IL-21 upon stimulation with donor antigen and induced B cells to differentiate into antibody-secreting cells that produced DSAs. Combined analysis of the matched circulating TFH cell and activated B cell RNA-sequencing profiles identified highly coordinated transcriptional programs in circulating TFH cells and B cells among patients with ABMR, which markedly differed from those of patients who did not develop DSAs or ABMR. The timing of expansion of the distinctive circulating TFH cells and activated B cells paralleled emergence of DSAs in blood, and their magnitude was predictive of IgG3 DSA generation, more severe allograft injury, and higher rate of allograft loss. CONCLUSIONS Patients undergoing ABMR may benefit from monitoring and therapeutic targeting of TFH cell-B cell interactions.
Collapse
Affiliation(s)
- Kevin Louis
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 976, Université de Paris, Paris, France
| | - Camila Macedo
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Elodie Bailly
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 976, Université de Paris, Paris, France
| | - Louis Lau
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bala Ramaswami
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marilyn Marrari
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Douglas Landsittel
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander Chang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul Fadakar
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Masaki Yamada
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Geetha Chalasani
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Parmjeet Randhawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adriana Zeevi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Harinder Singh
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Inserm UMR S970, Université de Paris, Paris, France
| | - Diana Metes
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania .,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Karahan GE, Claas FHJ, Heidt S. Pre-existing Alloreactive T and B Cells and Their Possible Relevance for Pre-transplant Risk Estimation in Kidney Transplant Recipients. Front Med (Lausanne) 2020; 7:340. [PMID: 32793610 PMCID: PMC7385137 DOI: 10.3389/fmed.2020.00340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
In allogeneic transplantation, genetic disparities between patient and donor may lead to cellular and humoral immune responses mediated by both naïve and memory alloreactive cells of the adaptive immune system. This review will focus on alloreactive T and B cells with emphasis on the memory compartment, their role in relation to kidney rejection, and in vitro assays to detect these alloreactive cells. Finally, the potential additional value of utilizing donor-specific memory T and B cell assays supplementary to current routine pre-transplant risk assessment of kidney transplant recipients will be discussed.
Collapse
Affiliation(s)
- Gonca E Karahan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Dandel M, Hetzer R. Impact of rejection-related immune responses on the initiation and progression of cardiac allograft vasculopathy. Am Heart J 2020; 222:46-63. [PMID: 32018202 DOI: 10.1016/j.ahj.2019.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
|
24
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
25
|
Mendoza Rojas A, Hesselink DA, van Besouw NM, Baan CC, van Gelder T. Impact of low tacrolimus exposure and high tacrolimus intra-patient variability on the development of de novo anti-HLA donor-specific antibodies in kidney transplant recipients. Expert Rev Clin Immunol 2019; 15:1323-1331. [PMID: 31721605 DOI: 10.1080/1744666x.2020.1693263] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: De novo donor-specific antibodies (dnDSA) directed against HLA are a major contributing factor to the chronic deterioration of renal allograft function. Several factors, including the degree of HLA matching, younger recipient age, and past sensitization events have been shown to increase the risk for the development of dnDSA. The development of dnDSA is also strongly associated with modifications in the immunosuppressive regimen, non-adherence, and under-immunosuppression.Areas covered: Tacrolimus is widely used after solid organ transplantation (SOT) and in recent years, both a high intra-patient variability in tacrolimus exposure and low tacrolimus exposure have been found to be associated with a higher risk of dnDSA development in kidney transplant recipients. This article provides an overview of current findings published in the recent 5 years regarding the relationship between tacrolimus exposure and variation therein and the development of dnDSA.Expert opinion: In this review, we describe how combining data on tacrolimus intra-patient variability and mean pre-dose concentration may be an effective tool to identify kidney transplant recipients who are at higher risk of developing dnDSA.
