1
|
Li D, Ye ZD, Li MX, Luo YY, Zhou CK, Mei QH, Xia CL, Huang S, Su JY. Maslinic Acid Ameliorates DSS-Induced Experimental Colitis by Suppressing Th Cell-Mediated Inflammation via AICD Induction. Phytother Res 2025. [PMID: 40242940 DOI: 10.1002/ptr.8479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/18/2025]
Abstract
Ulcerative colitis (UC) is a nonspecific chronic inflammatory disease that occurs in the gastrointestinal tract and is characterized by the breakdown of mucosal immunity. T helper (Th) cells paradigm disequilibrium is a critical for pathogenesis. Maslinic acid (MA), a naturally occurring pentacyclic triterpene isolated from olive pomace and Fructus crataegi, has a variety of applications in both medicine and food. This study investigated the molecular mechanism of the anti-inflammatory potential of MA in a colitis model and activated Th cells. A dextran sulfate sodium-induced experimental colitis model was established. Clinical symptoms were evaluated, and biological samples were collected to examine intestinal mucosal function, inflammation levels, and Th cell-mediated immune responses. The mechanism of the activation-induced cell death (AICD) effect regulated by MA was investigated in the anti-CD3ε/CD28-stimulated Th cell activation model using molecular biotechnology and transcriptome analysis. Key results:MA treatment protected intestinal mucosa, which manifested as reduced inflammatory cytokines, Th cell infiltration, and subset differentiation. Additionally, it was found to suppress Th cell proliferation and differentiation of subsets, regulate cell cycle distribution, and promote AICD by regulating the mitochondria-mediated intrinsic pathway in vitro. JAK-STAT and FcεRI pathways were probable essential pathways, and MAF might be a crucial potential targeting molecule in activated Th cells with MA treatment. This finding demonstrated that MA induced remission of the colitis-related inflammation, which may depend on the resolution of acute inflammation by reducing Th cell-mediated inflammation via AICD induction, emphasizing its promising potential in the treatment of UC.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhan-Dong Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Mu-Xia Li
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Ying-Yi Luo
- Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Can-Kun Zhou
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, People's Republic of China
| | - Qing-Hua Mei
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Cheng-Lai Xia
- Foshan Maternity & Child Healthcare Hospital, Foshan, People's Republic of China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Song Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Ji-Yan Su
- Foshan Maternity & Child Healthcare Hospital, Foshan, People's Republic of China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Palzer KA, Bolduan V, Lakus J, Tubbe I, Montermann E, Clausen BE, Bros M, Pautz A. The RNA-binding protein KSRP reduces asthma-like characteristics in a murine model. Inflamm Res 2025; 74:54. [PMID: 40095032 PMCID: PMC11914311 DOI: 10.1007/s00011-025-02024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Asthma is a chronic inflammatory disease characterized by dysregulated cytokine expression. The RNA-binding protein KSRP reduces the expression of several pro-inflammatory mediators. Therefore, we investigated whether KSRP modulates Th2-associated immune responses in vivo in an ovalbumin-induced (OVA) allergic asthma model in C57BL/6 KSRP-deficient mice (KSRP-/-). METHODS Asthma severity in OVA-immunized wild type or KSRP-/- mice was determined by airway hyperresponsiveness (AHR), structural changes of lung tissue, and OVA-specific antibody production. Cytokine expression in bronchoalveolar lavage fluid (BALF) was measured by Cytometric Bead Array (CBA) analysis. Cellular signaling pathways involved in KSRP-mediated effects in asthma pathogenesis were analyzed in vitro in cell culture models using specific inhibitors. RESULTS KSRP deficiency exacerbates OVA-induced allergic asthma compared to wild type mice, as indicated by increased AHR, more severe lung damage, goblet cell hyperplasia and increased OVA-specific antibody production. CBA analyses confirmed, that KSRP deficiency enhances IL-4, IL-5 and IL-13 production in BALF. The effect of KSRP on Th2-associated cytokine expression appears to be mediated by modulation of the STAT6 and NFAT signaling pathway rather than by inhibiting the stability of cytokine-encoding mRNA species. CONCLUSION Our data demonstrate that KSRP dampens Th2 immune cell activity and therefore seems to be important for the pathogenesis of Th2-mediated diseases.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jelena Lakus
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Björn E Clausen
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
3
|
Ying C, Hua Z, Ma F, Yang Y, Wang Y, Liu K, Yin G. Hepatic immune response of Coilia nasus infected with Anisakidae during ovarian development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101261. [PMID: 38897035 DOI: 10.1016/j.cbd.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Anisakidae parasitism is a prevalent disease in wild populations of Coilia nasus, and can result in a significant loss of germplasm resources. To elucidate the immune response mechanism of C. nasus livers to Anisakidae infection, we collected and analysed 18 parasitic and 18 non-parasitic livers at gonadal developmental stages II, III, and V using histopathology, molecular biology and transcriptome methods. The hepatic portal area of the parasitic group exhibited an increase in the fibrous stroma and thickened hepatic arteries with positive Ly-6G staining, indicating inflammation and immune responses in the liver. Hepatocyte cytokine levels and the expression of liver function-related genes indicated that fish livers responded similarly to Anisakidae parasitism across different gonadal developmental stages. Oxidative stress indices showed more intense changes in stage II samples, whereas gene expression levels of Nrf2 and C3 were significantly increased in parasitised livers during stage III and V. Liver transcriptome sequencing identified 2575 differentially expressed genes between the parasitic and non-parasitic groups at the three gonadal developmental stages. KEGG pathway analysis showed that natural killer cell-mediated cytotoxicity, the NOD-like receptor signaling pathway, neutrophil extracellular trap formation, and other immune pathways were significantly enriched. Expression patterns varied across developmental stages, suggesting that innate immunity was primarily responsible for the liver immune response to Anisakidae infection during C. nasus migration, possibly related to water temperature changes or shifts in the gonadal developmental stage. In summary, this study investigated the immune response of C. nasus to Anisakidae parasitism under natural conditions, focusing on reproductive aspects and environmental changes, thereby establishing a foundation for elucidating the molecular mechanisms underlying the immune response of Anisakidae in C. nasus.
Collapse
Affiliation(s)
- Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhong Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fengjiao Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yinping Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
4
|
Branchett WJ, Saraiva M, O'Garra A. Regulation of inflammation by Interleukin-10 in the intestinal and respiratory mucosa. Curr Opin Immunol 2024; 91:102495. [PMID: 39357078 DOI: 10.1016/j.coi.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Intricate immune regulation is required at mucosal surfaces to allow tolerance to microbiota and harmless allergens and to prevent overexuberant inflammatory responses to pathogens. The cytokine Interleukin-10 (IL-10) is a key mediator of mucosal immune regulation. While IL-10 can be produced by virtually all cells of the immune system, many of its in vivo functions depend upon its production by regulatory or effector T cell populations and its signalling to macrophages, dendritic cells and specific T cell subsets. In this review, we discuss our current understanding of the role of IL-10 in regulation of immune responses, with a focus on its context-specific roles in intestinal homeostasis, respiratory infection and asthma. We highlight the importance of appropriate production and function of IL-10 for balancing pathogen clearance, control of microbiota and host tissue damage, and that precise modulation of IL-10 functions in vivo could present therapeutic opportunities.
Collapse
Affiliation(s)
- William J Branchett
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, United Kingdom.
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Zhong Q, Hao H, Li S, Ning Y, Li H, Hu X, McMasters KM, Yan J, Ding C. B cell c-Maf signaling promotes tumor progression in animal models of pancreatic cancer and melanoma. J Immunother Cancer 2024; 12:e009861. [PMID: 39608978 PMCID: PMC11603694 DOI: 10.1136/jitc-2024-009861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The role of B cells in antitumor immunity remains controversial, with studies suggesting the protumor and antitumor activity. This controversy may be due to the heterogeneity in B cell populations, as the balance among the subtypes may impact tumor progression. The immunosuppressive regulatory B cells (Breg) release interleukin 10 (IL-10) but only represent a minor population. Additionally, tumor-specific antibodies (Abs) also exhibit antitumor and protumor functions dependent on the Ab isotype. Transcription factor c-Maf has been suggested to contribute to the regulation of IL-10 in Breg, but the role of B cell c-Maf signaling in antitumor immunity and regulating Ab responses remains unknown. METHODS Conditional B cell c-Maf knockout (KO) and control mice were used to establish a KPC pancreatic cancer model and B16.F10 melanoma model. Tumor progression was evaluated. B cell and T cell phenotypes were determined by flow cytometry, mass cytometry, and cytokine/chemokine profiling. Differentially expressed genes in B cells were examined by using RNA sequencing (RNA-seq). Peripheral blood samples were collected from healthy donors and patients with melanoma for B cell phenotyping. RESULTS Compared with B cells from the spleen and lymph nodes (LN), B cells in the pancreas exhibited significantly less follicular phenotype and higher IL-10 production in naïve mice. c-Maf deficiency resulted in a significant reduction of CD9+ IL-10-producing Breg in the pancreas. Pancreatic ductal adenocarcinoma (PDAC) progression resulted in the accumulation of circulating B cells with the follicular phenotype and less IL-10 production in the pancreas. Notably, B cell c-Maf deficiency delayed PDAC tumor progression and resulted in proinflammatory B cells. Further, tumor volume reduction and increased effective T cells in the tumor-draining LN were observed in B cell c-Maf KO mice in the B16.F10 melanoma model. RNA-seq analysis of isolated B cells revealed that B cell c-Maf signaling modulates immunoglobulin-associated genes and tumor-specific Ab production. We furthermore demonstrated c-Maf-positive B cell subsets and an increase of IL-10-producing B cells after incubation with IL-4 and CD40L in the peripheral blood of patients with melanoma. CONCLUSION Our study highlights that B cell c-Maf signaling drives tumor progression through the modulation of Breg, inflammatory responses, and tumor-specific Ab responses.
