1
|
Lu B, Chai L, Zhang Z, Zhao G, Shao Y, Zheng Y, Jin X, Zheng J, Chai D, Ding J. Co-immunization with IFI35 enhances the therapeutic effect of an adenovirus vaccine against renal carcinoma. Int J Biol Macromol 2025; 286:138515. [PMID: 39647736 DOI: 10.1016/j.ijbiomac.2024.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Interferon-induced protein 35 (IFI35), an immunomodulator, is highly expressed in tumor cells, yet its role in enhancing tumor vaccine efficacy remains unclear. In this study, an adenovirus (Ad) vaccine encoding dual targets, IFI35 and carbonic anhydrase IX (CAIX), was developed for renal carcinoma treatment. Co-immunization with Ad-IFI35/CAIX effectively inhibited tumor growth in a subcutaneous model and significantly increased the infiltration of CD8+ T cells and dendritic cells (DCs). Furthermore, Ad-IFI35/CAIX administration induced strong cytotoxic T lymphocyte (CTL) responses and expanded multifunctional CD8+ T cell populations. Depletion of CD8+ T cells abolished the vaccine's tumor regression effects, confirming that its therapeutic effect relies on CD8+ T cell-mediated immunity. In addition, Ad-IFI35/CAIX treatment enhanced the induction of memory CTL responses, effectively suppressing the growth of tumors implanted contralaterally. The Ad-IFI35/CAIX vaccine also elicited a strong CD8+ T cell-mediated immunity against tumor metastasis and growth in lung metastasis and orthotopic renal carcinoma models. These results indicate that the Ad vaccine dual targeting IFI35 and CAIX is a potential strategy for renal carcinoma treatment.
Collapse
Affiliation(s)
- Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Leizi Chai
- Department of Traumatic Orthopaedics, People's Hospital of Bozhou City, Bozhou Hospital of Anhui Medical University, Bozhou, Anhui 236000, China
| | - Zichun Zhang
- Department of Urology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, China
| | - Guangya Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yingxiang Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin Jin
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China.
| |
Collapse
|
2
|
Backer RA, Probst HC, Clausen BE. Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines (Basel) 2024; 12:1294. [PMID: 39591196 PMCID: PMC11598974 DOI: 10.3390/vaccines12111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Dendritic cells (DCs) are present in almost all tissues, where they act as sentinels involved in innate recognition and the initiation of adaptive immune responses. The DC family consists of several cell lineages that are heterogenous in their development, phenotype, and function. Within these DC lineages, further subdivisions exist, resulting in smaller, less characterized subpopulations, each with its unique immunomodulatory capabilities. Given the interest in utilizing DC for experimental studies and for vaccination purposes, it becomes increasingly crucial to thoroughly classify and characterize these diverse DC subpopulations. This understanding is vital for comprehending their relative contribution to the initiation, regulation, and propagation of immune responses. To facilitate such investigation, we here provide an easy and ready-to-use multicolor flow cytometry staining panel for the analysis of conventional DC, plasmacytoid DC, and monocyte-derived DC populations isolated from mouse spleens. This adaptable panel can be easily customized for the analysis of other tissue-specific DC populations, providing a valuable tool for DC research.
Collapse
Affiliation(s)
- Ronald A. Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Davies ML, Biryukov SS, Rill NO, Klimko CP, Hunter M, Dankmeyer JL, Miller JA, Shoe JL, Mlynek KD, Talyansky Y, Toothman RG, Qiu J, Bozue JA, Cote CK. Sex differences in immune protection in mice conferred by heterologous vaccines for pneumonic plague. Front Immunol 2024; 15:1397579. [PMID: 38835755 PMCID: PMC11148226 DOI: 10.3389/fimmu.2024.1397579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.
