1
|
Su HW, Qiu CW. A comparative review of murine models of repeated low-dose cisplatin-induced chronic kidney disease. Lab Anim (NY) 2025; 54:42-49. [PMID: 39885282 DOI: 10.1038/s41684-024-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025]
Abstract
This Review evaluates various mouse and rat models of chronic kidney disease (CKD) that result from repeated low-dose cisplatin (RLDC) treatment while also discussing ethical considerations on the topic. Cisplatin can cause nephrotoxicity, and high doses of cisplatin can cause acute kidney injury. The RLDC regimen has been used in the treatment of solid organ cancers and has shown efficacy in reducing the occurrence of acute kidney injury in patients. However, prolonged treatments may lead to CKD. Mouse and rat models that effectively replicate the pathological features of CKD are invaluable for studying the mechanisms of the disease and exploring potential therapeutic interventions. Whereas administration of a single higher dose in some RLDC models may lead to higher mortality rates, a single lower dose may not replicate the fibrotic characteristics of CKD. Here we gathered information on mouse and rat models of RLDC-induced CKD and analyzed the impact of different variables, such as animal age, cisplatin dosage and administration frequency, on success rates, mortality rate and weight loss. Among the different models, weekly intraperitoneal administration of 8 mg/kg or 9 mg/kg of cisplatin for a total of 4 weeks in 12-week-old male C57BL/6 mice showed the most similar clinical characteristics of CKD while adhering to ethical requirements. In this Review, we suggest the best timings for both drug intervention and observation based on the biological traits of the model. Furthermore, given the limited research available on RLDC-induced CKD rat models, it is urgent to focus on developing RLDC methods that can induce detailed characteristics of CKD in rats.
Collapse
Affiliation(s)
- Hong-Wei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Cai-Wei Qiu
- Research Center of Combine Traditional Chinese and Western Medicine, Prophylaxis and Treatment of Organ Fibrosis by Integrated Medicine of Luzhou Key Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Wang Y, Luo P, Wuren T. Narrative Review of Mesenchymal Stem Cell Therapy in Renal Diseases: Mechanisms, Clinical Applications, and Future Directions. Stem Cells Int 2024; 2024:8658246. [PMID: 39698513 PMCID: PMC11655143 DOI: 10.1155/sci/8658246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Renal diseases, particularly acute kidney injury (AKI) and chronic kidney disease (CKD), are significant global health challenges. These conditions impair kidney function and can lead to serious complications, including cardiovascular diseases, which further exacerbate the public health burden. Currently, the global AKI mortality rate is alarmingly high (20%-50%); CKD is projected to emerge as a major global health burden by 2040. Existing treatments such as hemodialysis and kidney transplantation have limited effectiveness and are often associated with adverse effects. Mesenchymal stem cells (MSCs) offer considerable potential for treating renal diseases owing to their regenerative and immunomodulatory properties. Thus, this review focuses on the application of MSCs in renal disease, discusses fundamental research findings, and evaluates their application in clinical trials. Moreover, we discuss the impact and safety of MSCs as a therapeutic option and highlight challenges and potential directions for their clinical application. We selected research articles from PubMed published within the last 5 years (from 2019), focusing on high-impact journals and clinical trial data, and included a few key studies predating 2019. Considerations included the novelty of the research, sample size, experimental design, and data reliability. With advancements in single-cell sequencing, CRISPR/Cas9 gene editing, and other cutting-edge technologies, future MSC research will explore combination therapies and personalized treatments to provide more promising, safer treatments with reduced adverse reactions and enhanced therapeutic outcomes. These advances will improve kidney disease treatment methods, enhance patient quality of life, and maximize the benefits of MSC therapies.
Collapse
Affiliation(s)
- Yanjun Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining 810001, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine (Qinghai-Utah Joint Key Laboratory for Plateau Medicine), Xining 810001, China
- Nephrology Department, Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Pengli Luo
- Nephrology Department, Affiliated Hospital of Qinghai University, Xining 810001, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining 810001, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine (Qinghai-Utah Joint Key Laboratory for Plateau Medicine), Xining 810001, China
| |
Collapse
|
3
|
Belmonte T, Benitez ID, García-Hidalgo MC, Molinero M, Pinilla L, Mínguez O, Vaca R, Aguilà M, Moncusí-Moix A, Torres G, Mediano O, Masa JF, Masdeu MJ, Montero-San-Martín B, Ibarz M, Martinez-Camblor P, Gómez-Carballa A, Salas A, Martinón-Torres F, Barbé F, Sánchez-de-la-Torre M, de Gonzalo-Calvo D. Synergic Integration of the miRNome, Machine Learning and Bioinformatics for the Identification of Potential Disease-Modifying Agents in Obstructive Sleep Apnea. Arch Bronconeumol 2024:S0300-2896(24)00449-6. [PMID: 39709277 DOI: 10.1016/j.arbres.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Understanding the diverse pathogenetic pathways in obstructive sleep apnea (OSA) is crucial for improving outcomes. microRNA (miRNA) profiling is a promising strategy for elucidating these mechanisms. OBJECTIVE To characterize the pathogenetic pathways linked to OSA through the integration of miRNA profiles, machine learning (ML) and bioinformatics. METHODS This multicenter study involved 525 patients with suspected OSA who underwent polysomnography. Plasma miRNAs were quantified via RNA sequencing in the discovery phase, with validation in two subsequent phases using RT-qPCR. Supervised ML feature selection methods and comprehensive bioinformatic analyses were employed. The associations among miRNA targets, OSA and OSA treatment were further explored using publicly available external datasets. RESULTS Following the discovery and technical validation phases in a subset of patients with and without confirmed OSA (n=53), eleven miRNAs were identified as candidates for the subsequent feature selection process. These miRNAs were then quantified in the remaining population (n=472). Feature selection methods revealed that the miRNAs let-7d-5p, miR-15a-5p and miR-107 were the most informative of OSA. The predominant mechanisms linked to these miRNAs were closely related to cellular events such as cell death, cell differentiation, extracellular remodeling, autophagy and metabolism. One target of let-7d-5p and miR-15a-5p, the TFDP2 gene, exhibited significant differences in gene expression between subjects with and without OSA across three independent databases. CONCLUSION Our study identified three plasma miRNAs that, in conjunction with their target genes, provide new insights into OSA pathogenesis and reveal novel regulators and potential drug targets.
