1
|
Singh DK, Ahmed M, Akter S, Shivanna V, Bucşan AN, Mishra A, Golden NA, Didier PJ, Doyle LA, Hall-Ursone S, Roy CJ, Arora G, Dick EJ, Jagannath C, Mehra S, Khader SA, Kaushal D. Prevention of tuberculosis in cynomolgus macaques by an attenuated Mycobacterium tuberculosis vaccine candidate. Nat Commun 2025; 16:1957. [PMID: 40000643 PMCID: PMC11861635 DOI: 10.1038/s41467-025-57090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The need for novel vaccination strategies to control tuberculosis (TB) is underscored by the limited and variable efficacy of the currently licensed vaccine, Bacille Calmette-Guerin (BCG). SigH is critical for Mycobacterium tuberculosis (Mtb) to mitigate oxidative stress, and in its absence Mtb is unable to scavenge host oxidative/nitrosative bursts. The MtbΔsigH (ΔsigH) isogenic mutant induces signatures of the innate immunity in macrophages and protects rhesus macaques from a lethal Mtb challenge. To understand the immune mechanisms of protection via mucosal vaccination with ΔsigH, we employed the resistant cynomolgus macaque model; and our results show that ΔsigH vaccination significantly protects against lethal Mtb challenge in this species. ΔsigH-vaccinated macaques are devoid of granulomas and instead generate inducible bronchus associated lymphoid structures, and robust antigen-specific CD4+ and CD8+ T cell responses, driven by a hyper-immune, trained immunity-like phenotype in host macrophages with enhanced antigen presentation. Correlates of protection in ΔsigH-vaccinated macaques include gene signatures of T cell activation, IFNG production, including IFN-responsive, activated T cells, concomitant with IFNG production, and suppression of IDO+ Type I IFN-responsive macrophage recruitment. Thus, ΔsigH is a promising lead candidate for further development as an antitubercular vaccine.
Collapse
Affiliation(s)
- Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mushtaq Ahmed
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Sadia Akter
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Vinay Shivanna
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Allison N Bucşan
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Nadia A Golden
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Peter J Didier
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Lara A Doyle
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chad J Roy
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Garima Arora
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Shabaana A Khader
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Uršič Valentinuzzi K, Kamenšek U, Kranjc Brezar S, Heranney C, Komel T, Buček S, Čemažar M, Serša G. Electrochemotherapy with bleomycin, oxaliplatin, or cisplatin in mouse tumor models, from tumor ablation to in situ vaccination. Front Immunol 2025; 16:1470432. [PMID: 40007542 PMCID: PMC11850275 DOI: 10.3389/fimmu.2025.1470432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction In addition to its direct cytotoxic effects, ablative therapies as electrochemotherapy (ECT) can elicit indirect antitumor effects by triggering immune system responses. Here, we comprehensively analyzed this dual effectiveness of intratumoral ECT with chemotherapeutic drugs bleomycin (BLM), oxaliplatin (OXA), and cisplatin (CDDP). Our aim was to determine if ECT can act as in situ vaccination and thereby induce an abscopal effect. By evaluating ECT's potential for in situ vaccination, our goal was to pave the way for future advancements for its combination with emerging (immuno)therapies, leading to enhanced responses and outcomes. Methods We employed two mouse tumor models, the immunologically cold B16F10 melanoma and 4T1 mammary carcinoma, to explore both local and systemic (i.e., abscopal) antitumor effects following equieffective intratumoral ECT with BLM, OXA, and CDDP. Through histological analyses and the use of immunodeficient and metastatic (for abscopal effect) mouse models, we identified and compared both the cytotoxic and immunological components of ECT's antitumor efficiency, such as immunologically recognizable cell deaths (immunogenic cell death and necrosis) and immune infiltrate (CD11+, CD4+, CD8+, GrB+). Results Differences in immunological involvement after equieffective intratumoral ECT were highlighted by variable kinetics of immunologically recognizable cell deaths and immune infiltrate across the studied tumor models. Particularly, the 4T1 tumor model exhibited a more pronounced involvement of the immune component compared to the B16F10 tumor model. Variances in the antitumor (immune) response were also detected based on the chemotherapeutic drug used in ECT. Collectively, ECT demonstrated effectiveness in inducing in situ vaccination in both tumor models; however, an abscopal effect was observed in the 4T1 tumor model only. Conclusions This is the first preclinical study systematically comparing the immune involvement in intratumoral ECT's efficiency using three distinct chemotherapeutic drugs in mouse tumor models. The demonstrated variability in immune response to ECT across different tumor models and chemotherapeutic drugs provides a basis for future investigations aimed at enhancing the effectiveness of combined treatments.
