1
|
Wang M, Jin G, Duan T, Li R, Gao Y, Yu M, Xu Y. Microglial phagocytosis and regulatory mechanisms: Key players in the pathophysiology of depression. Neuropharmacology 2025; 271:110383. [PMID: 39993469 DOI: 10.1016/j.neuropharm.2025.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Depression is a globally prevalent emotional disorder with a complex pathophysiology. Microglia are resident immune cells in the central nervous system, playing crucial roles in regulating inflammation, synaptic plasticity, immune phagocytosis, and other functions, thereby exerting significant impacts on neuropsychiatric disorders like depression. Increasing research indicates that abnormal phagocytic function of microglia in the brain is involved in depression, showing excessive or insufficient phagocytosis in different states. Here, we have provided a review of the signaling molecules involved in microglial phagocytosis in depression, including "eat me" signals such as phosphatidylserine (PS), complement, and "don't eat me" signals such as CD47, CD200 and related receptors. Furthermore, we discuss the regulatory effects of existing pharmaceuticals and dietary nutrients on microglial phagocytosis in depression, emphasizing the need for tailored modulation based on the varying phagocytic states of microglia. This review aims to facilitate a deeper understanding of the role of microglial phagocytosis in depression and provide a roadmap for potential therapeutic strategies for depression targeting microglial phagocytosis.
Collapse
Affiliation(s)
- Man Wang
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Guimin Jin
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Tingting Duan
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Run Li
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Yubin Gao
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Yuhao Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China; Department of Neuroimaging Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
2
|
Bertok T, Pinkeova A, Lorencova L, Datkova A, Hires M, Jane E, Tkac J. Glycoproteomics of Gastrointestinal Cancers and Its Use in Clinical Diagnostics. J Proteome Res 2025. [PMID: 40368336 DOI: 10.1021/acs.jproteome.5c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Cancer is a leading cause of death worldwide, resulting in substantial economic costs. Because cancer is a complex, heterogeneous group of diseases affecting a variety of cells, its detection may sometimes be difficult. Herein we review a large group of the gastrointestinal cancers (oral, esophageal, stomach, pancreatic, liver, and bowel cancers) and the possibility of using glycans conjugated to protein backbones for less-invasive diagnoses than the commonly used endoscopic approaches. The reality of bacterial N-glycosylation and the effect of epithelial mucosa on gut microbiota are discussed. Current advantages, barriers, and advantages in the prospective use of selected glycomic approaches in clinical practice are also detailed.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Andrea Pinkeova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Anna Datkova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| |
Collapse
|
3
|
Huang YC, Costa CAM, Ruiz NV, Wang X, Jevitt A, Breneman CM, Han C, Deng WM. Polyploidy promotes transformation of epithelial cells into non-professional phagocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645044. [PMID: 40196694 PMCID: PMC11974781 DOI: 10.1101/2025.03.24.645044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Removal of dead and damaged cells is critical for organismal health. Under stress conditions such as nutritional deprivation, infection, or temperature shift, the clearance of nonessential cells becomes a universal strategy to conserve energy and maintain tissue homeostasis. Typically, this task is performed by professional phagocytes such as macrophages. However, non-professional phagocytes (NPPs) can also adopt a phagocytic fate under specific circumstances. Similar to professional phagocytes, NPPs undergo transitions from immature to mature states and activation, but the precise cellular and molecular mechanisms governing their maturation, induction and phagocytic execution remain largely unknown. A notable example of stress-induced phagocytosis is the removal of germline cells by follicle cell-derived NPPs during oogenesis in Drosophila . In this study, we report that the transformation of follicle cells into NPPs is dependent on Notch signaling activation during mid-oogenesis. Moreover, Notch overactivation is sufficient to trigger germline cell death and clearance (GDAC). We further show that polyploidy, driven by Notch signaling-induced endoreplication, is essential for the transformation of follicle cells into NPPs. Polyploidy facilitates the activation of JNK signaling, which is crucial for the phagocytic behavior of these cells. Additionally, we show that polyploidy in epidermal cells, another type of NPPs, is important for their engulfment of dendrites during induced degeneration. Together, these findings suggest that polyploidy is a critical factor in the transformation of epithelial cells into NPPs, enabling their phagocytic functions, which are essential for maintaining cellular and organismal homeostasis during stress conditions. SIGNIFICANCE The ability to remove dead and damaged cells is essential for maintaining tissue homeostasis and organismal health. While this task is typically performed by professional phagocytes such as macrophages, non-professional phagocytes (NPPs) can also acquire phagocytic functions during development or in response to stress conditions. Using Drosophila oogenesis as a model, we reveal that the transformation of follicle cells into NPPs is driven by Notch signaling and is critically dependent on polyploidy. Our findings show that polyploidy, induced through Notch signaling-mediated endoreplication, is required for activating JNK signaling, a pathway essential for the phagocytic behavior of NPPs. Furthermore, we show that polyploidy also facilitates the phagocytic activity of epidermal cells in clearing degenerating dendrites. Together, these results suggest that polyploidy plays an important role in enabling epithelial cells to adopt NPP functions and in maintaining tissue and organismal homeostasis under stress conditions.