Collapse
Affiliation(s)
- Thalia Belmonte
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Iván D Benitez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Basic Medical Sciences, University of Lleida, Lleida, Spain
| | - María C García-Hidalgo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Lucía Pinilla
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
| | - Olga Mínguez
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Rafaela Vaca
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Maria Aguilà
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Anna Moncusí-Moix
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
| | - Gerard Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain
| | - Olga Mediano
- Pneumology Department, University Hospital of Guadalajara, Guadalajara, Spain
| | - Juan F Masa
- San Pedro de Alcantara Hospital, Instituto Universitario de Investigación Biosanitaria de Extremadura, Cáceres, Spain
| | - Maria J Masdeu
- Respiratory and Sleep Department, Parc Taulí University Hospital, Parc Taulí Research and Innovation Institute, Autonomous University of Barcelona, Sabadell, Spain
| | | | - Mercè Ibarz
- Department of Clinical Laboratory, University Hospital Arnau de Vilanova, IRBLleida, Lleida, Spain
| | - Pablo Martinez-Camblor
- Anesthesiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Faculty of Health Sciences, Universidad Autonoma de Chile, Providencia, Chile
| | - Alberto Gómez-Carballa
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC) and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC) and Genetica de Poblaciones en Biomedicina (GenPoB) Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Genetics, Vaccines and Infections Research Group (GenViP), Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela (USC), 15706 Santiago de Compostela, Galicia, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manuel Sánchez-de-la-Torre
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Precision Medicine in Chronic Diseases, University Hospital Arnau de Vilanova and Santa Maria, IRB Lleida, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, Lleida, Spain; Group of Precision Medicine in Chronic Diseases, Hospital Nacional de Parapléjicos, IDISCAM, Spain; Department of Nursing, Physiotherapy and Occupational Therapy, Faculty of Physiotherapy and Nursing, University of Castilla-La Mancha, Toledo, Spain.
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Loeb GB, Kathail P, Shuai RW, Chung R, Grona RJ, Peddada S, Sevim V, Federman S, Mader K, Chu AY, Davitte J, Du J, Gupta AR, Ye CJ, Shafer S, Przybyla L, Rapiteanu R, Ioannidis NM, Reiter JF. Variants in tubule epithelial regulatory elements mediate most heritable differences in human kidney function. Nat Genet 2024; 56:2078-2092. [PMID: 39256582 DOI: 10.1038/s41588-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
Kidney failure, the decrease of kidney function below a threshold necessary to support life, is a major cause of morbidity and mortality. We performed a genome-wide association study (GWAS) of 406,504 individuals in the UK Biobank, identifying 430 loci affecting kidney function in middle-aged adults. To investigate the cell types affected by these loci, we integrated the GWAS with human kidney candidate cis-regulatory elements (cCREs) identified using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq). Overall, 56% of kidney function heritability localized to kidney tubule epithelial cCREs and an additional 7% to kidney podocyte cCREs. Thus, most heritable differences in adult kidney function are a result of altered gene expression in these two cell types. Using enhancer assays, allele-specific scATAC-seq and machine learning, we found that many kidney function variants alter tubule epithelial cCRE chromatin accessibility and function. Using CRISPRi, we determined which genes some of these cCREs regulate, implicating NDRG1, CCNB1 and STC1 in human kidney function.
Collapse
Affiliation(s)
- Gabriel B Loeb
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Pooja Kathail
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Richard W Shuai
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ryan Chung
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Reinier J Grona
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sailaja Peddada
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Volkan Sevim
- Laboratory for Genomics Research, San Francisco, CA, USA
- Target Discovery, GSK, San Francisco, CA, USA
| | - Scot Federman
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Mader
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey Y Chu
- Human Genetics and Genomics, GSK, Cambridge, MA, USA
| | | | - Juan Du
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander R Gupta
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine; Bakar Computational Health Sciences Institute; Parker Institute for Cancer Immunotherapy; Institute for Human Genetics; Department of Epidemiology & Biostatistics; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Shawn Shafer
- Laboratory for Genomics Research, San Francisco, CA, USA
- Target Discovery, GSK, San Francisco, CA, USA
| | - Laralynne Przybyla
- Laboratory for Genomics Research, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Radu Rapiteanu
- Genome Biology, Research Technologies, GSK, Stevenage, UK
| | - Nilah M Ioannidis
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeremy F Reiter
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Tang M, Shen L, Tang M, Liu L, Rao Z, Wang Z, Wang Y, Yin S, Li S, Xu G, Zhang K. Human mesenchymal stromal cells ameliorate cisplatin-induced acute and chronic kidney injury via TSG-6. Stem Cells 2024; 42:848-859. [PMID: 38804841 DOI: 10.1093/stmcls/sxae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Cisplatin is widely used in tumor chemotherapy, but nephrotoxicity is an unavoidable side effect of cisplatin. Several studies have demonstrated that mesenchymal stromal cells (MSCs) ameliorate cisplatin-induced kidney injury, but the underlying mechanisms are unknown. In this study, the cisplatin-induced kidney injury mouse model was established by subjecting a single intraperitoneal injection with cisplatin. One hour before cisplatin injection, the mice received human bone marrow MSCs (hBM-MSCs) with or without siRNA-transfection, recombinant human tumor necrosis factor-α-stimulated gene/protein 6 (rhTSG-6), or PBS through the tail vein. In addition, cisplatin-stimulated HK-2 cells were treated with hBM-MSCs or rhTSG-6. Human BM-MSCs treatment remarkably ameliorated cisplatin-induced acute and chronic kidney injury, as evidenced by significant reductions in serum creatinine (Scr), blood urea nitrogen, tubular injury, collagen deposition, α-smooth muscle actin accumulation, as well as inflammatory responses, and by remarkable increased anti-inflammatory factor expression and Treg cells infiltration in renal tissues. Furthermore, we found that only a few hBM-MSCs engrafted into damaged kidney and that the level of human TSG-6 in the serum of mice increased significantly following hBM-MSCs administration. Moreover, hBM-MSCs significantly increased the viability of damaged HK-2 cells and decreased the levels of inflammatory cytokines in the culture supernatant. However, the knockdown of the TSG-6 gene in hBM-MSCs significantly attenuated their beneficial effects in vivo and in vitro. On the contrary, treated with rhTSG-6 achieved similar beneficial effects of hBM-MSCs. Our results indicate that systemic administration of hBM-MSCs alleviates cisplatin-induced acute and chronic kidney injury in part by paracrine TSG-6 secretion.