Collapse
Affiliation(s)
- Katja Uršič Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Chloe Heranney
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biological Engineering Department, Polytech Clermont-Ferrand, Aubiere, France
| | - Tilen Komel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Izola, Slovenia
| | - Simon Buček
- Department of Cytopathology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
4
|
Huang S, Que H, Wang M, Wei X. mRNA vaccines as cancer therapies. Chin Med J (Engl) 2024; 137:2979-2995. [PMID: 39668413 PMCID: PMC11706586 DOI: 10.1097/cm9.0000000000003455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Indexed: 12/14/2024] Open
Abstract
ABSTRACT Cancer remains a major global health challenge, with conventional treatments like chemotherapy and radiotherapy often hindered by significant side effects, lack of specificity, and limited efficacy in advanced cases. Among emerging therapeutic strategies, mRNA vaccines have shown remarkable potential due to their adaptability, rapid production, and capability for personalized cancer treatment. This review provides an in-depth analysis of messenger RNA (mRNA) vaccines as a therapeutic approach for cancer immunotherapy, focusing on their molecular biology, classification, mechanisms, and clinical studies. Derived from reported literature and data on clinicaltrials.gov, it examines studies on mRNA vaccines encoding tumor-specific antigens (TSAs), tumor-associated antigens (TAAs), immunomodulators, and chimeric antigen receptors (CARs) across various cancer types. The review highlights the ability of mRNA vaccines to encode TSAs and TAAs, enabling personalized cancer treatments, and classifies these vaccines into non-replicating and self-amplifying types. It further explores their mechanisms of action, including antigen presentation and immune activation, while emphasizing findings from clinical studies that demonstrate the potential of mRNA vaccines in cancer therapy. Despite their promise, challenges remain in enhancing delivery systems, improving immunogenicity, and addressing tumor heterogeneity. Overcoming these obstacles will require further investigation to fully harness the potential of mRNA vaccines in personalized cancer treatment.
Collapse
Affiliation(s)
- Shaoxiong Huang
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, National/State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Spiller V, Vetter M, Dettmer-Richardt C, Grammel T. Prospective study of successful autologous dendritic cell therapy in dogs with splenic stage II hemangiosarcoma. Vet J 2024; 306:106196. [PMID: 39004264 DOI: 10.1016/j.tvjl.2024.106196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Hemangiosarcoma is an aggressive tumour that most frequently occurs in larger, middle-aged dogs of certain breeds. The spleen is the most commonly affected organ. The aim of this prospective therapy study was to evaluate the clinical effect of autologous, monocyte-derived dendritic cell (DC) therapy in canine hemangiosarcoma stage II after splenectomy. Dogs (n=452) diagnosed with splenic hemangiosarcoma that underwent splenectomy were enrolled. Of these, 42 dogs with stage II entered the DC therapy study. The median survival time for the total group of 42 dogs was 203 days. The median survival for the group (n=34) that received the full DC therapy (≥3 vaccines) was 256 days, with a 29 % one-year survival rate and a hazard ratio of 0.30, adjusted to age and bodyweight (P=0.010). We further observed a significant increase in DC yield after each application and demonstrated that DC yield at the beginning of treatment is significantly related to patient survival. While further evidence is needed, we conclude that autologous, monocyte-derived DC therapy is a viable alternative to standard treatment methods of canine splenic stage II hemangiosarcoma.
