1
|
Grinat J, Shriever NP, Christophorou MA. Fantastic proteins and where to find them - histones, in the nucleus and beyond. J Cell Sci 2024; 137:jcs262071. [PMID: 39704565 PMCID: PMC11827605 DOI: 10.1242/jcs.262071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation. Most notably, histones are potent antimicrobial agents, and the release of chromatin to the extracellular space is a defence mechanism nearly as ancient and widespread as chromatin itself. Histone sequences have changed very little throughout evolution, suggesting the possibility that some of their 'non-canonical' functions are at play in parallel or in concert with their genome regulatory functions. In this Review, we take an evolutionary perspective of histone, nuclear chromatin and extracellular chromatin biology and describe the known extranuclear and extracellular functions of histones. We detail molecular mechanisms of chromatin release and extracellular chromatin sensing, and we discuss their roles in physiology and disease. Finally, we present evidence and give a perspective on the potential of extracellular histones to act as bioactive, cell modulatory factors.
Collapse
|
2
|
Ramírez-Ledesma MG, Bermudes-Valencia B, Balderas-Parada RM, Salazar-Ramírez SG, Reyes-Cortés R, Magos-Vázquez FJ, Torres-Hernández JJ, Avila EE. Extracellular Traps in Patients Diagnosed With Bacterial Vaginosis, Trichomoniasis, Candidiasis, Noninfectious Vaginitis and Cytolytic Vaginosis. Int J Microbiol 2024; 2024:7619416. [PMID: 39479185 PMCID: PMC11524696 DOI: 10.1155/2024/7619416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/11/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Vaginal infections are a public health problem associated with serious health complications due to the exacerbated inflammation they generate. Vaginal inflammation may also occur in some noninfectious processes, such as noninfectious vaginitis and cytolytic vaginosis. Immune system cells respond to infections through various mechanisms, such as the formation of extracellular traps (ETs), which are DNA networks associated with effector proteins. Many pathogens induce ETs formation in vitro, as occurs in some natural infections. A recent report indicates that human vaginal infections in vivo generate ETs. Therefore, in this study, we aimed to identify ETs in samples from 40 donors who were diagnosed with infectious (i.e., bacterial vaginosis, candidiasis and trichomoniasis) and noninfectious (i.e., noninfectious vaginitis and cytolytic vaginosis) vaginal inflammation. We were able to observe ETs by identifying the LL-37 peptide, which is associated with DNA networks. In seven vaginal swabs from the control group (formed by 19 donors without vaginal infection symptoms), we detected at least one pathogen per sample and observed ETs; thus, these donors were considered asymptomatic. The remaining 12 donors were confirmed to be healthy, as their exudates did not present any tested pathogens, sign of inflammation or ETs. ETs in vaginal inflammatory processes can worsen inflammation but may also help control infection.
Collapse
Affiliation(s)
- María G. Ramírez-Ledesma
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato, PC 36050, Mexico
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Queretaro, PC 76230, Mexico
| | - Berenice Bermudes-Valencia
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - Rosa M. Balderas-Parada
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - Susana G. Salazar-Ramírez
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - Ruth Reyes-Cortés
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato, PC 36050, Mexico
| | - Francisco J. Magos-Vázquez
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - José J. Torres-Hernández
- Hospital General de Guanajuato Dr. Valentín Gracia, Secretaría de Salud de Guanajuato, Gto-Silao Highway Km 6.5, Guanajuato, Mexico
| | - Eva E. Avila
- Departamento de Biología, DCNE, Universidad de Guanajuato, Guanajuato, PC 36050, Mexico
| |
Collapse
|
3
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
4
|