Collapse
Affiliation(s)
- Ming Tang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Linguo Shen
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Maozhi Tang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Ling Liu
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Zhengsheng Rao
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Zhilin Wang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Yadi Wang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Supei Yin
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Shujing Li
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| | - Guilian Xu
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Keqin Zhang
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400065, People's Republic of China
| |
Collapse
|
6
|
Han R, Zhong H, Zhang Y, Yu H, Zhang Y, Huang S, Yang Z, Zhong Y. MiR-146a reduces fibrosis after glaucoma filtration surgery in rats. J Transl Med 2024; 22:440. [PMID: 38720358 PMCID: PMC11080255 DOI: 10.1186/s12967-024-05170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE To explore the impact of microRNA 146a (miR-146a) and the underlying mechanisms in profibrotic changes following glaucoma filtering surgery (GFS) in rats and stimulation by transforming growth factor (TGF)-β1 in rat Tenon's capsule fibroblasts. METHODS Cultured rat Tenon's capsule fibroblasts were treated with TGF-β1 and analyzed with microarrays for mRNA profiling to validate miR-146a as the target. The Tenon's capsule fibroblasts were then respectively treated with lentivirus-mediated transfection of miR-146a mimic or inhibitor following TGF-β1 stimulation in vitro, while GFS was performed in rat eyes with respective intraoperative administration of miR-146a, mitomycin C (MMC), or 5-fluorouracil (5-FU) in vivo. Profibrotic genes expression levels (fibronectin, collagen Iα, NF-KB, IL-1β, TNF-α, SMAD4, and α-smooth muscle actin) were determined through qPCR, Western blotting, immunofluorescence staining and/or histochemical analysis in vitro and in vivo. SMAD4 targeting siRNA was further used to treat the fibroblasts in combination with miR-146a intervention to confirm its role in underlying mechanisms. RESULTS Upregulation of miR-146a reduced the proliferation rate and profibrotic changes of rat Tenon's capsule fibroblasts induced by TGF-β1 in vitro, and mitigated subconjunctival fibrosis to extend filtering blebs survival after GFS in vivo, where miR-146a decreased expression levels of NF-KB-SMAD4-related genes, such as fibronectin, collagen Iα, NF-KB, IL-1β, TNF-α, SMAD4, and α-smooth muscle actin(α-SMA). Additionally, SMAD4 is a key target gene in the process of miR-146a inhibiting fibrosis. CONCLUSIONS MiR-146a effectively reduced TGF-β1-induced fibrosis in rat Tenon's capsule fibroblasts in vitro and in vivo, potentially through the NF-KB-SMAD4 signaling pathway. MiR-146a shows promise as a novel therapeutic target for preventing fibrosis and improving the success rate of GFS.
Collapse
Affiliation(s)
- Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Huimin Zhong
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zijian Yang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
- Department of Ophthalmology, Wuxi Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Zhixian Road, Wuxi, China.
| |
Collapse
|
7
|
Kelada MN, Elagawany A, El Sekily NM, El Mallah M, Abou Nazel MW. Protective Effect of Platelet-Rich Plasma on Cisplatin-Induced Nephrotoxicity in Adult Male Albino Rats: Histological and Immunohistochemical Study. Biol Trace Elem Res 2024; 202:1067-1083. [PMID: 37420147 PMCID: PMC10803452 DOI: 10.1007/s12011-023-03742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
Cisplatin is a potent antineoplastic drug that is used for treatment of many solid tumors. It has a wide range of adverse effects. Nephrotoxicity is the most common one of them. Platelet-rich plasma (PRP) is an autologous human plasma that activates the tissue regeneration through cell proliferation and differentiation. Study the role of PRP in amelioration of cisplatin-induced nephrotoxicity on the kidney of adult male albino rats by biochemical, morphometric, histological, and immunohistochemical studies. Thirty-five adult male albino rats were used. Thirty rats were included as experimental group and five were used to obtain the PRP. The experimental group was classified into as follows: control group which received 1mL of sterile saline by intraperitoneal injection (IP), cisplatin-treated group which received cisplatin 7.5 mg/kg IP in a single dose and cisplatin and PRP-treated group rats received cisplatin 7.5 mg/kg single IP dose followed by 1ml of PRP IP after 24 h of cisplatin injection. There was a significant increase in urea and creatinine levels in cisplatin-treated group in comparison to the control and the PRP groups. The kidneys of cisplatin-treated group showed distorted renal structure, where specimens of PRP-treated group revealed restoration of the classical appearance of the renal tissue similar to the control group. PRP has protective effects on renal structure and functions and it helps to ameliorate the histological changes induced by cisplatin.
Collapse
Affiliation(s)
- Melad N Kelada
- Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Amany Elagawany
- Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Nancy Mohamed El Sekily
- Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mona El Mallah
- Anatomy and Embryology department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Maha W Abou Nazel
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
8
|
Tsuji K, Nakanoh H, Fukushima K, Kitamura S, Wada J. MicroRNAs as Biomarkers and Therapeutic Targets for Acute Kidney Injury. Diagnostics (Basel) 2023; 13:2893. [PMID: 37761260 PMCID: PMC10529274 DOI: 10.3390/diagnostics13182893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome where a rapid decrease in kidney function and/or urine output is observed, which may result in the imbalance of water, electrolytes and acid base. It is associated with poor prognosis and prolonged hospitalization. Therefore, an early diagnosis and treatment to avoid the severe AKI stage are important. While several biomarkers, such as urinary L-FABP and NGAL, can be clinically useful, there is still no gold standard for the early detection of AKI and there are limited therapeutic options against AKI. miRNAs are non-coding and single-stranded RNAs that silence their target genes in the post-transcriptional process and are involved in a wide range of biological processes. Recent accumulated evidence has revealed that miRNAs may be potential biomarkers and therapeutic targets for AKI. In this review article, we summarize the current knowledge about miRNAs as promising biomarkers and potential therapeutic targets for AKI, as well as the challenges in their clinical use.