Collapse
|
4
|
Alfandari D, Rosenhek-Goldian I, Kozela E, Nevo R, Senprún MB, Moisieiev A, Sogauker N, Azuri I, Gelman S, Kiper E, Ben Hur D, Dharan R, Sorkin R, Porat Z, Morandi MI, Regev-Rudzki N. Host Immune Cell Membrane Deformability Governs the Uptake Route of Malaria-Derived Extracellular Vesicles. ACS NANO 2025; 19:9760-9778. [PMID: 40030053 PMCID: PMC11924330 DOI: 10.1021/acsnano.4c07503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
The malaria parasite, Plasmodium falciparum, secretes extracellular vesicles (EVs) to facilitate its growth and to communicate with the external microenvironment, primarily targeting the host's immune cells. How parasitic EVs enter specific immune cell types within the highly heterogeneous pool of immune cells remains largely unknown. Using a combination of imaging flow cytometry and advanced fluorescence analysis, we demonstrated that the route of uptake of parasite-derived EVs differs markedly between host T cells and monocytes. T cells, which are components of the adaptive immune system, internalize parasite-derived EVs mainly through an interaction with the plasma membrane, whereas monocytes, which function in the innate immune system, take up these EVs via endocytosis. The membranal/endocytic balance of EV internalization is driven mostly by the amount of endocytic incorporation. Integrating atomic force microscopy with fluorescence data analysis revealed that internalization depends on the biophysical properties of the cell membrane rather than solely on molecular interactions. In support of this, altering the cholesterol content in the cell membrane tilted the balance in favor of one uptake route over another. Our results provide mechanistic insights into how P. falciparum-derived EVs enter into diverse host cells. This study highlights the sophisticated cell-communication tactics used by the malaria parasite.
Collapse
Affiliation(s)
- Daniel Alfandari
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Rosenhek-Goldian
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ewa Kozela
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reinat Nevo
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcela Bahlsen Senprún
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anton Moisieiev
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noam Sogauker
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Azuri
- Bioinformatics
Unit, Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Samuel Gelman
- Bioinformatics
Unit, Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Edo Kiper
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raviv Dharan
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Raya Sorkin
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ziv Porat
- Flow
cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mattia I. Morandi
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague 160-00, Czech Republic
- IMol
Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Kim JY, Kim H, Chung WS, Park H. Selective regulation of corticostriatal synapses by astrocytic phagocytosis. Nat Commun 2025; 16:2504. [PMID: 40082427 PMCID: PMC11906744 DOI: 10.1038/s41467-025-57577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
In the adult brain, neural circuit homeostasis depends on the constant turnover of synapses via astrocytic phagocytosis mechanisms. However, it remains unclear whether this process occurs in a circuit-specific manner. Here, we reveal that astrocytes target and eliminate specific type of excitatory synapses in the striatum. Using model mice lacking astrocytic phagocytosis receptors in the dorsal striatum, we found that astrocytes constantly remove corticostriatal synapses rather than thalamostriatal synapses. This preferential elimination suggests that astrocytes play a selective role in modulating corticostriatal plasticity and functions via phagocytosis mechanisms. Supporting this notion, corticostriatal long-term potentiation and the early phase of motor skill learning are dependent on astrocytic phagocytic receptors. Together, our findings demonstrate that astrocytes contribute to the connectivity and plasticity of the striatal circuit by preferentially engulfing a specific subset of excitatory synapses within brain regions innervated by multiple excitatory sources.