Collapse
Affiliation(s)
- Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jeremy A Miller
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Kevin D Mlynek
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ju Qiu
- Regulated Research Administration: Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
4
|
Erin N, Akdeniz Ö. ADAM10 and Neprilysin level decreases in immune cells of mice bearing metastatic breast carcinoma: Possible role in cancer inflammatory response. Int Immunopharmacol 2024; 127:111384. [PMID: 38141405 DOI: 10.1016/j.intimp.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE AND DESIGN ADAM10 and Neprilysin, proteases, play critical role in inflammatory disease, however their role in cancer immune response is not clear. We here evaluated changes in immune response using an experimental model for breast cancer. MATERIAL AND METHOD Highly metastatic breast cancer cells (4T1-derived) were injected orthotopically (mammary-pad of Balb-c mice) to induce tumors. Changes in enzyme level and activity as well as alterations in inflammatory cytokine release in the presence or absence of ADAM10 and NEP activity was determined using specific inhibitors and recombinant proteins. Cytokine response was evaluated using mix leucocyte cultures obtained from control and tumor-bearing mice. ANOVA with Dunnett's posttest was used for statistical analysis. RESULTS ADAM10 and NEP expression was decreased markedly in lymph nodes and spleens of tumor-bearing mice. ADAM10 activity was reduced together with apparent alterations of ADAM10 processing. ADAM10 and NEP activity decreased TNF-α, IL-6 and IFN-ɣ secretion. Suppression of these inflammatory cytokines were more prominent in cultures obtained from control mice demonstrating counteracting factors that are exist in tumor-bearing mice. CONCLUSION Loss of ADAM10 and NEP activity in immune cells during breast cancer metastasis might be one of the main factors involved in induction of chronic inflammation by tumors.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye.
| | - Özlem Akdeniz
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye
| |
Collapse
|
5
|
Szulc-Dąbrowska L, Biernacka Z, Koper M, Struzik J, Gieryńska M, Schollenberger A, Lasocka I, Toka FN. Differential Activation of Splenic cDC1 and cDC2 Cell Subsets following Poxvirus Infection of BALB/c and C57BL/6 Mice. Cells 2023; 13:13. [PMID: 38201217 PMCID: PMC10778474 DOI: 10.3390/cells13010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Conventional dendritic cells (cDCs) are innate immune cells that play a pivotal role in inducing antiviral adaptive immune responses due to their extraordinary ability to prime and polarize naïve T cells into different effector T helper (Th) subsets. The two major subpopulations of cDCs, cDC1 (CD8α+ in mice and CD141+ in human) and cDC2 (CD11b+ in mice and CD1c+ in human), can preferentially polarize T cells toward a Th1 and Th2 phenotype, respectively. During infection with ectromelia virus (ECTV), an orthopoxvirus from the Poxviridae family, the timing and activation of an appropriate Th immune response contributes to the resistance (Th1) or susceptibility (Th2) of inbred mouse strains to the lethal form of mousepox. Due to the high plasticity and diverse properties of cDC subpopulations in regulating the quality of a specific immune response, in the present study we compared the ability of splenic cDC1 and cDC2 originating from different ECTV-infected mouse strains to mature, activate, and polarize the Th immune response during mousepox. Our results demonstrated that during early stages of mousepox, both cDC subsets from resistant C57BL/6 and susceptible BALB/c mice were activated upon in vivo ECTV infection. These cells exhibited elevated levels of surface MHC class I and II, and co-stimulatory molecules and showed enhanced potential to produce cytokines. However, both cDC subsets from BALB/c mice displayed a higher maturation status than that of their counterparts from C57BL/6 mice. Despite their higher activation status, cDC1 and cDC2 from susceptible mice produced low amounts of Th1-polarizing cytokines, including IL-12 and IFN-γ, and the ability of these cells to stimulate the proliferation and Th1 polarization of allogeneic CD4+ T cells was severely compromised. In contrast, both cDC subsets from resistant mice produced significant amounts of Th1-polarizing cytokines and demonstrated greater capability in differentiating allogeneic T cells into Th1 cells compared to cDCs from BALB/c mice. Collectively, our results indicate that in the early stages of mousepox, splenic cDC subpopulations from the resistant mouse strain can better elicit a Th1 cell-mediated response than the susceptible strain can, probably contributing to the induction of the protective immune responses necessary for the control of virus dissemination and for survival from ECTV challenge.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Zuzanna Biernacka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
| | - Michał Koper
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
| | - Justyna Struzik
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
| | - Małgorzata Gieryńska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
| | - Ada Schollenberger
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
| | - Iwona Lasocka
- Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland;
| | - Felix N. Toka
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland; (Z.B.); (J.S.); (M.G.); (A.S.)
