1
|
Qi X, Guo H, Xia X, Liu Y, Qiu S, Lin T, He W, Jin L, Cheng J, Hao L, Liu W, Hu H. Paeoniflorin alleviated STZ-induced diabetic retinopathy via regulation of the PDI/ADAM17/MerTK pathway. Int Immunopharmacol 2025; 155:114571. [PMID: 40209310 DOI: 10.1016/j.intimp.2025.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and a leading cause of vision impairment in diabetic patients. The accumulation of apoptotic cells and inflammation are key pathological mechanisms in DR. The Mer tyrosine kinase (MerTK) receptor plays a critical role in maintaining retinal homeostasis. Proteolytic cleavage of MerTK by disintegrin and metalloproteinase-17 (ADAM17) disrupts MerTK-dependent clearance of apoptotic cells and diminishes its anti-inflammatory effects. Therefore, reducing the cleavage activity ADAM17's and promoting MerTK-dependent anti-inflammatory effects may represent potent strategy to alleviate DR. METHODS The DR mouse model was established using streptozotocin (STZ), and a high-glucose (HG)-induced in vitro model was developed using human retinal pigment epithelial (ARPE-19) cells. Relevant signaling molecules were analyzed through western blotting and immunohistochemistry. RESULTS Hyperglycemia promoted the accumulation of apoptotic cells and disrupted retinal microvascular growth. In both vivo and vitro model, MerTK expression was significantly reduced, while ADAM17 phosphorylation levels were markedly increased. In STZ-treated mice, protein disulfide isomerase (PDI) secretion initially rose but subsequently declined, whereas PDI secretion decreased under HG conditions. We then utilized paeoniflorin to increase the expression of this endogenous inhibitor of ADAM17. Results showed that paeoniflorin upregulated PDI production, suppressed ADAM17 expression, and enhanced MerTK phosphorylation in the eye tissues of STZ-induced mice. Additionally, paeoniflorin elevated the expression of suppressor of cytokine signaling 3 (SOCS3) and decreased the level of matrix metalloproteinase 9 (MMP9) both in vivo and in vitro. CONCLUSION Paeoniflorin may alleviate diabetic retinopathy by suppressing inflammation through modulation of the PDI/ADAM17/MerTK signaling pathway.
Collapse
Affiliation(s)
- Xiuting Qi
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Haiyue Guo
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Xinyue Xia
- The First Clinical College, Nanjing Medical University, Nanjing 211166, China
| | - Yanmei Liu
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China
| | - Shenghui Qiu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Tongtong Lin
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligence Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenqi He
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Lai Jin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Jing Cheng
- Department of Gastroenterology, Lianyungang Municipal Oriental Hospital, Lianyungang, Jiangsu, China; Department of Gastroenterology,Shanghai General Hospial of Nanjing Medical University, Shanghai, China
| | - Lanxiang Hao
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China.
| | - Wentao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| | - Haitao Hu
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Jiangsu 224005, China.
| |
Collapse
|
2
|
Zhong J, Guo Y, Xin W. EMMPRIN aggravates angiogenesis and blood-retina barrier injury by regulating matrix metalloproteinases in diabetic retinopathy. Diab Vasc Dis Res 2025; 22:14791641251324556. [PMID: 40251743 PMCID: PMC12033852 DOI: 10.1177/14791641251324556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/25/2024] [Accepted: 02/15/2025] [Indexed: 04/21/2025] Open
Abstract
Background: Diabetic retinopathy (DR) is a microangiopathy resulting from diabetes mellitus. Studies on vitreous samples have shed insights into the etiology of DR and highlighted the role of molecular targets in DR treatment. The present study probed into the role of extracellular matrix metalloproteinase inducer (EMMPRIN) in DR by examining its influence on inflammation, angiogenesis, matrix metalloproteinases (MMPs), and blood-retina barrier injury.Methods: After the induction of diabetes in rats through streptozotocin injection, SP-8356 (an inhibitor for EMMPRIN) was administered to rats for silencing EMMPRIN in vivo. Serum and vitreous EMMPRIN levels were assessed by ELISA and western blotting. The concentration and mRNA expression of proinflammatory cytokines in rat vitreous samples were quantified through ELISA or RT-qPCR. Western blotting or RT-qPCR was performed to measure protein or mRNA levels of MMPs, tight junction factors, and angiogenic factors.Results: High EMMPRIN levels were found in both serum and vitreous samples of DR rats. Inhibition of EMMPRIN using SP-8356 ameliorated DR-induced high levels of inflammatory cytokines, MMPs, and angiogenic factors and rescued DR-induced low expression levels of tight junction factors in rat vitreous samples.Conclusions: EMMPRIN accelerates inflammation, angiogenesis and blood-retina barrier injury in DR by regulating MMPs.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Guo
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Xin
- Hubei University of Medicine, Shiyan, China
- Department of Ophthalmology, Postgraduate Training Base of Wuhan Central Hospital, Hubei University of Medicine, Wuhan, China
| |
Collapse
|
3
|
Lauver MD, Katz ZE, Markus H, Derosia NM, Jin G, Ayers KN, Butic AB, Bushey K, Abendroth CS, Liu DJ, Lukacher AE. The CXCR6-CXCL16 axis mediates T cell control of polyomavirus infection in the kidney. PLoS Pathog 2025; 21:e1012969. [PMID: 40043065 PMCID: PMC11922244 DOI: 10.1371/journal.ppat.1012969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
BK polyomavirus (PyV) establishes lifelong asymptomatic infections in the reno-urinary system of most humans. BKPyV-associated nephropathy is the leading infectious cause of kidney allograft loss. Using mouse PyV, a natural murine pathogen that also persists in the kidney, we define a dominant chemokine receptor-chemokine axis that directs T cell infiltration of the kidney. We found that CXCR6 was required for CD4+ and CD8+ T cells to be recruited to and retained in the kidney, respectively. Absence of CXCR6 impaired virus control in the kidney. The soluble form of CXCL16 was increased in kidneys of infected mice and in vivo CXCL16 neutralization reduced numbers of virus-specific CD8+ T cells infiltrating the kidney. In vivo administration of IL-12 upregulated CXCR6 expression on virus-specific CD8+ T cells, improved T cell recruitment to the infected kidney, and reduced virus levels. Notably, T cells in kidney biopsies from PyV-associated nephropathy patients express CXCR6 and transcriptional analysis shows significant upregulation of CXCR6 and CXCL16. These findings demonstrate the importance of the CXCR6-CXCL16 axis in regulating T cell responses in the kidney to PyV infection.
