1
|
Fajdiga L, Zemljič Š, Kokalj T, Derganc J. Shear flow deformability cytometry: A microfluidic method advancing towards clinical use - A review. Anal Chim Acta 2025; 1355:343894. [PMID: 40274322 DOI: 10.1016/j.aca.2025.343894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Shear flow deformability cytometry is an emerging microfluidic technique that has undergone significant advances in the last few years and offers considerable potential for clinical diagnostics and disease monitoring. By simultaneously measuring mechanical and morphological parameters of single cells, it offers a comprehensive extension of traditional cell analysis, delivering unique insight into cell deformability, which is gaining recognition as a novel biomarker for health and disease. Due to its operating principle, the method is particularly suitable for the clinical analysis of blood samples. RESULTS This review focuses on the recent developments in shear flow deformability cytometry, which is a widely adopted variant of deformability cytometry. It has a strong potential for applications in clinical practice due to its robust and simple operation, demonstrated applications with whole blood samples, as well as its high throughput, which can reach approximately 1000 cells per second. We begin by discussing some basic factors that influence the mechanical properties of cells and give an overview of deformability cytometry and its operational principles for samples from blood, cultured cells and tissues. Next, we review recent clinically relevant applications in analysis of blood and cancer cells. Finally, we address key challenges to clinical adoption, such as regulatory approval, scalable manufacturing, and workflow integration, emphasizing the need for further validation studies to facilitate clinical implementation. SIGNIFICANCE This article uniquely emphasizes the clinical relevance of microfluidic shear flow deformability cytometry, by giving an overview of mechanical and morphological biomarkers studied in clinically significant samples. In addition, it addresses critical barriers to clinical translation. By identifying these obstacles, this article aims to demonstrate the potential of deformability cytometry to bridge the gap between the research and the routine medical practice.
Collapse
Affiliation(s)
- Lija Fajdiga
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Špela Zemljič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Tadej Kokalj
- Institute of Metals and Technology, Lepi pot 11, 1000, Ljubljana, Slovenia.
| | - Jure Derganc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Carravilla P, Andronico L, Schlegel J, Urem YB, Sjule E, Ragaller F, Weber F, Gurdap CO, Ascioglu Y, Sych T, Lorent J, Sezgin E. Measuring plasma membrane fluidity using confocal microscopy. Nat Protoc 2025:10.1038/s41596-024-01122-8. [PMID: 39972239 DOI: 10.1038/s41596-024-01122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/29/2024] [Indexed: 02/21/2025]
Abstract
Membrane fluidity is a crucial parameter for cellular physiology. Recent evidence suggests that fluidity varies between cell types and states and in diseases. As membrane fluidity has gradually become an important consideration in cell biology and biomedicine, it is essential to have reliable and quantitative ways to measure it in cells. In the past decade, there has been substantial progress both in chemical probes and in imaging tools to make membrane fluidity measurements easier and more reliable. We have recently established a robust pipeline, using confocal imaging and new environment-sensitive probes, that has been successfully used for several studies. Here we present our detailed protocol for membrane fluidity measurement, from labeling to imaging and image analysis. The protocol takes ~4 h and requires basic expertise in cell culture, wet lab and microscopy.