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
6
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
7
|
Wu Z, Shih B, Macdonald J, Meunier D, Hogan K, Chintoan-Uta C, Gilhooley H, Hu T, Beltran M, Henderson NC, Sang HM, Stevens MP, McGrew MJ, Balic A. Development and function of chicken XCR1 + conventional dendritic cells. Front Immunol 2023; 14:1273661. [PMID: 37954617 PMCID: PMC10634274 DOI: 10.3389/fimmu.2023.1273661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Barbara Shih
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Dominique Meunier
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Kris Hogan
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | | | - Hazel Gilhooley
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mariana Beltran
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen M. Sang
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Mark P. Stevens
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Michael J. McGrew
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
He X, Wang J, Tang Y, Chiang ST, Han T, Chen Q, Qian C, Shen X, Li R, Ai X. Recent Advances of Emerging Spleen-Targeting Nanovaccines for Immunotherapy. Adv Healthc Mater 2023; 12:e2300351. [PMID: 37289567 DOI: 10.1002/adhm.202300351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Vaccines provide a powerful tool to modulate the immune system for human disease prevention and treatment. Classical vaccines mainly initiate immune responses in the lymph nodes (LNs) after subcutaneous injection. However, some vaccines suffer from inefficient delivery of antigens to LNs, undesired inflammation, and slow immune induction when encountering the rapid proliferation of tumors. Alternatively, the spleen, as the largest secondary lymphoid organ with a high density of antigen-presenting cells (APCs) and lymphocytes, acts as an emerging target organ for vaccinations in the body. Upon intravenous administration, the rationally designed spleen-targeting nanovaccines can be internalized by the APCs in the spleen to induce selective antigen presentation to T and B cells in their specific sub-regions, thereby rapidly boosting durable cellular and humoral immunity. Herein, the recent advances of spleen-targeting nanovaccines for immunotherapy based on the anatomical architectures and functional zones of the spleen, as well as their limitations and perspectives for clinical applications are systematically summarized. The aim is to emphasize the design of innovative nanovaccines for enhanced immunotherapy of intractable diseases in the future.
Collapse
Affiliation(s)
- Xuanyi He
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Wang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqing Tang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Seok Theng Chiang
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianzhen Han
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Qi Chen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxi Qian
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoshuai Shen
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Rongxiu Li
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangzhao Ai
- Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
9
|
Tong C, Liang Y, Han X, Zhang Z, Zheng X, Wang S, Song B. Research Progress of Dendritic Cell Surface Receptors and Targeting. Biomedicines 2023; 11:1673. [PMID: 37371768 DOI: 10.3390/biomedicines11061673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Dendritic cells are the only antigen-presenting cells capable of activating naive T cells in humans and mammals and are the most effective antigen-presenting cells. With deepening research, it has been found that dendritic cells have many subsets, and the surface receptors of each subset are different. Specific receptors targeting different subsets of DCs will cause different immune responses. At present, DC-targeted research plays an important role in the treatment and prevention of dozens of related diseases in the clinic. This article focuses on the current status of DC surface receptors and targeted applications.
Collapse
Affiliation(s)
- Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Xianle Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Zhelin Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Xiaohui Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Sen Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Bocui Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| |
Collapse
|
10
|
Bosteels V, Maréchal S, De Nolf C, Rennen S, Maelfait J, Tavernier SJ, Vetters J, Van De Velde E, Fayazpour F, Deswarte K, Lamoot A, Van Duyse J, Martens L, Bosteels C, Roelandt R, Emmaneel A, Van Gassen S, Boon L, Van Isterdael G, Guillas I, Vandamme N, Höglinger D, De Geest BG, Le Goff W, Saeys Y, Ravichandran KS, Lambrecht BN, Janssens S. LXR signaling controls homeostatic dendritic cell maturation. Sci Immunol 2023; 8:eadd3955. [PMID: 37172103 DOI: 10.1126/sciimmunol.add3955] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dendritic cells (DCs) mature in an immunogenic or tolerogenic manner depending on the context in which an antigen is perceived, preserving the balance between immunity and tolerance. Whereas the pathways driving immunogenic maturation in response to infectious insults are well-characterized, the signals that drive tolerogenic maturation during homeostasis are still poorly understood. We found that the engulfment of apoptotic cells triggered homeostatic maturation of type 1 conventional DCs (cDC1s) within the spleen. This maturation process could be mimicked by engulfment of empty, nonadjuvanted lipid nanoparticles (LNPs), was marked by intracellular accumulation of cholesterol, and was highly specific to cDC1s. Engulfment of either apoptotic cells or cholesterol-rich LNPs led to the activation of the liver X receptor (LXR) pathway, which promotes the efflux of cellular cholesterol, and repressed genes associated with immunogenic maturation. In contrast, simultaneous engagement of TLR3 to mimic viral infection via administration of poly(I:C)-adjuvanted LNPs repressed the LXR pathway, thus delaying cellular cholesterol efflux and inducing genes that promote T cell-mediated immunity. These data demonstrate that conserved cellular cholesterol efflux pathways are differentially regulated in tolerogenic versus immunogenic cDC1s and suggest that administration of nonadjuvanted cholesterol-rich LNPs may be an approach for inducing tolerogenic DC maturation.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sandra Maréchal