Collapse
Affiliation(s)
- Matthew D Lauver
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Zoe E Katz
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Nicole M Derosia
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Arrienne B Butic
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Kaitlyn Bushey
- Bio X Cell, Inc., Lebanon, New Hampshire, United States of America
| | - Catherine S Abendroth
- Department of Pathology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
4
|
Abu El-Asrar AM, Nawaz MI, Ahmad A, Siddiquei M, Allegaert E, Adyns L, Vanbrabant L, Gikandi PW, De Hertogh G, Struyf S, Opdenakker G. ADAMTS13 Improves Endothelial Function and Reduces Inflammation in Diabetic Retinopathy. Cells 2025; 14:85. [PMID: 39851513 PMCID: PMC11764296 DOI: 10.3390/cells14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
The protease, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13 (ADAMTS13), known to cleave only the von Willebrand factor (VWF), has powerful regulatory effects on microvascular platelet adhesion, thrombosis, inflammation, and endothelial dysfunction. We study the protection against diabetes-induced retinal injury in experimental rats by supplementation with recombinant ADAMTS13. We compare human epiretinal membranes and vitreous samples from nondiabetic subjects and patients with proliferative diabetic retinopathy (PDR) and extend in vitro analyses with the use of various immunodetection and spectrofluorimetric methods on rat retina and human retinal glial and endothelial cell cultures. Functional studies include the assessment of the blood-retinal barrier (BRB), cell adhesion, and in vitro angiogenesis. In epiretinal membranes, endothelial cells and monocytes/macrophages express ADAMTS13. The levels of VWF, the platelet marker CD41, ADAMTS13, and the biomarkers of endothelial cell injury soluble VE-cadherin and soluble syndecan-1 are increased in PDR vitreous. ADAMTS13 is downregulated in diabetic rat retinas. The intravitreal administration of ADAMTS13 attenuates diabetes-induced BRB breakdown, the downregulation of VE-cadherin and β-catenin, and the upregulation of VWF, CD41, phospho-ERK1/2, HMGB1, VCAM-1, and ICAM-1. In Müller cells, ADAMTS13 attenuates MCP-1, MMP-9, and ROS upregulation induced by diabetic mimetic conditions. In HRMECs, ADAMTS13 attenuates the shedding of the soluble VE-cadherin and soluble syndecan-1 and the levels of phospho-ERK1/2, MCP-1, fractalkine, and ROS induced by diabetic mimetic conditions, the upregulation of ICAM-1 and VCAM-1 elicited by TNF-α, the adherence of monocytes induced by TNF-α, and VEGF-induced migration of human retinal microvascular endothelial cells. Our findings suggest that enhancing ADAMTS13 levels in situ ameliorates diabetes-induced retinal inflammation and vascular dysfunction.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Mohd I. Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Mairaj Siddiquei
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, 3000 Leuven, Belgium; (E.A.); (G.D.H.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Lowie Adyns
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.A.); (L.V.); (S.S.)
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.A.); (L.V.); (S.S.)
| | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, 3000 Leuven, Belgium; (E.A.); (G.D.H.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.A.); (L.V.); (S.S.)
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Lee CY, Yang CH. The Role of Fractalkine in Diabetic Retinopathy: Pathophysiology and Clinical Implications. Int J Mol Sci 2025; 26:378. [PMID: 39796231 PMCID: PMC11720318 DOI: 10.3390/ijms26010378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes, characterized by progressive microvascular dysfunction that can result in vision loss. Chronic hyperglycemia drives oxidative stress, endothelial dysfunction, and inflammation, leading to retinal damage and complications such as neovascularization. Current treatments, including anti-VEGF agents, have limitations, necessitating the exploration of alternative therapeutic strategies. Fractalkine (CX3CL1), a chemokine with dual roles as a membrane-bound adhesion molecule and a soluble chemoattractant, has emerged as a potential therapeutic target. Its receptor, CX3CR1, is expressed on immune cells and mediates processes such as immune cell recruitment and microglial activation through intracellular signaling pathways. In DR, soluble fractalkine plays critical roles in retinal inflammation, angiogenesis, and neuroprotection, balancing tissue damage and repair. In DR, elevated fractalkine levels are associated with retinal inflammation and endothelial dysfunction. Experimental studies suggest that fractalkine deficiency exacerbates the severity of diabetic retinopathy (DR), whereas exogenous fractalkine appears to reduce inflammation, oxidative stress, and neuronal damage. However, its role in pathological angiogenesis within DR remains unclear and warrants further investigation. Preclinical evidence indicates that fractalkine may hold therapeutic potential, particularly in mitigating tissue injury and inflammation associated with early-stage DR.
Collapse
Affiliation(s)
- Cheng-Yung Lee
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Hospital, No. 25, Ln. 442, Sec. 1, Jingguo Rd., North Dist., Hsinchu City 300195, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City 100225, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road Section 1, Taipei City 10051, Taiwan
| |
Collapse
|
6
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
7
|
Wang X, Wang T, Kaneko S, Kriukov E, Lam E, Szczepan M, Chen J, Gregg A, Wang X, Fernandez-Gonzalez A, Mitsialis SA, Kourembanas S, Baranov P, Sun Y. Photoreceptors inhibit pathological retinal angiogenesis through transcriptional regulation of Adam17 via c-Fos. Angiogenesis 2024; 27:379-395. [PMID: 38483712 PMCID: PMC11303108 DOI: 10.1007/s10456-024-09912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/11/2024]
Abstract
Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Satoshi Kaneko
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emil Kriukov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Enton Lam
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Manon Szczepan
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jasmine Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Austin Gregg
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xingyan Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Petr Baranov
- Department of Ophthalmology, The Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Cui S, Chen X, Li J, Wang W, Meng D, Zhu S, Shen S. Endothelial CXCR2 deficiency attenuates renal inflammation and glycocalyx shedding through NF-κB signaling in diabetic kidney disease. Cell Commun Signal 2024; 22:191. [PMID: 38528533 PMCID: PMC10964613 DOI: 10.1186/s12964-024-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.