Collapse
Affiliation(s)
- Pablo Carravilla
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Luca Andronico
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yagmur B Urem
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ellen Sjule
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Franziska Ragaller
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Florian Weber
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Upper Austria University of Applied Sciences, Department Medical Engineering, Linz, Austria
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yavuz Ascioglu
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Joseph Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
- Cellular and Molecular Pharmacology, Translational Research from Experimental and Clinical Pharmacology to Treatment Optimization, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
3
|
Ríos-Ríos WDJ, Torres-Aguilar H. Mixed Leukocyte Reaction Using Human Blood Monocyte-Derived Dendritic Cells and Memory CD4 + T Cells. Methods Mol Biol 2025; 2907:287-298. [PMID: 40100603 DOI: 10.1007/978-1-0716-4430-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The mixed leukocyte reaction (MLR) is a crucial in vitro functional assay to evaluate T-cell priming, specifically their activation and clonal expansion when stimulated with antigen presenting cells. The use of monocyte-derived dendritic cells (moDCs) in this assay is particularly noteworthy as they can induce antigen-specific responses using autologous T cells or alloreactive responses using allogenous T cells and stimulating both naïve and/or memory. These outstanding attributes make moDCs a valuable tool for assessing alloreactivity, such as before allogeneic stem cell transplantation (and the potential development of graft-versus-host disease) or when required to analyze the impact of external factors (such as suppressive drugs) on T-cell responses. This chapter presents a comprehensive protocol for isolating peripheral blood human monocytes, differentiating them into moDCs in vitro, and applying them in an MLR assay to evaluate alloreactive memory T-cell responses using flow cytometry.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Clinical and Basic Immunology Research Department of Biochemical Sciences Faculty, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| | - Honorio Torres-Aguilar
- Clinical and Basic Immunology Research Department of Biochemical Sciences Faculty, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
4
|
Tamgadge S, Kamble N, Pereira T, Tamgadge A, Chande M, Acharya S. The study of elastic fibres in oral precancerous and cancerous lesions using Shikata's modified orcein stain: a retrospective study. Ecancermedicalscience 2024; 18:1798. [PMID: 39816382 PMCID: PMC11735127 DOI: 10.3332/ecancer.2024.1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 01/18/2025] Open
Abstract
Statement of the problem Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. During the invasion, tumour cells break through the basement membrane and penetrate the connective tissue to interact with the extracellular matrix. An attempt was made to evaluate the connective tissue changes in different grades of OSCCs, oral submucous fibrosis (OSMF) and Oral Epithelial Dysplasias. Literature related to the evaluation of malignant epithelial cells is vast but very sparse knowledge is available on the role of extracellular stromal fibres on tumour invasion in oral cancer and precancer especially on elastic fibres using Shikata's Modified Orcein Stain. Purpose To analyse the changes in elastic fibres in varying grades of OSCC, OSMF and Oral Epithelial Dysplasias using a special stain, Shikata's modified orcein stain. Materials and method A total of 100 cases were selected as the study group in this retrospective observational study. One section each was cut from 50 samples of varying grades of OSCC and 50 samples of varying grades of OSMF and oral leukoplakia. Ten samples of the control group were taken from the archives of the Department of Oral Pathology. Qualitative and quantitative analysis of elastic fibres was accomplished using set criteria. Spearman's test was done to evaluate the elastic fibres. Statistically insignificant results were obtained for quantitative and qualitative analysis of elastic fibres. Results A change in density in elastic fibres was observed in progression from early to advanced grades of OSCC, OSMF and oral epithelial dysplasia cases. A low expression of elastic fibres in tumour stoma indicates that the protective barrier against tumour progression is deficient, allowing the tumour to progress more easily and resulting in a poorer prognosis. Conclusion The elastic fibres undergo a change in density, orientation and packing in the stroma of varying grades of OSCC, OSMF and oral epithelial dysplasia cases. The unique feature of this study lies in the exploration of elastic fibres in OSCC which has not been done so far.
Collapse
Affiliation(s)
- Sandhya Tamgadge
- Department of Oral and Maxillofacial Pathology and Microbiology, DY Patil University School of Dentistry, Sector 7, Nerul, Navi Mumbai 400706, Maharashtra, India
| | - Nikita Kamble
- Department of Oral and Maxillofacial Pathology and Microbiology, DY Patil University School of Dentistry, Sector 7, Nerul, Navi Mumbai 400706, Maharashtra, India
| | - Treville Pereira
- Department of Oral and Maxillofacial Pathology and Microbiology, DY Patil University School of Dentistry, Sector 7, Nerul, Navi Mumbai 400706, Maharashtra, India
| | - Avinash Tamgadge
- Department of Oral and Maxillofacial Pathology and Microbiology, DY Patil University School of Dentistry, Sector 7, Nerul, Navi Mumbai 400706, Maharashtra, India
| | - Mayura Chande
- Department of Oral and Maxillofacial Pathology and Microbiology, DY Patil University School of Dentistry, Sector 7, Nerul, Navi Mumbai 400706, Maharashtra, India
| | - Siddharth Acharya
- Department of Public Health Dentistry, DY Patil University School of Dentistry, Nerul Navi Mumbai, Sector 7, Nerul, Navi Mumbai 400706, Maharashtra, India
| |
Collapse
|
5
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
6
|
Hou W, Shen L, Zhu Y, Wang X, Du T, Yang F, Zhu Y. Fullerene Derivatives for Tumor Treatment: Mechanisms and Application. Int J Nanomedicine 2024; 19:9771-9797. [PMID: 39345909 PMCID: PMC11430870 DOI: 10.2147/ijn.s476601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Fullerenes hold tremendous potential as alternatives to conventional chemotherapy or radiotherapy for tumor treatment due to their abilities to photodynamically kill tumor cells, destroy the tumor vasculature, inhibit tumor metastasis and activate anti-tumor immune responses, while protecting normal tissue through antioxidative effects. The symmetrical hollow molecular structures of fullerenes with abundant C=C bonds allow versatile chemical modification with diverse functional groups, metal clusters and biomacromolecules to synthesize a wide range of fullerene derivatives with increased water solubility, improved biocompatibility, enhanced photodynamic properties and stronger targeting abilities. This review introduces the anti-tumor mechanisms of fullerenes and summarizes the most recent works on the functionalization of fullerenes and the application of fullerene derivatives in tumor treatment. This review aims to serve as a valuable reference for further development and clinical application of anti-tumor fullerene derivatives.