Collapse
Affiliation(s)
- V Spiller
- PetBioCell GmbH, Schillerstr. 17, Osterode am Harz 37520, Germany
| | - M Vetter
- Department of Gynaecology, Martin Luther University Halle-Wittenberg, Ernst-Grube Str. 40, Halle (Saale) 06120, Germany.
| | | | - T Grammel
- Tiergesundheitszentrum Südharz, Schillerstr. 17, Osterode am Harz 37520, Germany
| |
Collapse
|
6
|
Nanajian A, Scott M, Burcus NI, Ruedlinger BL, Oshin EA, Beebe SJ, Guo S. Nano-Pulse Treatment Overcomes the Immunosuppressive Tumor Microenvironment to Elicit In Situ Vaccination Protection against Breast Cancer. Vaccines (Basel) 2024; 12:633. [PMID: 38932362 PMCID: PMC11209453 DOI: 10.3390/vaccines12060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
We previously reported that nano-pulse treatment (NPT), a pulsed power technology, resulted in 4T1-luc mammary tumor elimination and a strong in situ vaccination, thereby completely protecting tumor-free animals against a second live tumor challenge. The mechanism whereby NPT mounts effective antitumor immune responses in the 4T1 breast cancer predominantly immunosuppressive tumor microenvironment (TME) remains unanswered. In this study, orthotopic 4T1 mouse breast tumors were treated with NPT (100 ns, 50 kV/cm, 1000 pulses, 3 Hz). Blood, spleen, draining lymph nodes, and tumors were harvested at 4-h, 8-h, 1-day, 3-day, 7-day, and 3-month post-treatment intervals for the analysis of frequencies, death, and functional markers of various immune cells in addition to the suppressor function of regulatory T cells (Tregs). NPT was verified to elicit strong in situ vaccination (ISV) against breast cancer and promote both acute and long-term T cell memory. NPT abolished immunosuppressive dominance systemically and in the TME by substantially reducing Tregs, myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). NPT induced apoptosis in Tregs and TAMs. It also functionally diminished the Treg suppression capacity, explained by the downregulation of activation markers, particularly 4-1BB and TGFβ, and a phenotypic shift from predominantly activated (CD44+CD62L-) to naïve (CD44-CD62L+) Tregs. Importantly, NPT selectively induced apoptosis in activated Tregs and spared effector CD4+ and CD8+ T cells. These changes were followed by a concomitant rise in CD8+CD103+ tissue-resident memory T cells and TAM M1 polarization. These findings indicate that NPT effectively switches the TME and secondary lymphatic systems from an immunosuppressive to an immunostimulatory state, allowing cytotoxic T cell function and immune memory formation to eliminate cancer cells and account for the NPT in situ vaccination.
Collapse
Affiliation(s)
- Anthony Nanajian
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (A.N.); (M.S.); (N.I.B.); (B.L.R.); (E.A.O.); (S.J.B.)
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Megan Scott
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (A.N.); (M.S.); (N.I.B.); (B.L.R.); (E.A.O.); (S.J.B.)
| | - Niculina I. Burcus
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (A.N.); (M.S.); (N.I.B.); (B.L.R.); (E.A.O.); (S.J.B.)
| | - Brittney L. Ruedlinger
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (A.N.); (M.S.); (N.I.B.); (B.L.R.); (E.A.O.); (S.J.B.)
| | - Edwin A. Oshin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (A.N.); (M.S.); (N.I.B.); (B.L.R.); (E.A.O.); (S.J.B.)
- Department of Electrical & Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Stephen J. Beebe
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (A.N.); (M.S.); (N.I.B.); (B.L.R.); (E.A.O.); (S.J.B.)
| | - Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (A.N.); (M.S.); (N.I.B.); (B.L.R.); (E.A.O.); (S.J.B.)
