1
|
Predescu DN, Mokhlesi B, Predescu SA. X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease. Biol Sex Differ 2024; 15:101. [PMID: 39639337 PMCID: PMC11619133 DOI: 10.1186/s13293-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript. However, accumulating evidence suggests that XIST can be detected in male cells as well, and it participates in the development of cancers and other human diseases by regulating gene expression at epigenetic, chromatin remodeling, transcriptional, and translational levels. XIST is abnormally expressed in many sexually dimorphic diseases, including autoimmune and neurological diseases, pulmonary arterial hypertension (PAH), and some types of cancers. However, the underlying mechanisms are not fully understood. Escape from XCI and skewed XCI also contributes to sex-biased diseases and their severity. Interestingly, in humans, similar to experimental animal models of human disease, the males with the XIST gene activated display the sex-biased disease condition at a rate close to females, and significantly greater than males who had not been genetically modified. For instance, the men with supernumerary X chromosomes, such as men with Klinefelter syndrome (47, XXY), are predisposed toward autoimmunity similar to females (46, XX), and have increased risk for strongly female biased diseases, compared to 46, XY males. Interestingly, chromosome X content has been linked to a longer life span, and the presence of two chromosome X contributes to increased longevity regardless of the hormonal status. In this review, we summarize recent knowledge about XIST structure/function correlation and involvement in human disease with focus on XIST abnormal expression in males. Many human diseases show differences between males and females in penetrance, presentation, progression, and survival. In humans, the X and Y sex chromosomes determine the biological sex, XX specifying for females and XY for males. This numeric imbalance, two X chromosomes in females and only one in males, known as sex chromosome dosage inequality, is corrected in the first days of embryonic development by inactivating one of the X chromosomes in females. While this "dosage compensation" should in theory solve the difference in the number of genes between sexes, the expressed doses of X genes are incompletely compensated by X chromosome inactivation in females. In this review we try to highlight how abnormal expression and function of XIST, a gene on the X chromosome responsible for this inactivation process, may explain the sex differences in human health and disease. A better understanding of the molecular mechanisms of XIST participation in the male-female differences in disease is highly relevant since it would allow for improving the personalization of diagnosis and sex-specific treatment of patients.
Collapse
Affiliation(s)
- Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Babak Mokhlesi
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
2
|
Rajeev D, MacIver NJ. Metformin as a Therapeutic Agent for Obesity-Associated Immune Dysfunction. J Nutr 2024; 154:2534-2542. [PMID: 38972391 DOI: 10.1016/j.tjnut.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/16/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
Obesity is associated with impaired immune function, characterized by inflammation, and leading to poor response to infection, impaired vaccine response, increased susceptibility to autoimmune disease, and increased risk of cancer and cancer mortality. Worse, there is evidence that weight loss alone may be insufficient to reverse the immune dysfunction caused by obesity. It is therefore critically important to identify alternative therapeutic approaches to decrease the negative effects of obesity-associated inflammation. In this article, we will review evidence that the antidiabetic drug metformin may be considered as a therapeutic agent for obesity-associated immune dysfunction. Metformin has immunomodulatory effects, stimulating or suppressing the immune response in both a cell-specific and disease-specific manner. Although the mechanism of action of metformin on the immune system remains to be fully elucidated, there is strong evidence that metformin enters select immune cells and disrupts electron transport, leading to both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent effects on immune cell differentiation and cytokine production. These effects of metformin on immune cells have been shown to improve immune responses to infection, autoimmunity, and cancer.
Collapse
Affiliation(s)
- Devika Rajeev
- Department of Nutrition, University of North Carolina at Chapel Hill, NC, United States
| | - Nancie J MacIver
- Department of Nutrition, University of North Carolina at Chapel Hill, NC, United States; Department of Pediatrics, University of North Carolina at Chapel Hill, NC, United States; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC, United States.
| |
Collapse
|
3
|
Cerrillos-Gutiérrez JI, Medina-Pérez M, Andrade-Sierra J, García-Sánchez A, Cardona-Muñoz EG, Campos-Pérez W, Martínez-López E, Sánchez-Lozano DI, Campos-Bayardo TI, Román-Rojas D, Gómez-Hermosillo LF, Casillas-Moreno J, Miranda-Díaz AG. The Expression of Toll-like Receptors (TLR7 and TLR9) in Class III and Class IV of Recently Diagnosed Lupus Nephritis with 12-Month Follow-Up. Int J Mol Sci 2024; 25:7023. [PMID: 39000140 PMCID: PMC11241645 DOI: 10.3390/ijms25137023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Renal involvement is an important cause of morbidity and mortality in systemic lupus erythematosus (SLE). The present study included patients with recently diagnosed Class III and Class IV lupus nephritis (LN) treated by Rheumatology who, upon the detection of alterations in their kidney function, were referred to Nephrology for the joint management of both medical specialties. The purpose of this study was to compare the plasma expression of Toll-Like Receptor 7 (TLR7) and TLR9 in healthy control (HC) subjects and newly diagnosed Class III and Class IV LN patients with 12-month follow-ups. The plasma expression of TLR7 and TLR9 proteins was determined by the ELISA method. A significant increase in the expression of TLR7 protein was found in Class III LN in the basal determination compared to the expression in the HC (p = 0.002) and at 12 months of follow-up (p = 0.03) vs. HC. The expression of TLR9 showed a behavior opposite to that of TLR7. TLR9 showed decreased protein expression in LN Class III patients' baseline and final measurements. The result was similar in the basal and final determinations of LN Class IV compared to the expression in HC. A significant decrease in SLEDAI -2K was observed at 12 months of follow-up in patients in Class III (p = 0.01) and Class IV (p = 0.0001) of LN. Complement C3 levels improved significantly at 12-month follow-up in Class IV patients (p = 0.0001). Complement C4 levels decreased significantly at 12-month follow-up in LN Class III compared to baseline (p = 0.01). Anti-DNA antibodies decreased significantly at 12 months of follow-up in Class IV LN (p = 0.01). A significant increase in proteinuria was found at 12 months of follow-up in Class III LN, compared to the baseline determination (p = 0.02). In LN Class IV, proteinuria decreased at 12 months of follow-up compared to baseline (p = 0.0001). Albuminuria decreased at 12 months of follow-up in LN Class IV (p = 0.006). Class IV LN, albuminuria also decreased at 12 months of follow-up (p = 0.009). Hematuria persisted in all patients and the glomerular filtration rate did not change. Three Class IV patients died before 12 months of follow-up from various causes. In conclusion, although the rheumatologic data appeared to improve, the renal function data remained inconsistent. Decreased expression of TLR9 and increased expression of TLR7 could be useful in the early diagnosis of Class III and Class IV LN is correct.
Collapse
Affiliation(s)
- José Ignacio Cerrillos-Gutiérrez
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.I.C.-G.); (M.M.-P.); (J.A.-S.)
| | - Miguel Medina-Pérez
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.I.C.-G.); (M.M.-P.); (J.A.-S.)
| | - Jorge Andrade-Sierra
- Department of Nephrology, National Medical Center of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico; (J.I.C.-G.); (M.M.-P.); (J.A.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (T.I.C.-B.); (D.R.-R.)