Eustes AS, Ahmed A, Swamy J, Patil G, Jensen M, Wilson KM, Kudchadkar S, Wahab A, Perepu U, Miller FJ, Lentz SR, Dayal S. Extracellular histones: a unifying mechanism driving platelet-dependent extracellular vesicle release and thrombus formation in COVID-19. J Thromb Haemost 2024; 22:2514-2530. [PMID: 38815756 PMCID: PMC11343660 DOI: 10.1016/j.jtha.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND COVID-19 can cause profound inflammation and coagulopathy, and while many mechanisms have been proposed, there is no known common pathway leading to a prothrombotic state. OBJECTIVES From the beginning of the COVID-19 pandemic, elevated levels of extracellular histones have been found in plasma of patients infected with SARS-CoV-2. We hypothesized that platelet activation triggered by extracellular histones might represent a unifying mechanism leading to increased thrombin generation and thrombosis. METHODS We utilized blood samples collected from an early clinical trial of hospitalized COVID-19 patients (NCT04360824) and recruited healthy subjects as controls. Using plasma samples, we measured the procoagulant and prothrombotic potential of circulating extracellular histones and extracellular vesicles (EVs). Platelet prothrombotic activity was assessed via thrombin generation potential and platelet thrombus growth. Circulating EVs were assessed for thrombin generation potential in vitro in plasma and enhancement of thrombotic susceptibility in vivo in mice. RESULTS Compared with controls, COVID-19 patients had elevated plasma levels of citrullinated histone H3, cell-free DNA, nucleosomes, and EVs. Plasma from COVID-19 patients promoted platelet activation, platelet-dependent thrombin generation, thrombus growth under venous shear stress, and release of platelet-derived EVs. These prothrombotic effects of COVID-19 plasma were inhibited by an RNA aptamer that neutralizes both free and DNA-bound histones. EVs isolated from COVID-19 plasma enhanced thrombin generation in vitro and potentiated venous thrombosis in mice in vivo. CONCLUSION We conclude that extracellular histones and procoagulant EVs drive the prothrombotic state in COVID-19 and that histone-targeted therapy may prove beneficial.
Collapse
Affiliation(s)
- Alicia S Eustes
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Azaj Ahmed
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jagadish Swamy
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gokul Patil
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Melissa Jensen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Katina M Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shibani Kudchadkar
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Abdul Wahab
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Usha Perepu
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Francis J Miller
- Department of Internal Medicine, Vanderbilt University Medical Center and VA Medical Center, Nashville, Tennessee, USA
| | - Steven R Lentz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA; Iowa City VA Healthcare System, Iowa City, Iowa, USA.
| |
Collapse
|
5
|
Quiroga J, Cortes B, Sarmiento J, Morán G, Henríquez C. Characterization of extracellular trap production and release by equine neutrophils in response to different stimuli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105151. [PMID: 38423491 DOI: 10.1016/j.dci.2024.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
This study explores Neutrophil Extracellular Trap (NET) formation in equine neutrophils, which is crucial for eliminating infections and is implicated in various equine inflammatory diseases. We investigated the molecular pathways involved in NET release by equine neutrophils in response to stimuli. We use PMA, A23187, LPS, PAF, OZ, and cytokines, observing NET release in response to PMA, PAF, and A23187. In contrast, LPS, OZ, and the cytokines tested did not induce DNA release or did not consistently induce citrullination of histone 4. Peptidyl-arginine deiminase inhibition completely halted NET release, while NADPH oxidase and mitochondrial reactive oxygen species only played a role in PMA-induced NETs. Neutrophil elastase inhibition modestly affected PAF-induced NET liberation but not in PMA or A23187-induced NET, while myeloperoxidase did not contribute to NET release. We expect to provide a foundation for future investigations into the role of NETs in equine health and disease and the search for potential therapeutic targets.
Collapse
Affiliation(s)
- John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Bayron Cortes
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Chile
| | - Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile
| | - Claudio Henríquez
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Chile.
| |
Collapse
|
6
|
de Mattos TRF, Formiga-Jr MA, Saraiva EM. Resveratrol prevents the release of neutrophil extracellular traps (NETs) by controlling hydrogen peroxide levels and nuclear elastase migration. Sci Rep 2024; 14:9107. [PMID: 38643283 PMCID: PMC11032324 DOI: 10.1038/s41598-024-59854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.
