1
|
D'Souza M, Keeshan A, Gravel CA, Langlois MA, Cooper CL. Obesity does not influence SARS-CoV-2 humoral vaccine immunogenicity. NPJ Vaccines 2024; 9:226. [PMID: 39557875 PMCID: PMC11574036 DOI: 10.1038/s41541-024-01022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Obesity is a recognized factor influencing immune function and infectious disease outcomes. Characterization of the influence of obesity on SARS-CoV-2 humoral vaccine immunogenicity is required to properly tailor vaccine type (mRNA, viral-vector, protein subunit vaccines) and dosing schedule. Data from a prospective cohort study collected over 34 months was used to evaluate the slope of antibody production and decay and neutralizing capacity following SARS-CoV-2 vaccination in individuals with and without obesity at baseline. Most participants were female (65.4%), white (92.4%), and received mRNA vaccines. 210 were obese and 697 non-obese. Sex and infection-acquired immunity were identified as effect modifiers for the relationship between obesity and COVID-19 vaccine humoral immunogenicity. No consistent influence of obesity on peak titres, titre retention, antibody isotype (IgG, IgM, IgA), or neutralization was identified when controlling for other key variables. It may not be necessary to consider this variable when developing SARS-CoV-2 vaccine dosing strategies.
Collapse
Affiliation(s)
| | - Alexa Keeshan
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Christopher A Gravel
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
- Data Literacy Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Curtis L Cooper
- Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Division of Infectious Diseases, Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Berens-Riha N, Andries P, Aerssens A, Ledure Q, Van Der Beken Y, Heyndrickx L, Genbrugge E, Tsoumanis A, Van Herrewege Y, Ariën KK, Van Innis M, Vanbrabant P, Soentjens P. Five accelerated schedules for the tick-borne encephalitis vaccine FSME-Immun® in last-minute travellers: an open-label, single-centre, randomized controlled pilot trial. J Travel Med 2024; 31:taad053. [PMID: 37074147 PMCID: PMC11500657 DOI: 10.1093/jtm/taad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND The purpose of this exploratory study was to evaluate different accelerated tick-borne encephalitis (TBE) vaccine schedules for last-minute travellers. METHODS In a single-centre, open-label pilot study, 77 TBE-naïve Belgian soldiers were randomized to one of the following five schedules with FSME-Immun®: group 1 ('classical accelerated' schedule) received one intramuscular (IM) dose at Day 0 and Day 14, group 2 two IM doses at Day 0, group 3 two intradermal (ID) doses at Day 0, group 4 two ID doses at Day 0 and Day 7 and group 5 two ID doses at Day 0 and Day 14. The last dose(s) of the primary vaccination scheme were given after 1 year: IM (1 dose) or ID (2 doses). TBE virus neutralizing antibodies were measured in a plaque reduction neutralization test (PRNT90 and 50) at Days 0, 14, 21, 28, Months 3, 6, 12 and 12+21 days. Seropositivity was defined as neutralizing antibody titres ≥10. RESULTS The median age was 19-19.5 years in each group.Median time to seropositivity up to Day 28 was shortest for PRNT90 in ID-group 4 and for PRNT50 in all ID groups. Seroconversion until Day 28 peaked highest for PRNT90 in ID-group 4 (79%) and for PRNT50 in ID-groups 4 and 5 (both 100%). Seropositivity after the last vaccination after 12 months was high in all groups. Previous yellow fever vaccination was reported in 16% and associated with lower geometric mean titres of TBE-specific antibodies at all-time points.The vaccine was generally well tolerated. However, mild to moderate local reactions occurred in 73-100% of ID compared with 0-38% of IM vaccinations, and persistent discolouration was observed in nine ID vaccinated individuals. CONCLUSION The accelerated two-visit ID schedules might offer a better immunological alternative to the recommended classical accelerated IM schedule, but an aluminium-free vaccine would be preferable.
Collapse
Affiliation(s)
- Nicole Berens-Riha
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Petra Andries
- Centre for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Annelies Aerssens
- Department of Internal Medicine and Infectious Diseases, Ghent University Hospital, Belgium
| | - Quentin Ledure
- Hospital Pharmacy, Queen Astrid Military Hospital, Brussels, Belgium
| | | | - Leo Heyndrickx
- Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Els Genbrugge
- Clinical Trials Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Kevin K Ariën
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Martine Van Innis
- Hospital Pharmacy, Queen Astrid Military Hospital, Brussels, Belgium
| | - Peter Vanbrabant
- Centre for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Patrick Soentjens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Centre for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
3
|
Tobias J, Maglakelidze M, Andrić Z, Ryspayeva D, Bulat I, Nikolić I, Petrović Z, Chawla T, Nagarkar R, Garner-Spitzer E, Zielinski CC, Chong LMO, Nixon B, Ede NJ, Yavrom S, Kundi M, Wiedermann U. Phase II Trial of HER-Vaxx, a B-cell Peptide-Based Vaccine, in HER2-Overexpressing Advanced Gastric Cancer Patients Under Platinum-Based Chemotherapy (HERIZON). Clin Cancer Res 2024; 30:4044-4054. [PMID: 39028916 PMCID: PMC11393538 DOI: 10.1158/1078-0432.ccr-24-0742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
PURPOSE A multicenter, randomized, open-label, phase II study (HERIZON; NCT02795988) was conducted to evaluate the clinical and immunologic efficacy of HER-Vaxx (IMU-131), a B-cell, peptide-based vaccine targeting HER2 overexpressed in 6% to 30% of gastroesophageal adenocarcinomas (GEA). PATIENTS AND METHODS Patients (n = 36) with GEA were treated with standard-of-care chemotherapy (n = 17) or HER-Vaxx plus chemotherapy (n = 19), using the recommended phase 2 dose for the vaccine. Overall survival (OS; primary endpoint), safety, progression-free survival (PFS), clinical response (secondary endpoints), and vaccine-induced HER2-specific antibody levels in serum and correlation with tumor response rates (exploratory endpoints) were investigated. RESULTS A 40% OS benefit [HR, 0.60; median OS, 13.9 months; 80% confidence interval (CI), 7.52-14.32] for patients treated with HER-Vaxx plus chemotherapy compared with OS of 8.31 months (80% CI, 6.01-9.59) in patients that received chemotherapy alone. A 20% PFS difference was obtained for the vaccination arm (HR, 0.80; 80% CI, 0.47, 1.38). No additional toxicity due to HER-Vaxx was observed. The vaccine-induced high levels of HER2-specific total IgG and IgG1 antibodies (P < 0.001 vs. controls) that significantly correlated with tumor reduction (IgG, P = 0.001; IgG1, P = 0.016), had a significant capacity in inhibiting phosphorylation of the intracellular HER2-signaling pathways, mediated antibody-dependent cellular cytotoxicity, and decreased immunosuppressive FOXP3+ regulatory T cells. CONCLUSIONS HER-Vaxx plus standard chemotherapy exhibits an excellent safety profile and improves OS. Furthermore, vaccine-induced immune response was significantly associated with reduced tumor size compared with standard-of-care chemotherapy. The presented vaccination approach may substitute for treatment with trastuzumab, upon unavailability or toxicity, based on further evidence of equivalent treatment efficacy.