Collapse
Affiliation(s)
- Ji-Young Kim
- Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyeyeon Kim
- Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyungju Park
- Research group for Neurovascular Unit, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
| |
Collapse
|
6
|
Zhou L, Fan S, Zhang W, Gong Z, Wang D, Tang D. The battle within: cell death by phagocytosis in cancer. Clin Transl Oncol 2025; 27:871-886. [PMID: 39167272 DOI: 10.1007/s12094-024-03650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The process by which living cells are phagocytosed and digested to death is called cell death by phagocytosis, a term that has just recently been generalized and redefined. It is characterized by the phagocytosis of living cells and the cessation of cell death by phagocytosis. Phagocytosis of dead cells is a widely discussed issue in cancer, cell death by phagocytosis can stimulate phagocytosis and stimulate adaptive immunity in tumors, and at the same time, do not-eat-me signaling is an important site for cancer cells to evade recognition by phagocytes. Therefore, we discuss in this review cell death by phagocytosis occurring in cancer tissues and emphasize the difference between this new concept and the phagocytosis of dead tumor cells. Immediately thereafter, we describe the mechanisms by which cell death by phagocytosis occurs and how tumors escape phagocytosis. Finally, we summarize the potential clinical uses of cell death by phagocytosis in tumor therapy and strive to provide ideas for tumor therapy.
Collapse
Affiliation(s)
- Lujia Zhou
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shiying Fan
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Zhiyuan Gong
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
7
|
Antonsen KW, Jensen AG, Sorensen BS, Etzerodt A, Moestrup SK, Møller HJ. In vitro ovarian tumor-conditioned CD163+ human macrophages retain phagocytic response to CD47 blockade. Cell Immunol 2025; 409-410:104932. [PMID: 39985839 DOI: 10.1016/j.cellimm.2025.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION CD163-expressing macrophages are abundant in ovarian cancer where they accelerate tumor growth and metastasis. CD47 blockade is a novel immunotherapy aiming to activate macrophage phagocytosis of tumor cells, but it is currently unknown if the tumor-associated macrophages expressing CD163 respond poorly to CD47 blockade. METHODS Human monocyte-derived macrophages were exposed to tumor-conditioned medium from A2780 ovarian cancer cells during differentiation. Effects on gene expression, membrane protein levels, release of soluble proteins and macrophage phagocytosis of A2780 cells in response to CD47 blockade were measured and compared to control macrophages. RESULTS Tumor cell conditioning induced macrophage expression of CD163 on both the mRNA and protein level. Furthermore, tumor conditioning simultaneously increased protein expression of the phenotype markers CD206 and CD80, and the phagocytosis checkpoint LILRB1. However, tumor conditioning did not reduce phagocytic capacity, as CD47 blockade induced macrophage phagocytosis of A2780 cells to similar degrees in both control and tumor cell-conditioned macrophages. DISCUSSION In vitro tumor conditioning did not reduce the phagocytic response to CD47 blockade, suggesting that induction of a macrophage phenotype with increased expression of CD163 does not directly limit the capacity for phagocytosis of tumor cells. In conclusion, these findings suggest that CD163+ macrophages remain responsive to CD47 blockade, highlighting their potential as targets for immunotherapy in ovarian cancer.