Collapse
Affiliation(s)
- Qian Zhong
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hongying Hao
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Shu Li
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Yongling Ning
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Hong Li
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoling Hu
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Kelly M McMasters
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Chuanlin Ding
- UofL Health Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
6
|
Eugster A, Lorenc A, Kotrulev M, Kamra Y, Goel M, Steinberg-Bains K, Sabbah S, Dietz S, Bonifacio E, Peakman M, Gomez-Tourino I. Physiological and pathogenic T cell autoreactivity converge in type 1 diabetes. Nat Commun 2024; 15:9204. [PMID: 39472557 PMCID: PMC11522472 DOI: 10.1038/s41467-024-53255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases result from autoantigen-mediated activation of adaptive immunity; intriguingly, autoantigen-specific T cells are also present in healthy donors. An assessment of dynamic changes of this autoreactive repertoire in both health and disease is thus warranted. Here we investigate the physiological versus pathogenic autoreactive processes in the context of Type 1 diabetes (T1D) and one of its landmark autoantigens, glutamic acid decarboxylase 65 (GAD65). Using single cell gene expression profiling and tandem T cell receptor (TCR) sequencing, we find that GAD65-specific true naïve cells are present in both health and disease, with GAD65-specific effector and memory responses showing similar ratios in healthy donors and patients. Deeper assessment of phenotype and TCR repertoire uncover differential features in GAD65-specific TCRs, including lower clonal sizes of healthy donor-derived clonotypes in patients. We thus propose a model whereby physiological autoimmunity against GAD65 is needed during early life, and that alterations of these physiological autoimmune processes in predisposed individuals trigger overt Type 1 diabetes.
Collapse
Affiliation(s)
- Anne Eugster
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Anna Lorenc
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Martin Kotrulev
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain
| | - Yogesh Kamra
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK
| | - Manisha Goel
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Katja Steinberg-Bains
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Shereen Sabbah
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK
| | - Sevina Dietz
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Ezio Bonifacio
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD), Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden, Faculty of Medicine, Dresden, Germany
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK
| | - Iria Gomez-Tourino
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, 2nd Floor, Borough Wing, Guy's Hospital, London, UK.
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Santiago, Spain.
| |
Collapse
|
7
|
Yaman E, Heyer N, de Paiva CS, Stepp MA, Pflugfelder SC, Alam J. Mouse Corneal Immune Cell Heterogeneity Revealed by Single-Cell RNA Sequencing. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39432400 PMCID: PMC11500044 DOI: 10.1167/iovs.65.12.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose This study aimed to define the heterogeneity, spatial localization, and functional roles of immune cells in the mouse cornea using single-cell RNA sequencing (scRNA-seq) and immunofluorescent staining. Methods Enriched mouse corneal immune cells (C57BL/6 strain, age 16-20 weeks) underwent single-cell RNA sequencing library preparation, sequencing, and analysis with Seurat, Monocle 3, and CellChat packages in R. Pathway analysis used Qiagen Ingenuity Pathway Analysis software. Immunostaining confirmed cell distribution. Results We identified 14 distinct immune cell clusters (56% myeloid and 44% lymphoid). Myeloid populations included resident macrophages, conventional dendritic cells (cDC2s), Langerhans cells, neutrophils, monocytes, and mast cells. Additionally, lymphocyte subsets (B, CD8, CD4, γδT, natural killer, natural killer T, and group 2 innate lymphoid cells) were found. We also found three new subtypes of resident macrophages in the cornea. Trajectory analysis suggested a differentiation pathway from monocytes to conventional dendritic cells, resident macrophages, and LCs. Intercellular communication network analysis using cord diagram identified amyloid precursor protein, chemokine (C-C motif) ligands (2, 3, 4, 6, 7, 9, and 12), Cxcl2, Mif, Tnf, Tgfb1, Igf1, and Il10 as prominent ligands involved in these interactions. Sexually dimorphic gene expression patterns were observed, with male myeloid cells expressing genes linked to immune regulation (Egr1, Foxp1, Mrc1, and Il1rn) and females showing higher expression of antigen presentation genes (Clic1, Psmb8, and Psmb9). Finally, immunostaining confirmed the spatial distribution of these cell populations within the cornea. Conclusions This study unveils a diverse immune landscape in the mouse cornea, with evidence for cell differentiation and sex-based differences. Immunostaining validates the spatial distribution of these populations, furthering our knowledge of corneal immune function.
Collapse
Affiliation(s)
- Ebru Yaman
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Nicole Heyer
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Mary Ann Stepp
- Departments of Anatomy, Regenerative Biology and Ophthalmology, The George Washington University Medical School and Health Sciences, Washington, DC, United States
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Jehan Alam
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
8
|
Zhang Y, Wang J, Fang Y, Liang W, Lei L, Wang J, Gao X, Ma C, Li M, Guo H, Wei L. IFN-α affects Th17/Treg cell balance through c-Maf and associated with the progression of EBV- SLE. Mol Immunol 2024; 171:22-35. [PMID: 38749236 DOI: 10.1016/j.molimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Yaqi Fang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Wenzhang Liang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lingyan Lei
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junhai Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Xue Gao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Huifang Guo
- Department of Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
9
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
10
|
c-MAF and BLIMP-1 inhibit pathobiont-induced colitis by common and distinct immune pathways. Nat Immunol 2024; 25:737-738. [PMID: 38641721 DOI: 10.1038/s41590-024-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
|
11
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
12
|
Cepika AM, Amaya L, Waichler C, Narula M, Mantilla MM, Thomas BC, Chen PP, Freeborn RA, Pavel-Dinu M, Nideffer J, Porteus M, Bacchetta R, Müller F, Greenleaf WJ, Chang HY, Roncarolo MG. Epigenetic signature and key transcriptional regulators of human antigen-specific type 1 regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.582969. [PMID: 38559096 PMCID: PMC10979855 DOI: 10.1101/2024.03.07.582969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human adaptive immunity is orchestrated by effector and regulatory T (Treg) cells. Natural Tregs arise in the thymus where they are shaped to recognize self-antigens, while type 1 Tregs or Tr1 cells are induced from conventional peripheral CD4 + T cells in response to peripheral antigens, such as alloantigens and allergens. Tr1 cells have been developed as a potential therapy for inducing antigen-specific tolerance, because they can be rapidly differentiated in vitro in response to a target antigen. However, the epigenetic landscape and the identity of transcription factors (TFs) that regulate differentiation, phenotype, and functions of human antigen-specific Tr1 cells is largely unknown, hindering Tr1 research and broader clinical development. Here, we reveal the unique epigenetic signature of antigen-specific Tr1 cells, and TFs that regulate their differentiation, phenotype and function. We showed that in vitro induced antigen-specific Tr1 cells are distinct both clonally and transcriptionally from natural Tregs and other conventional CD4 + T cells on a single-cell level. An integrative analysis of Tr1 cell epigenome and transcriptome identified a TF signature unique to antigen-specific Tr1 cells, and predicted that IRF4, BATF, and MAF act as their transcriptional regulators. Using functional genomics, we showed that each of these TFs play a non-redundant role in regulating Tr1 cell differentiation, suppressive function, and expression of co-inhibitory and cytotoxic proteins. By using the Tr1-specific TF signature as a molecular fingerprint, we tracked Tr1 cells in peripheral blood of recipients of allogeneic hematopoietic stem cell transplantation treated with adoptive Tr1 cell therapy. Furthermore, the same signature identified Tr1 cells in resident CD4 + T cells in solid tumors. Altogether, these results reveal the epigenetic signature and the key transcriptional regulators of human Tr1 cells. These data will guide mechanistic studies of human Tr1 cell biology and the development and optimization of adoptive Tr1 cell therapies.
Collapse
|
13
|
Lin ZJ, Long JY, Li J, Wang FN, Chu W, Zhu L, Li YL, Fan LL. Case report: Whole exome sequencing identified a novel mutation (p.Y301H) of MAF in a Chinese family with congenital cataracts. Front Med (Lausanne) 2024; 11:1332992. [PMID: 38487030 PMCID: PMC10937461 DOI: 10.3389/fmed.2024.1332992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Background Congenital cataracts stand as the primary cause of childhood blindness globally, characterized by clouding of the eye's lens at birth or shortly thereafter. Previous investigations have unveiled that a variant in the V-MAF avian musculoaponeurotic-fibrosarcoma oncogene homolog (MAF) gene can result in Ayme-Gripp syndrome and solitary cataract. Notably, MAF mutations have been infrequently reported in recent years. Methods In this investigation, we recruited a Chinese family with non-syndromic cataracts. Whole exome sequencing and Sanger sequencing were applied to scrutinize the genetic anomaly within the family. Results Through whole exome sequencing and subsequent data filtration, a new mutation (NM_005360, c.901T>C/p.Y301H) in the MAF gene was detected. Sanger sequencing validated the presence of this mutation in another affected individual. The p.Y301H mutation, situated in an evolutionarily preserved locus, was not detected in our 200 local control cohorts and various public databases. Additionally, multiple bioinformatic programs predicted that the mutation was deleterious and disrupted the bindings between MAF and its targets. Conclusion Hence, we have documented a new MAF mutation within a Chinese family exhibiting isolated congenital cataracts. Our study has the potential to broaden the spectrum of MAF mutations, offering insights into the mechanisms underlying cataract formation and facilitating genetic counseling and early diagnosis for congenital cataract patients.