Collapse
Affiliation(s)
| | | | - Zoran Andrić
- Clinical Hospital Center Bezanijska Kosa, Belgrade, Serbia.
| | | | - Iurie Bulat
- ARENSIA Exploratory Medicine Research Unit, Institute of Oncology, Chisinau, Republic of Moldova.
| | - Ivan Nikolić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.
| | | | | | | | | | - Christoph C. Zielinski
- Central European Cancer Center, Wiener Privatklinik, Central European Cooperative Oncology Group (CECOG), Vienna, Australia.
| | | | | | | | | | | | | |
Collapse
|
4
|
van Brakel L, Mensink RP, Lütjohann D, Plat J. Plant stanol consumption increases anti-COVID-19 antibody responses, independent of changes in serum cholesterol concentrations: a randomized controlled trial. Am J Clin Nutr 2024; 119:969-980. [PMID: 38278364 DOI: 10.1016/j.ajcnut.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND People with overweight/obesity generally have impaired immune responses, resulting among others in increased risk of severe complaints and hospitalization after infections with severe acute respiratory syndrome coronavirus 2 (COVID-19), as well as decreased antibody production after vaccinations. Plant stanol ester previously increased the combined IgM/IgG antibody titers toward a hepatitis A vaccination in patients with allergic asthma, but the underlying mechanism is unknown. OBJECTIVES We evaluated whether plant stanol ester consumption improved the immune response in subjects with overweight/obesity after a COVID-19 vaccination. METHODS A double-blind, randomized, placebo-controlled trial was performed. Thirty-two subjects with overweight/obesity consumed products with added plant stanols (4 g/d; provided as plant stanol ester) or control ≥2 wk before receiving their COVID-19 vaccination until 4 wk after vaccination. Antibody titers were analyzed weekly and statistically analyzed using mixed models. Serum metabolic markers and cytokine profiles were also analyzed. RESULTS IgM concentrations against the COVID-19 Spike protein were increased in the plant stanol ester group compared with the control group, with the largest difference observed 2 wk after vaccination [31.2 (0.43, 62.1) BAU/mL, or +139%; Group × Time: P = 0.031]. Subjects that produced very low IgM antibodies produced, as expected, hardly any IgG antibodies. In those with IgG seroconversion, IgG Spike concentrations were also increased in the plant stanol ester group compared with the control group [71.3 (2.51, 140.1) BAU/mL; Group P = 0.043]. Stimulated cytokine concentrations decreased in the plant stanol ester group compared with the control group in all 3 cytokine domains (that is, proinflammatory, T helper [Th1]/Th17, and Th2/regulatory T cells). Between-group differences in serum LDL cholesterol or other metabolic markers were not observed. CONCLUSIONS Consuming plant stanols (4 g/d) affects immune responses to COVID-19 vaccinations, translating into increased serum anti-COVID-19 IgM concentrations in subjects with overweight/obesity. Only in IgG seroconverted subjects, serum anti-COVID-19 IgG concentrations also increase. These effects are independent of reductions in LDL cholesterol. These results suggest that this high-risk group for COVID-19 complications could benefit from plant stanol consumption. This trial was registered at clinicaltrials.gov as NCT04844346.