Collapse
Affiliation(s)
- Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroyuki Nakanoh
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Program in Membrane Biology, Center for Systems Biology, Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Nursing Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
9
|
YAMATE J. Stem cell pathology: histogenesis of malignant fibrous histiocytoma and characterization of myofibroblasts appearing in fibrotic lesions. J Vet Med Sci 2023; 85:895-906. [PMID: 37460298 PMCID: PMC10539815 DOI: 10.1292/jvms.23-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 09/05/2023] Open
Abstract
The concept of "stem cell pathology" is to establish the role of the stem cells by exploring their contribution to lesion development. The somatic stem cells are present in the body. Malignant fibrous histiocytoma (MFH; recently named "undifferentiated pleomorphic sarcoma") includes pluripotential undifferentiated mesenchymal stem cells as a cell element. An antibody (A3) generated by using rat MFH cells as the antigen labels somatic stem cells such as bone marrow stem cells and immature endothelial cells and pericytes, as well as immature epithelial cells in epithelialization. By using A3 and other antibodies recognizing somatic stem cells, it is considered that myofibroblasts appearing in rat fibrotic lesions are developed partly from immature hepatic stellate cells in hepatic fibrosis, immature pancreatic stellate cells in pancreatic fibrosis, pericytes/endothelial cells in neovascularization in injured tissues, as well as via the epithelial-mesenchymal transition. These progenitors may be in the stem cell lineage. In this review, the author introduces the histogenesis of MFH and the characteristics of myofibroblasts appearing in fibrosis, based mainly on the author's studies.
Collapse
Affiliation(s)
- Jyoji YAMATE
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
10
|
Abdelrahman SA, Raafat N, Abdelaal GMM, Aal SMA. Electric field-directed migration of mesenchymal stem cells enhances their therapeutic potential on cisplatin-induced acute nephrotoxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1077-1093. [PMID: 36640200 PMCID: PMC10185611 DOI: 10.1007/s00210-022-02380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Cisplatin is widely used as an anti-neoplastic agent but is limited by its nephrotoxicity. The use of mesenchymal stem cells (MSCs) for the management of acute kidney injury (AKI) represents a new era in treatment but effective homing of administered cells is needed. This study aimed to investigate the effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) on cisplatin-induced AKI in rats after directed migration by electric field (EF). Forty-eight adult male albino rats were equally classified into four groups: control, cisplatin-treated, cisplatin plus BM-MSCs, and cisplatin plus BM-MSCs exposed to EF. Serum levels of IL-10 and TNF-α were measured by ELISA. Quantitative real-time PCR analysis for gene expression of Bcl2, Bax, caspase-3, and caspase-8 was measured. Hematoxylin and eosin (H&E) staining, periodic acid Schiff staining, and immunohistochemical analysis were also done. MSC-treated groups showed improvement of kidney function; increased serum levels of IL-10 and decreased levels of TNF-α; and increased mRNA expression of Bcl2 and decreased expression of Bax, caspase-3, and caspase-8 proteins comparable to the cisplatin-injured group. EF application increased MSCs homing with significant decrease in serum urea level and caspase-3 gene expression together with significant increase in Bcl2 expression than occurred in the MSCs group. Restoration of normal kidney histomorphology with significant decrease in immunohistochemical expression of caspase-3 protein was observed in the BM-MSCs plus EF group compared to the BM-MSCs group. EF stimulation enhanced the MSCs homing and improved their therapeutic potential on acute cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Shaimaa A. Abdelrahman
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nermin Raafat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadeer M. M. Abdelaal
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara M. Abdel Aal
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Cisplatin nephrotoxicity: new insights and therapeutic implications. Nat Rev Nephrol 2023; 19:53-72. [PMID: 36229672 DOI: 10.1038/s41581-022-00631-7] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Cisplatin is an effective chemotherapeutic agent for various solid tumours, but its use is limited by adverse effects in normal tissues. In particular, cisplatin is nephrotoxic and can cause acute kidney injury and chronic kidney disease. Preclinical studies have provided insights into the cellular and molecular mechanisms of cisplatin nephrotoxicity, which involve intracellular stresses including DNA damage, mitochondrial pathology, oxidative stress and endoplasmic reticulum stress. Stress responses, including autophagy, cell-cycle arrest, senescence, apoptosis, programmed necrosis and inflammation have key roles in the pathogenesis of cisplatin nephrotoxicity. In addition, emerging evidence suggests a contribution of epigenetic changes to cisplatin-induced acute kidney injury and chronic kidney disease. Further research is needed to determine how these pathways are integrated and to identify the cell type-specific roles of critical molecules involved in regulated necrosis, inflammation and epigenetic modifications in cisplatin nephrotoxicity. A number of potential therapeutic targets for cisplatin nephrotoxicity have been identified. However, the effects of renoprotective strategies on the efficacy of cisplatin chemotherapy needs to be thoroughly evaluated. Further research using tumour-bearing animals, multi-omics and genome-wide association studies will enable a comprehensive understanding of the complex cellular and molecular mechanisms of cisplatin nephrotoxicity and potentially lead to the identification of specific targets to protect the kidney without compromising the chemotherapeutic efficacy of cisplatin.