Collapse
Affiliation(s)
- Zhao-Jing Lin
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie-Yi Long
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Juan Li
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, China
| | - Fang-Na Wang
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, China
| | - Wei Chu
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, China
| | - Lei Zhu
- Department of Obstetrics and Gynecology, Ordos Central Hospital, Ordos, China
| | - Ya-Li Li
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
14
|
Dorando HK, Mutic EC, Li JY, Perrin EP, Wurtz MK, Quinn CC, Payton JE. LPS and type I and II interferons have opposing effects on epigenetic regulation of LAIR1 expression in mouse and human macrophages. J Leukoc Biol 2024; 115:547-564. [PMID: 38011310 DOI: 10.1093/jleuko/qiad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Inhibitory immune receptors are important for maintaining immune homeostasis. We identified epigenetic alterations in 2 members of this group, LAIR1 and LAIR2, in lymphoma patients with inflammatory tissue damage and susceptibility to infection. We predicted that the expression of LAIR genes is controlled by immune mediators acting on transcriptional regulatory elements. Using flow cytometry, quantitative reverse-transcription polymerase chain reaction, and RNA sequencing, we measured LAIR1 and LAIR2 in human and murine immune cell subsets at baseline and posttreatment with immune mediators, including type I and II interferons, tumor necrosis factor α, and lipopolysaccharide (LPS). We identified candidate regulatory elements using epigenome profiling and measured their regulatory activity using luciferase reporters. LAIR1 expression substantially increases during monocyte differentiation to macrophages in both species. In contrast, murine and human macrophages exhibited opposite changes in LAIR1 in response to immune stimuli: human LAIR1 increased with LPS while mouse LAIR1 increased with interferon γ. LAIR genes had distinct patterns of enhancer activity with variable responses to immune stimuli. To identify relevant transcription factors (TFs), we developed integrative bioinformatic techniques applied to TF chromatin immunoprecipitation sequencing, RNA sequencing, and luciferase activity, revealing distinct sets of TFs for each LAIR gene. Most strikingly, LAIR1 TFs include nuclear factor kappa B factors RELA and RELB, while Lair1 and LAIR2 instead include STAT3 and/or STAT5. Regulation by nuclear factor kappa B factors may therefore explain the LPS-induced increase in LAIR1 expression, in contrast to Lair1 decrease. Our findings reveal new insights into transcriptional mechanisms that control distinct expression patterns of LAIR genes in response to inflammatory stimuli in human and murine myeloid and lymphoid cells.
Collapse
Affiliation(s)
- Hannah K Dorando
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Evan C Mutic
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Joanna Y Li
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Ezri P Perrin
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Mellisa K Wurtz
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Chaz C Quinn
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| | - Jacqueline E Payton
- Department of Pathology and Immunology, Washington University School of Medicine in St.Louis, 660 S. Euclid Avenue, Box 8118, St. Louis, MO 63110, United States
| |
Collapse
|
15
|
Mehta P, Chattopadhyay P, Mohite R, D'Rozario R, Bandopadhyay P, Sarif J, Ray Y, Ganguly D, Pandey R. Suppressed transcript diversity and immune response in COVID-19 ICU patients: a longitudinal study. Life Sci Alliance 2024; 7:e202302305. [PMID: 37918965 PMCID: PMC10622646 DOI: 10.26508/lsa.202302305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Understanding the dynamic changes in gene expression during Acute Respiratory Distress Syndrome (ARDS) progression in post-acute infection patients is crucial for unraveling the underlying mechanisms. Study investigates the longitudinal changes in gene/transcript expression patterns in hospital-admitted severe COVID-19 patients with ARDS post-acute SARS-CoV-2 infection. Blood samples were collected at three time points and patients were stratified into severe and mild ARDS, based on their oxygenation saturation (SpO2/FiO2) kinetics over 7 d. Decline in transcript diversity was observed over time, particularly in patients with higher severity, indicating dysregulated transcriptional landscape. Comparing gene/transcript-level analyses highlighted a rather limited overlap. With disease progression, a transition towards an inflammatory state was evident. Strong association was found between antibody response and disease severity, characterized by decreased antibody response and activated B cell population in severe cases. Bayesian network analysis identified various factors associated with disease progression and severity, viz. humoral response, TLR signaling, inflammatory response, interferon response, and effector T cell abundance. The findings highlight dynamic gene/transcript expression changes during ARDS progression, impact on tissue oxygenation and elucidate disease pathogenesis.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramakant Mohite
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ranit D'Rozario
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Purbita Bandopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jafar Sarif
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yogiraj Ray
- Infectious Disease and Beleghata General Hospital, Kolkata, India
- Department of Infectious Diseases, Shambhunath Pandit Hospital, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Dipyaman Ganguly
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
17
|
Borràs DM, Verbandt S, Ausserhofer M, Sturm G, Lim J, Verge GA, Vanmeerbeek I, Laureano RS, Govaerts J, Sprooten J, Hong Y, Wall R, De Hertogh G, Sagaert X, Bislenghi G, D'Hoore A, Wolthuis A, Finotello F, Park WY, Naulaerts S, Tejpar S, Garg AD. Single cell dynamics of tumor specificity vs bystander activity in CD8 + T cells define the diverse immune landscapes in colorectal cancer. Cell Discov 2023; 9:114. [PMID: 37968259 PMCID: PMC10652011 DOI: 10.1038/s41421-023-00605-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/17/2023] Open
Abstract
CD8+ T cell activation via immune checkpoint blockade (ICB) is successful in microsatellite instable (MSI) colorectal cancer (CRC) patients. By comparison, the success of immunotherapy against microsatellite stable (MSS) CRC is limited. Little is known about the most critical features of CRC CD8+ T cells that together determine the diverse immune landscapes and contrasting ICB responses. Hence, we pursued a deep single cell mapping of CRC CD8+ T cells on transcriptomic and T cell receptor (TCR) repertoire levels in a diverse patient cohort, with additional surface proteome validation. This revealed that CRC CD8+ T cell dynamics are underscored by complex interactions between interferon-γ signaling, tumor reactivity, TCR repertoire, (predicted) TCR antigen-specificities, and environmental cues like gut microbiome or colon tissue-specific 'self-like' features. MSI CRC CD8+ T cells showed tumor-specific activation reminiscent of canonical 'T cell hot' tumors, whereas the MSS CRC CD8+ T cells exhibited tumor unspecific or bystander-like features. This was accompanied by inflammation reminiscent of 'pseudo-T cell hot' tumors. Consequently, MSI and MSS CRC CD8+ T cells showed overlapping phenotypic features that differed dramatically in their TCR antigen-specificities. Given their high discriminating potential for CD8+ T cell features/specificities, we used the single cell tumor-reactive signaling modules in CD8+ T cells to build a bulk tumor transcriptome classification for CRC patients. This "Immune Subtype Classification" (ISC) successfully distinguished various tumoral immune landscapes that showed prognostic value and predicted immunotherapy responses in CRC patients. Thus, we deliver a unique map of CRC CD8+ T cells that drives a novel tumor immune landscape classification, with relevance for immunotherapy decision-making.
Collapse
Affiliation(s)
- Daniel Morales Borràs
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sara Verbandt
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Markus Ausserhofer
- Universität Innsbruck, Department of Molecular Biology, Digital Science Center (DiSC), Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Jinyeong Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Gil Arasa Verge
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S Laureano
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Yourae Hong
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Rebecca Wall
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Xavier Sagaert
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Gabriele Bislenghi
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Albert Wolthuis
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Francesca Finotello
- Universität Innsbruck, Department of Molecular Biology, Digital Science Center (DiSC), Innsbruck, Austria
| | - Woong-Yang Park
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Stefan Naulaerts
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Abhishek D Garg
- Cell Stress and Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Katsarou A, Trasanidis N, Ponnusamy K, Kostopoulos IV, Alvarez-Benayas J, Papaleonidopoulou F, Keren K, Sabbattini PMR, Feldhahn N, Papaioannou M, Hatjiharissi E, Sudbery IM, Chaidos A, Caputo VS, Karadimitris A. MAF functions as a pioneer transcription factor that initiates and sustains myelomagenesis. Blood Adv 2023; 7:6395-6410. [PMID: 37224458 PMCID: PMC10598502 DOI: 10.1182/bloodadvances.2023009772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance.