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (T.I.C.-B.); (D.R.-R.)
| | - Wendy Campos-Pérez
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Erika Martínez-López
- Department of Molecular Biology and Genomics, Institute of Nutrigenetics and Translational Nutrigenomics, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico; (W.C.-P.); (E.M.-L.)
| | - Daniela Itzel Sánchez-Lozano
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (T.I.C.-B.); (D.R.-R.)
| | - Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (T.I.C.-B.); (D.R.-R.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (T.I.C.-B.); (D.R.-R.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Jorge Casillas-Moreno
- Department of Laparoscopic Surgery, Hospital Civil de Guadalajara, “Juan I Menchaca”, Guadalajara 44360, Jalisco, Mexico; (L.F.G.-H.); (J.C.-M.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Jalisco, Mexico; (A.G.-S.); (E.G.C.-M.); (D.I.S.-L.); (T.I.C.-B.); (D.R.-R.)
| |
Collapse
|
4
|
Huang AF, Zhou L, Xu WD. The causal associations of inflammatory cytokines with obesity and systemic lupus erythematosus: A Mendelian randomization study. Int J Rheum Dis 2024; 27:e15214. [PMID: 38831532 DOI: 10.1111/1756-185x.15214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Previous studies have partly discussed the roles of inflammatory cytokines in obesity and systemic lupus erythematosus (SLE), but the causal relationship among inflammatory cytokines, obesity, and SLE is unclear. It is challenging to comprehensively evaluate the causal relationship between these variables. This study aimed to investigate the role of cytokines as intermediates between obesity and SLE. METHODS The inverse-variance weighted method (IVW) of mendelian randomization (MR) is mainly used to explore the causal relationship between exposure and outcome by using the genetic variation of the open large genome-wide association studies (GWAS), namely single-nucleotide polymorphisms (SNPs) related to obesity (more than 600 000 participants), inflammatory cytokines (8293 healthy participants) and SLE (7219 cases). Methods such as weighted median, MR-Egger are used to evaluate the reliability of causality. Reverse analysis is performed for each MR analysis to avoid reverse causality. Cochran's Q statistic and funnel chart are used to detect heterogeneity, MR-Egger intercept test and leave-one-out sensitivity analyses evaluated pleiotropy. RESULTS Obesity was associated with 25 cytokines, and 3 cytokines were associated with SLE, including CTACK (OR = 1.19, 95% CI: 1.06, 1.33, p = .002), IL-18 (OR = 1.13, 95% CI: 1.01, 1.26, p = .027), SCGFb (OR = 0.89, 95% CI: 0.79, 0.99, p = .044). In the opposite direction, SLE was associated with 18 cytokines, and 2 cytokines were associated with obesity, including IP-10 (βIVW = -.03, 95% CI: -0.05, -0.01, p = .002), MIP-1B (βIVW = -.03, 95% CI: -0.05, -0.01, p = .004). CONCLUSION Our MR study suggested that CTACK, IL-18 and SCGFb may play an intermediary role in obesity to SLE, while IP-10 and MIP-1B may play an intermediary role in SLE to obesity.
Collapse
Affiliation(s)
- An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Zhou
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
5
|
von Hofsten S, Fenton KA, Pedersen HL. Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:5351. [PMID: 38791389 PMCID: PMC11120885 DOI: 10.3390/ijms25105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use.
Collapse
Affiliation(s)
- Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Kristin Andreassen Fenton
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Hege Lynum Pedersen
- Centre of Clinical Research and Education, University Hospital of North Norway, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9019 Tromsø, Norway;
| |
Collapse
|
6
|
Yu Y, Lu C, Yu W, Lei Y, Sun S, Liu P, Bai F, Chen Y, Chen J. B Cells Dynamic in Aging and the Implications of Nutritional Regulation. Nutrients 2024; 16:487. [PMID: 38398810 PMCID: PMC10893126 DOI: 10.3390/nu16040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Aging negatively affects B cell production, resulting in a decrease in B-1 and B-2 cells and impaired antibody responses. Age-related B cell subsets contribute to inflammation. Investigating age-related alterations in the B-cell pool and developing targeted therapies are crucial for combating autoimmune diseases in the elderly. Additionally, optimal nutrition, including carbohydrates, amino acids, vitamins, and especially lipids, play a vital role in supporting immune function and mitigating the age-related decline in B cell activity. Research on the influence of lipids on B cells shows promise for improving autoimmune diseases. Understanding the aging B-cell pool and considering nutritional interventions can inform strategies for promoting healthy aging and reducing the age-related disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100091, China; (Y.Y.)
| |
Collapse
|
7
|
Kakalij RM, Dsouza DL, Ha L, Boesen EI. TLR7 activation by imiquimod worsens glycemic control in female FVB/N mice consuming a high-fat diet. Physiol Rep 2024; 12:e15949. [PMID: 38346802 PMCID: PMC10861349 DOI: 10.14814/phy2.15949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Toll-like receptor-7 (TLR7) activation promotes autoimmunity, and metabolic syndrome (MetS) is a common comorbidity in patients with autoimmune disease. We previously demonstrated hyperinsulinemia in TLR7 agonist imiquimod (IMQ)-treated, high-fat diet (HFD)-fed female C57BL/6 mice. Since mouse strains differ in susceptibility to MetS and target organ damage, this study investigated whether 12 weeks of exposure to HFD and IMQ promoted MetS, autoimmunity, and target organ damage in female FVB/N mice. Supporting early-stage autoimmunity, spleen-to-tibia ratio, and anti-nuclear antibodies (ANA) were significantly increased by IMQ. No significant effect of IMQ on urinary albumin excretion or left ventricular hypertrophy was observed. HFD increased liver-to-tibia ratio, which was further exacerbated by IMQ. HFD increased fasting blood glucose levels at the end of 12 weeks, but there was no significant effect of IMQ treatment on fasting blood glucose levels at 6 or 12 weeks of treatment. However, oral glucose tolerance testing at 12 weeks revealed impaired glucose tolerance in HFD-fed mice compared to control diet mice together with IMQ treatment exacerbating the impairment. Accordingly, these data suggest TLR7 activation also exacerbates HFD-induced dysregulation of glucose handling FVB/N mice, supporting the possibility that endogenous TLR7 activation may contribute to dysglycemia in patients with autoimmune disease.