Collapse
|
12
|
Ma C, Qi X, Wei YF, Li Z, Zhang HL, Li H, Yu FL, Pu YN, Huang YC, Ren YX. Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioact Mater 2023; 19:139-154. [PMID: 35475028 PMCID: PMC9014323 DOI: 10.1016/j.bioactmat.2022.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Ligamentum flavum (LF) hypertrophy (LFH) has been recognised as one of the key contributors to lumbar spinal stenosis. Currently, no effective methods are available to ameliorate this hypertrophy. In this study, human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hUCMSC-EVs) were introduced for the first time as promising vehicles for drug delivery to treat LFH. The downregulation of miR-146a-5p and miR-221-3p expressions in human LF tissues negatively correlated with increased LF thickness. The hUCMSC-EVs enriched with these two miRNAs significantly suppressed LFH in vivo and notably ameliorated the progression of transforming growth factor β1(TGF-β1)-induced fibrosis in vitro after delivering these two miRNAs to mouse LF cells. The results further demonstrated that miR-146a-5p and miR-221-3p directly bonded to the 3′-UTR regions of SMAD4 mRNA, thereby inhibiting the TGF-β/SMAD4 signalling pathway. Therefore, this translational study determined the effectiveness of a hUCMSC-EVs-based approach for the treatment of LFH and revealed the critical target of miR-146a-5p and miR-221-3p. Our findings provide new insights into promising therapeutics using a hUCMSC-EVs-based delivery system for patients with lumbar spinal stenosis. The downregulation of miR-146a-5p and miR-221-3p expressions were negatively correlated with the development of LFH. MiR-146a-5p and miR-221-3p enriched in hUCMSC-EVs prevent the fibrosis of LF by targeting SMAD4. hUCMSC-EVs are effective as bioactive vehicles to ameliorate the progression of LFH. hUCMSC-EVs-based delivery system is a promising therapy for the patients with lumbar spinal stenosis.
Collapse
|
13
|
Abo-Aziza FAM, Albarrak SM, Zaki AKA, El-Shafey SE. Tumor necrosis factor-alpha antibody labeled-polyethylene glycol-coated nanoparticles: A mesenchymal stem cells-based drug delivery system in the rat model of cisplatin-induced nephrotoxicity. Vet World 2022; 15:2475-2490. [DOI: 10.14202/vetworld.2022.2475-2490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: A delivery system consisting of bone marrow mesenchymal stem cells (MSCs) loaded with polyethylene glycol (PEG) coated superparamagnetic iron oxide nanoparticles (SPIONs) was constructed to treat a rat model of cisplatin (Cis)-induced nephrotoxicity with 1/10 of the common dose of anti-tumor necrosis factor-alpha (TNF-α) antibodies (infliximab).
Materials and Methods: Morphology, size, crystallinity, molecular structure, and magnetic properties of uncoated and PEG-coated SPIONs were analyzed. A delivery system consisting of MSCs containing infliximab-labeled PEG-coated SPIONs (Infliximab-PEG-SPIONs-MSCs) was generated and optimized before treatment. Fifty female Wistar rats were divided into five equal groups: Group 1: Untreated control; Group 2 (Cis): Rats were administered Cis through intraperitoneal (i.p.) injection (8 mg/kg) once a week for 4 weeks; Group 3 (Infliximab): Rats were injected once with infliximab (5 mg/kg), i.p. 3 days before Cis administration; Group 4 (Cis + MSCs): Rats were injected with Cis followed by an injection of 2 × 106 MSCs into the tail vein twice at a 1-week interval; and Group 5 (Cis + Infliximab (500 μg/kg)-PEG-SPIONs-MSCs): Rats were injected with the delivery system into the tail vein twice at a 1-week interval. Besides histological examination of the kidney, the Doppler ultrasound scanner was used to scan the kidney with the Gray-color-spectral mode.
Results: In vivo, intra-renal iron uptake indicates the traffic of the delivery system from venous blood to renal tissues. Cis-induced nephrotoxicity resulted in a significant increase in TNF-α and malondialdehyde (MDA) (p < 0.05), bilirubin, creatinine, and uric acid (p < 0.01) levels compared with the untreated control group. The different treatments used in this study resulted in the amelioration of some renal parameters. However, TNF-α levels significantly decreased in Cis + Infliximab and Cis + MSCs (p < 0.05) groups. The serum levels of MDA significantly decreased in Cis + Infliximab (p < 0.05), Cis + MSCs (p < 0.05), and Cis + Infliximab-PEG-SPIONs-MSCs (p < 0.01). Furthermore, the serum activities of antioxidant enzymes were significantly elevated in the Cis + MSCs and Cis + Infliximab-PEG-SPIONs-MSCs groups (p < 0.05) compared to the Cis-induced nephrotoxicity rat model.
Conclusion: With the support of the constructed MSCs-SPIONs infliximab delivery system, it will be possible to track and monitor cell homing after therapeutic application. This infliximab-loading system may help overcome some challenges regarding drug delivery to the target organ, optimize therapeutics' efficacy, and reduce the dose. The outcomes of the current study provide a better understanding of the potential of combining MSCs and antibodies-linked nanoparticles for the treatment of nephrotoxicity. However, further investigation is recommended using different types of other drugs. For new approaches development, we should evaluate whether existing toxicity analysis and risk evaluation strategies are reliable and enough for the variety and complexity of nanoparticles.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Saleh M. Albarrak
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdel-Kader A. Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
14
|
Gan Y, Wang H, Du L, Fan Z, Sun P, Li K, Qu Q, Wang J, Chen R, Hu Z, Miao Y. Ficoll density gradient sedimentation isolation of pelage hair follicle mesenchymal stem cells from adult mouse back skin: a novel method for hair follicle mesenchymal stem cells isolation. Stem Cell Res Ther 2022; 13:372. [PMID: 35902892 PMCID: PMC9330686 DOI: 10.1186/s13287-022-03051-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Hair follicle mesenchymal stem cells (HF-MSCs) have great potential for cell therapy. Traditional method to isolate whisker HF-MSC is time-consuming and few in cell numbers. How to quickly and conveniently obtain a large number of HF-MSC for experimental research is a problem worth exploring. Methods Two-step Ficoll Density Gradient Sedimentation (FDGS) was performed to isolate pelage HF-MSC from adult mice. The characteristic of the isolated cells was identified and compared with whisker HF-MSC by immunofluorescence staining, flow cytometry, three-lineage differentiation and hair follicle reconstruction. Pelage HF-MSC and exosomes were injected into the dorsal skin of mice as well as hair follicle organ culture to explore its role in promoting hair growth. The cells and exosomes distribution were located by immunofluorescence staining. Results Isolated pelage HF-MSC expressed similar markers (ALP, Versican, NCAM, Nestin), showed similar growth pattern, possessed similar mesenchymal stem cells function and hair follicle induction ability as whisker HF-MSC. A large number of cells can be obtained with fewer mice compared to traditional method. Injected pelage HF-MSC promoted hair growth by secreting exosomes. Conclusion A large number of Pelage HF-MSC can be isolated by FDGS, which can promote hair growth by secreting exosomes which may target the dermal papilla and hair matrix region of host hair follicle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03051-3.