Collapse
Affiliation(s)
- Alexia Katsarou
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Nikolaos Trasanidis
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Kanagaraju Ponnusamy
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Ioannis V. Kostopoulos
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Jaime Alvarez-Benayas
- Department of the Higher School of Computer Science, Nebrija ARIES Research Group, Universidad Antonio de Nebrija, Madrid, Spain
| | - Foteini Papaleonidopoulou
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Keren Keren
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Pierangela M. R. Sabbattini
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Niklas Feldhahn
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Maria Papaioannou
- Division of Haematology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evdoxia Hatjiharissi
- Division of Haematology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ian M. Sudbery
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Aristeidis Chaidos
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| | - Valentina S. Caputo
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Cancer Biology and Therapy laboratory, School of Applied Science, London South Bank University, London, United Kingdom
| | - Anastasios Karadimitris
- Department of Immunology and Inflammation, Hugh & Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Imperial College London, London, United Kingdom
- Department of Haematology, Hammersmith Hospital, Imperial College Healthcare National Health Service Trust, London, United Kingdom
| |
Collapse
|
19
|
Zhao Z, D’Oliveira Albanus R, Taylor H, Tang X, Han Y, Orchard P, Varshney A, Zhang T, Manickam N, Erdos M, Narisu N, Taylor L, Saavedra X, Zhong A, Li B, Zhou T, Naji A, Liu C, Collins F, Parker SCJ, Chen S. An integrative single-cell multi-omics profiling of human pancreatic islets identifies T1D associated genes and regulatory signals. RESEARCH SQUARE 2023:rs.3.rs-3343318. [PMID: 37886586 PMCID: PMC10602166 DOI: 10.21203/rs.3.rs-3343318/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Genome wide association studies (GWAS) have identified over 100 signals associated with type 1 diabetes (T1D). However, translating any given T1D GWAS signal into mechanistic insights, including putative causal variants and the context (cell type and cell state) in which they function, has been limited. Here, we present a comprehensive multi-omic integrative analysis of single-cell/nucleus resolution profiles of gene expression and chromatin accessibility in healthy and autoantibody+ (AAB+) human islets, as well as islets under multiple T1D stimulatory conditions. We broadly nominate effector cell types for all T1D GWAS signals. We further nominated higher-resolution contexts, including effector cell types, regulatory elements, and genes for three independent T1D risk variants acting through islet cells within the pancreas at the DLK1/MEG3, RASGRP1, and TOX loci. Subsequently, we created isogenic gene knockouts DLK1-/-, RASGRP1-/-, and TOX-/-, and the corresponding regulatory region knockout, RASGRP1Δ, and DLK1Δ hESCs. Loss of RASGRP1 or DLK1, as well as knockout of the regulatory region of RASGRP1 or DLK1, increased β cell apoptosis. Additionally, pancreatic β cells derived from isogenic hESCs carrying the risk allele of rs3783355A/A exhibited increased β cell death. Finally, RNA-seq and ATAC-seq identified five genes upregulated in both RASGRP1-/- and DLK1-/- β-like cells, four of which are associated with T1D. Together, this work reports an integrative approach for combining single cell multi-omics, GWAS, and isogenic hESC-derived β-like cells to prioritize the T1D associated signals and their underlying context-specific cell types, genes, SNPs, and regulatory elements, to illuminate biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Zeping Zhao
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | | | - Henry Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuming Tang
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | - Yuling Han
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| | - Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tuo Zhang
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Nandini Manickam
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Mike Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaxia Saavedra
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Aaron Zhong
- Genomic Resource Core Facility, Weill Cornell Medical College, NY 10065, USA
| | - Bo Li
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - Ting Zhou
- Genomic Resource Core Facility, Weill Cornell Medical College, NY 10065, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA19104, USA
| | - Francis Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen CJ Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
- Center for Genomic Health, Weill Cornell Medicine, 1300 York Ave, New York, NY 15 10065, USA
| |
Collapse
|
20
|
Hausmann F, Ergen C, Khatri R, Marouf M, Hänzelmann S, Gagliani N, Huber S, Machart P, Bonn S. DISCERN: deep single-cell expression reconstruction for improved cell clustering and cell subtype and state detection. Genome Biol 2023; 24:212. [PMID: 37730638 PMCID: PMC10510283 DOI: 10.1186/s13059-023-03049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Single-cell sequencing provides detailed insights into biological processes including cell differentiation and identity. While providing deep cell-specific information, the method suffers from technical constraints, most notably a limited number of expressed genes per cell, which leads to suboptimal clustering and cell type identification. RESULTS Here, we present DISCERN, a novel deep generative network that precisely reconstructs missing single-cell gene expression using a reference dataset. DISCERN outperforms competing algorithms in expression inference resulting in greatly improved cell clustering, cell type and activity detection, and insights into the cellular regulation of disease. We show that DISCERN is robust against differences between batches and is able to keep biological differences between batches, which is a common problem for imputation and batch correction algorithms. We use DISCERN to detect two unseen COVID-19-associated T cell types, cytotoxic CD4+ and CD8+ Tc2 T helper cells, with a potential role in adverse disease outcome. We utilize T cell fraction information of patient blood to classify mild or severe COVID-19 with an AUROC of 80% that can serve as a biomarker of disease stage. DISCERN can be easily integrated into existing single-cell sequencing workflow. CONCLUSIONS Thus, DISCERN is a flexible tool for reconstructing missing single-cell gene expression using a reference dataset and can easily be applied to a variety of data sets yielding novel insights, e.g., into disease mechanisms.
Collapse
Affiliation(s)
- Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Can Ergen
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Mohamed Marouf
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Pierre Machart
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
21
|
Kirosingh AS, Delmastro A, Kakuru A, van der Ploeg K, Bhattacharya S, Press KD, Ty M, Parte LDL, Kizza J, Muhindo M, Devachanne S, Gamain B, Nankya F, Musinguzi K, Rosenthal PJ, Feeney ME, Kamya M, Dorsey G, Jagannathan P. Malaria-specific Type 1 regulatory T cells are more abundant in first pregnancies and associated with placental malaria. EBioMedicine 2023; 95:104772. [PMID: 37634385 PMCID: PMC10474374 DOI: 10.1016/j.ebiom.2023.104772] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Malaria in pregnancy (MIP) causes higher morbidity in primigravid compared to multigravid women; however, the correlates and mechanisms underlying this gravidity-dependent protection remain incompletely understood. We aimed to compare the cellular immune response between primigravid and multigravid women living in a malaria-endemic region and assess for correlates of protection against MIP. METHODS We characterised the second trimester cellular immune response among 203 primigravid and multigravid pregnant women enrolled in two clinical trials of chemoprevention in eastern Uganda, utilizing RNA sequencing, flow cytometry, and functional assays. We compared responses across gravidity and determined associations with parasitaemia during pregnancy and placental malaria. FINDINGS Using whole blood RNA sequencing, no significant differentially expressed genes were identified between primigravid (n = 12) and multigravid (n = 11) women overall (log 2(FC) > 2, FDR < 0.1). However, primigravid (n = 49) women had higher percentages of malaria-specific, non-naïve CD4+ T cells that co-expressed IL-10 and IFNγ compared with multigravid (n = 85) women (p = 0.000023), and higher percentages of these CD4+ T cells were associated with greater risks of parasitaemia in pregnancy (Rs = 0.49, p = 0.001) and placental malaria (p = 0.0073). These IL-10 and IFNγ co-producing CD4+ T cells had a genomic signature of Tr1 cells, including expression of transcription factors cMAF and BATF and cell surface makers CTLA4 and LAG-3. INTERPRETATION Malaria-specific Tr1 cells were highly prevalent in primigravid Ugandan women, and their presence correlated with a higher risk of malaria in pregnancy. Understanding whether suppression of Tr1 cells plays a role in naturally acquired gravidity-dependent immunity may aid the development of new vaccines or treatments for MIP. FUNDING This work was funded by NIH (PO1 HD059454, U01 AI141308, U19 AI089674, U01 AI155325, U01 AI150741), the March of Dimes (Basil O'Connor award), and the Bill and Melinda Gates Foundation (OPP 1113682).
Collapse
Affiliation(s)
| | | | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Maureen Ty
- Stanford University School of Medicine, Stanford, USA
| | | | | | | | | | - Benoit Gamain
- Université Paris Cité, INSERM, BIGR, F-75014 Paris, France
| | | | | | | | | | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Makerere University, Kampala, Uganda
| | | | | |
Collapse
|
22
|
Schoonhoven AOV, de Bruijn MJ, Stikker B, Brouwer RW, Braunstahl GJ, van IJcken WF, Graf T, Huylebroeck D, Hendriks RW, Stik G, Stadhouders R. 3D chromatin reprogramming primes human memory T H2 cells for rapid recall and pathogenic dysfunction. Sci Immunol 2023; 8:eadg3917. [PMID: 37418545 PMCID: PMC7617366 DOI: 10.1126/sciimmunol.adg3917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
Memory T cells provide long-lasting defense responses through their ability to rapidly reactivate, but how they efficiently "recall" an inflammatory transcriptional program remains unclear. Here, we show that human CD4+ memory T helper 2 (TH2) cells carry a chromatin landscape synergistically reprogrammed at both one-dimensional (1D) and 3D levels to accommodate recall responses, which is absent in naive T cells. In memory TH2 cells, recall genes were epigenetically primed through the maintenance of transcription-permissive chromatin at distal (super)enhancers organized in long-range 3D chromatin hubs. Precise transcriptional control of key recall genes occurred inside dedicated topologically associating domains ("memory TADs"), in which activation-associated promoter-enhancer interactions were preformed and exploited by AP-1 transcription factors to promote rapid transcriptional induction. Resting memory TH2 cells from patients with asthma showed premature activation of primed recall circuits, linking aberrant transcriptional control of recall responses to chronic inflammation. Together, our results implicate stable multiscale reprogramming of chromatin organization as a key mechanism underlying immunological memory and dysfunction in T cells.
Collapse
Affiliation(s)
- Anne Onrust-van Schoonhoven
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein J.W. de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bernard Stikker
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W.W. Brouwer
- Center for Biomics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Respiratory Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, Netherlands
| | | | - Thomas Graf
- Centre for Genomic Regulation (CRG) and Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Grégoire Stik
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
23
|
Zhu F, McMonigle RJ, Schroeder AR, Xia X, Figge D, Greer BD, González-Avalos E, Sialer DO, Wang YH, Chandler KM, Getzler AJ, Brown ER, Xiao C, Kutsch O, Harada Y, Pipkin ME, Hu H. Spatiotemporal resolution of germinal center Tfh cell differentiation and divergence from central memory CD4 + T cell fate. Nat Commun 2023; 14:3611. [PMID: 37330549 PMCID: PMC10276816 DOI: 10.1038/s41467-023-39299-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/27/2023] [Indexed: 06/19/2023] Open
Abstract
Follicular helper T (Tfh) cells are essential for germinal center (GC) B cell responses. However, it is not clear which PD-1+CXCR5+Bcl6+CD4+ T cells will differentiate into PD-1hiCXCR5hiBcl6hi GC-Tfh cells and how GC-Tfh cell differentiation is regulated. Here, we report that the sustained Tigit expression in PD-1+CXCR5+CD4+ T cells marks the precursor Tfh (pre-Tfh) to GC-Tfh transition, whereas Tigit-PD-1+CXCR5+CD4+ T cells upregulate IL-7Rα to become CXCR5+CD4+ T memory cells with or without CCR7. We demonstrate that pre-Tfh cells undergo substantial further differentiation at the transcriptome and chromatin accessibility levels to become GC-Tfh cells. The transcription factor c-Maf appears critical in governing the pre-Tfh to GC-Tfh transition, and we identify Plekho1 as a stage-specific downstream factor regulating the GC-Tfh competitive fitness. In summary, our work identifies an important marker and regulatory mechanism of PD-1+CXCR5+CD4+ T cells during their developmental choice between memory T cell fate and GC-Tfh cell differentiation.