Collapse
Affiliation(s)
- Thayana Roberta Ferreira de Mattos
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Marcos Antonio Formiga-Jr
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunidade Inata, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Vandepas LE, Stefani C, Domeier PP, Traylor-Knowles N, Goetz FW, Browne WE, Lacy-Hulbert A. Extracellular DNA traps in a ctenophore demonstrate immune cell behaviors in a non-bilaterian. Nat Commun 2024; 15:2990. [PMID: 38582801 PMCID: PMC10998917 DOI: 10.1038/s41467-024-46807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/08/2024] [Indexed: 04/08/2024] Open
Abstract
The formation of extracellular DNA traps (ETosis) is a first response mechanism by specific immune cells following exposure to microbes. Initially characterized in vertebrate neutrophils, cells capable of ETosis have been discovered recently in diverse non-vertebrate taxa. To assess the conservation of ETosis between evolutionarily distant non-vertebrate phyla, we observed and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the oyster Crassostrea gigas. Here we report that ctenophores - thought to have diverged very early from the metazoan stem lineage - possess immune-like cells capable of phagocytosis and ETosis. We demonstrate that both Mnemiopsis and Crassostrea immune cells undergo ETosis after exposure to diverse microbes and chemical agents that stimulate ion flux. We thus propose that ETosis is an evolutionarily conserved metazoan defense against pathogens.
Collapse
Affiliation(s)
- Lauren E Vandepas
- NRC Research Associateship Program, Seattle, WA, USA.
- Northwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA, 98112, USA.
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
| | - Caroline Stefani
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Phillip P Domeier
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, 33149, USA
| | - Frederick W Goetz
- Northwest Fisheries Science Center, National Oceanographic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Adam Lacy-Hulbert
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| |
Collapse
|
8
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
9
|
Conedera FM, Kokona D, Zinkernagel MS, Stein JV, Lin CP, Alt C, Enzmann V. Macrophages coordinate immune response to laser-induced injury via extracellular traps. J Neuroinflammation 2024; 21:68. [PMID: 38500151 PMCID: PMC10949579 DOI: 10.1186/s12974-024-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Retinal degeneration results from disruptions in retinal homeostasis due to injury, disease, or aging and triggers peripheral leukocyte infiltration. Effective immune responses rely on coordinated actions of resident microglia and recruited macrophages, critical for tissue remodeling and repair. However, these phagocytes also contribute to chronic inflammation in degenerated retinas, yet the precise coordination of immune response to retinal damage remains elusive. Recent investigations have demonstrated that phagocytic cells can produce extracellular traps (ETs), which are a source of self-antigens that alter the immune response, which can potentially lead to tissue injury. METHODS Innovations in experimental systems facilitate real-time exploration of immune cell interactions and dynamic responses. We integrated in vivo imaging with ultrastructural analysis, transcriptomics, pharmacological treatments, and knockout mice to elucidate the role of phagocytes and their modulation of the local inflammatory response through extracellular traps (ETs). Deciphering these mechanisms is essential for developing novel and enhanced immunotherapeutic approaches that can redirect a specific maladaptive immune response towards favorable wound healing in the retina. RESULTS Our findings underscore the pivotal role of innate immune cells, especially macrophages/monocytes, in regulating retinal repair and inflammation. The absence of neutrophil and macrophage infiltration aids parenchymal integrity restoration, while their depletion, particularly macrophages/monocytes, impedes vascular recovery. We demonstrate that macrophages/monocytes, when recruited in the retina, release chromatin and granular proteins, forming ETs. Furthermore, the pharmacological inhibition of ETosis support retinal and vascular repair, surpassing the effects of blocking innate immune cell recruitment. Simultaneously, the absence of ETosis reshapes the inflammatory response, causing neutrophils, helper, and cytotoxic T-cells to be restricted primarily in the superficial capillary plexus instead of reaching the damaged photoreceptor layer. CONCLUSIONS Our data offer novel insights into innate immunity's role in responding to retinal damage and potentially help developing innovative immunotherapeutic approaches that can shift the immune response from maladaptive to beneficial for retinal regeneration.
Collapse
Affiliation(s)
- Federica M Conedera
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland.
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Despina Kokona
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Charles P Lin
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Alt
- Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 2023; 8:e171054. [PMID: 37991024 PMCID: PMC10721321 DOI: 10.1172/jci.insight.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023] Open
Abstract
Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.