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sofie Rennen
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jonathan Maelfait
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Molecular Signaling and Cell Death, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Simon J Tavernier
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Lab, Department of Internal Medicine and Pediatrics, Centre for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jessica Vetters
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Evelien Van De Velde
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Farzaneh Fayazpour
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Kim Deswarte
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | | | - Julie Van Duyse
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Liesbet Martens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Cédric Bosteels
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ria Roelandt
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Annelies Emmaneel
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Louis Boon
- Polpharma Biologics, Utrecht, Netherlands
| | - Gert Van Isterdael
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Isabelle Guillas
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris F-75013, France
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent-Leuven, Belgium
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, 69120 Heidelberg, Germany
| | | | - Wilfried Le Goff
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Hôpital de la Pitié, Paris F-75013, France
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Kodi S Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Rosin FCP, Borges G, Pelissari C, Buck MGT, Dos Santos AF, Rodrigues L, Luz JGC, Corrêa L. Effect of chronic ethanol ingestion on dendritic cell population during oral mucosal repair: An experimental study. Eur J Oral Sci 2022; 130:e12865. [PMID: 35482465 DOI: 10.1111/eos.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to analyze the effect of chronic ethanol ingestion on dendritic cell repopulation during the repair process of rat oral mucosa and in the rat spleen by analyzing the immunohistochemical expression of dendritic cell markers. Wistar rats ingested 20% ethanol solution for 28 days; a surgical wound was performed on the rat tongue after this period. The repair process and the number of CD1a+, CD11c+, and CD207+ cells in the regions adjacent to the wound were determined at day 1, 3, and 7 following the wound as well as in the rat spleen. The wound-only group (no ethanol exposure) had complete reepithelization after 7 days, but this did not occur in the ethanol + wound group at this time point. The inflammatory infiltrate was significantly reduced in animals exposed to ethanol, which also showed significantly lower counts of CD1a+, CD11c+, and CD207+ cells than the wound-only group at all experimental time points. In addition, ethanol exposure also resulted in lower densities of CD11c+ and CD207+ cells in the rat spleen. In conclusion, chronic ethanol intake had a negative impact on dendritic cell numbers, a fact that may contribute to delay in oral mucosa repair.
Collapse
Affiliation(s)
| | - Giuliana Borges
- General Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Cibele Pelissari
- Oral Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Lucimar Rodrigues
- Oral Surgery Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - João Gualberto C Luz
- Oral Surgery Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Luciana Corrêa
- General Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Bangs DJ, Tsitsiklis A, Steier Z, Chan SW, Kaminski J, Streets A, Yosef N, Robey EA. CXCR3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCs in splenic bridging channels. Cell Rep 2022; 38:110266. [PMID: 35045305 PMCID: PMC8896093 DOI: 10.1016/j.celrep.2021.110266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Production of effector CD8+ T cells during persistent infection requires a stable pool of stem-like cells that can give rise to effector cells via a proliferative intermediate population. In infection models marked by T cell exhaustion, this process can be transiently induced by checkpoint blockade but occurs spontaneously in mice chronically infected with the protozoan intracellular parasite Toxoplasma gondii. We observe distinct locations for parasite-specific T cell subsets, implying a link between differentiation and anatomical niches in the spleen. Loss of the chemokine receptor CXCR3 on T cells does not prevent white pulp-to-red pulp migration but reduces interactions with CXCR3 ligand-producing dendritic cells (DCs) and impairs memory-to-intermediate transition, leading to a buildup of memory T cells in the red pulp. Thus, CXCR3 increases T cell exposure to differentiation-inducing signals during red pulp migration, providing a dynamic mechanism for modulating effector differentiation in response to environmental signals.