Collapse
Affiliation(s)
- Lieve van Brakel
- Department of Nutrition and Movement Sciences, NUTRIM School of Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM School of Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM School of Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Geissler N, Orola M, Alinaghi M, Nardo A, Stulnig TM, Séneca J, Schmid A, Korb E, Svoboda T, Garner‐Spitzer E, Kundi M, Ehling‐Schulz M, Schabussova I, Inic‐Kanada A, Wiedermann U. Obesity increases allergic airway inflammation that can be successfully treated by oral tolerance. Allergy 2024; 79:529-533. [PMID: 38149746 PMCID: PMC11497298 DOI: 10.1111/all.15989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Nora Geissler
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Maria Orola
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Masoumeh Alinaghi
- Functional Microbiology, Institute of Microbiology, Department of PathobiologyUniversity of Veterinary MedicineViennaAustria
| | - Alexander Nardo
- Clinical Division of Endocrinology & Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Thomas M. Stulnig
- Clinical Division of Endocrinology & Metabolism, Department of Medicine IIIMedical University of ViennaViennaAustria
- Department of Medicine III and Karl Landsteiner Institute for Metabolic Diseases and NephrologyClinic HietzingViennaAustria
| | - Joana Séneca
- Joint Microbiome Facility of the Medical University of Vienna and the University of ViennaViennaAustria
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems ScienceUniversity of ViennaViennaAustria
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Elke Korb
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Tatjana Svoboda
- Functional Microbiology, Institute of Microbiology, Department of PathobiologyUniversity of Veterinary MedicineViennaAustria
| | - Erika Garner‐Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Michael Kundi
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Monika Ehling‐Schulz
- Functional Microbiology, Institute of Microbiology, Department of PathobiologyUniversity of Veterinary MedicineViennaAustria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Aleksandra Inic‐Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
6
|
Garner-Spitzer E, Wagner A, Gudipati V, Schoetta AM, Orola-Taus M, Kundi M, Kunert R, Mayrhofer P, Huppa JB, Stockinger H, Carsetti R, Gattinger P, Valenta R, Kratzer B, Sehgal ANA, Pickl WF, Reinisch W, Novacek G, Wiedermann U. Lower magnitude and faster waning of antibody responses to SARS-CoV-2 vaccination in anti-TNF-α-treated IBD patients are linked to lack of activation and expansion of cTfh1 cells and impaired B memory cell formation. EBioMedicine 2023; 96:104788. [PMID: 37672867 PMCID: PMC10485594 DOI: 10.1016/j.ebiom.2023.104788] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) and healthy controls received primary SARS-CoV-2-mRNA vaccination and a booster after six months. Anti-TNF-α-treated patients showed significantly lower antibody (Ab) levels and faster waning than α4β7-integrin-antagonist recipients and controls. This prospective cohort study aimed to elucidate the underlying mechanisms on the basis of circulating T-follicular helper cells (cTfh) and B memory cells. METHODS We measured SARS-CoV-2- Wuhan and Omicron specific Abs, B- and T-cell subsets at baseline and kinetics of Spike (S)-specific B memory cells along with distributions of activated cTfh subsets before and after primary and booster vaccination. FINDINGS Lower and faster waning of Ab levels in anti-TNF-α treated IBD patients was associated with low numbers of total and naïve B cells vs. expanded plasmablasts prior to vaccination. Along with their low Ab levels against Wuhan and Omicron VOCs, reduced S-specific B memory cells were identified after the 2nd dose which declined to non-detectable after 6 months. In contrast, IBD patients with α4β7-integrin-antagonists and controls mounted and retained high Ab levels after the 2nd dose, which was associated with a pronounced increase in S-specific B memory cells that were maintained or expanded up to 6 months. Booster vaccination led to a strong increase of Abs with neutralizing capacity and S-specific B memory cells in these groups, which was not the case in anti-TNF-α treated IBD patients. Of note, Ab levels and S-specific B memory cells in particular post-booster correlated with the activation of cTfh1 cells after primary vaccination. INTERPRETATIONS The reduced magnitude, persistence and neutralization capacity of SARS-CoV-2 specific Abs after vaccination in anti-TNF-α-treated IBD patients were associated with impaired formation and maintenance of S-specific B memory cells, likely due to absent cTfh1 activation leading to extra-follicular immune responses and diminished B memory cell diversification. These observations have implications for patient-tailored vaccination schedules/vaccines in anti-TNF-α-treated patients, irrespective of their underlying disease. FUNDING The study was funded by third party funding of the Institute of Specific Prophylaxis and Tropical Medicine at the Medical University Vienna. The funders had no role in study design, data collection, data analyses, interpretation, or writing of report.
Collapse
Affiliation(s)
- Erika Garner-Spitzer
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Vienna, Austria.
| | - Angelika Wagner
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Vienna, Austria
| | - Venugopal Gudipati
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Anna-Margarita Schoetta
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maria Orola-Taus
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Vienna, Austria
| | - Michael Kundi
- Medical University of Vienna, Center for Public Health, Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Johannes B Huppa
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Rita Carsetti
- B Cell Research Unit, Immunology Research Area, Bambino Gesu Children's Hospital, IRCCS; Rome, Italy
| | - Pia Gattinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Division of Immunopathology, Vienna, Austria
| | - Rudolf Valenta
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Department of Pathophysiology and Allergy Research, Division of Immunopathology, Vienna, Austria; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Bernhard Kratzer
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Al Nasar Ahmed Sehgal
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Winfried F Pickl
- Karl Landsteiner University of Health Sciences, Krems, Austria; Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Walter Reinisch
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gottfried Novacek
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ursula Wiedermann
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Vienna, Austria.
| |
Collapse
|
7
|
Prechtl P, Schmitz T, Pochert N, Traidl-Hoffmann C, Linseisen J, Meisinger C, Freuer D. Association between body fat distribution and B-lymphocyte subsets in peripheral blood. Immun Ageing 2023; 20:47. [PMID: 37705078 PMCID: PMC10498588 DOI: 10.1186/s12979-023-00372-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Obesity is associated with chronic low-grade inflammation, which is underpinned by the presence of elevated levels of circulating proinflammatory cytokines in obese individuals. Due to the close relationship between adipose tissue and the immune system, it can be speculated that the accumulation of fat may influence the frequency and phenotype of lymphocyte populations. The aim of our study was to investigate whether body fat distribution is associated with B lymphocyte composition in peripheral blood. We examined the association between visceral (VAT) and total body fat (TBF) and the frequencies of B-cell subsets in 238 subjects over a period of up to one year using random intercept models. B lymphocyte subsets were determined by fluorescence-based flow cytometry. RESULTS Inverse associations were found between body fat measurements and plasma blasts, memory B cells, and IgM-IgD- cells. VAT, but not TBF, was positively associated with naive CD19 cells. In our analyses, both VAT and TBF showed positive associations with IgD only B cells. CONCLUSIONS In conclusion, body fat accumulation seems to be associated with a lower proportion of antibody-secreting plasma blasts and memory cells and an increasing amount of partially anergic, naive CD19 cells.