Collapse
Affiliation(s)
- Anh T.P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail Skidmore
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenna Oberg
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nate Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | | | | | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B. Cines
- Department of Medicine, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Radtke D, Voehringer D. Granulocyte development, tissue recruitment, and function during allergic inflammation. Eur J Immunol 2023; 53:e2249977. [PMID: 36929502 DOI: 10.1002/eji.202249977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Granulocytes provide a fast innate response to pathogens and allergens. In allergy and anti-helminth immunity, epithelial cells of damaged barriers release alarmins like IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) but also chemokines like CXCL1 or CCL11 to promote cell recruitment and inflammation. In addition, mast cells positioned at barrier tissue sites also quickly release mediators upon specifically sensing antigens through IgE bound to FcεR1 on their surface. Released mediators induce the recruitment of different granulocytes in a timely ordered manner. First, neutrophils extravasate from the blood vasculature to the side of alarmin release and promote a potent inflammatory response. Alarmins and activated mast cells further promote activation of ILC2s and recruitment of basophils and eosinophils, which inhibit neutrophil recruitment and enhance tissue type 2 immunity. In addition to their potent pro-inflammatory effector functions, granulocytes can also contribute to termination and resolution of inflammation. Here, we summarize the development and tissue recruitment of granulocyte subsets, and describe general effector functions and aspects of their increasingly appreciated role in limiting tissue damage. We further discuss targeting approaches for therapeutic interventions in allergic disorders.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
12
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Morales-Covarrubias MS, Ramírez-Azpilcueta BA, Rodríguez JA, Rosa RD. An in vitro method for the analysis of hemocyte-derived extracellular traps in shrimp. MethodsX 2023; 10:102220. [PMID: 37234938 PMCID: PMC10205528 DOI: 10.1016/j.mex.2023.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The formation of extracellular traps (ETs) is a cell death mechanism relying on the release of nucleic acids in response to different stimuli. More recently, ETs have been recognized as an important cellular immune response since they are able to entrap and kill various microorganisms. The main goal was to describe a methodology to induce and visualize the in vitro formation of ETs by shrimp hemocytes. ETs formation was induced by the incubation of hemocyte monolayers from naïve shrimp (Penaeus vannamei) with a standard dose of Vibrio parahaemolyticus M0905. Following fixation, slides were stained with 4',6-diamidino-2-phenylindole (DAPI) and imaged by fluorescence microscopy. The methodology proposed in this study successfully induced the formation and release of hemocyte-derived ETs in penaeid shrimp. The procedure described here can be used as a novel immune marker to assess shrimp health status.
Collapse
Affiliation(s)
- María Soledad Morales-Covarrubias
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Mazatlán en Acuicultura y Manejo Ambiental. Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa C.P. 82100, México
| | - Blanca Alicia Ramírez-Azpilcueta
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Mazatlán en Acuicultura y Manejo Ambiental. Avenida Sábalo Cerritos s/n, Mazatlán, Sinaloa C.P. 82100, México
| | - Jenny Antonia Rodríguez
- Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindro Km 30.5 Vía Perimentral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Rafael Diego Rosa
- Department of Cell Biology, Laboratory of Immunology Applied to Aquaculture, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
14
|
Singh J, Boettcher M, Dölling M, Heuer A, Hohberger B, Leppkes M, Naschberger E, Schapher M, Schauer C, Schoen J, Stürzl M, Vitkov L, Wang H, Zlatar L, Schett GA, Pisetsky DS, Liu ML, Herrmann M, Knopf J. Moonlighting chromatin: when DNA escapes nuclear control. Cell Death Differ 2023; 30:861-875. [PMID: 36755071 PMCID: PMC9907214 DOI: 10.1038/s41418-023-01124-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 02/10/2023] Open
Abstract
Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.