Collapse
Affiliation(s)
- Derek J Bangs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra Tsitsiklis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zoë Steier
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - James Kaminski
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
14
|
Posttranslational modifications by ADAM10 shape myeloid antigen-presenting cell homeostasis in the splenic marginal zone. Proc Natl Acad Sci U S A 2021; 118:2111234118. [PMID: 34526403 DOI: 10.1073/pnas.2111234118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.
Collapse
|
15
|
Lutz MB, Backer RA, Clausen BE. Revisiting Current Concepts on the Tolerogenicity of Steady-State Dendritic Cell Subsets and Their Maturation Stages. THE JOURNAL OF IMMUNOLOGY 2021; 206:1681-1689. [PMID: 33820829 DOI: 10.4049/jimmunol.2001315] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The original concept stated that immature dendritic cells (DC) act tolerogenically whereas mature DC behave strictly immunogenically. Meanwhile, it is also accepted that phenotypically mature stages of all conventional DC subsets can promote tolerance as steady-state migratory DC by transporting self-antigens to lymph nodes to exert unique functions on regulatory T cells. We propose that in vivo 1) there is little evidence for a tolerogenic function of immature DC during steady state such as CD4 T cell anergy induction, 2) all tolerance as steady-state migratory DC undergo common as well as subset-specific molecular changes, and 3) these changes differ by quantitative and qualitative markers from immunogenic DC, which allows one to clearly distinguish tolerogenic from immunogenic migratory DC.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, 97070 Würzburg, Germany; and
| | - Ronald A Backer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55122 Mainz, Germany
| |
Collapse
|
16
|
Ibarra-Moreno CD, Ilhuicatzi-Alvarado D, Moreno-Fierros L. Differential capability of Bacillus thuringiensis Cry1Ac protoxin and toxin to induce in vivo activation of dendritic cells and B lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104071. [PMID: 33766585 DOI: 10.1016/j.dci.2021.104071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The insecticidal Bacillus thuringiensis protein Cry1Ac is produced as a protoxin and becomes activated to a toxin when ingested by larvae. Both proteins are immunogenic and able to activate macrophages. The proposed mechanism of immunostimulation by Cry1Ac protoxin has been related to its capacity to activate antigen-presenting cells (APC), but its ability to activate dendritic cells (DC) has not been explored. Here we evaluated, in the popliteal lymph nodes (PLN), spleen and peritoneum, the activation of DC CD11c+ MHC-II+ following injection with single doses (50 μg) of Cry1Ac toxin or protoxin via the intradermal (i.d.) and intraperitoneal (i.p.) routes in C57BL/6 mice. In vivo stimulation with both Cry1Ac proteins induced activation of DC via upregulation of CD86, primarily in PLN 24 h after i. d. injection. Moreover, this activation was detected in DC, displaying CD103+, a typical marker of migratory DC, while upregulation of CD80 was uniquely induced by toxin. Tracking experiments showed that Cy5-labeled Cry1Ac proteins could rapidly reach the PLN and localize near DC, but some label remained in the footpad. When the capacity of Cry1Ac-activated DC to induce antigen presentation was examined, significant proliferation of naïve T lymphocytes was induced exclusively by the protoxin. The protoxin elicited a Th17-biased cytokine profile. Moreover, only the Cry1Ac toxin induced a pronounced proliferation of B cells from both untreated and Cry1Ac-injected mice, suggesting that it acts as a polyclonal activator. In conclusion, Cry1Ac protoxin and toxin show a distinctive capacity to activate APCs.