Collapse
Affiliation(s)
- Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Pingping Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Kaitao Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
15
|
Zhang F, Luo H, Peng W, Wang L, Wang T, Xie Z, Zhang J, Dong W, Zheng X, Liu G, Zhu X, Kang Q, Tian X. Hypoxic condition induced H3K27me3 modification of the LncRNA Tmem235 promoter thus supporting apoptosis of BMSCs. Apoptosis 2022; 27:762-777. [PMID: 35779185 PMCID: PMC9482900 DOI: 10.1007/s10495-022-01747-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2022] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have strong regenerative potential and show good application prospects for treating clinical diseases. However, in the process of BMSC transplantation for treating ischemic and hypoxic diseases, BMSCs have high rates of apoptosis in the hypoxic microenvironment of transplantation, which significantly affects the transplantation efficacy. Our previous studies have confirmed the key role of long non-coding RNA Tmem235 (LncRNA Tmem235) in the process of hypoxia-induced BMSC apoptosis and its downstream regulatory mechanism, but the upstream mechanism by which hypoxia regulates LncRNA Tmem235 expression to induce BMSC apoptosis is still unclear. Under hypoxic conditions, we found that the level of LncRNA Tmem235 promoter histone H3 lysine 27 trimethylation modification (H3K27me3) was significantly increased by CHIP-qPCR. Moreover, H3K27me3 cooperated with LncRNA Tmem235 promoter DNA methylation to inhibit the expression of LncRNA Tmem235 and promote apoptosis of BMSCs. To study the mechanism of hypoxia-induced modification of LncRNA Tmem235 promoter H3K27me3 in the hypoxia model of BMSCs, we detected the expression of H3K27 methylase and histone demethylase and found that only histone methylase enhancer of zeste homolog 2 (EZH2) expression was significantly upregulated. Knockdown of EZH2 significantly decreased the level of H3K27me3 modification in the LncRNA Tmem235 promoter. The EZH2 promoter region contains a hypoxia-responsive element (HRE) that interacts with hypoxia-inducible factor-1alpha (HIF-1α), which is overexpressed under hypoxic conditions, thereby promoting its overexpression. In summary, hypoxia promotes the modification of the LncRNA Tmem235 promoter H3K27me3 through the HIF-1α/EZH2 signaling axis, inhibits the expression of LncRNA Tmem235, and leads to hypoxic apoptosis of BMSCs. Our findings improve the regulatory mechanism of LncRNA Tmem235 during hypoxic apoptosis of BMSCs and provide a more complete theoretical pathway for targeting LncRNA to inhibit hypoxic apoptosis of BMSCs.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wuxun Peng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Lei Wang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhihong Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jian Zhang
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wentao Dong
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaohan Zheng
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Gang Liu
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Qinglin Kang
- Department of Orthopedics, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Xiaobin Tian
- Department of Orthopedics, The Affliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
16
|
Investigation of Morchella esculenta and Morchella conica for their antibacterial potential against methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Streptococcus pyogenes. Arch Microbiol 2022; 204:391. [PMID: 35699800 DOI: 10.1007/s00203-022-03003-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
Abstract
Antimicrobial resistance is an alarming problem, especially due to emergence of methicillin-resistance Staphylococcus aureus (MRSA). World Health Organization (WHO) has already listed MRSA as a top priority pathogen for the development of novel antibacterial agents. Presently, different therapeutic approaches against bacterial infections are in practice which includes targeting bacterial virulence factors, bacteriophage therapy, and manipulation of the microbiome. Natural products have been efficiently used for centuries to combat bacterial infections. Morchella is a natural fungal product which has been reported to possess broad-spectrum biological activities against bacterial infections. Hence, this study was aimed to evaluate the antibacterial efficacy of two macro-fungi against S. aureus, MRSA, and Streptococcus pyogenes (S. pyogenes). The antibacterial potential of both fungal extracts (Morchella esculenta and Morchella conica) was evaluated using disk diffusion and standard broth microdilution methods. The chemical compounds of both fungi were investigated using ultra-performance liquid chromatography mass spectroscopy (UPLC-MS) analysis. All fungal extracts inhibited growth of tested bacteria with inhibitory zone ranging from 10.66 ± 0.3 to 21.00 ± 1.5 mm. The minimum inhibitory concentration (MIC) of tested bacterial growth ranged from 03.33 to 16.0 mg/ml. It was noteworthy that Morchella extracts prevented S. aureus growth in a bactericidal manner with minimal bactericidal concentration (MBC) of 8-16 mg/ml. The extracts were also more effective against MRSA than currently available antibiotics. In conclusion, the growth inhibition of tested bacteria by fungal extracts revealed their potential as antibacterial agents and their compounds may be used as drug candidates.