| |
Collapse
|
7
|
Xiong H, Han X, Cai L, Zheng H. Natural polysaccharides exert anti-tumor effects as dendritic cell immune enhancers. Front Oncol 2023; 13:1274048. [PMID: 37876967 PMCID: PMC10593453 DOI: 10.3389/fonc.2023.1274048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
With the development of immunotherapy, the process of tumor treatment is also moving forward. Polysaccharides are biological response modifiers widely found in plants, animals, fungi, and algae and are mainly composed of monosaccharides covalently linked by glycosidic bonds. For a long time, polysaccharides have been widely used clinically to enhance the body's immunity. However, their mechanisms of action in tumor immunotherapy have not been thoroughly explored. Dendritic cells (DCs) are a heterogeneous population of antigen presenting cells (APCs) that play a crucial role in the regulation and maintenance of the immune response. There is growing evidence that polysaccharides can enhance the essential functions of DCs to intervene the immune response. This paper describes the research progress on the anti-tumor immune effects of natural polysaccharides on DCs. These studies show that polysaccharides can act on pattern recognition receptors (PRRs) on the surface of DCs and activate phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), Dectin-1/Syk, and other signalling pathways, thereby promoting the main functions of DCs such as maturation, metabolism, antigen uptake and presentation, and activation of T cells, and then play an anti-tumor role. In addition, the application of polysaccharides as adjuvants for DC vaccines, in combination with adoptive immunotherapy and immune checkpoint inhibitors (ICIs), as well as their co-assembly with nanoparticles (NPs) into nano drug delivery systems is also introduced. These results reveal the biological effects of polysaccharides, provide a new perspective for the anti-tumor immunopharmacological research of natural polysaccharides, and provide helpful information for guiding polysaccharides as complementary medicines in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongtai Xiong
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinpu Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liu Cai
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Li X, Sun X, Wang B, Li Y, Tong J. Oncolytic virus-based hepatocellular carcinoma treatment: Current status, intravenous delivery strategies, and emerging combination therapeutic solutions. Asian J Pharm Sci 2023; 18:100771. [PMID: 36896445 PMCID: PMC9989663 DOI: 10.1016/j.ajps.2022.100771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022] Open
Abstract
Current treatments for advanced hepatocellular carcinoma (HCC) have limited success in improving patients' quality of life and prolonging life expectancy. The clinical need for more efficient and safe therapies has contributed to the exploration of emerging strategies. Recently, there has been increased interest in oncolytic viruses (OVs) as a therapeutic modality for HCC. OVs undergo selective replication in cancerous tissues and kill tumor cells. Strikingly, pexastimogene devacirepvec (Pexa-Vec) was granted an orphan drug status in HCC by the U.S. Food and Drug Administration (FDA) in 2013. Meanwhile, dozens of OVs are being tested in HCC-directed clinical and preclinical trials. In this review, the pathogenesis and current therapies of HCC are outlined. Next, we summarize multiple OVs as single therapeutic agents for the treatment of HCC, which have demonstrated certain efficacy and low toxicity. Emerging carrier cell-, bioengineered cell mimetic- or nonbiological vehicle-mediated OV intravenous delivery systems in HCC therapy are described. In addition, we highlight the combination treatments between oncolytic virotherapy and other modalities. Finally, the clinical challenges and prospects of OV-based biotherapy are discussed, with the aim of continuing to develop a fascinating approach in HCC patients.