Collapse
Affiliation(s)
- Siyuan Cui
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
| | - Xin Chen
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
- Nanjing Medical University, Nanjing, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Deqi Meng
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Shiwei Shen
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
9
|
Zou G, Que L, Liu Y, Lu Q. Interplay of endothelial-mesenchymal transition, inflammation, and autophagy in proliferative diabetic retinopathy pathogenesis. Heliyon 2024; 10:e25166. [PMID: 38327444 PMCID: PMC10847601 DOI: 10.1016/j.heliyon.2024.e25166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Background Assessment and validation of endothelial-mesenchymal transition (EndoMT) in the retinal endothelium of patients with proliferative diabetic retinopathy (PDR) at the level of retinal and vitreous specimens, and preliminary discussion of its regulatory mechanisms. Methods Transcriptome sequencing profiles of CD31+ cells from 9 retinal fibrovascular mem-branes (FVMs) and 4 postmortem retinas were downloaded from GEO databases to analyze EndoMT-related differentially expressed genes (DEGs). Then, 42 PDR patients and 34 idiopathic macular holes (IMH) patients were enrolled as the PDR and control groups, respectively. Vitreous humor (VH) samples were collected, and the expression of EndoMT-related proteins was quantified by enzyme-linked immunosorbent assay. Results A total of 5845 DEGs were identified, and we subsequently focused on the analysis of 24 EndoMT-related marker genes, including the trigger of EndoMT, endothelial genes, mesenchymal genes, transcription factors, inflammatory factors, and autophagy markers. Six of these genes were selected for protein assay validation in VH, showing increased mesenchymal marker (type I collagen α 2 chain, COL1A2) and decreased endothelial marker (VE-cadherin, CDH5) accompanied by increased TGFβ, IL-1β, LC3B and P62 in PDR patients. In addition, anti-VEGF therapy could enhance EndoMT-related phenotypes. Conclusions EndoMT may underlie the pathogenesis of PDR, and the induction and regulation correlate with autophagy defects and the inflammatory response.
Collapse
Affiliation(s)
- Gaocheng Zou
- Department of Ophthalmology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lijuan Que
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaping Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guang-dong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qianyi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Lu C, Lan Q, Song Q, Yu X. Identification and validation of ferroptosis-related genes for diabetic retinopathy. Cell Signal 2024; 113:110955. [PMID: 38084838 DOI: 10.1016/j.cellsig.2023.110955] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness, and ferroptosis may be an essential component of the pathological process of DR. In this study, we aimed to screen five hub genes (TLR4, CAV1, HMOX1, TP53, and IL-1B) using bioinformatics analysis and experimentally verify their expression and effects on ferroptosis and cell function. The online Gene Expression Omnibus microarray expression profiling datasets GSE60436 and GSE1025485 were selected for investigation. Ferroptosis-related genes that might be differentially expressed in DR were identified. Then, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and protein-protein interaction (PPI) network analyses were conducted to characterize the differentially-expressed ferroptosis-related genes. After tissue-specific analyses and external dataset validation of hub genes, the mRNA and protein levels of hub genes in retinal microvascular endothelial cells (HRMECs) symbiotic with high glucose were verified using real-time quantitative PCR (qRT-PCR) and immunocytochemistry (ICC). Finally, hub genes were knocked down using siRNA, and changes in ferroptosis and cell function were observed. Based on the differential expression analysis, 19 ferroptosis-related genes were identified. GO and KEGG enrichment analyses showed that ferroptosis-related genes were significantly enriched in reactive oxygen species metabolic processes, necrotic cell death, hypoxia responses, iron ion responses, positive regulation of cell migration involved in sprouting angiogenesis, NF-kappa B signaling pathway, ferroptosis, fluid shear stress, and atherosclerosis. Subsequently, PPI network analysis and critical module construction were used to identify five hub genes. Based on bioinformatics analysis of mRNA microarrays, qRT-PCR confirmed higher mRNA expression of five genes in the DR model, and immunocytochemistry confirmed their higher protein expression. Finally, siRNA interference was used to verify the effects of five genes on ferroptosis and cell function. Based on bioinformatics analysis, five potential genes related to ferroptosis were identified, and their upregulation may affect the onset or progression of DR. This study sheds new light on the pathogenesis of DR.
Collapse
Affiliation(s)
- Changjin Lu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Qingxia Lan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Qiuyue Song
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Xiaoyi Yu
- Ophthalmic Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| |
Collapse
|
11
|
Kim S, Yoon NG, Im JY, Lee JH, Kim J, Jeon Y, Choi YJ, Lee J, Uemura A, Park DH, Kang BH. Targeting the Mitochondrial Chaperone TRAP1 Alleviates Vascular Pathologies in Ischemic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302776. [PMID: 37983591 PMCID: PMC10787068 DOI: 10.1002/advs.202302776] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Activation of hypoxia-inducible factor 1α (HIF1α) contributes to blood-retinal barrier (BRB) breakdown and pathological neovascularization responsible for vision loss in ischemic retinal diseases. During disease progression, mitochondrial biology is altered to adapt to the ischemic environment created by initial vascular dysfunction, but the mitochondrial adaptive mechanisms, which ultimately contribute to the pathogenesis of ischemic retinopathy, remain incompletely understood. In the present study, it is identified that expression of mitochondrial chaperone tumor necrosis factor receptor-associated protein 1 (TRAP1) is essential for BRB breakdown and pathologic retinal neovascularization in mouse models mimicking ischemic retinopathies. Genetic Trap1 ablation or treatment with small molecule TRAP1 inhibitors, such as mitoquinone (MitoQ) and SB-U015, alleviate retinal pathologies via proteolytic HIF1α degradation, which is mediated by opening of the mitochondrial permeability transition pore and activation of calcium-dependent protease calpain-1. These findings suggest that TRAP1 can be a promising target for the development of new treatments against ischemic retinopathy, such as retinopathy of prematurity and proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- So‐Yeon Kim
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Nam Gu Yoon
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | | | - Ji Hye Lee
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Juhee Kim
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Yujin Jeon
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Young Jae Choi
- Bioanalysis and Pharmacokinetics Research GroupKorea Institute of ToxicologyDaejeon34114Republic of Korea
| | - Jong‐Hwa Lee
- Bioanalysis and Pharmacokinetics Research GroupKorea Institute of ToxicologyDaejeon34114Republic of Korea
- Department of Human and Environment ToxicologyUniversity of Science & TechnologyDaejeon34113Republic of Korea
| | - Akiyoshi Uemura
- Department of Ophthalmology and Visual ScienceNagoya City University Graduate School of Medical SciencesNagoya467‐8601Japan
| | - Dong Ho Park
- Department of Ophthalmology, School of MedicineKyungpook National University, Kyungpook National University HospitalDaegu41944Republic of Korea
- Cell & Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Byoung Heon Kang
- Department of Biological SciencesUlsan National Institutes of Science and Technology (UNIST)Ulsan44919Republic of Korea
- SmartinBio Inc.Cheongju28160Republic of Korea
| |
Collapse
|
12
|
Ullah A, Ud Din A, Ding W, Shi Z, Pervaz S, Shen B. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev Endocr Metab Disord 2023; 24:611-631. [PMID: 37000372 PMCID: PMC10063956 DOI: 10.1007/s11154-023-09800-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Adipose tissue develops lipids, aberrant adipokines, chemokines, and pro-inflammatory cytokines as a consequence of the low-grade systemic inflammation that characterizes obesity. This low-grade systemic inflammation can lead to insulin resistance (IR) and metabolic complications, such as type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD). Although the CXC chemokines consists of numerous regulators of inflammation, cellular function, and cellular migration, it is still unknown that how CXC chemokines and chemokine receptors contribute to the development of metabolic diseases (such as T2D and NAFLD) during obesity. In light of recent research, the objective of this review is to provide an update on the linkage between the CXC chemokine, obesity, and obesity-related metabolic diseases (T2D and NAFLD). We explore the differential migratory and immunomodulatory potential of CXC chemokines and their mechanisms of action to better understand their role in clinical and laboratory contexts. Besides that, because CXC chemokine profiling is strongly linked to leukocyte recruitment, macrophage recruitment, and immunomodulatory potential, we hypothesize that it could be used to predict the therapeutic potential for obesity and obesity-related diseases (T2D and NAFLD).