Collapse
Affiliation(s)
- Cynthia Daniela Ibarra-Moreno
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes, Iztacala, Tlalnepantla, 54090, Estado de México, Mexico
| | - Damaris Ilhuicatzi-Alvarado
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes, Iztacala, Tlalnepantla, 54090, Estado de México, Mexico
| | - Leticia Moreno-Fierros
- Laboratorio de Inmunidad en Mucosas, Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes, Iztacala, Tlalnepantla, 54090, Estado de México, Mexico.
| |
Collapse
|
17
|
Poulaki A, Piperaki ET, Voulgarelis M. Effects of Visceralising Leishmania on the Spleen, Liver, and Bone Marrow: A Pathophysiological Perspective. Microorganisms 2021; 9:microorganisms9040759. [PMID: 33916346 PMCID: PMC8066032 DOI: 10.3390/microorganisms9040759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/29/2023] Open
Abstract
The leishmaniases constitute a group of parasitic diseases caused by species of the protozoan genus Leishmania. In humans it can present different clinical manifestations and are usually classified as cutaneous, mucocutaneous, and visceral (VL). Although the full range of parasite—host interactions remains unclear, recent advances are improving our comprehension of VL pathophysiology. In this review we explore the differences in VL immunobiology between the liver and the spleen, leading to contrasting infection outcomes in the two organs, specifically clearance of the parasite in the liver and failure of the spleen to contain the infection. Based on parasite biology and the mammalian immune response, we describe how hypoxia-inducible factor 1 (HIF1) and the PI3K/Akt pathway function as major determinants of the observed immune failure. We also summarize existing knowledge on pancytopenia in VL, as a direct effect of the parasite on bone marrow health and regenerative capacity. Finally, we speculate on the possible effect that manipulation by the parasite of the PI3K/Akt/HIF1 axis may have on the myelodysplastic (MDS) features observed in VL.
Collapse
Affiliation(s)
- Aikaterini Poulaki
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Evangelia-Theophano Piperaki
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Correspondence: (E.-T.P.); (M.V.); Tel.: +30-210-7462136 (E.-T.P.); +30-210-7462647 (M.V.)
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
- Correspondence: (E.-T.P.); (M.V.); Tel.: +30-210-7462136 (E.-T.P.); +30-210-7462647 (M.V.)
| |
Collapse
|
18
|
Feng M, Zhou S, Yu Y, Su Q, Li X, Lin W. Regulation of the Migration of Distinct Dendritic Cell Subsets. Front Cell Dev Biol 2021; 9:635221. [PMID: 33681216 PMCID: PMC7933215 DOI: 10.3389/fcell.2021.635221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), a class of antigen-presenting cells, are widely present in tissues and apparatuses of the body, and their ability to migrate is key for the initiation of immune activation and tolerogenic immune responses. The importance of DCs migration for their differentiation, phenotypic states, and immunologic functions has attracted widespread attention. In this review, we discussed and compared the chemokines, membrane molecules, and migration patterns of conventional DCs, plasmocytoid DCs, and recently proposed DC subgroups. We also review the promoters and inhibitors that affect DCs migration, including the hypoxia microenvironment, tumor microenvironment, inflammatory factors, and pathogenic microorganisms. Further understanding of the migration mechanisms and regulatory factors of DC subgroups provides new insights for the treatment of diseases, such as infection, tumors, and vaccine preparation.
Collapse
Affiliation(s)
- Meng Feng
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuping Zhou
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Yu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaofan Li
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Lin
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
In-Depth Immune-Oncology Studies of the Tumor Microenvironment in a Humanized Melanoma Mouse Model. Int J Mol Sci 2021; 22:ijms22031011. [PMID: 33498319 PMCID: PMC7864015 DOI: 10.3390/ijms22031011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
The presence and interaction of immune cells in the tumor microenvironment is of significant importance and has a great impact on disease progression and response to therapy. Hence, their identification is of high interest for prognosis and treatment decisions. Besides detailed phenotypic analyses of immune, as well as tumor cells, spatial analyses is an important parameter in the complex interplay of neoplastic and immune cells—especially when moving into focus efforts to develop and validate new therapeutic strategies. Ex vivo analysis of tumor samples by immunohistochemistry staining methods conserves spatial information is restricted to single markers, while flow cytometry (disrupting tissue into single cell suspensions) provides access to markers in larger numbers. Nevertheless, this comes at the cost of scarifying morphological information regarding tissue localization and cell–cell contacts. Further detrimental effects incurred by, for example, tissue digestion include staining artifacts. Consequently, ongoing efforts are directed towards methods that preserve, completely or in part, spatial information, while increasing the number of markers that can potentially be interrogated to the level of conventional flow cytometric methods. Progression in multiplex immunohistochemistry in the last ten years overcame the limitation to 1–2 markers in classical staining methods using DAB with counter stains or even pure chemical staining methods. In this study, we compared the multiplex method Chipcytometry to flow cytometry and classical IHC-P using DAB and hematoxylin. Chipcytometry uses frozen or paraffin-embedded tissue sections stained with readily available commercial fluorophore-labeled antibodies in repetitive cycles of staining and bleaching. The iterative staining approach enables sequential analysis of a virtually unlimited number of markers on the same sample, thereby identifying immune cell subpopulations in the tumor microenvironment in the present study in a humanized mouse melanoma model.