Collapse
Affiliation(s)
- Jeeshan Singh
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Dölling
- Department of Surgery, University Hospital Magdeburg, Magdeburg, Germany
| | - Annika Heuer
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Mildred-Scheel Cancer Career Center Hamburg HaTriCS4, University Cancer Center Hamburg, Hamburg, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Gastroenterology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mirco Schapher
- Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus University, Nürnberg, Germany
| | - Christine Schauer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universtität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ljubomir Vitkov
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Department of Environment & Biodiversity, University of Salzburg, Salzburg, 5020, Austria
- Department of Dental Pathology, University of East Sarajevo, East Sarajevo, Republic of Srpska, Bosnia and Herzegovina
| | - Han Wang
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg A Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David S Pisetsky
- Department of Medicine and Immunology and Medical Research Service, Duke University Medical Center and Veterans Administration Medical Center, Durham, NC, USA
| | - Ming-Lin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
15
|
Ngo ATP, Sarkar A, Yarovoi I, Levine ND, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Neutrophil extracellular trap stabilization by platelet factor 4 reduces thrombogenicity and endothelial cell injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522931. [PMID: 36711969 PMCID: PMC9881987 DOI: 10.1101/2023.01.09.522931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neutrophil extracellular traps (NETs) are abundant in sepsis, and proposed NET-directed therapies in sepsis prevent their formation or accelerate degradation. Yet NETs are important for microbial entrapment, as NET digestion liberates pathogens and NET degradation products (NDPs) that deleteriously promote thrombosis and endothelial cell injury. We proposed an alternative strategy of NET-stabilization with the chemokine, platelet factor 4 (PF4, CXCL4), which we have shown enhances NET-mediated microbial entrapment. We now show that NET compaction by PF4 reduces their thrombogenicity. In vitro, we quantified plasma thrombin and fibrin generation by intact or degraded NETs and cell-free (cf) DNA fragments, and found that digested NETs and short DNA fragments were more thrombogenic than intact NETs and high molecular weight genomic DNA, respectively. PF4 reduced the thrombogenicity of digested NETs and DNA by interfering, in part, with contact pathway activation. In endothelial cell culture studies, short DNA fragments promoted von Willebrand factor release and tissue factor expression via a toll-like receptor 9-dependent mechanism. PF4 blocked these effects. Cxcl4-/- mice infused with cfDNA exhibited higher plasma thrombin anti-thrombin (TAT) levels compared to wild-type controls. Following challenge with bacterial lipopolysaccharide, Cxcl4-/- mice had similar elevations in plasma TAT and cfDNA, effects prevented by PF4 infusion. Thus, NET-stabilization by PF4 prevents the release of short fragments of cfDNA, limiting the activation of the contact coagulation pathway and reducing endothelial injury. These results support our hypothesis that NET-stabilization reduces pathologic sequelae in sepsis, an observation of potential clinical benefit.
Collapse
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nate D. Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kaitlyn Eckart
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nilam S. Mangalmurti
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas B. Cines
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Thompson-Souza GA, Vasconcelos CRI, Neves JS. Eosinophils: Focus on DNA extracellular traps. Life Sci 2022; 311:121191. [DOI: 10.1016/j.lfs.2022.121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
17
|
Liana P, Liberty IA, Murti K, Hafy Z, Salim EM, Zulkarnain M, Umar TP. A systematic review on neutrophil extracellular traps and its prognostication role in COVID-19 patients. Immunol Res 2022; 70:449-460. [PMID: 35604493 PMCID: PMC9125547 DOI: 10.1007/s12026-022-09293-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps (NETs) are extracellular webs composed of neutrophil granular and nuclear elements. Because of the potentially dangerous amplification circuit between inflammation and tissue damage, NETs are becoming one of the investigated components in the current Coronavirus Disease 2019 (COVID-19) pandemic. The purpose of this systematic review is to summarize studies on the role of NETs in determining the prognosis of COVID-19 patients. The study used six databases: PubMed, Science Direct, EBSCOHost, Europe PMC, ProQuest, and Scopus. This literature search was implemented until October 31, 2021. The search terms were determined specifically for each databases, generally included the Neutrophil Extracellular Traps, COVID-19, and prognosis. The Newcastle Ottawa Scale (NOS) was then used to assess the risk of bias. Ten studies with a total of 810 participants were chosen based on the attainment of the prerequisite. Two were of high quality, seven were of moderate quality, and the rest were of low quality. The majority of studies compared COVID-19 to healthy control. Thrombosis was observed in three studies, while four studies recorded the need for mechanical ventilation. In COVID-19 patients, the early NETs concentration or the evolving NETs degradations can predict patient mortality. Based on their interactions with inflammatory and organ dysfunction markers, it is concluded that NETs play a significant role in navigating the severity of COVID-19 patients and thus impacting their prognosis.