Collapse
Affiliation(s)
- Amin Ullah
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| | - Ahmad Ud Din
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Wen Ding
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China
| | - Zheng Shi
- Clinical Genetics Laboratory, Clinical Medical College & Affiliated hospital, Chengdu University, 610106, Chengdu, China
| | - Sadaf Pervaz
- Joint International Research Laboratory of Reproduction and Development, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Bao N, Fu B, Zhong X, Jia S, Ren Z, Wang H, Wang W, Shi H, Li J, Ge F, Chang Q, Gong Y, Liu W, Qiu F, Xu S, Li T. Role of the CXCR6/CXCL16 axis in autoimmune diseases. Int Immunopharmacol 2023; 121:110530. [PMID: 37348231 DOI: 10.1016/j.intimp.2023.110530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The C-X-C motif ligand 16, or CXCL16, is a chemokine that belongs to the ELR - CXC subfamily. Its function is to bind to the chemokine receptor CXCR6, which is a G protein-coupled receptor with 7 transmembrane domains. The CXCR6/CXCL16 axis has been linked to the development of numerous autoimmune diseases and is connected to clinical parameters that reflect disease severity, activity, and prognosis in conditions such as multiple sclerosis, autoimmune hepatitis, rheumatoid arthritis, Crohn's disease, and psoriasis. CXCL16 is expressed in various immune cells, such as dendritic cells, monocytes, macrophages, and B cells. During autoimmune diseases, CXCL16 can facilitate the adhesion of immune cells like monocytes, T cells, NKT cells, and others to endothelial cells and dendritic cells. Additionally, sCXCL16 can regulate the migration of CXCR6-expressing leukocytes, which includes CD8+ T cells, CD4+ T cells, NK cells, constant natural killer T cells, plasma cells, and monocytes. Further investigation is required to comprehend the intricate interactions between chemokines and the pathogenesis of autoimmune diseases. It remains to be seen whether the CXCR6/CXCL16 axis represents a new target for the treatment of these conditions.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhong
- Department of neurology, School of Medicine, South China University of Technology, Guangzhou, China; Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Shuangshuang Jia
- Department of neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China; Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Zhuangzhuang Ren
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Hui Shi
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Fulin Ge
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Qing Chang
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Gong
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Wenhui Liu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Feng Qiu
- Senior Department of Neurology, The First Medical Center of PLA General Hospital, Beijing, China.
| | - Shiping Xu
- Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| | - Tingting Li
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China; Department of Gastroenterology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China; National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 196] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
15
|
Shi Q, Wang Q, Wang Z, Lu J, Wang R. Systemic inflammatory regulators and proliferative diabetic retinopathy: A bidirectional Mendelian randomization study. Front Immunol 2023; 14:1088778. [PMID: 36845092 PMCID: PMC9950638 DOI: 10.3389/fimmu.2023.1088778] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Background Increasing evidence shows that systemic inflammation is an embedded mechanism of proliferative diabetic retinopathy (PDR). However, the specific systemic inflammatory factors involved in this process remained obscure. The study aimed to identify the upstream and downstream systemic regulators of PDR by using Mendelian randomization (MR) analyses. Methods We performed a bidirectional two-sample MR analysis implementing the results from genome-wide association studies for 41 serum cytokines from 8,293 Finnish individuals, and PDR from FinnGen consortium (2,025 cases vs. 284,826 controls) and eight cohorts of European ancestry (398 cases vs. 2,848 controls), respectively. The inverse-variance-weighted method was adopted as the main MR method, and four additional MR methods (MR-Egger, weighted-median, MR-pleiotropy residual sum and outlier (MR-PRESSO), and MR-Steiger filtering methods) were used for the sensitivity analyses. Results from FinnGen and eight cohorts were pooled into a meta-analysis. Results Our results showed that genetically predicted higher stem cell growth factor-β (SCGFb) and interleukin-8 were positively associated with an elevated risk of PDR, with a combined effect of one standard deviation (SD) increase in SCGFb and interleukin-8 causing 11.8% [95% confidence interval (CI): 0.6%, 24.2%]) and 21.4% [95% CI: 3.8%, 41.9%]) higher risk of PDR, respectively. In contrast, genetically predisposition to PDR showed a positive association with the increased levels of growth-regulated oncogene-α (GROa), stromal cell-derived factor-1 alpha (SDF1a), monocyte chemotactic protein-3 (MCP3), granulocyte colony-stimulating factor (GCSF), interleukin-12p70, and interleukin-2 receptor subunit alpha (IL-2ra). Conclusions Our MR study identified two upstream regulators and six downstream effectors of PDR, providing opportunities for new therapeutic exploitation of PDR onset. Nonetheless, these nominal associations of systemic inflammatory regulators and PDR require validation in larger cohorts.
Collapse
Affiliation(s)
- Qiqin Shi
- Department of Ophthalmology, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China
| | - Qiangsheng Wang
- Department of Haematology, Ningbo Hangzhou Bay Hospital, Ningbo, Zhejiang, China
| | - Zhenqian Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jiawen Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ruobing Wang
- Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Yang S, Qi S, Wang C. The role of retinal Müller cells in diabetic retinopathy and related therapeutic advances. Front Cell Dev Biol 2022; 10:1047487. [PMID: 36531955 PMCID: PMC9757137 DOI: 10.3389/fcell.2022.1047487] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/24/2022] [Indexed: 11/19/2023] Open
Abstract
Diabetic retinopathy (DR) is a significant complication of diabetes. During the pathogenesis of retinal microangiopathy and neuronopathy, activated retinal Müller cells (RMCs) undergo morphological and structural changes such as increased expression of glial fibrillary acidic protein, disturbance of potassium and water transport regulation, and onset of production of a large number of inflammatory and vascular growth factors as well as chemokines. Evidently, activated RMCs are necessary for the pathogenesis of DR; therefore, exploring the role of RMCs in DR may provide a new target for the treatment thereof. This article reviews the mechanism of RMCs involvement in DR and the progress in related treatments.