Collapse
Affiliation(s)
- Wenjia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lan Shen
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yimin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xuanjia Wang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
7
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
8
|
Hart NR. Paradoxes: Cholesterol and Hypoxia in Preeclampsia. Biomolecules 2024; 14:691. [PMID: 38927094 PMCID: PMC11201883 DOI: 10.3390/biom14060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/βcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia.
Collapse
Affiliation(s)
- Nancy R Hart
- PeaceHealth St. Joseph Medical Center, Bellingham, WA 98225, USA
| |
Collapse
|
9
|
Pecci F, Cantini L, Cognigni V, Perrone F, Mazzaschi G, Agostinelli V, Mentrasti G, Favari E, Maffezzoli M, Cortellini A, Rossi F, Chiariotti R, Venanzi FM, Lo Russo G, Galli G, Proto C, Ganzinelli M, Tronconi F, Morgese F, Campolucci C, Moretti M, Vignini A, Tiseo M, Minari R, Rocchi MLB, Buti S, Berardi R. Prognostic Impact of Blood Lipid Profile in Patients With Advanced Solid Tumors Treated With Immune Checkpoint Inhibitors: A Multicenter Cohort Study. Oncologist 2024; 29:e372-e381. [PMID: 37796838 PMCID: PMC10911919 DOI: 10.1093/oncolo/oyad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Specific components of lipid profile seem to differently impact on immune activity against cancer and unraveling their prognostic role in patients with solid cancer treated with immune checkpoint inhibitors (ICIs) is needed. MATERIALS AND METHODS We retrospectively collected baseline clinicopathological characteristics including circulating lipid profile (total cholesterol [TC], triglycerides [TG], low-density lipoproteins [LDL], high-density lipoproteins [HDL]) of patients with consecutive solid cancer treated with ICIs, and we investigated their role in predicting clinical outcomes. RESULTS At a median follow-up of 32.9 months, among 430 enrolled patients, those with TC ≥ 200 mg/dl showed longer median progression-free survival (mPFS; 6.6 vs. 4.7 months, P = .4), although not reaching statistical significance, and significantly longer median overall survival (mOS; 19.4 vs. 10.8 months, P = .02) compared to those with TC < 200 mg/dl. Conversely, patients with TG ≥150 mg/dl displayed shorter PFS (3.4 vs. 5.1 months, P = .02) and OS (7.1 vs. 12.9 months, P = .009) compared to those with TG <150 mg/dl. TC and TG were then combined in a "LIPID score" identifying three subgroups: good-risk (GR) (TC ≥200 mg/dl and TG <150 mg/dl), intermediate-risk (IR) (TC <200 mg/dl and TG <150 mg/dl or TC ≥200 mg/dl and TG ≥150 mg/dl) and poor-risk (PR) (TC <200 mg/dl and TG ≥150 mg/dl). The mPFS of GR, IR, and PR groups was 7.8, 4.3, and 2.5 months, respectively (P = .005); mOS of GR, IR, and PR was 20.4, 12.4, and 5.3 months, respectively (P < .001). At multivariable analysis, the PR profile represented an independent poor prognostic factor for both PFS and OS. CONCLUSIONS We developed a lipid score that defined subgroups of patients with cancer who differently benefit from ICIs. Further mechanistic insights are warranted to clarify the prognostic and predictive role of lipid profile components in patients treated with ICIs.