Collapse
|
20
|
Grabowska J, Stolk DA, Nijen Twilhaar MK, Ambrosini M, Storm G, van der Vliet HJ, de Gruijl TD, van Kooyk Y, den Haan JM. Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8 + T Cell Responses via CD169 + Macrophages and cDC1. Vaccines (Basel) 2021; 9:vaccines9010056. [PMID: 33467048 PMCID: PMC7830461 DOI: 10.3390/vaccines9010056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
Successful anti-cancer vaccines aim to prime and reinvigorate cytotoxic T cells and should therefore comprise a potent antigen and adjuvant. Antigen targeting to splenic CD169+ macrophages was shown to induce robust CD8+ T cell responses via antigen transfer to cDC1. Interestingly, CD169+ macrophages can also activate type I natural killer T-cells (NKT). NKT activation via ligands such as α-galactosylceramide (αGC) serve as natural adjuvants through dendritic cell activation. Here, we incorporated ganglioside GM3 and αGC in ovalbumin (OVA) protein-containing liposomes to achieve both CD169+ targeting and superior DC activation. The systemic delivery of GM3-αGC-OVA liposomes resulted in specific uptake by splenic CD169+ macrophages, stimulated strong IFNγ production by NKT and NK cells and coincided with the maturation of cDC1 and significant IL-12 production. Strikingly, superior induction of OVA-specific CD8+ T cells was detected after immunization with GM3-αGC-OVA liposomes. CD8+ T cell activation, but not B cell activation, was dependent on CD169+ macrophages and cDC1, while activation of NKT and NK cells were partially mediated by cDC1. In summary, GM3-αGC antigen-containing liposomes are a potent vaccination platform that promotes the interaction between different immune cell populations, resulting in strong adaptive immunity and therefore emerge as a promising anti-cancer vaccination strategy.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Dorian A. Stolk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Department of Biomaterials Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (H.J.v.d.V.); (T.D.d.G.)
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (H.J.v.d.V.); (T.D.d.G.)
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
| | - Joke M.M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (J.G.); (D.A.S.); (M.K.N.T.); (M.A.); (Y.v.K.)
- Correspondence: ; Tel.: +31-20-4448080
| |
Collapse
|
21
|
Cichoń MA, Klas K, Buchberger M, Hammer M, Seré K, Zenke M, Tschachler E, Elbe-Bürger A. Distinct Distribution of RTN1A in Immune Cells in Mouse Skin and Lymphoid Organs. Front Cell Dev Biol 2021; 8:608876. [PMID: 33542915 PMCID: PMC7853085 DOI: 10.3389/fcell.2020.608876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum-associated protein reticulon 1A (RTN1A) is primarily expressed in neuronal tissues but was recently identified also specifically in cells of the dendritic cell (DC) lineage, including epidermal Langerhans cells (LCs) and dermal DCs in human skin. In this study, we found that in mice major histocompatibility complex class II (MHCII)+CD207+ LCs but not dermal DCs express RTN1A. Further, RTN1A expression was identified in CD45+MHCII+CD207+ cells of the lymph node and spleen but not in the thymus. Of note, RTN1A was expressed in CD207low LCs in adult skin as well as emigrated LCs and DCs in lymph nodes and marginally in CD207hi cells. Ontogeny studies revealed that RTN1A expression occurred before the appearance of the LC markers MHCII and CD207 in LC precursors, while dermal DC and T cell precursors remained negative during skin development. Analogous to the expression of RTN1A in neural tissue, we identified expression of RTN1A in skin nerves. Immunostaining revealed co-localization of RTN1A with nerve neurofilaments only in fetal but not in newborn or adult dermis. Our findings suggest that RTN1A might be involved in the LC differentiation process given its early expression in LC precursors and stable expression onward. Further analysis of the RTN1A expression pattern will enable the elucidation of the functional roles of RTN1A in both the immune and the nervous system of the skin.