Collapse
Affiliation(s)
| | - Shounan Qi
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Chenguang Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Wang K, Xuan Z, Liu X, Zheng M, Yang C, Wang H. Immunomodulatory role of metalloproteinase ADAM17 in tumor development. Front Immunol 2022; 13:1059376. [PMID: 36466812 PMCID: PMC9715963 DOI: 10.3389/fimmu.2022.1059376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 12/25/2023] Open
Abstract
ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family of transmembrane proteases involved in the shedding of some cell membrane proteins and regulating various signaling pathways. More than 90 substrates are regulated by ADAM17, some of which are closely relevant to tumor formation and development. Besides, ADAM17 is also responsible for immune regulation and its substrate-mediated signal transduction. Recently, ADAM17 has been considered as a major target for the treatment of tumors and yet its immunomodulatory roles and mechanisms remain unclear. In this paper, we summarized the recent understanding of structure and several regulatory roles of ADAM17. Importantly, we highlighted the immunomodulatory roles of ADAM17 in tumor development, as well as small molecule inhibitors and monoclonal antibodies targeting ADAM17.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
18
|
Zeng M, Xie Z, Zhang J, Li S, Wu Y, Yan X. Arctigenin Attenuates Vascular Inflammation Induced by High Salt through TMEM16A/ESM1/VCAM-1 Pathway. Biomedicines 2022; 10:2760. [PMID: 36359280 PMCID: PMC9687712 DOI: 10.3390/biomedicines10112760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 02/25/2024] Open
Abstract
Salt-sensitive hypertension is closely related to inflammation, but the mechanism is barely known. Transmembrane member 16A (TMEM16A) is the Ca2+-activated chloride channel in epithelial cells, smooth muscle cells, and sensory neurons. It can promote inflammatory responses by increasing proinflammatory cytokine release. Here, we identified a positive role of TMEM16A in vascular inflammation. The expression of TMEM16A was increased in high-salt-stimulated vascular smooth muscle cells (VSMCs), whereas inhibiting TMEM16A or silencing TMEM16A with small interfering RNA (siRNA) can abolish this effect in vitro or in vivo. Transcriptome analysis of VSMCs revealed some differential downstream genes of TMEM16A related to inflammation, such as endothelial cell-specific molecule 1 (ESM1) and CXC chemokine ligand 16 (CXCL16). Overexpression of TMEM16A in VSMCs was accompanied by high levels of ESM1, CXCL16, intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-1). We treated VSMCs cultured with high salt and arctigenin (ARC), T16Ainh-A01 (T16), and TMEM16A siRNA (siTMEM16A), leading to greatly decreased ESM1, CXCL16, VCAM-1, and ICAM-1. Beyond that, silencing ESM1, the expression of VCAM-1 and ICAM-1, and CXCL16 was attenuated. In conclusion, our results outlined a signaling scheme that increased TMEM16 protein upregulated ESM1, which possibly activated the CXCL16 pathway and increased VCAM-1 and ICAM-1 expression, which drives VSMC inflammation. Beyond that, arctigenin, as a natural inhibitor of TMEM16A, can reduce the systolic blood pressure (SBP) of salt-sensitive hypertension mice and alleviate vascular inflammation.
Collapse
Affiliation(s)
- Mengying Zeng
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jiahao Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shicheng Li
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yanxiang Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
19
|
Differential Expression and Localization of ADAMTS Proteinases in Proliferative Diabetic Retinopathy. Molecules 2022; 27:molecules27185977. [PMID: 36144730 PMCID: PMC9506249 DOI: 10.3390/molecules27185977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
We analyzed the expression of ADAMTS proteinases ADAMTS-1, -2, -4, -5 and -13; their activating enzyme MMP-15; and the degradation products of proteoglycan substrates versican and biglycan in an ocular microenvironment of proliferative diabetic retinopathy (PDR) patients. Vitreous samples from PDR and nondiabetic patients, epiretinal fibrovascular membranes from PDR patients, rat retinas, retinal Müller glial cells and human retinal microvascular endothelial cells (HRMECs) were studied. The levels of ADAMTS proteinases and MMP-15 were increased in the vitreous from PDR patients. Both full-length and cleaved activation/degradation fragments of ADAMTS proteinases were identified. The amounts of versican and biglycan cleavage products were increased in vitreous from PDR patients. ADAMTS proteinases and MMP-15 were localized in endothelial cells, monocytes/macrophages and myofibroblasts in PDR membranes, and ADAMTS-4 was expressed in the highest number of stromal cells. The angiogenic activity of PDR membranes correlated significantly with levels of ADAMTS-1 and -4 cellular expression. ADAMTS proteinases and MMP-15 were expressed in rat retinas. ADAMTS-1 and -5 and MMP-15 levels were increased in diabetic rat retinas. HRMECs and Müller cells constitutively expressed ADAMTS proteinases but not MMP-15. The inhibition of NF-κB significantly attenuated the TNF-α-and-VEGF-induced upregulation of ADAMTS-1 and -4 in a culture medium of HRMECs and Müller cells. In conclusion, ADAMTS proteinases, MMP-15 and versican and biglycan cleavage products were increased in the ocular microenvironment of patients with PDR.