Collapse
Affiliation(s)
- Rahul M. Kakalij
- Department of Cellular & Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Del L. Dsouza
- Department of Cellular & Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - LiGyeom Ha
- Department of Cellular & Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Erika I. Boesen
- Department of Cellular & Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
8
|
Yamaguchi F, Suzuki A, Hashiguchi M, Kondo E, Maeda A, Yokoe T, Sasaki J, Shikama Y, Hayashi M, Kobayashi S, Suzuki H. Combination of rRT-PCR and Clinical Features to Predict Coronavirus Disease 2019 for Nosocomial Infection Control. Infect Drug Resist 2024; 17:161-170. [PMID: 38260181 PMCID: PMC10802122 DOI: 10.2147/idr.s432198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), immediately became a pandemic. Therefore, nosocomial infection control is necessary to screen for patients with possible COVID-19. Objective This study aimed to investigate commonly measured clinical variables to predict COVID-19. Methods This cross-sectional study enrolled 1087 patients in the isolation ward of a university hospital. Conferences were organized to differentiate COVID-19 from non-COVID-19 cases, and multiple nucleic acid tests were mandatory when COVID-19 could not be excluded. Multivariate logistic regression models were employed to determine the clinical factors associated with COVID-19 at the time of hospitalization. Results Overall, 352 (32.4%) patients were diagnosed with COVID-19. The majority of the non-COVID-19 cases were predominantly caused by bacterial infections. Multivariate analysis indicated that COVID-19 was significantly associated with age, sex, body mass index, lactate dehydrogenase, C-reactive protein, and malignancy. Conclusion Some clinical factors are useful to predict patients with COVID-19 among those with symptoms similar to COVID-19. This study suggests that at least two real-time reverse-transcription polymerase chain reactions of SARS-CoV-2 are recommended to exclude COVID-19.
Collapse
Affiliation(s)
- Fumihiro Yamaguchi
- Department of Respiratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Ayako Suzuki
- Department of Pharmacy, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Miyuki Hashiguchi
- Department of Infection Control, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Emiko Kondo
- Department of Infection Control, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Atsuo Maeda
- Department of Emergency and Critical Care Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Takuya Yokoe
- Department of Respiratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Jun Sasaki
- Department of Emergency and Critical Care Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Yusuke Shikama
- Department of Respiratory Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Munetaka Hayashi
- Department of Emergency and Critical Care Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Sei Kobayashi
- Department of Otolaryngology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroshi Suzuki
- Department of Cardiology, Showa University Fujigaoka Hospital, Yokohama, Japan
| |
Collapse
|
9
|
Echavarria R, Cardona-Muñoz EG, Ortiz-Lazareno P, Andrade-Sierra J, Gómez-Hermosillo LF, Casillas-Moreno J, Campos-Bayardo TI, Román-Rojas D, García-Sánchez A, Miranda-Díaz AG. The Role of the Oxidative State and Innate Immunity Mediated by TLR7 and TLR9 in Lupus Nephritis. Int J Mol Sci 2023; 24:15234. [PMID: 37894915 PMCID: PMC10607473 DOI: 10.3390/ijms242015234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) and is considered one of the leading causes of mortality. Multiple immunological pathways are involved in the pathogenesis of SLE, which makes it imperative to deepen our knowledge about this disease's immune-pathological complexity and explore new therapeutic targets. Since an altered redox state contributes to immune system dysregulation, this document briefly addresses the roles of oxidative stress (OS), oxidative DNA damage, antioxidant enzymes, mitochondrial function, and mitophagy in SLE and LN. Although adaptive immunity's participation in the development of autoimmunity is undeniable, increasing data emphasize the importance of innate immunity elements, particularly the Toll-like receptors (TLRs) that recognize nucleic acid ligands, in inflammatory and autoimmune diseases. Here, we discuss the intriguing roles of TLR7 and TLR9 in developing SLE and LN. Also included are the essential characteristics of conventional treatments and some other novel and little-explored alternatives that offer options to improve renal function in LN.
Collapse
Affiliation(s)
- Raquel Echavarria
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (R.E.); (P.O.-L.)
- Investigadores por México, Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México 03940, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Pablo Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (R.E.); (P.O.-L.)
| | - Jorge Andrade-Sierra
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Luis Francisco Gómez-Hermosillo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Jorge Casillas-Moreno
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Tannia Isabel Campos-Bayardo
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Daniel Román-Rojas
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Andrés García-Sánchez
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| | - Alejandra Guillermina Miranda-Díaz
- Department of Physiology, University Center of Health Sciences, University of Guadalajara, Guadalajara 44360, Mexico; (E.G.C.-M.); (J.A.-S.); (L.F.G.-H.); (J.C.-M.); (T.I.C.-B.); (D.R.-R.); (A.G.-S.)
| |
Collapse
|
10
|
Rivera-Gonzalez O, Case CT, Wilson NA, Speed JS, Taylor EB. Endothelin receptor antagonism improves glucose tolerance and adipose tissue inflammation in an experimental model of systemic lupus erythematosus. Am J Physiol Endocrinol Metab 2023; 324:E73-E84. [PMID: 36476039 PMCID: PMC9870584 DOI: 10.1152/ajpendo.00274.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Endothelin-1 (ET-1) is elevated in patients with systemic lupus erythematosus (SLE), an autoimmune disease characterized by high rates of hypertension, renal injury, and cardiovascular disease. SLE is also associated with an increased prevalence of obesity and insulin resistance compared to the general population. In the present study, we tested the hypothesis that elevated ET-1 in SLE contributes to obesity and insulin resistance. For these studies, we used the NZBWF1 mouse model of SLE, which develops obesity and insulin resistance on a normal chow diet. To test this hypothesis, we treated control (NZW) and SLE (NZBWF1) mice with vehicle, atrasentan (ETA receptor antagonist, 10 mg/kg/day), or bosentan (ETA/ETB receptor antagonist, 100 mg/kg/day) for 4 wk. Neither treatment impacted circulating immunoglobulin levels, but treatment with bosentan lowered anti-dsDNA IgG levels, a marker of SLE disease activity. Treatment with atrasentan and bosentan decreased glomerulosclerosis, and atrasentan lowered renal T-cell infiltration. Body weight was lower in SLE mice treated with atrasentan or bosentan. Endothelin receptor antagonism also improved hyperinsulinemia, homeostatic model assessment for insulin resistance, and glucose tolerance in SLE mice. Adipose tissue inflammation was also improved by endothelin receptor blockade. Taken together, these data suggest a potential therapeutic benefit for SLE patients with obesity and insulin resistance.NEW & NOTEWORTHY SLE is an autoimmune disease that is associated with obesity, insulin resistance, and elevated endothelin-1. The present study demonstrated that pharmacological inhibition of endothelin receptors decreased body weight, insulin resistance, and adipose tissue inflammation in a murine model of SLE. The therapeutic potential of endothelin receptor antagonists to treat obesity-related diseases and pathophysiological conditions, such as autoimmune diseases and insulin resistance, has become increasingly clear.
Collapse
Affiliation(s)
- Osvaldo Rivera-Gonzalez
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Clinton T Case
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalie A Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua S Speed
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Alexopoulou L. Nucleic acid-sensing toll-like receptors: Important players in Sjögren’s syndrome. Front Immunol 2022; 13:980400. [PMID: 36389822 PMCID: PMC9659959 DOI: 10.3389/fimmu.2022.980400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic systemic autoimmune disease that affects the salivary and lacrimal glands, as well as other organ systems like the lungs, kidneys and nervous system. SS can occur alone or in combination with another autoimmune disease, such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. The etiology of SS is unknown but recent studies have revealed the implication of the activation of innate immune receptors, including Toll-like receptors (TLRs), mainly through the detection of endogenous nucleic acids, in the pathogenesis of systemic autoimmune diseases. Studies on SS mouse models suggest that TLRs and especially TLR7 that detects single-stranded RNA of microbial or endogenous origin can drive the development of SS and findings in SS patients corroborate those in mouse models. In this review, we will give an overview of the function and signaling of nucleic acid-sensing TLRs, the interplay of TLR7 with TLR8 and TLR9 in the context of autoimmunity, summarize the evidence for the critical role of TLR7 in the pathogenesis of SS and present a possible connection between SARS-CoV-2 and SS.