Collapse
Affiliation(s)
- Federica Pecci
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Luca Cantini
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
- Fortrea, Inc., Durham, NC, USA
| | - Valeria Cognigni
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Fabiana Perrone
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Veronica Agostinelli
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Giulia Mentrasti
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Michele Maffezzoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Alessio Cortellini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Francesca Rossi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Rebecca Chiariotti
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Francesco Maria Venanzi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Proto
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ganzinelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Tronconi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Francesca Morgese
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| | - Carla Campolucci
- SOD Medicina di Laboratorio, Azienda Ospedaliera Universitaria delle Marche, Ancona, Italy
| | - Marco Moretti
- SOD Medicina di Laboratorio, Azienda Ospedaliera Universitaria delle Marche, Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Roberta Minari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Sebastiano Buti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Rossana Berardi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy
| |
Collapse
|
10
|
Lv D, Jiang H, Yang X, Li Y, Niu W, Zhang D. Advances in understanding of dendritic cell in the pathogenesis of acute kidney injury. Front Immunol 2024; 15:1294807. [PMID: 38433836 PMCID: PMC10904453 DOI: 10.3389/fimmu.2024.1294807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Acute kidney injury (AKI) is characterized by a rapid decline in renal function and is associated with a high morbidity and mortality rate. At present, the underlying mechanisms of AKI remain incompletely understood. Immune disorder is a prominent feature of AKI, and dendritic cells (DCs) play a pivotal role in orchestrating both innate and adaptive immune responses, including the induction of protective proinflammatory and tolerogenic immune reactions. Emerging evidence suggests that DCs play a critical role in the initiation and development of AKI. This paper aimed to conduct a comprehensive review and analysis of the role of DCs in the progression of AKI and elucidate the underlying molecular mechanism. The ultimate objective was to offer valuable insights and guidance for the treatment of AKI.
Collapse
Affiliation(s)
- Dongfang Lv
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huihui Jiang
- Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xianzhen Yang
- Department of Urology, Afliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Li
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Weipin Niu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Denglu Zhang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Spiegel F, Trollmann MFW, Kara S, Pöhnl M, Brandner AF, Nimmerjahn F, Lux A, Böckmann RA. Role of lipid nanodomains for inhibitory FcγRIIb function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540011. [PMID: 37214871 PMCID: PMC10197649 DOI: 10.1101/2023.05.09.540011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The inhibitory Fcγ receptor FcγRIIb is involved in immune regulation and is known to localize to specific regions of the plasma membrane called lipid rafts. Previous studies suggested a link between the altered lateral receptor localization within the plasma membrane and the functional impairment of the FcγRIIb-I232T variant that is associated with systemic lupus erythematosus. Here, we conducted microsecond all-atom molecular dynamics simulations and IgG binding assays to investigate the lipid nano-environment of FcγRIIb monomers and of the FcγRIIb-I232T mutant within a plasma membrane model, the orientation of the FcγRIIb ectodomain, and its accessibility to IgG ligands. In contrast to previously proposed models, our simulations indicated that FcγRIIb does not favor a cholesterol- or a sphingolipid-enriched lipid environment. Interestingly, cholesterol was depleted for all studied FcγRIIb variants within a 2-3 nm environment of the receptor, counteracting the usage of raft terminology for models on receptor functionality. Instead, the receptor interacts with lipids that have poly-unsaturated fatty acyl chains and with (poly-) anionic lipids within the cytosolic membrane leaflet. We also found that FcγRIIb monomers adopt a conformation that is not suitable for binding to its IgG ligand, consistent with a lack of detectable binding of monomeric IgG in experiments on primary immune cells. However, our results propose that multivalent IgG complexes might stabilize FcγRIIb in a binding-competent conformation. We suggest differences in receptor complex formation within the membrane as a plausible cause of the altered membrane localization or clustering and the altered suppressive function of the FcγRIIb-I232T variant.