Collapse
MESH Headings
- Humans
- Female
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phagocytosis/immunology
- CD163 Antigen
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/immunology
- CD47 Antigen/immunology
- CD47 Antigen/antagonists & inhibitors
- CD47 Antigen/metabolism
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Cell Line, Tumor
- Receptors, Immunologic/metabolism
- Culture Media, Conditioned/pharmacology
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Immunotherapy/methods
- Cell Differentiation
Collapse
Affiliation(s)
- Kristian W Antonsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Anne G Jensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Qian L, Chen P, Zhang S, Wang Z, Guo Y, Koutouratsas V, Fleishman JS, Huang C, Zhang S. The uptake of extracellular vesicles: Research progress in cancer drug resistance and beyond. Drug Resist Updat 2025; 79:101209. [PMID: 39893749 DOI: 10.1016/j.drup.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous vesicles released by donor cells that can be taken up by recipient cells, thus inducing cellular phenotype changes. Since their discovery decades ago, roles of EVs in modulating initiation, growth, survival and metastasis of cancer have been revealed. Recent studies from multifaceted perspectives have further detailed the contribution of EVs to cancer drug resistance; however, the role of EV uptake in conferring drug resistance seems to be overlooked. In this comprehensive review, we update the EV subtypes and approaches for determining EV uptake. The biological basis of EV uptake is systematically summarized. Moreover, we focus on the diverse uptake mechanisms by which EVs carry out the intracellular delivery of functional molecules and drug resistance signaling. Furthermore, we highlight how EV uptake confers drug resistance and identify potential strategies for targeting EV uptake to overcome drug resistance. Finally, we discuss the research gap on the role of EV uptake in promoting drug resistance. This updated knowledge provides a new avenue to overcome cancer drug resistance by targeting EV uptake.
Collapse
Affiliation(s)
- Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pangzhou Chen
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Zhenglu Wang
- Department of Pathology, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Centre Hospital, Tianjin 300192, China
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Vasili Koutouratsas
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chuanqiang Huang
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Jia R, Li Z, Du Y, Liu H, Liang R. Identification of biomarkers associated with phagocytosis regulatory factors in coronary artery disease using machine learning and network analysis. Mamm Genome 2025:10.1007/s00335-025-10111-5. [PMID: 39953122 DOI: 10.1007/s00335-025-10111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Coronary artery disease (CAD) is the leading cause of death worldwide, and aberrant phagocytosis may be involved in its development. Understanding this aspect may provide new avenues for prompt CAD diagnosis. METHODS CAD-related information was obtained from Gene Expression Omnibus datasets GSE66360, GSE113079, and GSE59421. We identified 995 upregulated and 1086 downregulated differentially expressed genes (DEGs) in GSE66360. Weighted gene co-expression network analysis revealed a module of 503 genes relevant to CAD. Using clusterProfiler, we revealed 32 CAD-related PRFs. Eight candidate genes were identified in a protein-protein interaction network. Machine learning algorithms identified CAD biomarkers that underwent gene set enrichment analysis, immune cell analysis with CIBERSORT, microRNA (miRNA) prediction using the miRWalk database, transcription factor (TF) level predication through ChEA3, and drug prediction with DGIdb. Cytoscape visualized the miRNA -mRNA- TF, miRNA-single nucleotide polymorphism-mRNA, and biomarker-drug networks. RESULTS IL1B, TLR2, FCGR2A, SYK, FCER1G, and HCK were identified as CAD biomarkers. The area under the curve of a diagnostic model based on the six biomarkers was > 0.7 for the GSE66360 and GSE113079 datasets. Gene set enrichment analysis revealed differences in their biological pathways. CIBERSORT revealed that 10 immune cell types were differentially expressed between the CAD and control groups. The TF-mRNA-miRNA network showed that has-miR-1207-5p regulates HCK and FCER1G expression and that RUNX1 and SPI may be important TFs. Ninety-five drugs were predicted, including aspirin, which influenced ILIB and FCERIG. CONCLUSION In this study, six biomarkers (IL1B, TLR2, FCGR2A, SYK, FCER1G, and HCK) related to CAD phagocytic regulatory factors were identified, and their expression regulatory relationships in CAD were further studied, providing a deeper understanding of the pathogenesis, diagnosis, and potential treatment strategies of CAD.