Collapse
Affiliation(s)
- Pia Prechtl
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU, Munich, Munich, Germany
| | - Timo Schmitz
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Nicole Pochert
- Institute of Environmental Medicine, Helmholtz Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital of Augsburg, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, Helmholtz Munich, Munich, Germany
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Jakob Linseisen
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU, Munich, Munich, Germany
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Dennis Freuer
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
8
|
Kar M, Jamwal A, Dubey A, Sahu C, Patel SS, Fatima N. Clinical presentations and microbiological analysis of cerebrospinal fluid samples in cases of suspected bacterial meningitis patients attending a 1600 bedded teaching hospital from 2019 to 2022: A retrospective study. J Family Med Prim Care 2023; 12:1893-1900. [PMID: 38024911 PMCID: PMC10657087 DOI: 10.4103/jfmpc.jfmpc_2330_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background Meningitis can be attributed to bacterial, fungal, or viral agents. In this study, we demonstrate the common bacterial agents causing meningitis along with their antibiotics susceptibility pattern in patients of all age groups. Material and Methods This retrospective, observational study was carried out in the Department of Microbiology with cerebrospinal fluid (CSF) samples collected from November 2019 to May 2022. We collected 1986 nonrepeat CSF samples from clinically suspected patients of bacterial meningitis, and clinical information about the patients was extracted from the hospital information system. Results Out of the 1986 CSF samples included in our study, 150 (7.55%) were found to be positive on bacterial culture. Most of our patients were in the age group of 0-20 years. Common clinical manifestations observed in our patients were: high-grade fever, 87 patients (58%); severe headache, 126 patients (84%); neck rigidity, 47 patients (31.3%); altered mental status, 76 patients (50.7%) and photophobia, 83 patients (55.3%). The most commonly isolated bacteria was Acinetobacter species (30%). The mean length of hospitalization (37.76 ± 25.30), the mean total cell count, high levels of protein (mg/dl) and low levels of glucose (mg/dl) of CSF were statistically significant in meningitis caused by multidrug-resistant bacteria. Conclusion We recognized the spectrum of pathogens causing meningitis at our center along with the antibiotic resistance pattern to guide and facilitate early treatment by primary health care professionals and family medicine practitioners.
Collapse
Affiliation(s)
- Mitra Kar
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ashima Jamwal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Akanksha Dubey
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sangram Singh Patel
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nida Fatima
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Bestehorn-Willmann M, Girl P, Greiner F, Mackenstedt U, Dobler G, Lang D. Increased Vaccination Diversity Leads to Higher and Less-Variable Neutralization of TBE Viruses of the European Subtype. Vaccines (Basel) 2023; 11:1044. [PMID: 37376433 DOI: 10.3390/vaccines11061044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an infectious disease of the central nervous system. The causative agent is the tick-borne encephalitis virus (TBEV), which is most commonly transmitted by tick bites, but which may also be transmitted through the consumption of raw dairy products or, in rare instances, via infected transfusions, transplants, or the slaughter of infected animals. The only effective preventive option is active immunization. Currently, two vaccines are available in Europe-Encepur® and FSME-IMMUN®. In Central, Eastern, and Northern Europe, isolated TBEV genotypes belong mainly to the European subtype (TBEV-EU). In this study, we investigated the ability of these two vaccines to induce neutralizing antibodies against a panel of diverse natural TBEV-EU isolates from TBE-endemic areas in southern Germany and in regions of neighboring countries. Sera of 33 donors vaccinated with either FSME-IMMUN®, Encepur®, or a mixture of both were tested against 16 TBEV-EU strains. Phylogenetic analysis of the TBEV-EU genomes revealed substantial genetic diversity and ancestry of the identified 13 genotypic clades. Although all sera were able to neutralize the TBEV-EU strains, there were significant differences among the various vaccination groups. The neutralization assays revealed that the vaccination using the two different vaccine brands significantly increased neutralization titers, decreased intra-serum variance, and reduced the inter-virus variation.
Collapse
Affiliation(s)
- Malena Bestehorn-Willmann
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Franziska Greiner
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ute Mackenstedt
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Gerhard Dobler
- Institute for Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Daniel Lang
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| |
Collapse
|
10
|
Stone ET, Pinto AK. T Cells in Tick-Borne Flavivirus Encephalitis: A Review of Current Paradigms in Protection and Disease Pathology. Viruses 2023; 15:958. [PMID: 37112938 PMCID: PMC10146733 DOI: 10.3390/v15040958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The family Flaviviridae is comprised of a diverse group of arthropod-borne viruses that are the etiological agents of globally relevant diseases in humans. Among these, infection with several of these flaviviruses-including West Nile virus (WNV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Powassan virus (POWV)-can result in neuroinvasive disease presenting as meningitis or encephalitis. Factors contributing to the development and resolution of tick-borne flavivirus (TBEV, POWV) infection and neuropathology remain unclear, though many recently undertaken studies have described the virus-host interactions underlying encephalitic disease. With access to neural tissues despite the selectively permeable blood-brain barrier, T cells have emerged as one notable contributor to neuroinflammation. The goal of this review is to summarize the recent advances in tick-borne flavivirus immunology-particularly with respect to T cells-as it pertains to the development of encephalitis. We found that although T cell responses are rarely evaluated in a clinical setting, they are integral in conjunction with antibody responses to restricting the entry of TBFV into the CNS. The extent and means by which they can drive immune pathology, however, merits further study. Understanding the role of the T cell compartment in tick-borne flavivirus encephalitis is instrumental for improving vaccine safety and efficacy, and has implications for treatments and interventions for human disease.
Collapse
Affiliation(s)
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA
| |
Collapse
|
11
|
Egyed L, Nagy A, Lakos A, Zöldi V, Lang Z. Tick-borne encephalitis epidemic in Hungary 1951-2021: The story and lessons learned. Zoonoses Public Health 2023; 70:81-92. [PMID: 36205381 DOI: 10.1111/zph.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 01/07/2023]
Abstract
The authors analysed epidemiological data of the Hungarian tick-borne encephalitis epidemic from the past seven decades. A total of 911 meningitis serosa cases were described from 1930-1950 s by local hospital physicians, indicating that the virus had been present in the country decades before its official identification in 1952. The virus spread freely in the 1950s-1960s, occupying almost all habitats where ticks occurred in large numbers. The increasing number of cases drove authorities to classify this illness as a notifiable disease in 1977 and to organize the first measures to stop the epidemic. Statistical analysis revealed that the large-scale vaccination launched from the 1990s was responsible for the sharp decrease in the number of human cases from 1997. A significant negative correlation was found between the number of vaccine doses sold and human cases 6 years later. The TBEV endemic area covers 16.57% of the territory and 16.65% of the population of the country. In the last 10 years, 186,000 vaccine doses/year in average were enough to keep the incidence of human TBEV infections between 0.45 and 0.06/100,000 persons. A 20-year-long study found evidence for easing clinical signs in TBEV-infected hospitalized patients. Statistics found a sharp decrease in the number of samples sent for TBEV diagnosis after 1989. Male dominance of patients was characteristic of the epidemics since the 1940s, but now analysis of detailed data from the 1981-2021 period (60.5%-87.5%) proved the statistical significance of this dominance. Obviously, the voluntary vaccination programme was the tool which broke the spread of the epidemic. Widespread public awareness of the disease and the tick vector, probable evolutionary spread of less pathogenic virus strains supplemented with the vaccination campaign led to a negligible level of human TBE cases in Hungary in the last years.