Collapse
Affiliation(s)
- Xinguo Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Sun
- The 4th People's Hospital of Shenyang, Shenyang 110031, China
| | - Bingyuan Wang
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiling Li
- The First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Tong
- The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
9
|
Harper MM, Gramlich OW, Elwood BW, Boehme NA, Dutca LM, Kuehn MH. Immune responses in mice after blast-mediated traumatic brain injury TBI autonomously contribute to retinal ganglion cell dysfunction and death. Exp Eye Res 2022; 225:109272. [PMID: 36209837 DOI: 10.1016/j.exer.2022.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to examine the role of the immune system and its influence on chronic retinal ganglion cell (RGC) dysfunction following blast-mediated traumatic brain injury (bTBI). METHODS C57BL/6J and B6.129S7-Rag1tm1Mom/J (Rag-/-) mice were exposed to one blast injury of 140 kPa. A separate cohort of C57BL/6J mice was exposed to sham-blast. Four weeks following bTBI mice were euthanized, and splenocytes were collected. Adoptive transfer (AT) of splenocytes into naïve C57BL/6J recipient mice was accomplished via tail vein injection. Three groups of mice were analyzed: those receiving AT of splenocytes from C57BL/6J mice exposed to blast (AT-TBI), those receiving AT of splenocytes from C57BL/6J mice exposed to sham (AT-Sham), and those receiving AT of splenocytes from Rag-/- mice exposed to blast (AT-Rag-/-). The visual function of recipient mice was analyzed with the pattern electroretinogram (PERG), and the optomotor response (OMR). The structure of the retina was evaluated using optical coherence tomography (OCT), and histologically using BRN3A-antibody staining. RESULTS Analysis of the PERG showed a decreased amplitude two months post-AT that persisted for the duration of the study in AT-TBI mice. We also observed a significant decrease in the retinal thickness of AT-TBI mice two months post-AT compared to sham, but not at four or six months post-AT. The OMR response was significantly decreased in AT-TBI mice 5- and 6-months post-AT. BRN3A staining showed a loss of RGCs in AT-TBI and AT-Rag-/- mice. CONCLUSION These results suggest that the immune system contributes to chronic RGC dysfunction following bTBI.
Collapse
Affiliation(s)
- Matthew M Harper
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Departments of Biology, And Pharmacology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA.
| | - Oliver W Gramlich
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Departments of Neuroscience and Pharmacology, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Benjamin W Elwood
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Nickolas A Boehme
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Laura M Dutca
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| | - Markus H Kuehn
- Departments of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, IA, USA; Veterans Administration Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, IA, USA
| |
Collapse
|
10
|
Mestrallet G, Sone K, Bhardwaj N. Strategies to overcome DC dysregulation in the tumor microenvironment. Front Immunol 2022; 13:980709. [PMID: 36275666 PMCID: PMC9583271 DOI: 10.3389/fimmu.2022.980709] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Dendritic cells (DCs) play a key role to modulate anti-cancer immunity in the tumor microenvironment (TME). They link innate to adaptive immunity by processing and presenting tumor antigens to T cells thereby initiating an anti-tumor response. However, subsets of DCs also induce immune-tolerance, leading to tumor immune escape. In this regard, the TME plays a major role in adversely affecting DC function. Better understanding of DC impairment mechanisms in the TME will lead to more efficient DC-targeting immunotherapy. Here, we review the different subtypes and functions of DCs in the TME, including conventional DCs, plasmacytoid DC and the newly proposed subset, mregDC. We further focus on how cancer cells modulate DCs to escape from the host's immune-surveillance. Immune checkpoint expression, small molecule mediators, metabolites, deprivation of pro-immunogenic and release of pro-tumorigenic cytokine secretion by tumors and tumor-attracted immuno-suppressive cells inhibit DC differentiation and function. Finally, we discuss the impact of established therapies on DCs, such as immune checkpoint blockade. Creative DC-targeted therapeutic strategies will be highlighted, including cancer vaccines and cell-based therapies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kazuki Sone
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural Member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
11
|
Immunotherapy for hepatocellular carcinoma. Clin Exp Med 2022:10.1007/s10238-022-00874-5. [PMID: 36001163 DOI: 10.1007/s10238-022-00874-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC), a primary malignancy of the liver, is a threat to the health of all humans as a prevalent malignancy and is the sixth most common cancer worldwide. It is difficult to diagnose because symptoms do not show up until late in the disease, and patients often progress to the point where transplantation, resection, or even local treatment cannot be performed. The progression of HCC is regulated by the immune system, and immunotherapy enables the body's immune system's defenses to target liver cancer cells; therefore, immunotherapy has brought a new hope for the treatment of HCC. Currently, the main types of immunotherapies for liver cancer are: immune checkpoint inhibitors, liver cancer vaccines and cellular therapies. In this review, the progress of immunotherapy for the treatment of HCC is summarized.