Collapse
|
20
|
Xia HQ, Yang JR, Zhang KX, Dong RL, Yuan H, Wang YC, Zhou H, Li XM. Molecules related to diabetic retinopathy in the vitreous and involved pathways. Int J Ophthalmol 2022; 15:1180-1189. [PMID: 35919310 DOI: 10.18240/ijo.2022.07.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes and major cause of blindness among people over 50 years old. Current studies showed that the vascular endothelial growth factor (VEGF) played a central role in the pathogenesis of DR, and application of anti-VEGF has been widely acknowledged in treatment of DR targeting retinal neovascularization. However, anti-VEGF therapy has several limitations such as drug resistance. It is essential to develop new drugs for future clinical practice. The vitreous takes up 80% of the whole globe volume and is in direct contact with the retina, making it possible to explore the pathogenesis of DR by studying related factors in the vitreous. This article reviewed recent studies on DR-related factors in the vitreous, elaborating the VEGF upstream hypoxia-inducible factor (HIF) pathway and downstream pathways phosphatidylinositol diphosphate (PIP2), phosphoinositide-3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) pathways. Moreover, factors other than VEGF contributing to the pathogenesis of DR in the vitreous were also summarized, which included factors in four major systems, kallikrein-kinin system such as bradykinin, plasma kallikrein, and coagulation factor XII, oxidative stress system such as lipid peroxide, and superoxide dismutase, inflammation-related factors such as interleukin-1β/6/13/37, and interferon-γ, matrix metalloproteinase (MMP) system such as MMP-9/14. Additionally, we also introduced other DR-related factors such as adiponectin, certain specific amino acids, non-coding RNA and renin (pro) receptor in separate studies.
Collapse
Affiliation(s)
- Hua-Qin Xia
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Jia-Rui Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Ke-Xin Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Rui-Lan Dong
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Hao Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Chen Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue-Min Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
21
|
Abu El-Asrar AM, Nawaz MI, Ahmad A, Siddiquei MM, Allegaert E, Gikandi PW, De Hertogh G, Opdenakker G. Proprotein convertase furin is a driver and potential therapeutic target in proliferative diabetic retinopathy. Clin Exp Ophthalmol 2022; 50:632-652. [PMID: 35322530 DOI: 10.1111/ceo.14077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Furin converts inactive proproteins into bioactive forms. By activating proinflammatory and proangiogenic factors, furin might play a role in pathophysiology of proliferative diabetic retinopathy (PDR). METHODS We studied vitreous samples from PDR and nondiabetic patients, epiretinal membranes from PDR patients, retinal microvascular endothelial cells (HRMECs), retinal Müller cells and rat retinas by ELISA, Western blot analysis, immunohistochemistry and immunofluorescence microscopy. We performed in vitro angiogenesis assays and assessed adherence of monocytes to HRMECs. RESULTS Furin levels were significantly increased in PDR vitreous samples. In epiretinal membranes, immunohistochemistry analysis revealed furin expression in monocytes/macrophages, vascular endothelial cells and myofibroblasts. Furin was significantly upregulated in diabetic rat retinas. Hypoxia and TNF-α induced significant upregulation of furin in Müller cells and HRMECs. Furin induced upregulation of phospho-ERK1/2, p65 subunit of NF-κB, ADAM17 and MCP-1 in cultured Müller cells and phospho-ERK1/2 in cultured HRMECs and induced HRMECs migration. Treatment of monocytes with furin significantly increased their adhesion to HRMECs. Intravitreal administration of furin in normal rats induced significant upregulation of p65 subunit of NF-κB, phospho-ERK1/2 and ICAM-1 in the retina. Inhibition of furin with dec-CMK significantly decreased levels of MCP-1 in culture medium of Müller cells and HRMECs and significantly attenuated TNF-α-induced upregulation of p65 subunit of NF-κB, ICAM-1 and VCAM-1 in HRMECs. Dec-CMK significantly decreased adherence of monocytes to HRMECs and TNF-α-induced upregulation of adherence of monocytes to HRMECs. Treatment of HRMECs with dec-CMK significantly attenuated migration of HRMECs. CONCLUSIONS Furin is a potential driver molecule of PDR-associated inflammation and angiogenesis.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohd I Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Siddiquei
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium.,University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium.,University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Ghislain Opdenakker
- University Hospitals UZ Gasthuisberg, Leuven, Belgium.,Rega Institute for Medical Research, Department of Microbiology and Immunology and Transplantation, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Zhou Y, Shi W, Zhao D, Xiao S, Wang K, Wang J. Identification of Immune-Associated Genes in Diagnosing Aortic Valve Calcification With Metabolic Syndrome by Integrated Bioinformatics Analysis and Machine Learning. Front Immunol 2022; 13:937886. [PMID: 35865542 PMCID: PMC9295723 DOI: 10.3389/fimmu.2022.937886] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Background Immune system dysregulation plays a critical role in aortic valve calcification (AVC) and metabolic syndrome (MS) pathogenesis. The study aimed to identify pivotal diagnostic candidate genes for AVC patients with MS. Methods We obtained three AVC and one MS dataset from the gene expression omnibus (GEO) database. Identification of differentially expressed genes (DEGs) and module gene via Limma and weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, protein–protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify candidate immune-associated hub genes for diagnosing AVC with MS. To assess the diagnostic value, the nomogram and receiver operating characteristic (ROC) curve were developed. Finally, immune cell infiltration was created to investigate immune cell dysregulation in AVC. Results The merged AVC dataset included 587 DEGs, and 1,438 module genes were screened out in MS. MS DEGs were primarily enriched in immune regulation. The intersection of DEGs for AVC and module genes for MS was 50, which were mainly enriched in the immune system as well. Following the development of the PPI network, 26 node genes were filtered, and five candidate hub genes were chosen for nomogram building and diagnostic value evaluation after machine learning. The nomogram and all five candidate hub genes had high diagnostic values (area under the curve from 0.732 to 0.982). Various dysregulated immune cells were observed as well. Conclusion Five immune-associated candidate hub genes (BEX2, SPRY2, CXCL16, ITGAL, and MORF4L2) were identified, and the nomogram was constructed for AVC with MS diagnosis. Our study could provide potential peripheral blood diagnostic candidate genes for AVC in MS patients.