Collapse
Affiliation(s)
- László Egyed
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Centre, Budapest, Hungary
| | - András Lakos
- Centre for Tick-borne Diseases, Budapest, Hungary
| | - Viktor Zöldi
- Department of Pest Control, National Centre for Epidemiology, Budapest, Hungary
| | - Zsolt Lang
- Department of Biomathematics and Informatics, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
12
|
Quach HQ, Chen J, Monroe JM, Ratishvili T, Warner ND, Grill DE, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. The Influence of Sex, Body Mass Index, and Age on Cellular and Humoral Immune Responses Against Measles After a Third Dose of Measles-Mumps-Rubella Vaccine. J Infect Dis 2022; 227:141-150. [PMID: 35994504 DOI: 10.1093/infdis/jiac351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A third dose of measles-mumps-rubella vaccine (MMR3) is recommended in mumps outbreak scenarios, but the immune response and the need for widespread use of MMR3 remain uncertain. Herein, we characterized measles-specific immune responses to MMR3 in a cohort of 232 healthy subjects. METHODS Serum and peripheral blood mononuclear cells (PBMCs) were sampled at day 0 and day 28 after MMR3. Measles-specific binding and neutralizing antibodies were quantified in sera by enzyme-linked immunosorbent assay and a microneutralization assay, respectively. PBMCs were stimulated with inactivated measles virus, and the release of cytokines/chemokines was assessed by a multiplex assay. Demographic variables of subjects were examined for potential correlations with immune outcomes. RESULTS Of the study participants, 95.69% and 100% were seropositive at day 0 and day 28, respectively. Antibody avidity significantly increased from 38.08% at day 0 to 42.8% at day 28 (P = .00026). Neutralizing antibodies were significantly enhanced, from 928.7 at day 0 to 1289.64 mIU/mL at day 28 (P = .0001). Meanwhile, cytokine/chemokine responses remained largely unchanged. Body mass index was significantly correlated with the levels of inflammatory cytokines/chemokines. CONCLUSIONS Measles-specific humoral immune responses, but not cellular responses, were enhanced after MMR3 receipt, extending current understanding of immune responses to MMR3 and supporting MMR3 administration to seronegative or high-risk individuals.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon M Monroe
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathaniel D Warner
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Diane E Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Hameed M, Geerling E, Pinto AK, Miraj I, Weger-Lucarelli J. Immune response to arbovirus infection in obesity. Front Immunol 2022; 13:968582. [PMID: 36466818 PMCID: PMC9716109 DOI: 10.3389/fimmu.2022.968582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 12/26/2023] Open
Abstract
Obesity is a global health problem that affects 650 million people worldwide and leads to diverse changes in host immunity. Individuals with obesity experience an increase in the size and the number of adipocytes, which function as an endocrine organ and release various adipocytokines such as leptin and adiponectin that exert wide ranging effects on other cells. In individuals with obesity, macrophages account for up to 40% of adipose tissue (AT) cells, three times more than in adipose tissue (10%) of healthy weight individuals and secrete several cytokines and chemokines such as interleukin (IL)-1β, chemokine C-C ligand (CCL)-2, IL-6, CCL5, and tumor necrosis factor (TNF)-α, leading to the development of inflammation. Overall, obesity-derived cytokines strongly affect immune responses and make patients with obesity more prone to severe symptoms than patients with a healthy weight. Several epidemiological studies reported a strong association between obesity and severe arthropod-borne virus (arbovirus) infections such as dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), and Sindbis virus (SINV). Recently, experimental investigations found that DENV, WNV, CHIKV and Mayaro virus (MAYV) infections cause worsened disease outcomes in infected diet induced obese (DIO) mice groups compared to infected healthy-weight animals. The mechanisms leading to higher susceptibility to severe infections in individuals with obesity remain unknown, though a better understanding of the causes will help scientists and clinicians develop host directed therapies to treat severe disease. In this review article, we summarize the effects of obesity on the host immune response in the context of arboviral infections. We have outlined that obesity makes the host more susceptible to infectious agents, likely by disrupting the functions of innate and adaptive immune cells. We have also discussed the immune response of DIO mouse models against some important arboviruses such as CHIKV, MAYV, DENV, and WNV. We can speculate that obesity-induced disruption of innate and adaptive immune cell function in arboviral infections ultimately affects the course of arboviral disease. Therefore, further studies are needed to explore the cellular and molecular aspects of immunity that are compromised in obesity during arboviral infections or vaccination, which will be helpful in developing specific therapeutic/prophylactic interventions to prevent immunopathology and disease progression in individuals with obesity.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, United States
| | - Iqra Miraj
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Garner-Spitzer E, Wagner A, Kundi M, Stockinger H, Ohradanova-Repic A, Gebetsberger L, Schoetta AM, Gudipati V, Huppa JB, Kunert R, Mayrhofer P, Kreil TR, Farcet MR, Hoeltl E, Wiedermann U. SARS-CoV-2-Specific Antibody (Ab) Levels and the Kinetic of Ab Decline Determine Ab Persistence Over 1 Year. Front Med (Lausanne) 2022; 9:822316. [PMID: 35242786 PMCID: PMC8885586 DOI: 10.3389/fmed.2022.822316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
In a SARS-CoV-2 seroprevalence study conducted with 1,655 working adults in spring of 2020, 12 of the subjects presented with positive neutralization test (NT) titers (>1:10). They were here followed up for 1 year to assess their Ab persistence. We report that 7/12 individuals (58%) had NT_50 titers ≥1:50 and S1-specific IgG ≥50 BAU/ml 1 year after mild COVID-19 infection. S1-specific IgG were retained until a year when these levels were at least >60 BAU/ml at 3 months post-infection. For both the initial fast and subsequent slow decline phase of Abs, we observed a significant correlation between NT_50 titers and S1-specific IgG and thus propose S1-IgG of 60 BAU/ml 3 months post-infection as a potential threshold to predict neutralizing Ab persistence for 1 year. NT_50 titers and S1-specific IgG also correlated with circulating S1-specific memory B-cells. SARS-CoV-2-specific Ab levels after primary mRNA vaccination in healthy controls were higher (Geometric Mean Concentration [GMC] 3158 BAU/ml [CI 2592 to 3848]) than after mild COVID-19 infection (GMC 82 BAU/ml [CI 48 to 139]), but showed a stronger fold-decline within 5-6 months (0.20-fold, to GMC 619 BAU/ml [CI 479 to 801] vs. 0.56-fold, to GMC 46 BAU/ml [CI 26 to 82]). Of particular interest, the decline of both infection- and vaccine-induced Abs correlated with body mass index. Our data contribute to describe decline and persistence of SARS-CoV-2-specific Abs after infection and vaccination, yet the relevance of the maintained Ab levels for protection against infection and/or disease depends on the so far undefined correlate of protection.