Collapse
Affiliation(s)
- Phey Liana
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sriwijaya/Dr Mohammad Hoesin General Hospital, Palembang, Indonesia
- Biomedicine Doctoral Program, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Iche Andriyani Liberty
- Department of Public Health and Community Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Krisna Murti
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Sriwijaya, Dr. Moh. Ali Street RSMH complex, Palembang, South Sumatera Indonesia
| | - Zen Hafy
- Biomedical Department, Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Eddy Mart Salim
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Sriwijaya/Dr, Mohammad Hoesin General Hospital, Palembang, Indonesia
| | - Mohammad Zulkarnain
- Department of Public Health and Community Medicine, Universitas Sriwijaya, Palembang, Indonesia
| | - Tungki Pratama Umar
- Medical Profession Program, Faculty of Medicine, Sriwijaya University, Palembang, Indonesia
| |
Collapse
|
18
|
Colciaghi F, Costanza M. Unveiling Leukocyte Extracellular Traps in Inflammatory Responses of the Central Nervous System. Front Immunol 2022; 13:915392. [PMID: 35844591 PMCID: PMC9283689 DOI: 10.3389/fimmu.2022.915392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past nearly two decades, increasing evidence has uncovered how immune cells can actively extrude genetic material to entrap invading pathogens or convey sterile inflammatory signals that contribute to shaping immune responses. Originally identified in neutrophils, the release of decondensed chromatin fibers decorated with antimicrobial proteins, called extracellular traps (ETs), has been recognized as a specific form of programmed inflammatory cell death, which is now known to occur in several other leukocytes. Subsequent reports have shown that self-DNA can be extruded from immune cells even in the absence of cell death phenomena. More recent data suggest that ETs formation could exacerbate neuroinflammation in several disorders of the central nervous system (CNS). This review article provides an overview of the varied types, sources, and potential functions of extracellular DNA released by immune cells. Key evidence suggesting the involvement of ETs in neurodegenerative, traumatic, autoimmune, and oncological disorders of the CNS will be discussed, outlining ongoing challenges and drawing potentially novel lines of investigation.
Collapse
Affiliation(s)
- Francesca Colciaghi
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- *Correspondence: Massimo Costanza,
| |
Collapse
|
19
|
Aspegren O, Staessens S, Vandelanotte S, Desender L, Cordonnier C, Puy L, Bricout N, De Meyer SF, Andersson T, Arnberg F. Unusual Histopathological Findings in Mechanically Removed Stroke Thrombi - A Multicenter Experience. Front Neurol 2022; 13:846293. [PMID: 35665052 PMCID: PMC9157388 DOI: 10.3389/fneur.2022.846293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Background Several studies have investigated the histopathology of mechanically retrieved thrombi from stroke patients. Thrombi with unusual components constitute about 1–2% of all stroke thrombi in clinical practice. Knowledge about these rare components is limited. Objectives To characterize the histopathology of unusual stroke thrombi from a real-world setting with relation to clinical presentation, patient characteristics and procedural aspects of mechanical thrombectomy. Methods One-thousand and eight thrombi retrieved from stroke patients with mechanical thrombectomy at three different hospitals were retrospectively reviewed for unusual histological components. Fifteen thrombi were included in the study for further histopathological analysis. Clinical data and data on procedural aspects were collected. Results We identified six cases with large amounts of extracellular DNA, of which three were calcified. All six cases except one received anticoagulant therapy. We describe two types of calcifications that differ with respect to general calcification morphology, von Kossa staining pattern, macrophage immunophenotype and presence of multinucleated giant cells. Cholesterol-rich (n = 3), adipocyte-like pattern-rich (n = 2), collagen-rich (n = 2) and myxomatous (n = 1) thrombi were also identified and are discussed with regard to pathogenesis and clinical and intervention characteristics. Finally, a thrombus with parts of a vascular wall is described. Suggestions for future studies are made and clinical and technical aspects of the management for these rare but important patients are discussed. Conclusion In our retrospective multicenter study, we characterized stroke thrombi histopathologically and found subgroups of thrombi defined by presence of rarely seen components. These defined subgroups showed relation to underlying cardiovascular disease, patient characteristics, and mechanical thrombectomy technique. Knowledge about these components may increase our understanding of stroke pathophysiology and influence interventional procedures.