Collapse
Affiliation(s)
| | - Katharina Klas
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martina Hammer
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Kristin Seré
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
22
|
Lettau M, Wiedemann A, Schrezenmeier EV, Giesecke-Thiel C, Dörner T. Human CD27+ memory B cells colonize a superficial follicular zone in the palatine tonsils with similarities to the spleen. A multicolor immunofluorescence study of lymphoid tissue. PLoS One 2020; 15:e0229778. [PMID: 32187186 PMCID: PMC7080255 DOI: 10.1371/journal.pone.0229778] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Memory B cell (mBC) induction and maintenance is one of the keys to long-term protective humoral immunity. MBCs are fundamental to successful medical interventions such as vaccinations and therapy in autoimmunity. However, their lifestyle and anatomic residence remain enigmatic in humans. Extrapolation from animal studies serves as a conceptual basis but might be misleading due to major anatomical distinctions between species. METHODS AND FINDINGS Multicolor immunofluorescence stainings on fixed and unfixed frozen tissue sections were established using primary antibodies coupled to haptens and secondary signal amplification. The simultaneous detection of five different fluorescence signals enabled the localization and characterization of human CD27+CD20+Ki67- mBCs for the first time within one section using laser scanning microscopy. As a result, human tonsillar mBCs were initially identified within their complex microenvironment and their relative location to naïve B cells, plasma cells and T cells could be directly studied and compared to the human splenic mBC niche. In all investigated tonsils (n = 15), mBCs appeared to be not only located in a so far subepithelial defined area but were also follicle associated with a previous undescribed gradual decline towards the follicular mantle comparable to human spleen. However, mBC areas around secondary follicles with large germinal centers (GCs) in tonsils showed interruptions and a general widening towards the epithelium while in spleen the mBC-containing marginal zones (MZ) around smaller GCs were relatively broad and symmetrical. Considerably fewer IgM+IgD+/- pre-switch compared to IgA+ or IgG+ post-switch mBCs were detected in tonsils in contrast to spleen. CONCLUSIONS This study extends existing insights into the anatomic residence of human mBCs showing structural similarities of the superficial follicular area in human spleen and tonsil. Our data support the debate of renaming the human splenic MZ to 'superficial zone' in order to be aware of the differences in rodents and, moreover, to consider this term equally for the human palatine tonsil.
Collapse
Affiliation(s)
- Marie Lettau
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Annika Wiedemann
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Eva Vanessa Schrezenmeier
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - Claudia Giesecke-Thiel
- Department of Rheumatology and Clinical Immunology, Formerly at the Charité University Medicine Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- * E-mail:
| |
Collapse
|
23
|
Miura R, Sawada SI, Mukai SA, Sasaki Y, Akiyoshi K. Antigen Delivery to Antigen-Presenting Cells for Adaptive Immune Response by Self-Assembled Anionic Polysaccharide Nanogel Vaccines. Biomacromolecules 2019; 21:621-629. [PMID: 31800235 DOI: 10.1021/acs.biomac.9b01351] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although current vaccine technology induces sufficient antibody responses to prophylactically ward off viral infections, an anticancer vaccine that directs the patient's immune system to directly fight extant malignant cells will require inducing Th1 and cytotoxic T lymphocyte responses in addition to antibody-mediated activities. Thus, new mechanisms are necessary to deliver antigen to cells in the lymphatic system that will induce these responses. To this end, we have developed a cholesterol-bearing pullulan (CHP) self-assembly nanogel of less than 100 nm, which we have now further modified to be anionic by carboxyl group substitution. Overall, the nanogel-protected antigens during transport to the lymphatic system and converting the vehicle to an anionic charge improved interactions with antigen-presenting cells. We further show that these modified nanogels are a more efficient system for delivering antigen to antigen-presenting cells, particularly langerin-expressing cells, and that this induced significant adaptive immunity. Therefore, we think that this technology could be used to improve anticancer immunotherapies.
Collapse
Affiliation(s)
- Risako Miura
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Sada-Atsu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| |
Collapse
|