Collapse
Affiliation(s)
- Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, The Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Wang, ; Kai Wang,
| | - Jing Wang
- Department of Geriatric Medicine, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Wang, ; Kai Wang,
| |
Collapse
|
23
|
Chen Y, Xia Q, Zeng Y, Zhang Y, Zhang M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front Cell Dev Biol 2022; 10:898652. [PMID: 35573676 PMCID: PMC9091449 DOI: 10.3389/fcell.2022.898652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Zeng
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
24
|
Rosato C, Bettegazzi B, Intagliata P, Balbontin Arenas M, Zacchetti D, Lanati A, Zerbini G, Bandello F, Grohovaz F, Codazzi F. Redox and Calcium Alterations of a Müller Cell Line Exposed to Diabetic Retinopathy-Like Environment. Front Cell Neurosci 2022; 16:862325. [PMID: 35370555 PMCID: PMC8972164 DOI: 10.3389/fncel.2022.862325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes mellitus and is the major cause of vision loss in the working-age population. Although DR is traditionally considered a microvascular disease, an increasing body of evidence suggests that neurodegeneration is an early event that occurs even before the manifestation of vasculopathy. Accordingly, attention should be devoted to the complex neurodegenerative process occurring in the diabetic retina, also considering possible functional alterations in non-neuronal cells, such as glial cells. In this work, we investigate functional changes in Müller cells, the most abundant glial population present within the retina, under experimental conditions that mimic those observed in DR patients. More specifically, we investigated on the Müller cell line rMC-1 the effect of high glucose, alone or associated with activation processes and oxidative stress. By fluorescence microscopy and cellular assays approaches, we studied the alteration of functional properties, such as reactive oxygen species production, antioxidant response, calcium homeostasis, and mitochondrial membrane potential. Our results demonstrate that hyperglycaemic-like condition per se is well-tolerated by rMC-1 cells but makes them more susceptible to a pro-inflammatory environment, exacerbating the effects of this stressful condition. More specifically, rMC-1 cells exposed to high glucose decrease their ability to counteract oxidative stress, with consequent toxic effects. In conclusion, our study offers new insights into Müller cell pathophysiology in DR and proposes a novel in vitro model which may prove useful to further investigate potential antioxidant and anti-inflammatory molecules for the prevention and/or treatment of DR.
Collapse
Affiliation(s)
- Clarissa Rosato
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pia Intagliata
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Daniele Zacchetti
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Lanati
- Vita-Salute San Raffaele University, Milan, Italy
- Valore Qualità, Pavia, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Grohovaz
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Franca Codazzi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Franca Codazzi
| |
Collapse
|
25
|
Resveratrol Inhibited ADAM10 Mediated CXCL16-Cleavage and T-Cells Recruitment to Pancreatic β-Cells in Type 1 Diabetes Mellitus in Mice. Pharmaceutics 2022; 14:pharmaceutics14030594. [PMID: 35335970 PMCID: PMC8955623 DOI: 10.3390/pharmaceutics14030594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: CXCL16 attracts T-cells to the site of inflammation after cleaving by A Disintegrin and Metalloproteinase (ADAM10). Aim: The current study explored the role of ADAM10/CXCL16/T-cell/NF-κB in the initiation of type 1 diabetes (T1D) with special reference to the potential protecting role of resveratrol (RES). Methods: Four sets of Balb/c mice were created: a diabetes mellitus (DM) group (streptozotocin (STZ) 55 mg/kg, i.p.], a control group administered buffer, a RES group [RES, 50 mg/kg, i.p.), and a DM + RES group (RES (50 mg/kg, i.p.) and STZ (55 mg/kg, i.p.) administered daily for 12 days commencing from the fourth day of STZ injection). Histopathological changes, fasting blood insulin (FBI), glucose (FBG), serum and pancreatic ADAM10, CXCL16, NF-κB, T-cells pancreatic expression, inflammatory, and apoptotic markers were analyzed. Results: FBG, inflammatory and apoptotic markers, serum TNF-α, cellular CXCL16 and ADAM10 protein expression, pancreatic T-cell migration and NF-κB were significantly increased in diabetic mice compared to normal mice. RES significantly improved the biochemical and inflammatory parameters distorted in STZ-treated mice. Conclusions: ADAM10 promotes the cleaved form of CXCL16 driving T-cells into the islets of the pancreatic in T1D. RES successfully prevented the deleterious effect caused by STZ. ADAM10 and CXCL16 may serve as novel therapeutic targets for T1D.
Collapse
|
26
|
Qin Y, Zhang J, Babapoor-Farrokhran S, Applewhite B, Deshpande M, Megarity H, Flores-Bellver M, Aparicio-Domingo S, Ma T, Rui Y, Tzeng SY, Green JJ, Canto-Soler MV, Montaner S, Sodhi A. PAI-1 is a vascular cell-specific HIF-2-dependent angiogenic factor that promotes retinal neovascularization in diabetic patients. SCIENCE ADVANCES 2022; 8:eabm1896. [PMID: 35235351 PMCID: PMC8890718 DOI: 10.1126/sciadv.abm1896] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/06/2022] [Indexed: 05/03/2023]
Abstract
For patients with proliferative diabetic retinopathy (PDR) who do not respond adequately to pan-retinal laser photocoagulation (PRP) or anti-vascular endothelial growth factor (VEGF) therapies, we hypothesized that vascular cells within neovascular tissue secrete autocrine/paracrine angiogenic factors that promote disease progression. To identify these factors, we performed multiplex ELISA angiogenesis arrays on aqueous fluid from PDR patients who responded inadequately to anti-VEGF therapy and/or PRP and identified plasminogen activator inhibitor-1 (PAI-1). PAI-1 expression was increased in vitreous biopsies and neovascular tissue from PDR eyes, limited to retinal vascular cells, regulated by the transcription factor hypoxia-inducible factor (HIF)-2α, and necessary and sufficient to stimulate angiogenesis. Using a pharmacologic inhibitor of HIF-2α (PT-2385) or nanoparticle-mediated RNA interference targeting Pai1, we demonstrate that the HIF-2α/PAI-1 axis is necessary for the development of retinal neovascularization in mice. These results suggest that targeting HIF-2α/PAI-1 will be an effective adjunct therapy for the treatment of PDR patients.