Collapse
Affiliation(s)
- Franziska Spiegel
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Marius F W Trollmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU)
| | - Sibel Kara
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Matthias Pöhnl
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Astrid F Brandner
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Current address: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Rainer A Böckmann
- Computational Biology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
- Erlangen National High-Performance Computing Center (NHR@FAU)
| |
Collapse
|
12
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
13
|
Immature and mature bone marrow-derived dendritic cells exhibit distinct intracellular mechanical properties. Sci Rep 2023; 13:1967. [PMID: 36737470 PMCID: PMC9898242 DOI: 10.1038/s41598-023-28625-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Dendritic cells (DCs) patrol the organism at an immature stage to detect the presence of pathogens. Once activated, these mature DCs reach the lymph nodes to activate antigen-specific T lymphocytes and thus initiate an adaptative immune response to control the pathogen. The migration of both immature and mature DCs is a key process for their optimal function. DC migration requires transit through narrow constrictions that is allowed by their high local and global deformation capabilities. In addition to cytoplasmic changes, the nucleus mechanical properties also have a major impact for cellular migration and motility. Yet, nucleus intracellular mobility of dendritic cells or its variation upon maturation have not been investigated. Our study defines the biophysical phenotypic variations of dendritic cells upon maturation using interferometric deformability cytometry. This method characterizes different cellular mechanical properties, such as elongation and nucleus offset, by assessing the refractive index spatial distribution of shear-induced deformed cells. By using these parameters, our data suggest that in vitro bone marrow derived dendritic cell (BMDC) maturation induces cell stiffening and reduces nucleus mobility, allowing to distinguish immature and mature dendritic cells. Overall, our method provides insights on intracellular mechanical properties of two dendritic cell states.
Collapse
|
14
|
Adjuvants in fungicide formulations can be skin sensitizers and cause different types of cell stress responses. Toxicol Rep 2022; 9:2030-2041. [DOI: 10.1016/j.toxrep.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
|
15
|
Anikeeva N, Steblyanko M, Kuri-Cervantes L, Buggert M, Betts MR, Sykulev Y. The immune synapses reveal aberrant functions of CD8 T cells during chronic HIV infection. Nat Commun 2022; 13:6436. [PMID: 36307445 PMCID: PMC9616955 DOI: 10.1038/s41467-022-34157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/14/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic HIV infection causes persistent low-grade inflammation that induces premature aging of the immune system including senescence of memory and effector CD8 T cells. To uncover the reasons of gradually diminished potency of CD8 T cells from people living with HIV, here we expose the T cells to planar lipid bilayers containing ligands for T-cell receptor and a T-cell integrins and analyze the cellular morphology, dynamics of synaptic interface formation and patterns of the cellular degranulation. We find a large fraction of phenotypically naive T cells from chronically infected people are capable to form mature synapse with focused degranulation, a signature of a differentiated T cells. Further, differentiation of aberrant naive T cells may lead to the development of anomalous effector T cells undermining their capacity to control HIV and other pathogens that could be contained otherwise.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Steblyanko
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus Buggert
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael R Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuri Sykulev
- Departments of Immunology and Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Brameshuber M, Klotzsch E, Ponjavic A, Sezgin E. Understanding immune signaling using advanced imaging techniques. Biochem Soc Trans 2022; 50:853-866. [PMID: 35343569 PMCID: PMC9162467 DOI: 10.1042/bst20210479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
Advanced imaging is key for visualizing the spatiotemporal regulation of immune signaling which is a complex process involving multiple players tightly regulated in space and time. Imaging techniques vary in their spatial resolution, spanning from nanometers to micrometers, and in their temporal resolution, ranging from microseconds to hours. In this review, we summarize state-of-the-art imaging methodologies and provide recent examples on how they helped to unravel the mysteries of immune signaling. Finally, we discuss the limitations of current technologies and share our insights on how to overcome these limitations to visualize immune signaling with unprecedented fidelity.