Collapse
|
17
|
Saito N, Sato Y, Abe H, Wada I, Kobayashi Y, Nagaoka K, Kushihara Y, Ushiku T, Seto Y, Kakimi K. Selection of RNA-based evaluation methods for tumor microenvironment by comparing with histochemical and flow cytometric analyses in gastric cancer. Sci Rep 2022; 12:8576. [PMID: 35595859 PMCID: PMC9122932 DOI: 10.1038/s41598-022-12610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Understanding the tumor microenvironment (TME) and anti-tumor immune responses in gastric cancer are required for precision immune-oncology. Taking advantage of next-generation sequencing technology, the feasibility and reliability of transcriptome-based TME analysis were investigated. TME of 30 surgically resected gastric cancer tissues was analyzed by RNA-Seq, immunohistochemistry (IHC) and flow cytometry (FCM). RNA-Seq of bulk gastric cancer tissues was computationally analyzed to evaluate TME. Computationally analyzed immune cell composition was validated by comparison with cell densities established by IHC and FCM from the same tumor tissue. Immune cell infiltration and cellular function were also validated with IHC and FCM. Cell proliferation and cell death in the tumor as assessed by RNA-Seq and IHC were compared. Computational tools and gene set analysis for quantifying CD8+ T cells, regulatory T cells and B cells, T cell infiltration and functional status, and cell proliferation and cell death status yielded an excellent correlation with IHC and FCM data. Using these validated transcriptome-based analyses, the immunological status of gastric cancer could be classified into immune-rich and immune-poor subtypes. Transcriptome-based TME analysis is feasible and is valuable for further understanding the immunological status of gastric cancer.
Collapse
Affiliation(s)
- Noriyuki Saito
- Department of Gastrointestinal Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, 113-8655, Japan.,Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yasuyoshi Sato
- Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuo Wada
- Department of Surgery, Tokyo Metropolitan Bokutoh Hospital, Tokyo, 130-8575, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Yoshihiro Kushihara
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, 113-8655, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
18
|
Yin S, Zhou S, Ren D, Zhang J, Xin H, He X, Gao H, Hou J, Zeng F, Lu Y, Zhang X, Fan M. Mesenchymal Stem Cell-derived Exosomes Attenuate Epithelial-mesenchymal Transition of HK-2 cells. Tissue Eng Part A 2022; 28:651-659. [PMID: 35019728 DOI: 10.1089/ten.tea.2021.0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Renal fibrosis predisposes patients to an increased risk of progressive chronic kidney disease (CKD), and effective treatments remain elusive. Mesenchymal stem cell (MSC) derived exosomes are considered a new treatment for tissue damage. Our study aimed to investigate the in vitro effects of bone marrow MSC-derived exosomes (BM-MSC-Ex) on transforming growth factor-β1 (TGF-β1)-induced fibrosis in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. Herein, we found exosomes derived from bone marrow mesenchymal stem cells (BM-MSC-Ex) could inhibit TGF-β1-induced epithelial-mesenchymal transition (EMT) in HK-2 cells, and may involve autophagy activation of BM-MSC-Ex. Moreover, we first reported that after CeNPs treatment, the improvements induced by BM-MSC-Ex on EMT were significantly enhanced by up-regulating the expression of Nedd4Lof MSCs and promoting the secretion of exosomes, which contained Nedd4L. In addition, Nedd4L could activate autophagy in HK-2 cells. In conclusion, BM-MSC-Ex prevents the TGF-β1-induced EMT of renal tubular epithelial cells by transporting Nedd4L, which activates autophagy. The results of this in vitro experiment may extend to renal fibrosis, whereby BM-MSC-Ex may also be used as a novel treatment for improving renal fibrosis.
Collapse
Affiliation(s)
- Shuai Yin
- Third Affiliated Hospital of Soochow University, 117850, Changzhou, Jiangsu, China;
| | - Shilin Zhou
- Fudan University School of Pharmacy, 70579, Shanghai, Zhangjiang Hi-Tech Park, China;
| | - Dadui Ren
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Jing Zhang
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Hong Xin
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Xiaozhou He
- Third Affiliated Hospital of Soochow University, 117850, Changzhou, Jiangsu, China;
| | - Hongjian Gao
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Jiayun Hou
- Zhongshan Hospital Fudan University, 92323, Shanghai, Shanghai, China;
| | - Feng Zeng
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Yunjie Lu
- Third Affiliated Hospital of Soochow University, 117850, Changzhou, Jiangsu, China;
| | - Xuemei Zhang
- Fudan University School of Pharmacy, 70579, Shanghai, China;
| | - Min Fan
- Third Affiliated Hospital of Soochow University, 117850, Changzhou, Jiangsu, China;
| |
Collapse
|
19
|
Mazher KM, Ahmed OM, Abdallah Sayed H, Nabil TM. The Role of Bone Marrow-Derived Mesenchymal Stromal Cells and Hesperidin in Ameliorating Nephrotoxicity Induced by Cisplatin in Male Wistar Rats. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:133-146. [PMID: 34703797 PMCID: PMC8496246 DOI: 10.22088/ijmcm.bums.10.2.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) and antioxidants opened the way for many effective therapeutic experiments against damaged organs like kidneys. Nephrotoxicity is the main complication of chemotherapeutic drugs. Therefore, the present study aimed to investigate the efficacy of BM-MSCs and hesperidin to treat cisplatin-induced nephrotoxicity in rats. Fifty rats were divided into five equal groups of 10 each. Group-I served as a control group, group-II received a single dose of cisplatin (7.5 mg/kg) intraperitoneally to induce nephrotoxicity, group-III received a daily dose of hesperidin (40 mg/kg) orally for four weeks, and on the 5th day cisplatin was administered an hour before hesperidin administration. Group-IV consisted of cisplatin-treated rats that were intravenously injected with 1х106 BM-MSCs cells/rat once per week. Group V contained cisplatin-treated rats that received a combination of hesperidin and BM-MSCs with the same dosage regimes. After four weeks, serum and kidney samples were collected for biochemical, histological, and immunohistochemical examinations were performed. Cisplatin administered rats showed deteriorated biochemical parameters and severe degenerative changes in renal tissue. Both single and combined hesperidin and BM-MSCs treatments restored the renal biochemical parameters. Histologically, the renal tissues significantly improved in the BM-MSCs treated group in comparison with the hesperidin treated group. Moreover, combined treatment (i.e., group V) showed complete restoration of the normal architecture in the renal tissue. Our data suggest that the combined treatment of BM-MSCs and hesperidin has a potent renoprotective efficacy against cisplatin-induced nephrotoxicity rather than the single treatment.