Collapse
Affiliation(s)
- Fangming Zhu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ryan J McMonigle
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Andrew R Schroeder
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xianyou Xia
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David Figge
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Braxton D Greer
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Edahí González-Avalos
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Diego O Sialer
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yin-Hu Wang
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kelly M Chandler
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Adam J Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Emily R Brown
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Olaf Kutsch
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yohsuke Harada
- Faculty of Pharmaceutical Sciences, Tokyo, University of Science, Chiba, 278-8510, Japan
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Hui Hu
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Li J, Ma J, Sun H, Yu M, Wang H, Meng Q, Li Z, Liu D, Bai J, Liu G, Xing X, Han F, Li B. Transformation of arginine into zero-dimensional nanomaterial endows the material with antibacterial and osteoinductive activity. SCIENCE ADVANCES 2023; 9:eadf8645. [PMID: 37235658 DOI: 10.1126/sciadv.adf8645] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Implant-associated infection is a major threat affecting the success of orthopedic surgeries. Although various materials scavenge bacteria by generating reactive oxygen species (ROS), the intrinsic inability of ROS to distinguish bacteria from cells notably limits the therapeutic effects. Here, we found that the arginine carbon dots (Arg-CDs) that were transformed from arginine exhibited supreme antibacterial and osteoinductive activity. We further designed the Schiff base bond between Arg-CDs and aldehyde hyaluronic acid/gelatin methacryloyl (HG) hydrogel to release Arg-CDs in response to the acidic bone injury microenvironment. The free Arg-CDs could selectively kill bacteria by generating excessive ROS. Furthermore, the Arg-CD-loaded HG composite hydrogel showed excellent osteoinductive activity through inducing the M2 polarization of macrophages by up-regulating interleukin-10 (Il10) expression. Together, our findings revealed that transformation of the arginine into zero-dimensional Arg-CDs could endow the material with exceptional antibacterial and osteoinductive activity, favoring the regeneration of infectious bone.
Collapse
Affiliation(s)
- Jiaying Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jinjin Ma
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Heng Sun
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qingchen Meng
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zexi Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jianzhong Bai
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Guoping Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
25
|
Zhu L, Li G, Liang Z, Qi T, Deng K, Yu J, Peng Y, Zheng J, Song Y, Chang X. Microbiota-assisted iron uptake promotes immune tolerance in the intestine. Nat Commun 2023; 14:2790. [PMID: 37188703 PMCID: PMC10185671 DOI: 10.1038/s41467-023-38444-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Iron deficiencies are the most common nonenteric syndromes observed in patients with inflammatory bowel disease, but little is known about their impacts on immune tolerance. Here we show that homeostasis of regulatory T cells in the intestine was dependent on high cellular iron levels, which were fostered by pentanoate, a short-chain fatty acid produced by intestinal microbiota. Iron deficiencies in Treg caused by the depletion of Transferrin receptor 1, a major iron transporter, result in the abrogation of Treg in the intestine and lethal autoimmune disease. Transferrin receptor 1 is required for differentiation of c-Maf+ Treg, major constituents of intestinal Treg. Mechanistically, iron enhances the translation of HIF-2α mRNA, and HIF-2α in turn induces c-Maf expression. Importantly, microbiota-produced pentanoate promotes iron uptake and Treg differentiation in the intestine. This subsequently restores immune tolerance and ameliorated iron deficiencies in mice with colitis. Our results thus reveal an association between nutrient uptake and immune tolerance in the intestine.
Collapse
Affiliation(s)
- Lizhen Zhu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Geng Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhixin Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tuan Qi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kui Deng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiancheng Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Peng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jusheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yan Song
- School of Medicine, University of California San Diego, La Jolla, CA, US
| | - Xing Chang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Li S, Schmid KT, de Vries DH, Korshevniuk M, Losert C, Oelen R, van Blokland IV, Groot HE, Swertz MA, van der Harst P, Westra HJ, van der Wijst MGP, Heinig M, Franke L. Identification of genetic variants that impact gene co-expression relationships using large-scale single-cell data. Genome Biol 2023; 24:80. [PMID: 37072791 PMCID: PMC10111756 DOI: 10.1186/s13059-023-02897-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/16/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Expression quantitative trait loci (eQTL) studies show how genetic variants affect downstream gene expression. Single-cell data allows reconstruction of personalized co-expression networks and therefore the identification of SNPs altering co-expression patterns (co-expression QTLs, co-eQTLs) and the affected upstream regulatory processes using a limited number of individuals. RESULTS We conduct a co-eQTL meta-analysis across four scRNA-seq peripheral blood mononuclear cell datasets using a novel filtering strategy followed by a permutation-based multiple testing approach. Before the analysis, we evaluate the co-expression patterns required for co-eQTL identification using different external resources. We identify a robust set of cell-type-specific co-eQTLs for 72 independent SNPs affecting 946 gene pairs. These co-eQTLs are replicated in a large bulk cohort and provide novel insights into how disease-associated variants alter regulatory networks. One co-eQTL SNP, rs1131017, that is associated with several autoimmune diseases, affects the co-expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, the SNP additionally affects co-expression of RPS26 and a group of genes associated with T cell activation and autoimmune disease. Among these genes, we identify enrichment for targets of five T-cell-activation-related transcription factors whose binding sites harbor rs1131017. This reveals a previously overlooked process and pinpoints potential regulators that could explain the association of rs1131017 with autoimmune diseases. CONCLUSION Our co-eQTL results highlight the importance of studying context-specific gene regulation to understand the biological implications of genetic variation. With the expected growth of sc-eQTL datasets, our strategy and technical guidelines will facilitate future co-eQTL identification, further elucidating unknown disease mechanisms.
Collapse
Affiliation(s)
- Shuang Li
- Genetics Department, University Medical Center Groningen, Groningen, the Netherlands
- Genomics Coordination Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Katharina T Schmid
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Computer Science, School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Dylan H de Vries
- Genetics Department, University Medical Center Groningen, Groningen, the Netherlands
| | - Maryna Korshevniuk
- Genetics Department, University Medical Center Groningen, Groningen, the Netherlands
| | - Corinna Losert
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Computer Science, School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Roy Oelen
- Genetics Department, University Medical Center Groningen, Groningen, the Netherlands
| | - Irene V van Blokland
- Genetics Department, University Medical Center Groningen, Groningen, the Netherlands
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hilde E Groot
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Morris A Swertz
- Genetics Department, University Medical Center Groningen, Groningen, the Netherlands
- Genomics Coordination Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Harm-Jan Westra
- Genetics Department, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- Department of Computer Science, School of Computation, Information and Technology, Technical University Munich, Munich, Germany.
- Munich Heart Alliance, DZHK (German Center for Cardiovascular Research), Munich, Germany.
| | - Lude Franke
- Genetics Department, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
27
|
Fujino M, Morito N, Hayashi T, Ojima M, Ishibashi S, Kuno A, Koshiba S, Yamagata K, Takahashi S. Transcription factor c-Maf deletion improves streptozotocin-induced diabetic nephropathy by directly regulating Sglt2 and Glut2. JCI Insight 2023; 8:163306. [PMID: 36787192 PMCID: PMC10070115 DOI: 10.1172/jci.insight.163306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
The transcription factor c-Maf has been widely studied and has been reported to play a critical role in embryonic kidney development; however, the postnatal functions of c-Maf in adult kidneys remain unknown as c-Maf-null C57BL/6J mice exhibit embryonic lethality. In this study, we investigated the role of c-Maf in adult mouse kidneys by comparing the phenotypes of tamoxifen-inducible (TAM-inducible) c-Maf-knockout mice (c-Maffl/fl; CAG-Cre-ERTM mice named "c-MafΔTAM") with those of c-Maffl/fl control mice, 10 days after TAM injection [TAM(10d)]. In addition, we examined the effects of c-Maf deletion on diabetic conditions by injecting the mice with streptozotocin, 4 weeks before TAM injection. c-MafΔTAM mice displayed primary glycosuria caused by sodium-glucose cotransporter 2 (Sglt2) and glucose transporter 2 (Glut2) downregulation in the kidneys without diabetes, as well as morphological changes and life-threatening injuries in the kidneys on TAM(10d). Under diabetic conditions, c-Maf deletion promoted recovery from hyperglycemia and suppressed albuminuria and diabetic nephropathy by causing similar effects as did Sglt2 knockout and SGLT2 inhibitors. In addition to demonstrating the potentially unique gene regulation of c-Maf, these findings highlight the renoprotective effects of c-Maf deficiency under diabetic conditions and suggest that c-Maf could be a novel therapeutic target gene for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Mitsunori Fujino
- Department of Anatomy and Embryology, Faculty of Medicine
- PhD Program in Human Biology, School of Integrative and Global Majors
| | - Naoki Morito
- Department of Nephrology, Faculty of Medicine; and
| | - Takuto Hayashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Masami Ojima
- Department of Anatomy and Embryology, Faculty of Medicine
| | - Shun Ishibashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization and
- Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine
- Laboratory Animal Resource Center
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)
- International Institute for Integrative Sleep Medicine (WPI-IIIS), and
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
28
|
Núñez R, Rodríguez MJ, Lebrón-Martín C, Martín-Astorga MDC, Palomares F, Ramos-Soriano J, Rojo J, Torres MJ, Cañas JA, Mayorga C. Methylation changes induced by a glycodendropeptide immunotherapy and associated to tolerance in mice. Front Immunol 2022; 13:1094172. [PMID: 36643916 PMCID: PMC9832389 DOI: 10.3389/fimmu.2022.1094172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Allergen-specific immunotherapy (AIT) is applied as treatment to rise tolerance in patients with food allergies. Although AIT is thoroughly used, the underlying epigenetic events related to tolerant induction are still unknown. Thus, we aim to investigate epigenetic changes that could be related to tolerance in dendritic cells (DCs) from anaphylactic mice to lipid transfer proteins, Pru p 3, in the context of a sublingual immunotherapy (SLIT) with a glycodendropeptide (D1ManPrup3) that has demonstrated tolerant or desensitization responses depending on the treatment dose. Methods Changes in DNA methylation in CpG context were determined comparing Sensitized (Antigen-only) animals and two groups receiving SLIT with the D1ManPrup3 nanostructure (D1ManPrup3-SLIT): Tolerant (2nM D1ManPrup3) and Desensitized (5nM D1ManPrup3), against anaphylactic animals. DNA from lymph nodes-DCs were isolated and then, Whole Genome Bisulphite Sequencing was performed to analyze methylation. Results Most differentially methylated regions were found on the area of influence of gene promoters (DMPRs). Compared to the Anaphylactic group, the highest value was found in Desensitized mice (n = 7,713 DMPRs), followed by Tolerant (n = 4,091 DMPRs) and Sensitized (n = 3,931 DMPRs) mice. Moreover, many of these epigenetic changes were found in genes involved in immune and tolerance responses (Il1b, Il12b, Il1a, Ifng, and Tnf) as shown by functional enrichment (DCs regulation, B cell-mediated immunity, and effector mechanisms). Discussion In conclusion, different doses of D1ManPrup3-SLIT induce different DNA methylation changes, which are reflected in the induction of distinct responses, tolerance, or desensitization.