Collapse
Affiliation(s)
- Runan Jia
- Huaihe Hospital of Henan University, Kaifeng City, Henan, 475001, China.
| | - Zhiya Li
- Huaihe Hospital of Henan University, Kaifeng City, Henan, 475001, China
| | - Yingying Du
- Xinxiang Central Hospital, Xinxiang City, Henan, 453000, China
| | - Huixian Liu
- Huaihe Hospital of Henan University, Kaifeng City, Henan, 475001, China
| | - Ruirui Liang
- Department of Cardiology, Zhengzhou Yihe Hospital, Zhengzhou City, Henan, 450047, China
| |
Collapse
|
10
|
Teng Y, Luo C, Qiu X, Mu J, Sriwastva MK, Xu Q, Liu M, Hu X, Xu F, Zhang L, Park JW, Hwang JY, Kong M, Liu Z, Zhang X, Xu R, Yan J, Merchant ML, McClain CJ, Zhang HG. Plant-nanoparticles enhance anti-PD-L1 efficacy by shaping human commensal microbiota metabolites. Nat Commun 2025; 16:1295. [PMID: 39900923 PMCID: PMC11790884 DOI: 10.1038/s41467-025-56498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Diet has emerged as a key impact factor for gut microbiota function. However, the complexity of dietary components makes it difficult to predict specific outcomes. Here we investigate the impact of plant-derived nanoparticles (PNP) on gut microbiota and metabolites in context of cancer immunotherapy with the humanized gnotobiotic mouse model. Specifically, we show that ginger-derived exosome-like nanoparticle (GELN) preferentially taken up by Lachnospiraceae and Lactobacillaceae mediated by digalactosyldiacylglycerol (DGDG) and glycine, respectively. We further demonstrate that GELN aly-miR159a-3p enhances anti-PD-L1 therapy in melanoma by inhibiting the expression of recipient bacterial phospholipase C (PLC) and increases the accumulation of docosahexaenoic acid (DHA). An increased level of circulating DHA inhibits PD-L1 expression in tumor cells by binding the PD-L1 promoter and subsequently prevents c-myc-initiated transcription of PD-L1. Colonization of germ-free male mice with gut bacteria from anti-PD-L1 non-responding patients supplemented with DHA enhances the efficacy of anti-PD-L1 therapy compared to controls. Our findings reveal a previously unknown mechanistic impact of PNP on human tumor immunotherapy by modulating gut bacterial metabolic pathways.
Collapse
Affiliation(s)
- Yun Teng
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
| | - Chao Luo
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Central Laboratory, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiaolan Qiu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Breast and Thyroid Surgery, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jingyao Mu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Mukesh K Sriwastva
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Qingbo Xu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Minmin Liu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Breast and Thyroid Surgery, The affiliated Huai'an First People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xin Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fangyi Xu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Lifeng Zhang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Juw Won Park
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY, USA
| | - Jae Yeon Hwang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Maiying Kong
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY, USA
| | - Zhanxu Liu
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Raobo Xu
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY, USA
| | - Huang-Ge Zhang
- Brown Cancer Center, University of Louisville School of Medicine, Louisville, USA.
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA.
- Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA.
| |
Collapse
|
11
|
Aviani MG, Menard F. Emerging Roles for MFG-E8 in Synapse Elimination. J Neurochem 2025; 169:e70009. [PMID: 39891478 DOI: 10.1111/jnc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
Synapse elimination is an essential process in the healthy nervous system and is dysregulated in many neuropathologies. Yet, the underlying molecular mechanisms and under what conditions they occur remain unclear. MFG-E8 is a secreted glycoprotein well known to act as an opsonin, tagging stressed and dying cells for engulfment by phagocytes. Opsonization of cells and debris by MFG-E8 for microglial phagocytosis in the CNS is well established, and its role in astrocytic phagocytosis, and trogocytosis-like engulfment of synapses is beginning to be explored. However, MFG-E8's function in other tissues is highly diverse, and evidence suggests that its role in the nervous system and on synapse elimination in particular may be more complex and varied than opsonization. In this review, we outline the documented direct and indirect effects of MFG-E8 on synapse elimination, while also proposing potential roles to be explored further, in particular, cytoskeletal reorganization of neurites and glia leading to synapse elimination by various mechanisms. Finally, we demonstrate the need for several open questions to be answered-chiefly, under what conditions might MFG-E8-mediated synapse elimination occur in favor of other mechanisms, and when might its activity be dysregulated, increasing unwanted synapse elimination and neurotoxicity?