Collapse
Affiliation(s)
- Mario Brameshuber
- Institute of Applied Physics – Biophysics, TU Wien, 1040 Vienna, Austria
| | - Enrico Klotzsch
- Humboldt-Universität zu Berlin, Institut für Biophysik, Experimentelle Biophysik Mechanobiologie, Sitz Invalidenstrasse 42, 10115 Berlin, Germany
| | - Aleks Ponjavic
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| |
Collapse
|
17
|
The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14092050. [PMID: 35565180 PMCID: PMC9103710 DOI: 10.3390/cancers14092050] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Hyperthermia (HT) is a cancer treatment which locally heats the tumor to supraphysiological temperature, and it is an effective sensitizer for radiotherapy (RT) and chemotherapy. HT is further capable of modulating the immune system. Thus, a better understanding of its effect on the immune phenotype of tumor cells, and particularly when combined with RT, would help to optimize combined anti-cancer treatments. Since in clinics, no standards about the sequence of RT and HT exist, we analyzed whether this differently affects the cell death and immunological phenotype of human breast cancer cells. We revealed that the sequence of HT and RT does not strongly matter from the immunological point of view, however, when HT is combined with RT, it changes the immunophenotype of breast cancer cells and also upregulates immune suppressive immune checkpoint molecules. Thus, the additional application of immune checkpoint inhibitors with RT and HT should be beneficial in clinics. Abstract Hyperthermia (HT) is an accepted treatment for recurrent breast cancer which locally heats the tumor to 39–44 °C, and it is a very potent sensitizer for radiotherapy (RT) and chemotherapy. However, currently little is known about how HT with a distinct temperature, and particularly, how the sequence of HT and RT changes the immune phenotype of breast cancer cells. Therefore, human MDA-MB-231 and MCF-7 breast cancer cells were treated with HT of different temperatures (39, 41 and 44 °C), alone and in combination with RT (2 × 5 Gy) in different sequences, with either RT or HT first, followed by the other. Tumor cell death forms and the expression of immune checkpoint molecules (ICMs) were analyzed by multicolor flow cytometry. Human monocyte-derived dendritic cells (moDCs) were differentiated and co-cultured with the treated cancer cells. In both cell lines, RT was the main stressor for cell death induction, with apoptosis being the prominent cell death form in MCF-7 cells and both apoptosis and necrosis in MDA-MB-231 cells. Here, the sequence of the combined treatments, either RT or HT, did not have a significant impact on the final outcome. The expression of all of the three examined immune suppressive ICMs, namely PD-L1, PD-L2 and HVEM, was significantly increased on MCF-7 cells 120 h after the treatment of RT with HT of any temperature. Of special interest for MDA-MB-231 cells is that only combinations of RT with HT of both 41 and 44 °C induced a significantly increased expression of PD-L2 at all examined time points (24, 48, 72, and 120 h). Generally, high dynamics of ICM expression can be observed after combined RT and HT treatments. There was no significant difference between the different sequences of treatments (either HT + RT or RT + HT) in case of the upregulation of ICMs. Furthermore, the co-culture of moDCs with tumor cells of any treatment had no impact on the expression of activation markers. We conclude that the sequence of HT and RT does not strongly affect the immune phenotype of breast cancer cells. However, when HT is combined with RT, it results in an increased expression of distinct immune suppressive ICMs that should be considered by including immune checkpoint inhibitors in multimodal tumor treatments with RT and HT. Further, combined RT and HT affects the immune system in the effector phase rather than in the priming phase.
Collapse
|
18
|
Taslimi Y, Masoudzadeh N, Bahrami F, Rafati S. Cutaneous leishmaniasis: multiomics approaches to unravel the role of immune cells checkpoints. Expert Rev Proteomics 2022; 19:213-225. [PMID: 36191333 DOI: 10.1080/14789450.2022.2131545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cutaneous leishmaniasis (CL) is the most frequent form of leishmaniases, associated with skin inflammation and ulceration. Understanding the interaction of different phagocytic cells in the recognition and uptake of different Leishmania species is critical for controlling the infection. Phagocytic cells have a pivotal role as professional antigen-presenting cells that bridge the innate and adaptive immunity and shape the outcome of the disease. AREAS COVERED Here we reviewed new technologies with high-throughput data collection capabilities along with systems biology approaches which are recently being used to decode the paradox of CL immunology. EXPERT OPINION We emphasized on the crosstalk between DC and T-cells while focusing on the immune checkpoints interactions between the human immune system and the Leishmania species. Further, we discussed omics technologies including bulk RNA sequencing, reverse transcriptase-multiplex ligation dependent probe amplification (RT-MLPA), and proximity extension assay (PEA) in studies on human blood or tissue-driven samples from CL patients in which we have so far been involved.