Collapse
Affiliation(s)
- Khalid Mohamed Mazher
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Osama Mohamed Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, 62521, Beni-Suef, Egypt
| | | | - Taghreed Mohamed Nabil
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| |
Collapse
|
20
|
Lee PW, Wu BS, Yang CY, Lee OKS. Molecular Mechanisms of Mesenchymal Stem Cell-Based Therapy in Acute Kidney Injury. Int J Mol Sci 2021; 22:11406. [PMID: 34768837 PMCID: PMC8583897 DOI: 10.3390/ijms222111406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) causes a lot of harm to human health but is treated by only supportive therapy in most cases. Recent evidence shows that mesenchymal stem cells (MSCs) benefit kidney regeneration through releasing paracrine factors and extracellular vesicles (EVs) to the recipient kidney cells and are considered to be promising cellular therapy for AKI. To develop more efficient, precise therapies for AKI, we review the therapeutic mechanism of MSCs and MSC-derived EVs in AKI and look for a better understanding of molecular signaling and cellular communication between donor MSCs and recipient kidney cells. We also review recent clinical trials of MSC-EVs in AKI. This review summarizes the molecular mechanisms of MSCs' therapeutic effects on kidney regeneration, expecting to comprehensively facilitate future clinical application for treating AKI.
Collapse
Grants
- Yin Yen-Liang Foundation Development and Construction Plan (107F-M01-0504) National Yang-Ming University
- MOST 108-2923-B-010-002-MY3, MOST 109-2314-B-010-053-MY3, MOST 109-2811-B-010-532, MOST 109-2926-I-010-502, MOST 109-2823-8-010-003-CV, MOST 109-2622-B-010-006, MOST 109-2321-B-010-006, MOST 110-2923-B-A49A-501-MY3, and MOST 110-2321-B-A49-003 Ministry of Science and Technology, Taiwan
- V106D25-003-MY3, VGHUST107-G5-3-3, VGHUST109-V5-1-2, and V110C-194 Taipei Veterans General Hospital
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B) Ministry of Education
Collapse
Affiliation(s)
- Pei-Wen Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Hong Deh Clinic, Taipei 11251, Taiwan
| | - Bo-Sheng Wu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chih-Yu Yang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Medicine, Division of Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (P.-W.L.); (B.-S.W.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
21
|
Xia C, Shao L, Ma Y, Wang X, Zhang Y, Shi C, Li H, Wang J. Ultrasound-Guided Transplantation of Mesenchymal Stem Cells Improves Adriamycin Nephropathy in Rats Through the RIPK3/MLKL and TLR-4/NF-κB Signaling. Stem Cells Dev 2021; 30:1003-1016. [PMID: 34486384 DOI: 10.1089/scd.2021.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone marrow stromal cell (BMSC) treatment has been shown to be beneficial for Adriamycin nephropathy (ADR). However, the low transplantation rate is still the key factor that affects this strategy. This study is the first to investigate the efficacy and potential mechanism of ultrasound-guided transrenal arterial transfer of BMSCs for the treatment of ADR in rats. The ADR rat model was established by two injections of doxorubicin. In addition, the rats were randomly divided into four groups (10 rats per group): the normal group (no treatment), the medium control group (treated with medium), the Adriamycin group (treated with phosphate buffer), and the BMSC group (treated with BMSCs). After 4 weeks, the levels of serum creatinine (SCr), blood urea nitrogen (BUN), and urine albumin (ALb) were measured. In addition, pathological changes in kidney tissue were evaluated by pathological sectioning and electron microscopy. Western blotting was used to determine the levels of proteins in rat kidneys. Ultrasound-guided renal artery transplantation of BMSCs reduced the levels of SCr, BUN, and ALb and improved the pathological structure of rat kidneys compared with those in the Adriamycin group. This treatment inhibited renal cell necrosis by reducing the expression of receptor-interacting Serine/threonine Kinase 3 (RIPK3) and Mixed lineage kinase domain-like pseudokinase (MLKL) and inhibited renal inflammation and fibrosis by reducing the expression of Toll-Like receptor 4 (TLR4) and nuclear factor κB (NF-κB). Our study shows that ultrasound-guided transrenal artery transplantation of BMSCs can improve adriamycin-induced renal injury in rats by regulating the RIPK3/MLKL and TLR-4/NF-κB pathways and inhibiting renal necrosis, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Chunjuan Xia
- Department of Ultrasound, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lishi Shao
- Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiqun Ma
- Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinghong Wang
- Department of Surgery, Kunming Medical University, Kunming, China
| | - Ya Zhang
- Department of Radiology, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Shi
- Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, China
| | - Jiaping Wang
- Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
22
|
Han Q, Wang X, Ding X, He J, Cai G, Zhu H. Immunomodulatory Effects of Mesenchymal Stem Cells on Drug-Induced Acute Kidney Injury. Front Immunol 2021; 12:683003. [PMID: 34149721 PMCID: PMC8213363 DOI: 10.3389/fimmu.2021.683003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Drug-induced nephrotoxicity is an important and increasing cause of acute kidney injury (AKI), which accounts for approximately 20% of hospitalized patients. Previous reviews studies on immunity and AKI focused mainly on ischemia-reperfusion (IR), whereas no systematic review addressing drug-induced AKI and its related immune mechanisms is available. Recent studies have provided a deeper understanding on the mechanisms of drug-induced AKI, among which acute tubular interstitial injury induced by the breakdown of innate immunity was reported to play an important role. Emerging research on mesenchymal stem cell (MSC) therapy has revealed its potential as treatment for drug-induced AKI. MSCs can inhibit kidney damage by regulating the innate immune balance, promoting kidney repair, and preventing kidney fibrosis. However, it is important to note that there are various sources of MSCs, which impacts on the immunomodulatory ability of the cells. This review aims to address the immune pathogenesis of drug-induced AKI versus that of IR-induced AKI, and to explore the immunomodulatory effects and therapeutic potential of MSCs for drug-induced AKI.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Jun He
- Department of Genetics, Changsha Hospital for Maternal and Child Health Care, Hunan, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|