Collapse
Affiliation(s)
- Aleixandra Mendoza Rojas
- Department of Internal Medicine, Nephrology & Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Nephrology & Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nicole M van Besouw
- Department of Internal Medicine, Nephrology & Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology & Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Nephrology & Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Hospital Pharmacy, Clinical Pharmacology Unit, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
26
|
Laguna-Goya R, Suàrez-Fernández P, Paz-Artal E. Follicular helper T cells and humoral response in organ transplantation. Transplant Rev (Orlando) 2019; 33:183-190. [PMID: 31327572 DOI: 10.1016/j.trre.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/17/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Antibody mediated rejection has been recognized as an important contributor to long-term graft loss in most solid organ transplants. Current immunosuppressive regimes are not capable of preventing anti-HLA antibody formation and eventual damage to the graft, and there is a need to develop drugs directed against novel targets to avoid graft allorecognition. In this review we introduce follicular helper T cells (Tfh), a subtype of lymphocyte specialized in helping B cells to differentiate into plasmablasts and produce class-switched antibodies. We focus on the role of Tfh in solid organ transplantation, what is known about Tfh and the production of alloantibodies, how current immunosuppressive therapies affect Tfh and what new molecules could be used to target Tfh in transplantation, with the goal of improving graft survival.
Collapse
Affiliation(s)
- R Laguna-Goya
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Spain.
| | - P Suàrez-Fernández
- Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
| | - E Paz-Artal
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Spain
| |
Collapse
|
27
|
Harper IG, Gjorgjimajkoska O, Siu JHY, Parmar J, Mulder A, Claas FHJ, Hosgood SA, Nicholson ML, Motallebzadeh R, Pettigrew GJ. Prolongation of allograft survival by passenger donor regulatory T cells. Am J Transplant 2019; 19:1371-1379. [PMID: 30548563 PMCID: PMC6519070 DOI: 10.1111/ajt.15212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 01/25/2023]
Abstract
Tissue resident lymphocytes are present within many organs, and are presumably transferred at transplantation, but their impact on host immunity is unclear. Here, we examine whether transferred donor natural regulatory CD4 T cells (nT-regs) inhibit host alloimmunity and prolong allograft survival. Transfer of donor-strain lymphocytes was first assessed by identifying circulating donor-derived CD4 T cells in 21 consecutive human lung transplant recipients, with 3 patterns of chimerism apparent: transient, intermediate, and persistent (detectable for up to 6 weeks, 6 months, and beyond 1 year, respectively). The potential for transfer of donor nT-regs was then confirmed by analysis of leukocyte filters recovered from ex vivo normothermic perfusion circuits of human kidneys retrieved for transplantation. Finally, in a murine model of cardiac allograft vasculopathy, depletion of donor CD4 nT-regs before organ recovery resulted in markedly accelerated heart allograft rejection and augmented host effector antibody responses. Conversely, adoptive transfer or purified donor-strain nT-regs inhibited host humoral immunity and prolonged allograft survival, and more effectively so than following administration of recipient nT-regs. In summary, following transplantation, passenger donor-strain nT-regs can inhibit host adaptive immune responses and prolong allograft survival. Isolated donor-derived nT-regs may hold potential as a cellular therapy to improve transplant outcomes.