Collapse
Affiliation(s)
- Oskar Aspegren
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Senna Staessens
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Sarah Vandelanotte
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Linda Desender
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Charlotte Cordonnier
- University of Lille, INSERM, CHU Lille, U1172-Lille Neuroscience & Cognition (LilNCog), Lille, France
| | - Laurent Puy
- University of Lille, INSERM, CHU Lille, U1172-Lille Neuroscience & Cognition (LilNCog), Lille, France
| | - Nicolas Bricout
- Department of Interventional Neuroradiology, CHU Lille, Lille, France
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Tommy Andersson
- Department of Medical Imaging, AZ Groeninge, Kortrijk, Belgium.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fabian Arnberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Huang SUS, O’Sullivan KM. The Expanding Role of Extracellular Traps in Inflammation and Autoimmunity: The New Players in Casting Dark Webs. Int J Mol Sci 2022; 23:ijms23073793. [PMID: 35409152 PMCID: PMC8998317 DOI: 10.3390/ijms23073793] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
The first description of a new form of neutrophil cell death distinct from that of apoptosis or necrosis was discovered in 2004 and coined neutrophil extracellular traps "(NETs)" or "NETosis". Different stimuli for NET formation, and pathways that drive neutrophils to commit to NETosis have been elucidated in the years that followed. Critical enzymes required for NET formation have been discovered and targeted therapeutically. NET formation is no longer restricted to neutrophils but has been discovered in other innate cells: macrophages/monocytes, mast Cells, basophils, dendritic cells, and eosinophils. Furthermore, extracellular DNA can also be extruded from both B and T cells. It has become clear that although this mechanism is thought to enhance host defense by ensnaring bacteria within large webs of DNA to increase bactericidal killing capacity, it is also injurious to innocent bystander tissue. Proteases and enzymes released from extracellular traps (ETs), injure epithelial and endothelial cells perpetuating inflammation. In the context of autoimmunity, ETs release over 70 well-known autoantigens. ETs are associated with pathology in multiple diseases: lung diseases, vasculitis, autoimmune kidney diseases, atherosclerosis, rheumatoid arthritis, cancer, and psoriasis. Defining these pathways that drive ET release will provide insight into mechanisms of pathological insult and provide potential therapeutic targets.
Collapse
|
21
|
De Gaetano A, Solodka K, Zanini G, Selleri V, Mattioli AV, Nasi M, Pinti M. Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells 2021; 10:2898. [PMID: 34831121 PMCID: PMC8616383 DOI: 10.3390/cells10112898] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Besides their role in cell metabolism, mitochondria display many other functions. Mitochondrial DNA (mtDNA), the own genome of the organelle, plays an important role in modulating the inflammatory immune response. When released from the mitochondrion to the cytosol, mtDNA is recognized by cGAS, a cGAMP which activates a pathway leading to enhanced expression of type I interferons, and by NLRP3 inflammasome, which promotes the activation of pro-inflammatory cytokines Interleukin-1beta and Interleukin-18. Furthermore, mtDNA can be bound by Toll-like receptor 9 in the endosome and activate a pathway that ultimately leads to the expression of pro-inflammatory cytokines. mtDNA is released in the extracellular space in different forms (free DNA, protein-bound DNA fragments) either as free circulating molecules or encapsulated in extracellular vesicles. In this review, we discussed the latest findings concerning the molecular mechanisms that regulate the release of mtDNA from mitochondria, and the mechanisms that connect mtDNA misplacement to the activation of inflammation in different pathophysiological conditions.
Collapse
Affiliation(s)
- Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy;
| | - Kateryna Solodka
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy;
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.D.G.); (K.S.); (G.Z.); (V.S.)
| |
Collapse
|