Collapse
|
12
|
Miao L, Zhang Z, Ren Z, Li Y. Application of Immunotherapy in Hepatocellular Carcinoma. Front Oncol 2021; 11:699060. [PMID: 34513678 PMCID: PMC8426571 DOI: 10.3389/fonc.2021.699060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common malignancies globally. It not only has a hidden onset but also progresses rapidly. Most HCC patients are already in the advanced stage of cancer when they are diagnosed, and have even lost the opportunity for surgical treatment. As an inflammation-related tumor, the immunosuppressive microenvironment of HCC can promote immune tolerance through a variety of mechanisms. Immunotherapy can activate tumor-specific immune responses, which brings a new hope for the treatment of HCC. At the present time, main immunotherapy strategies of HCC include immune checkpoint inhibitors, tumor vaccines, adoptive cell therapy, and so on. This article reviews the application and research progress of immune checkpoint inhibitors, tumor vaccines, and adoptive cell therapy in the treatment of HCC.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Lee YS, O'Brien LJ, Walpole CM, Pearson FE, Leal-Rojas IM, Masterman KA, Atkinson V, Barbour A, Radford KJ. Human CD141 + dendritic cells (cDC1) are impaired in patients with advanced melanoma but can be targeted to enhance anti-PD-1 in a humanized mouse model. J Immunother Cancer 2021; 9:e001963. [PMID: 33737342 PMCID: PMC7978242 DOI: 10.1136/jitc-2020-001963] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The conventional type 1 dendritic cell subset (cDC1) is indispensable for tumor immune responses and the efficacy of immune checkpoint inhibitor (ICI) therapies in animal models but little is known about the role of the human CD141+ DC cDC1 equivalent in patients with melanoma. METHODS We developed a flow cytometry assay to quantify and characterize human blood DC subsets in healthy donors and patients with stage 3 and stage 4 metastatic melanoma. To examine whether harnessing CD141+ DCs could improve responses to ICIs in human melanoma, we developed a humanized mouse model by engrafting immunodeficient NSG-SGM3 mice with human CD34+ hematopoietic stem cells (HSCs) from umbilical cord blood followed by transplantation of a human melanoma cell line and treatment with anti-programmed cell death protein-1 (anti-PD-1). RESULTS Blood CD141+ DC numbers were significantly reduced in patients with stage 4 melanoma compared with healthy controls. Moreover, CD141+ DCs in patients with melanoma were selectively impaired in their ability to upregulate CD83 expression after stimulation with toll-like receptor 3 (TLR3) and TLR7/8 agonists ex vivo. Although DC numbers did not correlate with responses to anti-PD-1 and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) ICIs, their numbers and capacity to upregulate CD83 declined further during treatment in non-responding patients. Treatment with anti-PD-1 was ineffective at controlling tumor growth in humanized mice but efficacy was enhanced by indirectly expanding and activating DCs in vivo with fms-like tyrosine kinase-3 ligand (Flt3L) and a TLR3 agonist. Moreover, intratumoral injections of CD141+ DCs resulted in reduced tumor growth when combined with anti-PD-1 treatment. CONCLUSIONS These data illustrate quantitative and qualitative impairments in circulating CD141+ DCs in patients with advanced melanoma and that increasing CD141+ DC number and function is an attractive strategy to enhance immunogenicity and response rates to ICIs.