Collapse
Affiliation(s)
- Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| |
Collapse
|
19
|
Sachs L, Wesche J, Lenkeit L, Greinacher A, Bender M, Otto O, Palankar R. Ex vivo anticoagulants affect human blood platelet biomechanics with implications for high-throughput functional mechanophenotyping. Commun Biol 2022; 5:86. [PMID: 35064207 PMCID: PMC8782918 DOI: 10.1038/s42003-021-02982-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Inherited platelet disorders affecting the human platelet cytoskeleton result in increased bleeding risk. However, deciphering their impact on cytoskeleton-dependent intrinsic biomechanics of platelets remains challenging and represents an unmet need from a diagnostic and prognostic perspective. It is currently unclear whether ex vivo anticoagulants used during collection of peripheral blood impact the mechanophenotype of cellular components of blood. Using unbiased, high-throughput functional mechanophenotyping of single human platelets by real-time deformability cytometry, we found that ex vivo anticoagulants are a critical pre-analytical variable that differentially influences platelet deformation, their size, and functional response to agonists by altering the cytoskeleton. We applied our findings to characterize the functional mechanophenotype of platelets from a patient with Myosin Heavy Chain 9 (MYH9) related macrothrombocytopenia. Our data suggest that platelets from MYH9 p.E1841K mutation in humans affecting platelet non-muscle myosin heavy chain IIa (NMMHC-IIA) are biomechanically less deformable in comparison to platelets from healthy individuals. Sachs et al. examine the effects of different ex vivo anticoagulants on the biomechanical and functional properties of single platelets using high-throughput real-time fluorescence and deformability cytometry (RT-FDC). Their results demonstrate that the choice of ex vivo anticoagulant may strongly impact the outcomes of mechanophenotyping.
Collapse
|
20
|
Small Extracellular Vesicles Loaded with Immunosuppressive miRNAs Leads to an Inhibition of Dendritic Cell Maturation. Arch Immunol Ther Exp (Warsz) 2022; 70:27. [PMID: 36318344 PMCID: PMC9626419 DOI: 10.1007/s00005-022-00664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022]
Abstract
In particular conditions, inhibition of an immune response is required to prevent tissue damage. Among these conditions are diseases caused by an over-reactive immune response, such as autoimmune or allergic disorders, or imminent organ rejection after transplantation. To avoid tissue damage, drug-mediated systemic immune suppression is an option, but it comes with high costs in the form of susceptibility to viral and bacterial infections. Thus, the induction of antigen-specific tolerance is preferable. Extracellular vesicles (EVs) are capable of delivering antigen together with immunosuppressive signals and may be used to specifically induce antigen-specific tolerance. However, naturally occurring EVs are heterogeneous and not all of them show immunosuppressive character. In our trials to engineer cell culture derived EVs to increase their tolerogenic potential, we equipped them with immunosuppressive miRNA mimics. Small EVs (sEVs) were isolated and purified from the human monocytic THP-1 cell line or from healthy donor peripheral blood mononuclear cells, and electroporated with miR-494 and miR-146a mimics. The acquired immunosuppressive potential of the modified sEVs was demonstrated by their ability to alter the major histocompatibility complex molecules and co-stimulatory receptors present on dendritic cells (DCs). To avoid allogeneic responses, the same cells that produced the sEVs served also as recipient cells. In contrast to the treatment with unmodified sEVs, the tolerogenic sEVs impeded lipopolysaccharide-induced maturation and kept DCs in a more immature developmental stage. Our experiments show that simple manipulations of sEVs using immunosuppressive cargo can lead to the inhibition of DC maturation.
Collapse
|
21
|
Dendritic cell migration in inflammation and immunity. Cell Mol Immunol 2021; 18:2461-2471. [PMID: 34302064 PMCID: PMC8298985 DOI: 10.1038/s41423-021-00726-4] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells (DCs) are the key link between innate immunity and adaptive immunity and play crucial roles in both the promotion of immune defense and the maintenance of immune tolerance. The trafficking of distinct DC subsets across lymphoid and nonlymphoid tissues is essential for DC-dependent activation and regulation of inflammation and immunity. DC chemotaxis and migration are triggered by interactions between chemokines and their receptors and regulated by multiple intracellular mechanisms, such as protein modification, epigenetic reprogramming, metabolic remodeling, and cytoskeletal rearrangement, in a tissue-specific manner. Dysregulation of DC migration may lead to abnormal positioning or activation of DCs, resulting in an imbalance of immune responses and even immune pathologies, including autoimmune responses, infectious diseases, allergic diseases and tumors. New strategies targeting the migration of distinct DC subsets are being explored for the treatment of inflammatory and infectious diseases and the development of novel DC-based vaccines. In this review, we will discuss the migratory routes and immunological consequences of distinct DC subsets, the molecular basis and regulatory mechanisms of migratory signaling in DCs, and the association of DC migration with the pathogenesis of autoimmune and infectious diseases.