Collapse
Affiliation(s)
- Rafael Núñez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - María J. Rodríguez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Clara Lebrón-Martín
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain
| | - Francisca Palomares
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Javier Ramos-Soriano
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Spanish National Research Council (CSIC)- Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Spanish National Research Council (CSIC)- Universidad de Sevilla, Sevilla, Spain
| | - María J. Torres
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain,Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José Antonio Cañas
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Cristobalina Mayorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain,*Correspondence: Cristobalina Mayorga,
| |
Collapse
|
29
|
Wilkens AB, Fulton EC, Pont MJ, Cole GO, Leung I, Stull SM, Hart MR, Bernstein ID, Furlan SN, Riddell SR. NOTCH1 signaling during CD4+ T-cell activation alters transcription factor networks and enhances antigen responsiveness. Blood 2022; 140:2261-2275. [PMID: 35605191 PMCID: PMC9837446 DOI: 10.1182/blood.2021015144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 05/09/2022] [Indexed: 01/21/2023] Open
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CAR-T) effectively treats refractory hematologic malignancies in a subset of patients but can be limited by poor T-cell expansion and persistence in vivo. Less differentiated T-cell states correlate with the capacity of CAR-T to proliferate and mediate antitumor responses, and interventions that limit tumor-specific T-cell differentiation during ex vivo manufacturing enhance efficacy. NOTCH signaling is involved in fate decisions across diverse cell lineages and in memory CD8+ T cells was reported to upregulate the transcription factor FOXM1, attenuate differentiation, and enhance proliferation and antitumor efficacy in vivo. Here, we used a cell-free culture system to provide an agonistic NOTCH1 signal during naïve CD4+ T-cell activation and CAR-T production and studied the effects on differentiation, transcription factor expression, cytokine production, and responses to tumor. NOTCH1 agonism efficiently induced a stem cell memory phenotype in CAR-T derived from naïve but not memory CD4+ T cells and upregulated expression of AhR and c-MAF, driving heightened production of interleukin-22, interleukin-10, and granzyme B. NOTCH1-agonized CD4+ CAR-T demonstrated enhanced antigen responsiveness and proliferated to strikingly higher frequencies in mice bearing human lymphoma xenografts. NOTCH1-agonized CD4+ CAR-T also provided superior help to cotransferred CD8+ CAR-T, driving improved expansion and curative antitumor responses in vivo at low CAR-T doses. Our data expand the mechanisms by which NOTCH can shape CD4+ T-cell behavior and demonstrate that activating NOTCH1 signaling during genetic modification ex vivo is a potential strategy for enhancing the function of T cells engineered with tumor-targeting receptors.
Collapse
Affiliation(s)
- Alec B. Wilkens
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| | - Elena C. Fulton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Margot J. Pont
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gabriel O. Cole
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Isabel Leung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Sylvia M. Stull
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Matthew R. Hart
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Irwin D. Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Molecular and Cellular Biology, University of Washington, Seattle, WA
| |
Collapse
|
30
|
Mountford J, Gheyas A, Vervelde L, Smith J. Genetic variation in chicken interferon signalling pathway genes in research lines showing differential viral resistance. Anim Genet 2022; 53:640-656. [PMID: 35739459 PMCID: PMC9544680 DOI: 10.1111/age.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023]
Abstract
Avian viruses of economic interest are a significant burden on the poultry industry, affecting production traits and resulting in mortality. Furthermore, the zoonosis of avian viruses risks pandemics developing in humans. Vaccination is the most common method of controlling viruses; however current vaccines often lack cross-protection against multiple strains of each virus. The mutagenicity of these viruses has also led to virulent strains emerging that can overcome the protection offered by vaccines. Breeding chickens with a more robust innate immune response may help in tackling current and emerging viruses. Understanding the genetic evolution of different lines will thus provide a useful tool in helping the host in the fight against pathogens. This study focuses on the interferon genes and their receptors in different chicken lines that are known to be more resistant or susceptible to particular avian viruses. Comparing genotypic differences in these core immune genes between the chicken lines may explain the phenotypic differences observed and aid the identification of causative variations. The relative resistance/susceptibility of each line to viruses of interest (Marek's disease virus, infectious bursal disease, infectious bronchitis virus and avian influenza virus) has previously been determined. Here we identify single nucleotide polymorphisms in interferons and downstream genes. Functional prediction tools were used to identify variants that may be affecting protein structure, mRNA secondary structure or transcription factor and micro-RNA binding sites. These variants were then considered in the context of the research lines and their distribution between phenotypes. We highlight 60 variants of interest in the interferon pathway genes that may account for susceptibility/resistance to viral pathogens.
Collapse
Affiliation(s)
- Joshua Mountford
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Almas Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
31
|
Hartel JC, Merz N, Grösch S. How sphingolipids affect T cells in the resolution of inflammation. Front Pharmacol 2022; 13:1002915. [PMID: 36176439 PMCID: PMC9513432 DOI: 10.3389/fphar.2022.1002915] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of proper resolution of inflammation rather than counteracting it, gained a lot of attention in the past few years. Re-assembly of tissue and cell homeostasis as well as establishment of adaptive immunity after inflammatory processes are the key events of resolution. Neutrophiles and macrophages are well described as promotors of resolution, but the role of T cells is poorly reviewed. It is also broadly known that sphingolipids and their imbalance influence membrane fluidity and cell signalling pathways resulting in inflammation associated diseases like inflammatory bowel disease (IBD), atherosclerosis or diabetes. In this review we highlight the role of sphingolipids in T cells in the context of resolution of inflammation to create an insight into new possible therapeutical approaches.
Collapse
Affiliation(s)
- Jennifer Christina Hartel
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Department of Life Sciences, Goethe-University Frankfurt, Frankfurt, Germany
| | - Nadine Merz
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Goethe-University Frankfurt. Frankfurt am Main, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- *Correspondence: Sabine Grösch,
| |
Collapse
|
32
|
Wilson TL, Kim H, Chou CH, Langfitt D, Mettelman RC, Minervina AA, Allen EK, Métais JY, Pogorelyy MV, Riberdy JM, Velasquez MP, Kottapalli P, Trivedi S, Olsen SR, Lockey T, Willis C, Meagher MM, Triplett BM, Talleur AC, Gottschalk S, Crawford JC, Thomas PG. Common Trajectories of Highly Effective CD19-Specific CAR T Cells Identified by Endogenous T-cell Receptor Lineages. Cancer Discov 2022; 12:2098-2119. [PMID: 35792801 PMCID: PMC9437573 DOI: 10.1158/2159-8290.cd-21-1508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Current chimeric antigen receptor-modified (CAR) T-cell products are evaluated in bulk, without assessing functional heterogeneity. We therefore generated a comprehensive single-cell gene expression and T-cell receptor (TCR) sequencing data set using pre- and postinfusion CD19-CAR T cells from blood and bone marrow samples of pediatric patients with B-cell acute lymphoblastic leukemia. We identified cytotoxic postinfusion cells with identical TCRs to a subset of preinfusion CAR T cells. These effector precursor cells exhibited a unique transcriptional profile compared with other preinfusion cells, corresponding to an unexpected surface phenotype (TIGIT+, CD62Llo, CD27-). Upon stimulation, these cells showed functional superiority and decreased expression of the exhaustion-associated transcription factor TOX. Collectively, these results demonstrate diverse effector potentials within preinfusion CAR T-cell products, which can be exploited for therapeutic applications. Furthermore, we provide an integrative experimental and analytic framework for elucidating the mechanisms underlying effector development in CAR T-cell products. SIGNIFICANCE Utilizing clonal trajectories to define transcriptional potential, we find a unique signature of CAR T-cell effector precursors present in preinfusion cell products. Functional assessment of cells with this signature indicated early effector potential and resistance to exhaustion, consistent with postinfusion cellular patterns observed in patients. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Taylor L. Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Robert C. Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jean-Yves Métais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Mikhail V. Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Janice M. Riberdy
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pratibha Kottapalli
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott R. Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Timothy Lockey
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Catherine Willis
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael M. Meagher
- Therapeutic Production and Quality, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Brandon M. Triplett
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aimee C. Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Paul G. Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
33
|
Inoue Y, Liao CW, Tsunakawa Y, Tsai IL, Takahashi S, Hamada M. Macrophage-Specific, Mafb-Deficient Mice Showed Delayed Skin Wound Healing. Int J Mol Sci 2022; 23:9346. [PMID: 36012611 PMCID: PMC9409077 DOI: 10.3390/ijms23169346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages play essential roles throughout the wound repair process. Nevertheless, mechanisms regulating the process are poorly understood. MAFB is specifically expressed in the macrophages in hematopoietic tissue and is vital to homeostatic function. Comparison of the skin wound repair rates in macrophage-specific, MAFB-deficient mice (Mafbf/f::LysM-Cre) and control mice (Mafbf/f) showed that wound healing was significantly delayed in the former. For wounded GFP knock-in mice with GFP inserts in the Mafb locus, flow cytometry revealed that their GFP-positive cells expressed macrophage markers. Thus, macrophages express Mafb at wound sites. Immunohistochemical (IHC) staining, proteome analysis, and RT-qPCR of the wound tissue showed relative downregulation of Arg1, Ccl12, and Ccl2 in Mafbf/f::LysM-Cre mice. The aforementioned genes were also downregulated in the bone marrow-derived, M2-type macrophages of Mafbf/f::LysM-Cre mice. Published single-cell RNA-Seq analyses showed that Arg1, Ccl2, Ccl12, and Il-10 were expressed in distinct populations of MAFB-expressing cells. Hence, the MAFB-expressing macrophage population is heterogeneous. MAFB plays the vital role of regulating multiple genes implicated in wound healing, which suggests that MAFB is a potential therapeutic target in wound healing.