Collapse
Affiliation(s)
- Erika Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna-Margarita Schoetta
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Venugopal Gudipati
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B. Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Renate Kunert
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrick Mayrhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas R. Kreil
- Global Pathogen Safety, Baxter AG, a Takeda company, Vienna, Austria
| | - Maria R. Farcet
- Global Pathogen Safety, Baxter AG, a Takeda company, Vienna, Austria
| | - Eva Hoeltl
- Health Center Erste Bank, Erste Bank, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Westheim AJF, Bitorina AV, Theys J, Shiri‐Sverdlov R. COVID-19 infection, progression, and vaccination: Focus on obesity and related metabolic disturbances. Obes Rev 2021; 22:e13313. [PMID: 34269511 PMCID: PMC8420274 DOI: 10.1111/obr.13313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023]
Abstract
Coronaviruses are constantly circulating in humans, causing common colds and mild respiratory infections. In contrast, infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease-2019 (COVID-19), can cause additional severe complications, particularly in patients with obesity and associated metabolic disturbances. Obesity is a principal causative factor in the development of the metabolic syndrome; a series of physiological, biochemical, clinical, and metabolic factors that increase the risk of obesity-associated diseases. "Metabolically unhealthy" obesity is, in addition to metabolic disturbances, also associated with immunological disturbances. As such, patients with obesity are more prone to develop serious complications from infections, including those from SARS-CoV-2. In this review, we first describe how obesity and related metabolic disturbances increase the risk of SARS-CoV-2 infection. Then, mechanisms contributing to COVID-19 complications and poor prognosis in these patients are discussed. Finally, we discuss how obesity potentially reduces long-term COVID-19 vaccination efficacy. Despite encouraging COVID-19 vaccination results in patients with obesity and related metabolic disturbances in the short-term, it is becoming increasingly evident that long-term COVID-19 vaccination efficacy should be closely monitored in this vulnerable group.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW‐Research School for Oncology and ReproductionMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Albert V. Bitorina
- Department of Molecular Genetics, NUTRIM‐School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW‐Research School for Oncology and ReproductionMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Ronit Shiri‐Sverdlov
- Department of Molecular Genetics, NUTRIM‐School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| |
Collapse
|
16
|
Thomas AL, Alarcon PC, Divanovic S, Chougnet CA, Hildeman DA, Moreno-Fernandez ME. Implications of Inflammatory States on Dysfunctional Immune Responses in Aging and Obesity. FRONTIERS IN AGING 2021; 2:732414. [PMID: 35822048 PMCID: PMC9261339 DOI: 10.3389/fragi.2021.732414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Aging and obesity are two conditions characterized by chronic, low-grade inflammation. While both conditions are also associated with dysfunctional immune responses, the shared and distinct underlying mechanisms are just starting to be uncovered. In fact, recent findings have suggested that the effects of obesity on the immune system can be thought of as a state of accelerated aging. Here we propose that chronic, low-grade inflammation seen in obesity and aging is complex, affects multiple cell types, and results in an altered basal immune state. In aging, part of this altered state is the emergence of regulatory immune populations that lead to further immune dysfunction in an attempt to reduce chronic inflammation. While in obesity, part of the altered state is the effect of expanding adipose tissue on immune cell function. Thus, in this review, we compare, and contrast altered immune states in aging and obesity and discuss their potential contribution to a shared clinical problem- decreased vaccine responsiveness.
Collapse
Affiliation(s)
- Alyssa L. Thomas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pablo C. Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A. Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Transplant Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
17
|
Zhu JS, Zhang MX, Chien CW, Yang WY, Shi GF, Qiu S, Tung TH, Chen HX. Sex Differences in Adverse Reactions to an Inactivated SARS-CoV-2 Vaccine Among Medical Staff in China. Front Med (Lausanne) 2021; 8:731593. [PMID: 34568389 PMCID: PMC8455952 DOI: 10.3389/fmed.2021.731593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Objective: We investigated whether there were sex differences in adverse reactions to an inactivated SARS-CoV-2 vaccine among medical staff in China. Methods: From 24 February to 7 March 2021 an online cross-sectional survey was conducted with a self-administered COVID-19 vaccine questionnaire among medical staff in Taizhou, China. In total, 1397 interviewees (1,107 women and 290 men) participated in the survey. Results: In our study, 178 (16.1%) women and 23 (7.9%) men reported adverse reactions following their first vaccination, and 169 (15.3%) women and 35 (12.1%) men reported adverse reactions following their second vaccination. After adjusting for confounding factors, adverse reactions to other vaccines, worry about adverse reactions, knowledge of the inactivated vaccine being used in the hospital, taking the vaccine for one's family proactively and receiving an influenza vaccination were significantly related to adverse reactions to both injections in women. In contrast, in men, concerns about adverse reactions independently increased the risk of adverse reactions following either vaccination, and a history of adverse reactions to other vaccines also increased the risk of adverse reactions to both injections. Conclusions: Sex differences in the frequency of reported adverse reactions to an inactivated SARS-CoV-2 vaccine and potential factors were demonstrated in a sample of medical staff.