Collapse
Affiliation(s)
- Ines G. Harper
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | - Jacqueline H. Y. Siu
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Jasvir Parmar
- Department of Cardiothoracic TransplantationPapworth HospitalCambridgeUK
| | - Arend Mulder
- Department of Immunohaematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Frans H. J. Claas
- Department of Immunohaematology and Blood TransfusionLeiden University Medical CenterLeidenThe Netherlands
| | - Sarah A. Hosgood
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Michael L. Nicholson
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Reza Motallebzadeh
- Centre for Surgical Innovation, Organ Repair & TransplantationUniversity College LondonLondonUK
- Centre for Transplantation, Department of Renal MedicineUniversity College LondonLondonUK
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Gavin J. Pettigrew
- Department of SurgerySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
28
|
Alsughayyir J, Chhabra M, Qureshi MS, Mallik M, Ali JM, Gamper I, Moseley EL, Peacock S, Kosmoliaptsis V, Goddard MJ, Linterman MA, Motallebzadeh R, Pettigrew GJ. Relative Frequencies of Alloantigen-Specific Helper CD4 T Cells and B Cells Determine Mode of Antibody-Mediated Allograft Rejection. Front Immunol 2019; 9:3039. [PMID: 30740108 PMCID: PMC6357941 DOI: 10.3389/fimmu.2018.03039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/07/2018] [Indexed: 02/02/2023] Open
Abstract
Humoral alloimmunity is now recognized as a major determinant of transplant outcome. MHC glycoprotein is considered a typical T-dependent antigen, but the nature of the T cell alloresponse that underpins alloantibody generation remains poorly understood. Here, we examine how the relative frequencies of alloantigen-specific B cells and helper CD4 T cells influence the humoral alloimmune response and how this relates to antibody-mediated rejection (AMR). An MHC-mismatched murine model of cardiac AMR was developed, in which T cell help for alloantibody responses in T cell deficient (Tcrbd-/-) C57BL/6 recipients against donor H-2Kd MHC class I alloantigen was provided by adoptively transferred "TCR75" CD4 T cells that recognize processed H-2Kd allopeptide via the indirect-pathway. Transfer of large numbers (5 × 105) of TCR75 CD4 T cells was associated with rapid development of robust class-switched anti-H-2Kd humoral alloimmunity and BALB/c heart grafts were rejected promptly (MST 9 days). Grafts were not rejected in T and B cell deficient Rag2-/- recipients that were reconstituted with TCR75 CD4 T cells or in control (non-reconstituted) Tcrbd-/- recipients, suggesting that the transferred TCR75 CD4 T cells were mediating graft rejection principally by providing help for effector alloantibody responses. In support, acutely rejecting BALB/c heart grafts exhibited hallmark features of acute AMR, with widespread complement C4d deposition, whereas cellular rejection was not evident. In addition, passive transfer of immune serum from rejecting mice to Rag2-/- recipients resulted in eventual BALB/c heart allograft rejection (MST 20 days). Despite being long-lived, the alloantibody responses observed at rejection of the BALB/c heart grafts were predominantly generated by extrafollicular foci: splenic germinal center (GC) activity had not yet developed; IgG secreting cells were confined to the splenic red pulp and bridging channels; and, most convincingly, rapid graft rejection still occurred when recipients were reconstituted with similar numbers of Sh2d1a-/- TCR75 CD4 T cells that are genetically incapable of providing T follicular helper cell function for generating GC alloimmunity. Similarly, alloantibody responses generated in Tcrbd-/- recipients reconstituted with smaller number of wild-type TCR75 CD4 T cells (103), although long-lasting, did not have a discernible extrafollicular component, and grafts were rejected much more slowly (MST 50 days). By modeling antibody responses to Hen Egg Lysozyme protein, we confirm that a high ratio of antigen-specific helper T cells to B cells favors development of the extrafollicular response, whereas GC activity is favored by a relatively high ratio of B cells. In summary, a relative abundance of helper CD4 T cells favors development of strong extrafollicular alloantibody responses that mediate acute humoral rejection, without requirement for GC activity. This work is composed of two parts, of which this is Part I. Please read also Part II: Chhabra et al., 2019.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Manu Chhabra
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Saeed Qureshi
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mekhola Mallik
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jason M. Ali
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ivonne Gamper
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ellen L. Moseley
- Department of Pathology, Papworth Hospital, Papworth Everard, United Kingdom
| | - Sarah Peacock
- Histocompatibility and Immunogenetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Martin J. Goddard
- Department of Pathology, Papworth Hospital, Papworth Everard, United Kingdom
| | - Michelle A. Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
- Centre for Transplantation, Department of Renal Medicine, University College London, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Gavin J. Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|