Collapse
Affiliation(s)
- Yuri Inoue
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Yuki Tsunakawa
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - I-Lin Tsai
- Global Innovation Joint-Degree Program, International Joint Degree Master’s Program, Agro-Biomedical Science in Food and Health, College of Medicine, National Taiwan University (NTU GIP-TRIAD), No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
34
|
Nishida-Tamehiro K, Kimura A, Tsubata T, Takahashi S, Suzuki H. Antioxidative enzyme NAD(P)H quinone oxidoreductase 1 (NQO1) modulates the differentiation of Th17 cells by regulating ROS levels. PLoS One 2022; 17:e0272090. [PMID: 35905076 PMCID: PMC9337673 DOI: 10.1371/journal.pone.0272090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
NAD(P)H quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes two-electron reduction of quinone to hydroquinone by using nicotinamide adenine dinucleotide (NADPH), and functions as a scavenger for reactive oxygen species (ROS). The function of NQO1 in the immune response is not well known. In the present study, we demonstrated that Nqo1-deficient T cells exhibited reduced induction of T helper 17 cells (Th17) in vitro during Th17(23)- and Th17(β)- skewing conditions. Nqo1-deficient mice showed ameliorated symptoms in a Th17-dependent autoimmune Experimental autoimmune encephalomyelitis (EAE) model. Impaired Th17-differentiation was caused by overproduction of the immunosuppressive cytokine, IL-10. Increased IL-10 production in Nqo1-deficient Th17 cells was associated with elevated intracellular Reactive oxygen species (ROS) levels. Furthermore, overproduction of IL-10 in Th17 (β) cells was responsible for the ROS-dependent increase of c-avian musculoaponeurotic fibrosarcoma (c-maf) expression, despite the lack of dependency of c-maf in Th17(23) cells. Taken together, the results reveal a novel role of NQO1 in promoting Th17 development through the suppression of ROS mediated IL-10 production.
Collapse
Affiliation(s)
- Kyoko Nishida-Tamehiro
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Akihiro Kimura
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
35
|
Cyclic Hypoxia Induces Transcriptomic Changes in Mast Cells Leading to a Hyperresponsive Phenotype after FcεRI Cross-Linking. Cells 2022; 11:cells11142239. [PMID: 35883682 PMCID: PMC9319477 DOI: 10.3390/cells11142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Mast cells (MCs) play important roles in tumor development, executing pro- or antitumoral functions depending on tumor type and tumor microenvironment (TME) conditions. Cyclic hypoxia (cyH) is a common feature of TME since tumor blood vessels fail to provide a continuous supply of oxygen to the tumor mass. Here, we hypothesized that the localization of MCs in cyH regions within solid tumors could modify their transcriptional profile and activation parameters. Using confocal microscopy, we found an important number of MCs in cyH zones of murine melanoma B16-F1 tumors. Applying microarray analysis to examine the transcriptome of murine bone-marrow-derived MCs (BMMCs) exposed to interleaved cycles of hypoxia and re-oxygenation, we identified altered expression of 2512 genes. Functional enrichment analysis revealed that the transcriptional signature of MCs exposed to cyH is associated with oxidative phosphorylation and the FcεRI signaling pathway. Interestingly, FcεRI-dependent degranulation, calcium mobilization, and PLC-γ activity, as well as Tnf-α, Il-4, and Il-2 gene expression after IgE/antigen challenge were increased in BMMCs exposed to cyH compared with those maintained in normoxia. Taken together, our findings indicate that cyH causes an important phenotypic change in MCs that should be considered in the design of inflammation-targeted therapies to control tumor growth.
Collapse
|
36
|
Marks KE, Rao DA. T peripheral helper cells in autoimmune diseases. Immunol Rev 2022; 307:191-202. [PMID: 35103314 PMCID: PMC9009135 DOI: 10.1111/imr.13069] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Pathologic T cell-B cell interactions underlie many autoimmune diseases. The T cells that help B cells in autoimmune diseases vary in phenotype and include T cells that lack typical features of T follicular helper cells, such as expression of CXCR5 and BCL6. A population of PD-1hi CXCR5- T peripheral helper (Tph) cells has now been recognized in multiple autoantibody-associated diseases. Tph cells display a distinctive set of features, merging the ability to provide B cell help with the capacity to migrate to inflamed peripheral tissues. Here, we review the scope of immune-related conditions in which Tph cells have been implicated and provide a perspective on their potential contributions to pathologic B cell activation in autoimmune diseases. We discuss Tph cells as a promising therapeutic strategy in autoimmunity and consider the utility of tracking Tph cells in blood as a biomarker to quantify aberrant T cell-B cell activation in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Kathryne E Marks
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Michée-Cospolite M, Boudigou M, Grasseau A, Simon Q, Mignen O, Pers JO, Cornec D, Le Pottier L, Hillion S. Molecular Mechanisms Driving IL-10- Producing B Cells Functions: STAT3 and c-MAF as Underestimated Central Key Regulators? Front Immunol 2022; 13:818814. [PMID: 35359922 PMCID: PMC8961445 DOI: 10.3389/fimmu.2022.818814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/25/2022] Open
Abstract
Regulatory B cells (Bregs) have been highlighted in very different pathology settings including autoimmune diseases, allergy, graft rejection, and cancer. Improving tools for the characterization of Bregs has become the main objective especially in humans. Transitional, mature B cells and plasma cells can differentiate into IL-10 producing Bregs in both mice and humans, suggesting that Bregs are not derived from unique precursors but may arise from different competent progenitors at unrestricted development stages. Moreover, in addition to IL-10 production, regulatory B cells used a broad range of suppressing mechanisms to modulate the immune response. Although Bregs have been consistently described in the literature, only a few reports described the molecular aspects that control the acquisition of the regulatory function. In this manuscript, we detailed the latest reports describing the control of IL-10, TGFβ, and GZMB production in different Breg subsets at the molecular level. We focused on the understanding of the role of the transcription factors STAT3 and c-MAF in controlling IL-10 production in murine and human B cells and how these factors may represent an important crossroad of several key drivers of the Breg response. Finally, we provided original data supporting the evidence that MAF is expressed in human IL-10- producing plasmablast and could be induced in vitro following different stimulation cocktails. At steady state, we reported that MAF is expressed in specific human B-cell tonsillar subsets including the IgD+ CD27+ unswitched population, germinal center cells and plasmablast.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Divi Cornec
- U1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| | | | - Sophie Hillion
- U1227, LBAI, Univ Brest, Inserm, and CHU Brest, Brest, France
| |
Collapse
|
38
|
T cell subtype profiling measures exhaustion and predicts anti-PD-1 response. Sci Rep 2022; 12:1342. [PMID: 35079117 PMCID: PMC8789795 DOI: 10.1038/s41598-022-05474-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Anti-PD-1 therapy can provide long, durable benefit to a fraction of patients. The on-label PD-L1 test, however, does not accurately predict response. To build a better biomarker, we created a method called T Cell Subtype Profiling (TCSP) that characterizes the abundance of T cell subtypes (TCSs) in FFPE specimens using five RNA models. These TCS RNA models are created using functional methods, and robustly discriminate between naïve, activated, exhausted, effector memory, and central memory TCSs, without the reliance on non-specific, classical markers. TCSP is analytically valid and corroborates associations between TCSs and clinical outcomes. Multianalyte biomarkers based on TCS estimates predicted response to anti-PD-1 therapy in three different cancers and outperformed the indicated PD-L1 test, as well as Tumor Mutational Burden. Given the utility of TCSP, we investigated the abundance of TCSs in TCGA cancers and created a portal to enable researchers to discover other TCSP-based biomarkers.