Collapse
Affiliation(s)
- Jian-Sheng Zhu
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Mei-Xian Zhang
- Evidence-Based Medicine Center, Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ching-Wen Chien
- Institute for Hospital Management, Tsing Hua University, Shenzhen, China
| | - Wei-Ying Yang
- Department of Intensive Care Unit, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Gui-Feng Shi
- Department of Preventive Health Care, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shulin Qiu
- Institute for Hospital Management, Tsinghua University, Shenzhen Campus, Shenzhen, China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Hai-Xiao Chen
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
18
|
Steffen R, Erber W, Schmitt HJ. Can the booster interval for the tick-borne encephalitis (TBE) vaccine 'FSME-IMMUN' be prolonged? - A systematic review. Ticks Tick Borne Dis 2021; 12:101779. [PMID: 34298356 DOI: 10.1016/j.ttbdis.2021.101779] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) vaccines are effective and well tolerated. However, their acceptance and use by the public in endemic areas are suboptimal. To some extent this is due to the complicated dosing schedule requiring frequent boosters at variable intervals that even change with age. Simplification of the dosing schedule has failed so far as it is debated if the persistence of TBE virus (TBEV) antibodies is the only relevant factor for protection or if immune memory plays a decisive role as well. The objective here is to present the available evidence to determine the need for boosters and their interval after a primary series of three doses of FSME-IMMUN. A systematic literature review was conducted with a focus on serology, particularly seropersistence, immune memory, effectiveness, and vaccine breakthroughs (VB) of FSME-IMMUN. While after a 3-dose primary series seropositivity persisted for more than 10 years in >90% of younger subjects, it dropped to 37.5% in those 60 years or older. In contrast, field effectiveness of FSME-IMMUN remains high in irregularly vaccinated subjects and thus does not correlate well with the percentage of subjects achieving an arbitrarily defined threshold of persisting antibodies. FSME-IMMUN booster doses led to increases in antibody responses within 7 days. VB are rare and remain poorly understood. VB did not increase, and vaccine effectiveness did not significantly decrease with time since completion of the primary vaccination series or with the time since administration of the last vaccine dose. For all these reasons, data identified from this systematic review suggest that seropersistence alone does not explain the high effectiveness of FSME-IMMUN irrespective of the time since the last vaccine dose was administered. Induction of immunological memory characterized by a rapid and sustained secondary immune response is proving to be an alternative mechanism of action for protection against TBE. In this context Switzerland and Finland have adopted a longer booster interval (i.e., 10 years) following the three-dose primary immunization schedule without any evidence of harm at a population level. Longer booster intervals will likely drive up vaccine uptake. There is a lack of data to base an interval recommendation beyond 10 years.
Collapse
Affiliation(s)
- R Steffen
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, Division of Infectious Diseases, World Health Organization Collaborating Centre for Travelers' Health, University of Zurich, Switzerland; Division of Epidemiology, Human Genetics & Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA.
| | - W Erber
- Pfizer Inc., Vienna, Austria
| | | |
Collapse
|
19
|
Alnomasy SF, Alotaibi BS, Mujamammi AH, Hassan EA, Ali ME. Microbial aspects and potential markers for differentiation between bacterial and viral meningitis among adult patients. PLoS One 2021; 16:e0251518. [PMID: 34115780 PMCID: PMC8195399 DOI: 10.1371/journal.pone.0251518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Meningitis is a medical emergency with permanent disabilities and high mortality worldwide. We aimed to determine causative microorganisms and potential markers for differentiation between bacterial and viral meningitis. METHODOLOGY Adult patients with acute meningitis were subjected to lumber puncture. Cerebrospinal fluid (CSF) microorganisms were identified using Real-time PCR. PCT and CRP levels, peripheral and CSF-leucocyte count, CSF-protein and CSF-glucose levels were assessed. RESULTS Out of 80 patients, infectious meningitis was confirmed in 75 cases; 38 cases were bacterial meningitis, 34 cases were viral meningitis and three cases were mixed infection. Higher PCT, peripheral and CSF-leukocytosis, higher CSF-protein and lower CSF-glucose levels were more significant in bacterial than viral meningitis patients. Neisseria meningitides was the most frequent bacteria and varicella-zoster virus was the most common virus. Using ROC analyses, serum PCT and CSF-parameters can discriminate bacterial from viral meningitis. Combined ROC analyses of PCT and CSF-protein significantly improved the effectiveness in predicting bacterial meningitis (AUC of 0.998, 100%sensitivity and 97.1%specificity) than each parameter alone (AUC of 0.951 for PCT and 0.996 for CSF-protein). CONCLUSION CSF-protein and serum PCT are considered as potential markers for differentiating bacterial from viral meningitis and their combination improved their predictive accuracy to bacterial meningitis.