Collapse
Affiliation(s)
- Yaowu Qin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- EENT Hospital, Fudan University, Shanghai 200031, China
| | - Jing Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510064, China
| | | | - Brooks Applewhite
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Monika Deshpande
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Haley Megarity
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Silvia Aparicio-Domingo
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Yuan Rui
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - M. Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
27
|
Abu El-Asrar AM, Ahmad A, Nawaz MI, Siddiquei MM, De Zutter A, Vanbrabant L, Gikandi PW, Opdenakker G, Struyf S. Tissue Inhibitor of Metalloproteinase-3 Ameliorates Diabetes-Induced Retinal Inflammation. Front Physiol 2022; 12:807747. [PMID: 35082694 PMCID: PMC8784736 DOI: 10.3389/fphys.2021.807747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose: Endogenous tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) has powerful regulatory effects on inflammation and angiogenesis. In this study, we investigated the role of TIMP-3 in regulating inflammation in the diabetic retina. Methods: Vitreous samples from patients with proliferative diabetic retinopathy (PDR) and non-diabetic patients were subjected to Western blot analysis. Streptozotocin-treated rats were used as a preclinical diabetic retinopathy (DR) model. Blood-retinal barrier (BRB) breakdown was assessed with fluorescein isothiocyanate (FITC)-conjugated dextran. Rat retinas, human retinal microvascular endothelial cells (HRMECs) and human retinal Müller glial cells were studied by Western blot analysis and ELISA. Adherence of human monocytes to HRMECs was assessed and in vitro angiogenesis assays were performed. Results: Tissue inhibitor of matrix metalloproteinase-3 in vitreous samples was largely glycosylated. Intravitreal injection of TIMP-3 attenuated diabetes-induced BRB breakdown. This effect was associated with downregulation of diabetes-induced upregulation of the p65 subunit of NF-κB, intercellular adhesion molecule-1 (ICAM-1), and vascular endothelial growth factor (VEGF), whereas phospho-ERK1/2 levels were not altered. In Müller cell cultures, TIMP-3 significantly attenuated VEGF upregulation induced by high-glucose (HG), the hypoxia mimetic agent cobalt chloride (CoCl2) and TNF-α and attenuated MCP-1 upregulation induced by CoCl2 and TNF-α, but not by HG. TIMP-3 attenuated HG-induced upregulation of phospho-ERK1/2, caspase-3 and the mature form of ADAM17, but not the levels of the p65 subunit of NF-κB and the proform of ADAM17 in Müller cells. TIMP-3 significantly downregulated TNF-α-induced upregulation of ICAM-1 and VCAM-1 in HRMECs. Accordingly, TIMP-3 significantly decreased spontaneous and TNF-α- and VEGF-induced adherence of monocytes to HRMECs. Finally, TIMP-3 significantly attenuated VEGF-induced migration, chemotaxis and proliferation of HRMECs. Conclusion:In vitro and in vivo data point to anti-inflammatory and anti-angiogenic effects of TIMP-3 and support further studies for its applications in the treatment of DR.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Alexandra De Zutter
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology and Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, and University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Wu G, Liu B, Wu Q, Tang C, Du Z, Fang Y, Hu Y, Yu H. Correlations Between Different Angiogenic and Inflammatory Factors in Vitreous Fluid of Eyes With Proliferative Diabetic Retinopathy. Front Med (Lausanne) 2021; 8:727407. [PMID: 34650995 PMCID: PMC8505670 DOI: 10.3389/fmed.2021.727407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose: To investigate the expression of various angiogenesis and inflammation mediators in the vitreous fluid of eyes with proliferative diabetic retinopathy (PDR). Methods: A total of 38 eyes with PDR and 37 control eyes were included. Vitreous fluid was collected during vitrectomy. Vitreous levels of colony stimulating factor-1 receptor (CSF-1R), syndecan-1, placental growth factor (PIGF), and angiopoietin-like protein 4 (ANGPTL-4) were measured by multiplex immunoassay. Vitreous levels of vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) were measured by cytometric beads array. Levels of these mediators were compared between the PDR and control eyes. Correlations between levels of different mediators and between these mediators and kidney function metrics in the PDR group were also analyzed. Results: Vitreous levels of syndecan-1, PIGF, ANGPTL-4, VEGF, and IL-8 were significantly higher in the PDR group compared to the control group (all p < 0.05). Levels of VEGF were significantly correlated with levels of syndecan-1, PIGF, and ANGPTL-4 (r = 0.370 to 0.497, all p < 0.05). Significant positive correlations were detected between levels of any two of the following mediators including syndecan-1, PIGF, ANGPTL-4, and IL-8 (r = 0.370 to 0.906, all p < 0.05). Apart from VEGF, levels of these mediators were positively correlated with serum creatinine and blood urea nitrogen (r = 0.328 to 0.638, all p < 0.05), and negatively correlated with fasting blood glucose and estimated glomerular filtration rate (r = −0.325 to −0.603, all p < 0.05). Conclusions: Correlations between different angiogenesis and inflammation mediators were observed in eyes with PDR, suggesting cross-talks of different angiogenesis and inflammation pathways in the pathogenesis of PDR. The levels of angiogenesis and inflammation in PDR are correlated with kidney damage, indicating possible common pathways in diabetic retinopathy and nephropathy.
Collapse
Affiliation(s)
- Guanrong Wu
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Baoyi Liu
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiaowei Wu
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Changting Tang
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zijing Du
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ying Fang
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yijun Hu
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Aier Institute of Refractive Surgery, Refractive Surgery Center, Guangzhou Aier Eye Hospital, Guangzhou, China.,Aier School of Ophthalmology, Central South University, Changsha, China
| | - Honghua Yu
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
29
|
Lefevere E, Van Hove I, Sergeys J, Steel DHW, Schlingemann R, Moons L, Klaassen I. PDGF as an Important Initiator for Neurite Outgrowth Associated with Fibrovascular Membranes in Proliferative Diabetic Retinopathy. Curr Eye Res 2021; 47:277-286. [PMID: 34612091 DOI: 10.1080/02713683.2021.1966479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The formation of fibrovascular membranes (FVMs) is a serious sight-threatening complication of proliferative diabetic retinopathy (PDR) that may result in retinal detachment and eventual blindness. During the formation of these membranes, neurite/process outgrowth occurs in retinal neurons and glial cells, which may both serve as a scaffold and have guiding or regulatory roles. To further understand this process, we investigated whether previously identified candidate proteins, from vitreous of PDR patients with FVMs, could induce neurite outgrowth in an experimental setting. MATERIALS AND METHODS Retinal explants of C57BL6/N mouse pups on postnatal day 3 (P3) were cultured in poly-L-lysine- and laminin-coated dishes. Outgrowth stimulation experiments were performed with the addition of potential inducers of neurite outgrowth. Automated analysis of neurite outgrowth was performed by measuring β-tubulin-immunopositive neurites using Image J. Expression of PDGF receptors was quantified by RT-PCR in FVMs of PDR patients. RESULTS Platelet-derived growth factor (PDGF) induced neurite outgrowth in a concentration-dependent manner, whilst neuregulin 1 (NRG1) and connective tissue growth factor (CTGF) did not. When comparing three different PDGF dimers, treatment with PDGF-AB resulted in the highest neurite induction, followed by PDGF-AA and -BB. In addition, incubation of retinal explants with vitreous from PDR patients resulted in a significant induction of neurite outgrowth as compared to non-diabetic control vitreous from patients with macular holes, which could be prevented by addition of CP673451, a potent PDGF receptor (PDGFR) inhibitor. Abundant expression of PDGF receptors was detected in FVMs. CONCLUSION Our findings suggest that PDGF may be involved in the retinal neurite outgrowth, which is associated with the formation of FVMs in PDR.
Collapse
Affiliation(s)
- Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jurgen Sergeys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - David H W Steel
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Department of Ophthalmology, Sunderland Eye Infirmary, Sunderland, UK
| | - Reinier Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam Cardiovascular Sciences, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|