Collapse
|
39
|
Ahlers J, Mantei A, Lozza L, Stäber M, Heinrich F, Bacher P, Hohnstein T, Menzel L, Yüz SG, Alvarez-Simon D, Bickenbach AR, Weidinger C, Mockel-Tenbrinck N, Kühl AA, Siegmund B, Maul J, Neumann C, Scheffold A. A Notch/STAT3-driven Blimp-1/c-Maf-dependent molecular switch induces IL-10 expression in human CD4 + T cells and is defective in Crohn´s disease patients. Mucosal Immunol 2022; 15:480-490. [PMID: 35169232 PMCID: PMC9038525 DOI: 10.1038/s41385-022-00487-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
Immunosuppressive Interleukin (IL)-10 production by pro-inflammatory CD4+ T cells is a central self-regulatory function to limit aberrant inflammation. Still, the molecular mediators controlling IL-10 expression in human CD4+ T cells are largely undefined. Here, we identify a Notch/STAT3 signaling-module as a universal molecular switch to induce IL-10 expression across human naïve and major effector CD4+ T cell subsets. IL-10 induction was transient, jointly controlled by the transcription factors Blimp-1/c-Maf and accompanied by upregulation of several co-inhibitory receptors, including LAG-3, CD49b, PD-1, TIM-3 and TIGIT. Consistent with a protective role of IL-10 in inflammatory bowel diseases (IBD), effector CD4+ T cells from Crohn's disease patients were defective in Notch/STAT3-induced IL-10 production and skewed towards an inflammatory Th1/17 cell phenotype. Collectively, our data identify a Notch/STAT3-Blimp-1/c-Maf axis as a common anti-inflammatory pathway in human CD4+ T cells, which is defective in IBD and thus may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Jonas Ahlers
- grid.6363.00000 0001 2218 4662Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, Berlin, Germany ,grid.420214.1Present Address: Sanofi Pasteur, Sanofi-Aventis Deutschland GmbH, Berlin, Germany
| | - Andrej Mantei
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Laura Lozza
- Cell Biology, Precision for Medicine GmbH, Berlin, Germany
| | - Manuela Stäber
- Central Lab Service, Max-Plack-Institute for Infection Biology, Berlin, Germany
| | - Frederik Heinrich
- grid.413453.40000 0001 2224 3060German Rheumatism Research Center (DRFZ) Berlin, Leibniz Association, Berlin, Germany
| | - Petra Bacher
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany ,grid.9764.c0000 0001 2153 9986Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Thordis Hohnstein
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Menzel
- grid.419491.00000 0001 1014 0849Translational Tumor Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simge G. Yüz
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Daniel Alvarez-Simon
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Anne Rieke Bickenbach
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| | - Carl Weidinger
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nadine Mockel-Tenbrinck
- grid.59409.310000 0004 0552 5033Miltenyi Biotec B.V. & Co.KG, Bergisch-Gladbach, Nordrhein-Westfalen Germany
| | - Anja A. Kühl
- grid.6363.00000 0001 2218 4662iPATH, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen Maul
- grid.6363.00000 0001 2218 4662Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany ,Gastroenterologie am Bayerischen Platz, Berlin, Germany
| | - Christian Neumann
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Scheffold
- grid.5252.00000 0004 1936 973XInstitute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
40
|
Elevated Expression of the Long Noncoding RNA MAFTRR in Patients with Hashimoto's Thyroiditis. J Immunol Res 2021; 2021:3577011. [PMID: 34869781 PMCID: PMC8642024 DOI: 10.1155/2021/3577011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/12/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) represent an important novel class of noncoding RNA molecule greater than 200 nucleotides that play a key role in the regulation of autoimmune diseases. Previous studies have demonstrated that MAFTRR (MAF transcriptional regulator RNA) regulated Th1 cells differentiation by inhibiting the expression of MAF in activated CD4+ T cells. However, the effect of MAFTRR on the pathogenesis of Hashimoto's thyroiditis (HT) remains unclear. This research was aimed at investigating the expression of MAFTRR in Hashimoto's thyroiditis (HT) as well as the correlation between MAFTRR and Th1 cells. Methods Thirty-eight HT patients and thirty-eight healthy controls were enrolled in the study. The proportion of Th1 cells and CD8+IFN-γ+ T cells in peripheral blood mononuclear cells (PBMCs) from these specimens was determined by flow cytometric analysis. The transcript levels of MAFTRR, MAF, and IFNG in PBMCs and thyroid glands were detected by quantitative real-time PCR. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the potential value of MAFTRR in the HT patients. Results We found that the proportion of circulating Th1 cells and the transcript levels of IFNG were increased in peripheral blood of the HT patients. The transcript levels of MAFTRR were significantly increased in the HT patients and positively correlated with the percentage of Th1 cells and serum levels of antithyroglobulin antibody and antithyroperoxidase antibody. The transcript levels of MAF, a transcription factor that inhibits Th1 cells activity and IFN-γ production, were attenuated in PBMCs from the HT patients. The transcript levels of IFNG had positive and inverse correlations with MAFTRR and MAF expression in PBMCs from the HT patients, respectively. Additionally, a significantly positive correlation between upregulated MAFTRR expression and augmented IFNG expression was revealed in thyroid tissues from the HT patients. ROC curve suggested that MAFTRR could potentially differentiate the HT patients from healthy controls. Conclusion MAFTRR is significantly augmented in the HT patients and may contribute to the pathogenic role of the Th1 cells response in HT.
Collapse
|
41
|
Kim HK, Jeong MG, Hwang ES. Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation. Mol Cells 2021; 44:318-327. [PMID: 33972470 PMCID: PMC8175150 DOI: 10.14348/molcells.2021.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023] Open
Abstract
CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naïve Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein arginine-modifying enzymes in effector Th cells.
Collapse
Affiliation(s)
- Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
42
|
Takahashi S. Functional analysis of large MAF transcription factors and elucidation of their relationships with human diseases. Exp Anim 2021; 70:264-271. [PMID: 33762508 PMCID: PMC8390310 DOI: 10.1538/expanim.21-0027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The large MAF transcription factor group is a group of transcription factors with an acidic region, a basic region, and a leucine zipper region. Four types of MAF, MAFA, MAFB, c-MAF, and NRL, have been identified in humans and mice. In order to elucidate the functions of the large MAF transcription factor group in vivo, our research group created genetically modified MAFA-, MAFB-, and c-MAF-deficient mice and analyzed their phenotypes. MAFA is expressed in pancreatic β cells and is essential for insulin transcription and secretion. MAFB is essential for the development of pancreatic endocrine cells, formation of inner ears, podocyte function in the kidneys, and functional differentiation of macrophages. c-MAF is essential for lens formation and osteoblast differentiation. Furthermore, a single-base mutation in genes encoding the large MAF transcription factor group causes congenital renal disease, eye disease, bone disease, diabetes, and tumors in humans. This review describes the functions of large MAF transcription factors in vivo and their relationships with human diseases.
Collapse
Affiliation(s)
- Satoru Takahashi
- Department of Anatomy and Embryology, Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
43
|
Mikami Y, Philips RL, Sciumè G, Petermann F, Meylan F, Nagashima H, Yao C, Davis FP, Brooks SR, Sun HW, Takahashi H, Poholek AC, Shih HY, Afzali B, Muljo SA, Hafner M, Kanno Y, O'Shea JJ. MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity 2021; 54:514-525.e6. [PMID: 33657395 DOI: 10.1016/j.immuni.2021.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/08/2020] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
MicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-β. Molecular targets of miR-221 and miR-222 included Maf and Il23r, and loss of miR-221 and miR-222 expression shifted the transcriptomic spectrum of intestinal Th17 cells to a proinflammatory signature. Although the loss of miR-221 and miR-222 was tolerated for maintaining intestinal Th17 cell homeostasis in healthy mice, Th17 cells lacking miR-221 and miR-222 expanded more efficiently in response to IL-23. Both global and T cell-specific deletion of miR-221 and miR-222 rendered mice prone to mucosal barrier damage. Collectively, these findings demonstrate that miR-221 and miR-222 are an integral part of intestinal Th17 cell response that are induced after IL-23 stimulation to constrain the magnitude of proinflammatory response.
Collapse
Affiliation(s)
- Yohei Mikami
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachael L Philips
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giuseppe Sciumè
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Franziska Petermann
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Françoise Meylan
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroyuki Nagashima
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen Yao
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fred P Davis
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hayato Takahashi
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda C Poholek
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Behdad Afzali
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefan A Muljo
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Markus Hafner
- RNA Molecular Biology Group, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Yue T, Sun F, Yang C, Wang F, Luo J, Yang P, Xiong F, Zhang S, Yu Q, Wang CY. The AHR Signaling Attenuates Autoimmune Responses During the Development of Type 1 Diabetes. Front Immunol 2020; 11:1510. [PMID: 32849515 PMCID: PMC7426364 DOI: 10.3389/fimmu.2020.01510] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcriptional factor widely expressed in immune cells. Its ligands range from xenobiotics and natural substances to metabolites, which renders it capable of sensing and responding to a variety of environmental cues. Although AHR signaling has long been recognized to be implicated in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis (RA), colitis, and systemic lupus erythematosus (SLE), its effect on the pathogenesis of type 1 diabetes (T1D) remains less understood. In this review, we intend to summarize its potential implication in T1D pathogenesis and to sort out the related regulatory mechanisms in different types of immune cells. Emerging evidence supports that β cell destruction caused by autoimmune responses can be rectified by AHR signaling. Upon activation by its ligands, AHR not only modulates the development and functionality of immune cells, but also suppresses the expression of inflammatory cytokines, through which AHR attenuates autoimmune responses during the course of T1D development. Since AHR-initiated biological effects vary between different types of ligands, additional studies would be necessary to characterize or de novo synthesize effective and safe ligands aimed to replenish our arsenal in fighting autoimmune responses and β mass loss in a T1D setting.
Collapse
Affiliation(s)
- Tiantian Yue
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunliang Yang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Luo
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Zhang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Yu
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|