Collapse
|
12
|
Hägglöf T, Vanz C, Kumagai A, Dudley E, Ortega V, Siller M, Parthasarathy R, Keegan J, Koenigs A, Shute T, Leadbetter EA. T-bet + B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab 2022; 34:1121-1136.e6. [PMID: 35868310 PMCID: PMC9357106 DOI: 10.1016/j.cmet.2022.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 01/12/2023]
Abstract
Obesity is accompanied by inflammation in adipose tissue, impaired glucose tolerance, and changes in adipose leukocyte populations. These studies of adipose tissue from humans and mice revealed that increased frequencies of T-bet+ B cells in adipose tissue depend on invariant NKT cells and correlate with weight gain during obesity. Transfer of B cells enriched for T-bet+ cells exacerbates metabolic disorder in obesity, while ablation of Tbx21 specifically in B cells reduces serum IgG2c levels, inflammatory cytokines, and inflammatory macrophages in adipose tissue, ameliorating metabolic symptoms. Furthermore, transfer of serum or purified IgG from HFD mice restores metabolic disease in T-bet+ B cell-deficient mice, confirming T-bet+ B cell-derived IgG as a key mediator of inflammation during obesity. Together, these findings reveal an important pathological role for T-bet+ B cells that should inform future immunotherapy design in type 2 diabetes and other inflammatory conditions.
Collapse
Affiliation(s)
- Thomas Hägglöf
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Carlo Vanz
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Abigail Kumagai
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elizabeth Dudley
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Vanessa Ortega
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - McKenzie Siller
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Raksha Parthasarathy
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Josh Keegan
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Abigail Koenigs
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Travis Shute
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA
| | - Elizabeth A Leadbetter
- Department of Microbiology, Immunology & Molecular Genetics, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Kakalij RM, Dsouza DL, Boesen EI. Development of High Fat Diet-Induced Hyperinsulinemia in Mice Is Enhanced by Co-treatment With a TLR7 Agonist. Front Physiol 2022; 13:930353. [PMID: 35874527 PMCID: PMC9298857 DOI: 10.3389/fphys.2022.930353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) is common in Systemic Lupus Erythematosus (SLE) patients and is associated with increased cardio-renal risk. Toll-like receptor 7 (TLR7) stimulation promotes the development of SLE through mechanisms including activating type I Interferon (IFN) and autoreactive B cells. The current study tested whether combined TLR7 agonist treatment and exposure to a high fat, high sucrose “Western diet” intervention affects the early-stage development of SLE or MetS features. Female C57BL/6 mice were untreated or treated with the TLR7 agonist imiquimod (IMQ) and fed a high-fat diet (HFD; fat 42% kcal, sucrose 34% kcal) or control diet (fat 12.6% kcal, sucrose 34% kcal) for 6 weeks. Supporting early-stage induction of autoimmunity, spleen weights were significantly increased and anti-nuclear antibody (ANA) positivity was detected in IMQ-treated mice. Increased body weight, gonadal fat pad mass, and plasma leptin levels were observed between HFD and control animals for both IMQ and untreated mice. However, the increase in these parameters with HFD was slightly but significantly diminished in IMQ-treated mice. Both the HFD and IMQ treatments significantly increased fasting blood glucose levels. Notably, IMQ treatment affected fasting insulin concentrations in a diet-dependent manner, with hyperinsulinemia observed in IMQ-HFD treated mice. Together, this indicates that the IMQ model of SLE is associated with metabolic alterations, impaired glycemic control, and hyperinsulinemia under HFD conditions. This model may be helpful in further investigating the relationship between MetS and SLE, and supports a role of TLR7 signaling in promoting or accelerating the development of dysglycemia and hyperinsulinemia.
Collapse
Affiliation(s)
- Rahul M Kakalij
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Del L Dsouza
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erika I Boesen
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
14
|
Zhang M, Liang Y, Liu Y, Li Y, Shen L, Shi G. High-fat diet-induced intestinal dysbiosis is associated with the exacerbation of Sjogren’s syndrome. Front Microbiol 2022; 13:916089. [PMID: 35935193 PMCID: PMC9354669 DOI: 10.3389/fmicb.2022.916089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental factors are believed to influence the evolution of primary Sjögren’s syndrome (pSS). The aims of this study were to investigate the association of pSS with a high-fat diet (HFD) and to relate HFD-induced gut dysbiosis to pSS exacerbation. Male Wild Type (WT) and IL-14α transgenic mice (IL-14α TG) were fed a standard diet (SD) and HFD for 11 months. We found an increase in the autoantibody level, more severe dry eye, severe dry mouth symptoms, and an earlier presence of systemic features in the IL-14α TG mice treated with HFD. These data suggest that HFD can promote the process of pSS in the IL-14α TG mice. In addition, an HFD leads to a decrease in the richness of gut microbiota of IL-14α TG mice treated with HFD. The abundance of Deferribacterota was significantly enriched in the IL-14α TG mice treated with HFD compared with other groups. Through the mental test between gut microbiota and clinical parameters, we found that HFD-induced dysbiosis gut microbiota were associated with pSS clinical parameters. In conclusion, HFD results in the aggravation of pSS progression, likely due to the increase of potentially pathogenic microorganisms.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Yichen Liang
- Oncology Department, Northern Jiangsu People's Hospital, Yangzhou, China
- Cancer Institute Affiliated to Northern Jiangsu People's Hospital, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
| | - Yanbo Liu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Eye Institute of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yixuan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Long Shen
- Oncology Department, Northern Jiangsu People's Hospital, Yangzhou, China
- Cancer Institute Affiliated to Northern Jiangsu People's Hospital, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
- Long Shen,
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
- *Correspondence: Guixiu Shi,
| |
Collapse
|
15
|
Liao Z, Kong Y, Zeng L, Wan Q, Hu J, Cai Y. Effects of high-fat diet on thyroid autoimmunity in the female rat. BMC Endocr Disord 2022; 22:179. [PMID: 35840950 PMCID: PMC9287994 DOI: 10.1186/s12902-022-01093-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While contributions of dyslipidemia to autoimmune diseases have been described, its impact on thyroid autoimmunity (TA) is less clear. Programmed cell death 1(PD-1)/PD-ligand 1 (PD-L1) immune checkpoint is crucial in preventing autoimmune attack while its blockade exacerbates TA. We thus unveiled the effect of high-fat diet (HFD) on TA, focusing on the contribution of PD-1/PD-L1. METHODS Female Sprague Dawley (SD) rats were randomly fed with a regular diet or HFD (60% calories from fat) for 24 weeks. Then, thyroid ultrasonography was performed and samples were collected for lipid and thyroid-related parameter measure. RESULTS HFD rats exhibited hyperlipemia and abnormal biosynthesis of the unsaturated fatty acid in serum detected by lipidomics. These rats displayed a relatively lower echogenicity and increased inflammatory infiltration in thyroid accompanied by rising serum thyroid autoantibody levels and hypothyroidism, mimicking human Hashimoto's thyroiditis. These alterations were concurrent with decreased mRNA and immunostaining of intrathyroidal PD-1 and also serum PD-1 levels but not the PD-L1 expression, suggesting a role of a PD-1 pathway. Meanwhile, the infiltration of B and T cell, a key cellular event inhibited by the PD-1 signals, was enhanced in the thyroid of HFD rats, along with thyroid fibrosis and apoptosis. CONCLUSIONS Our data suggest that HFD triggers TA through a mechanism possibly involving downregulation of PD-1-related immunosuppression, providing a novel insight into the link between dyslipidemia and autoimmune toxicities.