Collapse
Affiliation(s)
- Yoke Seng Lee
- Mater Research, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Liam J O'Brien
- Mater Research, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Carina M Walpole
- Mater Research, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Frances E Pearson
- Mater Research, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Ingrid M Leal-Rojas
- Mater Research, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Kelly-Anne Masterman
- Mater Research, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Victoria Atkinson
- Princess Alexandra Hospital Clinical School, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Andrew Barbour
- Princess Alexandra Hospital Clinical School, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Kristen J Radford
- Mater Research, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
14
|
Gardner TJ, Bourne CM, Dacek MM, Kurtz K, Malviya M, Peraro L, Silberman PC, Vogt KC, Unti MJ, Brentjens R, Scheinberg D. Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers (Basel) 2020; 12:E2175. [PMID: 32764348 PMCID: PMC7465970 DOI: 10.3390/cancers12082175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Christopher M. Bourne
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Immunology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Megan M. Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Keifer Kurtz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Manish Malviya
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Leila Peraro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Kristen C. Vogt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mildred J. Unti
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Renier Brentjens
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| | - David Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| |
Collapse
|
15
|
Lamberti MJ, Nigro A, Mentucci FM, Rumie Vittar NB, Casolaro V, Dal Col J. Dendritic Cells and Immunogenic Cancer Cell Death: A Combination for Improving Antitumor Immunity. Pharmaceutics 2020; 12:pharmaceutics12030256. [PMID: 32178288 PMCID: PMC7151083 DOI: 10.3390/pharmaceutics12030256] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
The safety and feasibility of dendritic cell (DC)-based immunotherapies in cancer management have been well documented after more than twenty-five years of experimentation, and, by now, undeniably accepted. On the other hand, it is equally evident that DC-based vaccination as monotherapy did not achieve the clinical benefits that were predicted in a number of promising preclinical studies. The current availability of several immune modulatory and targeting approaches opens the way to many potential therapeutic combinations. In particular, the evidence that the immune-related effects that are elicited by immunogenic cell death (ICD)-inducing therapies are strictly associated with DC engagement and activation strongly support the combination of ICD-inducing and DC-based immunotherapies. In this review, we examine the data in recent studies employing tumor cells, killed through ICD induction, in the formulation of anticancer DC-based vaccines. In addition, we discuss the opportunity to combine pharmacologic or physical therapeutic approaches that can promote ICD in vivo with in situ DC vaccination.
Collapse
Affiliation(s)
- María Julia Lamberti
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Córdoba, Argentina; (M.J.L.); (F.M.M.)
- INBIAS, CONICET-UNRC, Río Cuarto 5800, Córdoba, Argentina
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (A.N.); (V.C.)
| | - Fátima María Mentucci
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Córdoba, Argentina; (M.J.L.); (F.M.M.)
- INBIAS, CONICET-UNRC, Río Cuarto 5800, Córdoba, Argentina
| | - Natalia Belén Rumie Vittar
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Córdoba, Argentina; (M.J.L.); (F.M.M.)
- INBIAS, CONICET-UNRC, Río Cuarto 5800, Córdoba, Argentina
- Correspondence: (N.B.R.V.); (J.D.C.); Tel.: +39-089-965-210 (J.D.C.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (A.N.); (V.C.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (A.N.); (V.C.)
- Correspondence: (N.B.R.V.); (J.D.C.); Tel.: +39-089-965-210 (J.D.C.)
| |
Collapse
|
16
|
Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications. Cancers (Basel) 2019; 11:cancers11121943. [PMID: 31817234 PMCID: PMC6966569 DOI: 10.3390/cancers11121943] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 01/05/2023] Open
Abstract
The first report on the antitumor effects of interferon α/β (IFN-I) in mice was published 50 years ago. IFN-α were the first immunotherapeutic drugs approved by the FDA for clinical use in cancer. However, their clinical use occurred at a time when most of their mechanisms of action were still unknown. These cytokines were being used as either conventional cytostatic drugs or non-specific biological response modifiers. Specific biological activities subsequently ascribed to IFN-I were poorly considered for their clinical use. Notably, a lot of the data in humans and mice underlines the importance of endogenous IFN-I, produced by both immune and tumor cells, in the control of tumor growth and in the response to antitumor therapies. While many oncologists consider IFN-I as “dead drugs”, recent studies reveal new mechanisms of action with potential implications in cancer control and immunotherapy response or resistance, suggesting novel rationales for their usage in target and personalized anti-cancer treatments. In this Perspectives Article, we focus on the following aspects: (1) the added value of IFN-I for enhancing the antitumor impact of standard anticancer treatments (chemotherapy and radiotherapy) and new therapeutic approaches, such as check point inhibitors and epigenetic drugs; (2) the role of IFN-I in the control of cancer stem cells growth and its possible implications for the development of novel antitumor therapies; and (3) the role of IFN-I in the development of cancer vaccines and the intriguing therapeutic possibilities offered by in situ delivery of ex vivo IFN-stimulated dendritic cells.
Collapse
|