Collapse
Affiliation(s)
- Sultan F. Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Al- Quwayiyah, Shaqra University, Al- Quwayiyah, Riyadh, Saudi Arabia
| | - Bader S. Alotaibi
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Al- Quwayiyah, Shaqra University, Al- Quwayiyah, Riyadh, Saudi Arabia
| | - Ahmed H. Mujamammi
- Department of Pathology, Clinical Biochemistry Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Elham A. Hassan
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine Assiut University, Assiut, Egypt
| | - Mohamed E. Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
20
|
Tuchynskaya K, Volok V, Illarionova V, Okhezin E, Polienko A, Belova O, Rogova A, Chernokhaeva L, Karganova G. Experimental Assessment of Possible Factors Associated with Tick-Borne Encephalitis Vaccine Failure. Microorganisms 2021; 9:1172. [PMID: 34072340 PMCID: PMC8229799 DOI: 10.3390/microorganisms9061172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Currently the only effective measure against tick-borne encephalitis (TBE) is vaccination. Despite the high efficacy of approved vaccines against TBE, rare cases of vaccine failures are well documented. Both host- and virus-related factors can account for such failures. In this work, we studied the influence of mouse strain and sex and the effects of cyclophosphamide-induced immunosuppression on the efficacy of an inactivated TBE vaccine. We also investigated how an increased proportion of non-infectious particles in the challenge TBE virus would affect the protectivity of the vaccine. The vaccine efficacy was assessed by mortality, morbidity, levels of viral RNA in the brain of surviving mice, and neutralizing antibody (NAb) titers against the vaccine strain and the challenge virus. Two-dose vaccination protected most animals against TBE symptoms and death, and protectivity depended on strain and sex of mice. Immunosuppression decreased the vaccine efficacy in a dose-dependent manner and changed the vaccine-induced NAb spectrum. The vaccination protected mice against TBE virus neuroinvasion and persistence. However, viral RNA was detected in the brain of some asymptomatic animals at 21 and 42 dpi. Challenge with TBE virus enriched with non-infectious particles led to lower NAb titers in vaccinated mice after the challenge but did not affect the protective efficacy.
Collapse
Affiliation(s)
- Ksenia Tuchynskaya
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Viktor Volok
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Illarionova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Egor Okhezin
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexandra Polienko
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Oxana Belova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Anastasia Rogova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Liubov Chernokhaeva
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Galina Karganova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
21
|
Wiedermann U, Garner-Spitzer E, Chao Y, Maglakelidze M, Bulat I, Dechaphunkul A, Arpornwirat W, Charoentum C, Yen CJ, Yau TC, Tanasanvimon S, Maneechavakajorn J, Sookprasert A, Bai LY, Chou WC, Ungtrakul T, Drinic M, Tobias J, Zielinski CC, Chong L, Ede NJ, Marino MT, Good AJ. Clinical and Immunologic Responses to a B-Cell Epitope Vaccine in Patients with HER2/neu-Overexpressing Advanced Gastric Cancer-Results from Phase Ib Trial IMU.ACS.001. Clin Cancer Res 2021; 27:3649-3660. [PMID: 33879458 DOI: 10.1158/1078-0432.ccr-20-3742] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/30/2020] [Accepted: 04/16/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE HER2/neu is overexpressed in up to 30% of gastroesophageal adenocarcinomas (GEA) and linked to poor prognosis. Recombinant mAbs to treat HER2/neu-overexpressing cancers are effective with limitations, including resistance and toxicity. Therefore, we developed a therapeutic B-cell epitope vaccine (IMU-131/HER-Vaxx) consisting of three fused B-cell epitopes from the HER2/neu extracellular domain coupled to CRM197 and adjuvanted with Montanide. This phase Ib study aimed to evaluate the optimal/safe dose leading to immunogenicity and clinical responses (https//clinicaltrials.gov/ct2/show/NCT02795988). PATIENTS AND METHODS A total of 14 patients with HER2/neu-overexpressing GEA were enrolled, and dose escalation (10, 30, 50 μg) was performed in three cohorts (C). Immunogenicity was evaluated by HER2-specific Abs and cellular responses, clinical responses by CT scans according to RECIST version 1.1. RESULTS IMU-131 was safe without vaccine-related significant local/systemic reactions or serious adverse events. A total of 11 of 14 patients were evaluable for changes in tumor size and vaccine-specific immune responses. One patient showed complete, 5 partial responses, and 4 stable diseases as their best response. HER2-specific IgG levels were dose dependent. In contrast to patients in C1 and C2, all patients in C3 mounted substantial HER2-specific Ab levels. In addition, cellular vaccine responses, such as Th1-biased cytokine ratios and reduced regulatory T cell numbers, were generated. Progression-free survival was prolonged in C3, correlating with the vaccine-specific humoral and cellular responses. CONCLUSIONS IMU-131 was well tolerated and safe. The induced HER2-specific Abs and cellular responses were dose dependent and correlated with clinical responses. The highest dose (50 μg) was recommended for further evaluation in a phase II trial, with chemotherapy + IMU-131 or chemotherapy alone, which is currently ongoing.
Collapse
Affiliation(s)
- Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Erika Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Iurie Bulat
- ARENSIA Exploratory Medicine Research Unit, Institute of Oncology, Chisinau, Republic of Moldova
| | - Arunee Dechaphunkul
- Department of Medicine, Songklanagarind Hospital, Prince of Songkla University, Hat Yai, Thailand
| | | | - Chaiyut Charoentum
- Maharaj Nakorn Chiang Mai Hospital, Mueang Chiang Mai District, Thailand
| | | | - Thomas Cheung Yau
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong
| | | | | | | | - Li-Yuan Bai
- China Medical University Hospital, Taichung City, Taiwan
| | - Wen-Chi Chou
- Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Teerapat Ungtrakul
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - Mirjana Drinic
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
22
|
The Effect of Lipid Metabolism on CD4 + T Cells. Mediators Inflamm 2021; 2021:6634532. [PMID: 33505215 PMCID: PMC7806377 DOI: 10.1155/2021/6634532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
CD4+ T cells play a vital role in the adaptive immune system and are involved in the pathogenesis of many diseases, including cancer, autoimmune diseases, and chronic inflammation. As an important mechanism for energy storage, a lot of researches have clarified that metabolism imbalance interacts with immune disorder, and one leads to the other. Lipid metabolism has close relationship with CD4+ T cells. In this review, we discuss fatty acid, cholesterol, prostaglandin, and phospholipid metabolism in CD4+ T cell subsets. Fatty acid β-oxidation (FAO) is activated in Th17 cell to support the proinflammatory function. Cholesterol promotes Th1, Th2, and Treg cell differentiation. In addition to glucose metabolism, lipid metabolism is also very important for immunity. Here, it is highlighted that lipid metabolism regulates CD4+ T cell differentiation and function and is related to diseases.
Collapse
|