Collapse
Affiliation(s)
- Zhengzheng Liao
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Ying Kong
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Liang Zeng
- Department of Otorhinolaryngology, Head & Neck Surgery, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Qing Wan
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China
| | - Jinfang Hu
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China.
| | - Yaojun Cai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Jiangxi, 330006, Nanchang, People's Republic of China.
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Jiangxi, 330006, Nanchang, People's Republic of China.
| |
Collapse
|
16
|
Abstract
Systemic Lupus Erythematosus is a complex autoimmune disease and its etiology remains unknown. Increased gut permeability has been reported in lupus patients, yet whether it promotes or results from lupus progression is unclear. Recent studies indicate that an impaired intestinal barrier allows the translocation of bacteria and bacterial components into systemic organs, increasing immune cell activation and autoantibody generation. Indeed, induced gut leakage in a mouse model of lupus enhanced disease characteristics, including the production of anti-dsDNA antibody, serum IL-6 as well as cell apoptosis. Gut microbiota dysbiosis has been suggested to be one of the factors that decreases gut barrier integrity by outgrowing harmful bacteria and their products, or by perturbation of gut immune homeostasis, which in turn affects gut barrier integrity. The restoration of microbial balance eliminates gut leakage in mice, further confirming the role of microbiota in maintaining gut barrier integrity. In this review, we discuss recent advances on the association between microbiota dysbiosis and leaky gut, as well as their influences on the progression of lupus. The modifications on host microbiota and gut integrity may offer insights into the development of new lupus treatment.
Collapse
Affiliation(s)
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Serrano I, Luque A, Mitjavila F, Blom AM, Rodríguez de Córdoba S, Vega MC, Torras J, Aran JM. The Hidden Side of Complement Regulator C4BP: Dissection and Evaluation of Its Immunomodulatory Activity. Front Immunol 2022; 13:883743. [PMID: 35547734 PMCID: PMC9084231 DOI: 10.3389/fimmu.2022.883743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
C4b-binding protein (C4BP) is a well-known regulator of the complement system that holds additional and important activities unrelated to complement inhibition. Recently, we have described a novel immunomodulatory activity in the minor C4BP(β-) isoform directly acting over inflammatory phagocytes. Here we show that incorporation of the β-chain to the C4BP α-chain oligomer interferes with this immunomodulatory activity of C4BP. Moreover, an oligomeric form including only the complement control protein 6 (CCP6) domain of the C4BP α-chain (PRP6-HO7) is sufficient to “reprogram” monocyte-derived DCs (Mo-DCs) from a pro-inflammatory and immunogenic phenotype to an anti-inflammatory and tolerogenic state. PRP6-HO7 lacks complement regulatory activity but retains full immunomodulatory activity over inflammatory Mo-DCs induced by TLRs, characterized by downregulation of relevant surface markers such as CD83, HLA-DR, co-stimulatory molecules such as CD86, CD80 and CD40, and pro-inflammatory cytokines such as IL-12 and TNF-α. Furthermore, PRP6-HO7-treated Mo-DCs shows increased endocytosis, significantly reduced CCR7 expression and CCL21-mediated chemotaxis, and prevents T cell alloproliferation. Finally, PRP6-HO7 shows also full immunomodulatory activity over Mo-DCs isolated from lupus nephritis patients with active disease, even without further pro-inflammatory stimulation. Therefore PRP6-HO7, retaining the immunomodulatory activity of C4BP(β-) and lacking its complement regulatory activity, might represent a promising and novel alternative to treat autoimmune diseases.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Luque
- Immune-inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesca Mitjavila
- Internal Medicine Service, Bellvitge University Hospital, University of Barcelona and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anna M Blom
- Department of Translational Medicine, Section of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Santiago Rodríguez de Córdoba
- Molecular Pathology/Genetics of Complement Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC) and Ciber de Enfermedades Raras (CIBERER), Madrid, Spain
| | - M Cristina Vega
- Structural Biology of Host-Pathogen Interactions Group, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Lab., University of Barcelona and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Aran
- Immune-inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
18
|
Goessler KF, Gualano B, Nonino CB, Bonfá E, Nicoletti CF. Lifestyle Interventions and Weight Management in Systemic Lupus Erythematosus Patients: A Systematic Literature Review and Metanalysis. J Lifestyle Med 2022; 12:37-46. [PMID: 35300036 PMCID: PMC8918379 DOI: 10.15280/jlm.2022.12.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
Background We aimed to identify and describe different types of lifestyle interventions primarily or secondarily focused on weight loss in SLE patients. Methods A systematic search of controlled trials published until June 2021 that assigned adults patients after dietary or exercise intervention resulted in 248 studies initially screened. Results Six studies with seven interventions (3 dietary and 4 exercise training programs) fulfilled the eligibility criteria and were included in the meta-analysis with a median of age 35.8 (31.3 to 49.0 years); median of BMI 26.6 (25.2 to 33.6 kg/m2). After six to twelve weeks of diet or exercise program, no differences were observed in body weight [-1.539 (-4.482 to 1.405) kg (CI 95%), p = 0.306]. Also, a subgroup analysis also revelated no body weight difference following dietary intervention [-3.561 (-9.604 to 2.481) kg (CI 95%), p = 0.248] or exercise intervention [-0.910 (-4.279 to 2.460) kg (CI 95%), p = 0.597]. Conclusion The results showed that different protocols of exercise intervention or diets were not effective to reduce body weight in patients with SLE. However, only one of the selected trials had a specific study design and protocol focusing on weight loss management.