Collapse
|
22
|
ElGindi M, Sapudom J, Ibrahim IH, Al-Sayegh M, Chen W, Garcia-Sabaté A, Teo JCM. May the Force Be with You (Or Not): The Immune System under Microgravity. Cells 2021; 10:1941. [PMID: 34440709 PMCID: PMC8391211 DOI: 10.3390/cells10081941] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Ibrahim Hamed Ibrahim
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates;
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (M.E.); (J.S.); (I.H.I.)
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY 11201, USA;
- Department of Biomedical Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
23
|
Abstract
T cell activation is a critical event in the adaptive immune response, indispensable for cell-mediated and humoral immunity as well as for immune regulation. Recent years have witnessed an emerging trend emphasizing the essential role that physical force and mechanical properties play at the T cell interface. In this review, we integrate current knowledge of T cell antigen recognition and the different models of T cell activation from the perspective of mechanobiology, focusing on the interaction between the T cell receptor (TCR) and the peptide-major histocompatibility complex (pMHC) antigen. We address the shortcomings of TCR affinity alone in explaining T cell functional outcomes and the rising status of force-regulated TCR bond lifetimes, most notably the TCR catch bond. Ultimately, T cell activation and the ensuing physiological responses result from mechanical interaction between TCRs and the pMHC. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Baoyu Liu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| | - Elizabeth M Kolawole
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA; , ,
| |
Collapse
|
24
|
Höper T, Siewert K, Dumit VI, von Bergen M, Schubert K, Haase A. The Contact Allergen NiSO 4 Triggers a Distinct Molecular Response in Primary Human Dendritic Cells Compared to Bacterial LPS. Front Immunol 2021; 12:644700. [PMID: 33777040 PMCID: PMC7991087 DOI: 10.3389/fimmu.2021.644700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DC) play a central role in the pathogenesis of allergic contact dermatitis (ACD), the most prevalent form of immunotoxicity in humans. However, knowledge on allergy-induced DC maturation is still limited and proteomic studies, allowing to unravel molecular effects of allergens, remain scarce. Therefore, we conducted a global proteomic analysis of human monocyte-derived dendritic cells (MoDC) treated with NiSO4, the most prominent cause of ACD and compared proteomic alterations induced by NiSO4 to the bacterial trigger lipopolysaccharide (LPS). Both substances possess a similar toll-like receptor (TLR) 4 binding capacity, allowing to identify allergy-specific effects compared to bacterial activation. MoDCs treated for 24 h with 2.5 μg/ml LPS displayed a robust immunological response, characterized by upregulation of DC activation markers, secretion of pro-inflammatory cytokines and stimulation of T cell proliferation. Similar immunological reactions were observed after treatment with 400 μM NiSO4 but less pronounced. Both substances triggered TLR4 and triggering receptor expressed on myeloid cells (TREM) 1 signaling. However, NiSO4 also activated hypoxic and apoptotic pathways, which might have overshadowed initial signaling. Moreover, our proteomic data support the importance of nuclear factor erythroid 2-related factor 2 (Nrf2) as a key player in sensitization since many Nrf2 targets genes were strongly upregulated on protein and gene level selectively after treatment with NiSO4. Strikingly, NiSO4 stimulation induced cellular cholesterol depletion which was counteracted by the induction of genes and proteins relevant for cholesterol biosynthesis. Our proteomic study allowed for the first time to better characterize some of the fundamental differences between NiSO4 and LPS-triggered activation of MoDCs, providing an essential contribution to the molecular understanding of contact allergy.
Collapse
Affiliation(s)
- Tessa Höper
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Verónica I. Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|