Collapse
Affiliation(s)
- Karla F. Goessler
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Sao Paulo, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Sao Paulo, Brazil
| | - Carla B. Nonino
- Department of Health Science, Ribeirão Preto School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Bonfá
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Sao Paulo, Brazil
| | - Carolina Ferreira Nicoletti
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Faculdade de Medicina FMUSP, Sao Paulo, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Sao Paulo, Brazil
| |
Collapse
|
19
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
20
|
Shiraz AK, Panther EJ, Reilly CM. Altered Germinal-Center Metabolism in B Cells in Autoimmunity. Metabolites 2022; 12:metabo12010040. [PMID: 35050162 PMCID: PMC8780703 DOI: 10.3390/metabo12010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
B lymphocytes play an important role in the pathophysiology of many autoimmune disorders by producing autoantibodies, secreting cytokines, and presenting antigens. B cells undergo extreme physiological changes as they develop and differentiate. Aberrant function in tolerogenic checkpoints and the metabolic state of B cells might be the contributing factors to the dysfunctionality of autoimmune B cells. Understanding B-cell metabolism in autoimmunity is important as it can give rise to new treatments. Recent investigations have revealed that alterations in metabolism occur in the activation of B cells. Several reports have suggested that germinal center (GC) B cells of individuals with systemic lupus erythematosus (SLE) have altered metabolic function. GCs are unique microenvironments in which the delicate and complex process of B-cell affinity maturation occurs through somatic hypermutation (SHM) and class switching recombination (CSR) and where Bcl6 tightly regulates B-cell differentiation into memory B-cells or plasma cells. GC B cells rely heavily on glucose, fatty acids, and oxidative phosphorylation (OXPHOS) for their energy requirements. However, the complicated association between GC B cells and their metabolism is still not clearly understood. Here, we review several studies of B-cell metabolism, highlighting the significant transformations that occur in GC progression, and suggest possible approaches that may be investigated to more precisely target aberrant B-cell metabolism in SLE.
Collapse
Affiliation(s)
- Ashton K. Shiraz
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
- Correspondence: (A.K.S.); (C.M.R.); Tel.: +1-540-231-9365 (C.M.R.)
| | - Eric J. Panther
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
| | - Christopher M. Reilly
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, VA 24061, USA;
- Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
- Correspondence: (A.K.S.); (C.M.R.); Tel.: +1-540-231-9365 (C.M.R.)
| |
Collapse
|
21
|
Innate-Immunity Genes in Obesity. J Pers Med 2021; 11:jpm11111201. [PMID: 34834553 PMCID: PMC8623883 DOI: 10.3390/jpm11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/07/2023] Open
Abstract
The main functions of adipose tissue are thought to be storage and mobilization of the body’s energy reserves, active and passive thermoregulation, participation in the spatial organization of internal organs, protection of the body from lipotoxicity, and ectopic lipid deposition. After the discovery of adipokines, the endocrine function was added to the above list, and after the identification of crosstalk between adipocytes and immune cells, an immune function was suggested. Nonetheless, it turned out that the mechanisms underlying mutual regulatory relations of adipocytes, preadipocytes, immune cells, and their microenvironment are complex and redundant at many levels. One possible way to elucidate the picture of adipose-tissue regulation is to determine genetic variants correlating with obesity. In this review, we examine various aspects of adipose-tissue involvement in innate immune responses as well as variants of immune-response genes associated with obesity.
Collapse
|
22
|
Clark AL, Yan Z, Chen SX, Shi V, Kulkarni DH, Diwan A, Remedi MS. High-fat diet prevents the development of autoimmune diabetes in NOD mice. Diabetes Obes Metab 2021; 23:2455-2465. [PMID: 34212475 PMCID: PMC8490276 DOI: 10.1111/dom.14486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
AIMS Type 1 diabetes (T1D) has a strong genetic predisposition and requires an environmental trigger to initiate the beta-cell autoimmune destruction. The rate of childhood obesity has risen in parallel to the proportion of T1D, suggesting high-fat diet (HFD)/obesity as potential environmental triggers for autoimmune diabetes. To explore this, non-obese diabetic (NOD) mice were subjected to HFD and monitored for the development of diabetes, insulitis and beta-cell stress. MATERIALS AND METHODS Four-week-old female NOD mice were placed on HFD (HFD-NOD) or standard chow-diet. Blood glucose was monitored weekly up to 40 weeks of age, and glucose- and insulin-tolerance tests performed at 4, 10 and 15 weeks. Pancreata and islets were analysed for insulin secretion, beta-cell mass, inflammation, insulitis and endoplasmic reticulum stress markers. Immune cell levels were measured in islets and spleens. Stool microbiome was analysed at age 4, 8 and 25 weeks. RESULTS At early ages, HFD-NOD mice showed a significant increase in body weight, glucose intolerance and insulin resistance; but paradoxically, they were protected from developing diabetes. This was accompanied by increased insulin secretion and beta-cell mass, decreased insulitis, increased splenic T-regulatory cells and altered stool microbiome. CONCLUSIONS This study shows that HFD protects NOD mice from autoimmune diabetes and preserves beta-cell mass and function through alterations in gut microbiome, increased T-regulatory cells and decreased insulitis. Further studies into the exact mechanism of HFD-mediated prevention of diabetes in NOD mice could potentially lead to interventions to prevent or delay T1D development in humans.
Collapse
Affiliation(s)
- Amy L. Clark
- Department of PediatricsWashington University in St LouisSt LouisMissouriUSA
| | - Zihan Yan
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Sophia X. Chen
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Victoria Shi
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Devesha H. Kulkarni
- Department of Internal MedicineWashington University in St LouisSt LouisMissouriUSA
| | - Abhinav Diwan
- Department of Internal Medicine‐Cardiovascular DivisionWashington University in St LouisSt LouisMissouriUSA
- John Cochran VA Medical Center‐Cardiovascular DivisionSt LouisMissouriUSA
| | - Maria S. Remedi
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
- Department of Cell Biology and PhysiologyWashington University in St LouisSt LouisMissouriUSA
| |
Collapse
|
23
|
Wang Y, Roussel-Queval A, Chasson L, Hanna Kazazian N, Marcadet L, Nezos A, Sieweke MH, Mavragani C, Alexopoulou L. TLR7 Signaling Drives the Development of Sjögren's Syndrome. Front Immunol 2021; 12:676010. [PMID: 34108972 PMCID: PMC8183380 DOI: 10.3389/fimmu.2021.676010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that affects predominately salivary and lacrimal glands. SS can occur alone or in combination with another autoimmune disease like systemic lupus erythematosus (SLE). Here we report that TLR7 signaling drives the development of SS since TLR8-deficient (TLR8ko) mice that develop lupus due to increased TLR7 signaling by dendritic cells, also develop an age-dependent secondary pathology similar to associated SS. The SS phenotype in TLR8ko mice is manifested by sialadenitis, increased anti-SSA and anti-SSB autoantibody production, immune complex deposition and increased cytokine production in salivary glands, as well as lung inflammation. Moreover, ectopic lymphoid structures characterized by B/T aggregates, formation of high endothelial venules and the presence of dendritic cells are formed in the salivary glands of TLR8ko mice. Interestingly, all these phenotypes are abrogated in double TLR7/8-deficient mice, suggesting that the SS phenotype in TLR8-deficient mice is TLR7-dependent. In addition, evaluation of TLR7 and inflammatory markers in the salivary glands of primary SS patients revealed significantly increased TLR7 expression levels compared to healthy individuals, that were positively correlated to TNF, LT-α, CXCL13 and CXCR5 expression. These findings establish an important role of TLR7 signaling for local and systemic SS disease manifestations, and inhibition of such will likely have therapeutic value.
Collapse
Affiliation(s)
- Yawen Wang
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | - Lionel Chasson
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Andrianos Nezos
- Departments of Physiology and Pathophysiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Michael H. Sieweke
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtzgemeinschaft (MDC), Berlin, Germany
| | - Clio Mavragani
- Departments of Physiology and Pathophysiology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | |
Collapse
|
24
|
The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin Sci (Lond) 2021; 135:731-752. [PMID: 33729498 PMCID: PMC7969664 DOI: 10.1042/cs20200895] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
The global obesity epidemic is a major contributor to chronic disease and disability in the world today. Since the discovery of leptin in 1994, a multitude of studies have characterized the pathological changes that occur within adipose tissue in the obese state. One significant change is the dysregulation of adipokine production. Adipokines are an indispensable link between metabolism and optimal immune system function; however, their dysregulation in obesity contributes to chronic low-grade inflammation and disease pathology. Herein, I will highlight current knowledge on adipokine structure and physiological function, and focus on the known roles of these factors in the modulation of the immune response. I will also discuss adipokines in rheumatic and autoimmune diseases.
Collapse
|
25
|
Kono M, Nagafuchi Y, Shoda H, Fujio K. The Impact of Obesity and a High-Fat Diet on Clinical and Immunological Features in Systemic Lupus Erythematosus. Nutrients 2021; 13:nu13020504. [PMID: 33557015 PMCID: PMC7913625 DOI: 10.3390/nu13020504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with multiple organ involvement predominantly affecting women of childbearing age. Environmental factors, as well as genetic predisposition, can cause immunological disturbances that manifest as SLE. A habitual high-fat diet and obesity have recently been reported to play a role in the pathogenesis of autoimmune diseases. The frequency of obesity is higher in patients with SLE than in general populations. Vitamin D and adipokines, such as leptin and adiponectin, are possible mediators connecting obesity and SLE. Serum leptin and adiponectin levels are elevated in patients with SLE and can impact innate and adaptive immunity. Vitamin D deficiency is commonly observed in SLE. Because vitamin D can modulate the functionality of various immune cells, we review vitamin D supplementation and its effects on the course of clinical disease in this work. We also discuss high-fat diets coinciding with alterations of the gut microbiome, or dysbiosis. Contingent upon dietary habits, microbiota can be conducive to the maintenance of immune homeostasis. A high-fat diet can give rise to dysbiosis, and patients who are affected by obesity and/or have SLE possess less diverse microbiota. Interestingly, a hypothesis about dysbiosis and the development of SLE has been suggested and reviewed here.
Collapse
|
26
|
Ferriere A, Santa P, Garreau A, Bandopadhyay P, Blanco P, Ganguly D, Sisirak V. Self-Nucleic Acid Sensing: A Novel Crucial Pathway Involved in Obesity-Mediated Metaflammation and Metabolic Syndrome. Front Immunol 2021; 11:624256. [PMID: 33574823 PMCID: PMC7870860 DOI: 10.3389/fimmu.2020.624256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity and overweight are a global health problem affecting almost one third of the world population. There are multiple complications associated with obesity including metabolic syndrome that commonly lead to development of type II diabetes and non-alcoholic fatty liver disease. The development of metabolic syndrome and severe complications associated with obesity is attributed to the chronic low-grade inflammation that occurs in metabolic tissues such as the liver and the white adipose tissue. In recent years, nucleic acids (mostly DNA), which accumulate systemically in obese individuals, were shown to aberrantly activate innate immune responses and thus to contribute to metabolic tissue inflammation. This minireview will focus on (i) the main sources and forms of nucleic acids that accumulate during obesity, (ii) the sensing pathways required for their detection, and (iii) the key cellular players involved in this process. Fully elucidating the role of nucleic acids in the induction of inflammation induced by obesity would promote the identification of new and long-awaited therapeutic approaches to limit obesity-mediated complications.
Collapse
Affiliation(s)
| | - Pauline Santa
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence, Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Patrick Blanco
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France.,Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Vanja Sisirak
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| |
Collapse
|
27
|
Sadras T, Chan LN, Xiao G, Müschen M. Metabolic Gatekeepers of Pathological B Cell Activation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:323-349. [DOI: 10.1146/annurev-pathol-061020-050135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unlike other cell types, B cells undergo multiple rounds of V(D)J recombination and hypermutation to evolve high-affinity antibodies. Reflecting high frequencies of DNA double-strand breaks, adaptive immune protection by B cells comes with an increased risk of malignant transformation. In addition, the vast majority of newly generated B cells express an autoreactive B cell receptor (BCR). Thus, B cells are under intense selective pressure to remove autoreactive and premalignant clones. Despite stringent negative selection, B cells frequently give rise to autoimmune disease and B cell malignancies. In this review, we discuss mechanisms that we term metabolic gatekeepers to eliminate pathogenic B cell clones on the basis of energy depletion. Chronic activation signals from autoreactive BCRs or transforming oncogenes increase energy demands in autoreactive and premalignant B cells. Thus, metabolic gatekeepers limit energy supply to levels that are insufficient to fuel either a transforming oncogene or hyperactive signaling from an autoreactive BCR.
Collapse
Affiliation(s)
- Teresa Sadras
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Lai N. Chan
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| | - Gang Xiao
- Current affiliation: Department of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale Cancer Center, and Department of Immunobiology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
28
|
Abstract
B lymphocytes have a central role in autoimmune diseases, which are often defined by specific autoantibody patterns and feature a loss of B cell tolerance. A prototypic disease associated with B cell hyperactivity is systemic lupus erythematosus (SLE). In patients with SLE, the loss of B cell tolerance to autoantigens is controlled in a cell-intrinsic manner by Toll-like receptors (TLRs), which sense nucleic acids in endosomes. TLR7 drives the extrafollicular B cell response and the germinal centre reaction that are involved in autoantibody production and disease pathogenesis. Surprisingly, TLR9 seems to protect against SLE, even though it is required for the production of autoantibodies recognizing double-stranded DNA-associated antigens, which are abundant in SLE and are a hallmark of this disease. The protective function of TLR9 is at least partly mediated by its capacity to limit the stimulatory activity of TLR7. The roles of TLR7 and TLR9 in the effector function of B cells in lupus-like disease and in patients with SLE, and the unique features of TLR signalling in B cells, suggest that targeting TLR signalling in SLE might be therapeutically beneficial. Loss of B cell tolerance to autoantigens in systemic lupus erythematosus (SLE) is driven by TLR7, whereas TLR9 appears to protect against SLE by limiting the stimulatory activity of TLR7. The unique features of Toll-like receptor signalling in B cells implicate it as a therapeutic target in SLE. Intrinsic TLR7 and TLR9 signalling in B cells plays an important role in the development and pathogenesis of systemic lupus erythematosus (SLE). In patients with SLE, effector plasma cells are generated via the extrafollicular response and via the formation of spontaneous germinal centres. TLR7 plays key roles in the extrafollicular response and the response mediated by germinal centres. Some plasma cells produce IL-10 and can have protective roles in lupus-like disease.
Collapse
|
29
|
Cuellar-Tamez RX, Villarreal-Calderon JR, Rubio-Infante N, Castillo EC, García-Garza M, Elizondo-Montemayor L, García-Rivas G. Bariatric surgery-induced weight loss reduces B cell activating cytokines and IgG immunoglobulins related to autoimmunity. Surg Endosc 2020; 35:5147-5158. [DOI: 10.1007/s00464-020-08004-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
|
30
|
Abstract
Nutrient content and nutrient timing are considered key regulators of human health and a variety of diseases and involve complex interactions with the mucosal immune system. In particular, the innate immune system is emerging as an important signaling hub that modulates the response to nutritional signals, in part via signaling through the gut microbiota. In this review we elucidate emerging evidence that interactions between innate immunity and diet affect human metabolic health and disease, including cardiometabolic disorders, allergic diseases, autoimmune disorders, infections, and cancers. Furthermore, we discuss the potential modulatory effects of the gut microbiota on interactions between the immune system and nutrition in health and disease, namely how it relays nutritional signals to the innate immune system under specific physiological contexts. Finally, we identify key open questions and challenges to comprehensively understanding the intersection between nutrition and innate immunity and how potential nutritional, immune, and microbial therapeutics may be developed into promising future avenues of precision treatment.
Collapse
Affiliation(s)
- Samuel Philip Nobs
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Niv Zmora
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel;
- Research Center for Digestive Tract and Liver Diseases and Internal Medicine Division, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel;
- Cancer-Microbiome Research Division, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany;
| |
Collapse
|
31
|
Tsigalou C, Vallianou N, Dalamaga M. Autoantibody Production in Obesity: Is There Evidence for a Link Between Obesity and Autoimmunity? Curr Obes Rep 2020; 9:245-254. [PMID: 32632847 DOI: 10.1007/s13679-020-00397-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW During the last decades, obesity and autoimmune disorders have shown a parallel significant rise in industrialized countries. This review aims at providing a comprehensive update of the relationship between the adipose tissue in obesity and autoimmune disorders, highlighting the underlying mechanisms with a particular emphasis on adipokines and pro-inflammatory cytokines, the impaired B cell activity, and the production of natural and pathogenic autoantibody repertoire in the context of obesity. RECENT FINDINGS Obesity is related to a higher risk of rheumatoid arthritis, psoriasis and psoriatic arthritis, multiple sclerosis, and Hashimoto's thyroiditis, while it may promote inflammatory bowel disorders and type 1 diabetes mellitus. Interestingly, subjects with obesity present more severe forms of these autoimmune disorders as well as decreased therapeutic response. Both obesity and autoimmune disorders present elevated levels of leptin, resistin, and visfatin. Autoantibody production, a hallmark of autoimmune disorders, has been demonstrated in obese animal models and human subjects. Obesity results in deficiencies of the human self-tolerance mechanisms by promoting pro-inflammatory processes, reducing Bregs as well as Tregs, and the latter resulting in increased Th17 and Th1 cells, creating the perfect milieu for the development of autoimmune disorders. More mechanistic, animal, and clinical studies are required to delineate the exact mechanisms underlying auto-reactivity in obesity as well as the adipose-immune crosstalk for potential successful therapeutic strategies.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Microbiology, Medical School, Democritus University of Thrace, 6th Km Alexandroupolis-Makri, Alexandroupolis, Greece.
| | - Natalia Vallianou
- Department of Endocrinology, 'Evangelismos' General Hospital of Athens, 45-47 Ypsilantou street, 10676, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| |
Collapse
|
32
|
Sala P, Torrinhas RSMDM, Fonseca DC, Machado NM, Singer J, Singer P, Ravacci GR, Belarmino G, Ferreira BAM, Marques M, Ishida RK, Guarda IFMS, de Moura EGH, Sakai P, Santo MA, Sunaga DY, Heymsfield SB, Bezerra DPDS, Corrêa-Giannella ML, Waitzberg DL. Intestinal expression of toll-like receptor gene changes early after gastric bypass surgery and association with type 2 diabetes remission. Nutrition 2020; 79-80:110885. [PMID: 32707229 DOI: 10.1016/j.nut.2020.110885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Abnormal activation of toll-like receptors (TLRs) is observed in obese rodents and is correlated with local dysbiosis and increased gut permeability. These purported changes trigger systemic inflammation associated with obesity-related comorbidities, including type 2 diabetes (T2D). Roux-en-Y gastric bypass (RYGB) surgery is an effective treatment for severe obesity and known to induce changes in the gut microbiota and decrease systemic inflammation in humans. This study examined the intestinal expression of TLR-encoding genes in obese women (n = 20) treated with RYGB surgery and the relationship of these genes with T2D remission (T2Dr METHODS: Intestinal biopsies were performed before and 3 months after RYGB surgery. Partial and complete T2Dr after 1 year was assessed using the American Diabetes Association criteria. Affymetrix Human GeneChip 1.0 ST array (microarray) and TaqMan assay (real-time quantitative polymerase chain reaction) were used to analyze intestinal gene expression, and associations with systemic markers of energy homeostasis were examined. RESULTS Patients experienced significant weight loss (P < 0.001) and altered gut TLR gene expression 3 months after surgery. The main effects were a reduction in jejunal TLR4 expression in patients with complete and partial T2Dr (P < 0.05). There was a postoperative decrease in jejunal TLR7 expression in patients with complete T2Dr that correlated inversely with high-density lipoprotein cholesterol and positively with triglyceride concentrations, but not with weight loss. CONCLUSIONS RYGB-induced weight loss-independent changes in the expression of intestinal TLR-encoding genes in obese women and complete T2Dr that was correlated with systemic markers of energy homeostasis. The modulation of intestinal TLRs may mediate inflammatory mechanisms linked to T2Dr after RYGB surgery.
Collapse
Affiliation(s)
- Priscila Sala
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil; Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil; Programa de Pós-graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil.
| | | | - Danielle C Fonseca
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Natasha Mendonça Machado
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Joelle Singer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Endocrinology, Diabetes & Metabolism - Beilinson, Rabin Medical Center, Belinson Hospital, Petah Tikva, Israel
| | - Pierre Singer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; General Intensive Care Department & Institute for Nutrition Research, Rabin Medical Center, Belinson Hospital, Petah Tikva, Israel
| | - Graziela Rosa Ravacci
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Giliane Belarmino
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz A M Ferreira
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Mariane Marques
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Robson Kiyoshi Ishida
- Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | - Paulo Sakai
- Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Marco Aurélio Santo
- Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | - Daniele Pereira Dos Santos Bezerra
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Lúcia Corrêa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM-18), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil; Programa de Pós-graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Dan Linetzky Waitzberg
- Laboratório de Nutrição e Cirurgia Metabólica (LIM-35), Hospital das Clinicas HCFMUSP, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|