Collapse
Affiliation(s)
- Marisa G Aviani
- Department of Biochemistry and Molecular Biology, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Fred Menard
- Department of Biochemistry and Molecular Biology, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
- Department of Chemistry, I.K. Barber Faculty of Science, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
12
|
Liu Z, Li Y, Ren Y, Chen J, Weng S, Zhou Z, Luo P, Chen Q, Xu H, Ba Y, Zuo A, Liu S, Zhang Y, Pan T, Han X. Efferocytosis: The Janus-Faced Gatekeeper of Aging and Tumor Fate. Aging Cell 2025; 24:e14467. [PMID: 39748782 PMCID: PMC11822654 DOI: 10.1111/acel.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
From embryogenesis to aging, billions of cells perish daily in mammals. The multistep process by which phagocytes engulf these deceased cells without eliciting an inflammatory response is called efferocytosis. Despite significant insights into the fundamental mechanisms of efferocytosis, its implications in disorders such as aging and cancer remain elusive. Upon summarizing and analyzing existing studies on efferocytosis, it becomes evident that efferocytosis is our friend in resolving inflammation, yet it transforms into our foe by facilitating tumor development and metastasis. This review illuminates recent discoveries regarding the emerging mechanisms of efferocytosis in clearing apoptotic cells, explores its connections with aging, examines its influence on tumor development and metastasis, and identifies the regulatory factors of efferocytosis within the tumor microenvironment. A comprehensive understanding of these efferocytosis facets offers insights into crucial physiological and pathophysiological processes, paving the way for innovative therapeutic approaches to combat aging and cancer.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Li
- Medical School of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Jingqi Chen
- Medical School of Zhengzhou UniversityZhengzhouHenanChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Zhaokai Zhou
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peng Luo
- The Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Quan Chen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenGuangdongChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
| |
Collapse
|
13
|
Chen Q, Kou H, Demy DL, Liu W, Li J, Wen Z, Herbomel P, Huang Z, Zhang W, Xu J. The different roles of V-ATPase a subunits in phagocytosis/endocytosis and autophagy. Autophagy 2024; 20:2297-2313. [PMID: 38873931 PMCID: PMC11423658 DOI: 10.1080/15548627.2024.2366748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/27/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Microglia are specialized macrophages responsible for the clearance of dead neurons and pathogens by phagocytosis and degradation. The degradation requires phagosome maturation and acidification provided by the vesicular- or vacuolar-type H+-translocating adenosine triphosphatase (V-ATPase), which is composed of the cytoplasmic V1 domain and the membrane-embedded Vo domain. The V-ATPase a subunit, an integral part of the Vo domain, has four isoforms in mammals. The functions of different isoforms on phagosome maturation in different cells/species remain controversial. Here we show that mutations of both the V-ATPase Atp6v0a1 and Tcirg1b/Atp6v0a3 subunits lead to the accumulation of phagosomes in zebrafish microglia. However, their mechanisms are different. The V-ATPase Atp6v0a1 subunit is mainly distributed in early and late phagosomes. Defects of this subunit lead to a defective transition from early phagosomes to late phagosomes. In contrast, The V-ATPase Tcirg1b/Atp6v0a3 subunit is primarily located on lysosomes and regulates late phagosome-lysosomal fusion. Defective Tcirg1b/Atp6v0a3, but not Atp6v0a1 subunit leads to reduced acidification and impaired macroautophagy/autophagy in microglia. We further showed that ATP6V0A1/a1 and TCIRG1/a3 subunits in mouse macrophages preferentially located in endosomes and lysosomes, respectively. Blocking these subunits disrupted early-to-late endosome transition and endosome-to-lysosome fusion, respectively. Taken together, our results highlight the essential and conserved roles played by different V-ATPase subunits in multiple steps of phagocytosis and endocytosis across various species.Abbrevations: Apoe: apolipoprotein E; ANXA5/annexin V: annexin A5; ATP6V0A1/a1: ATPase H+-transporting V0 subunit a1; ATP6V0A2/a2: ATPase H+-transporting V0 subunit a2; ATP6V0A4/a4: ATPase H+-transporting V0 subunit a4; dpf: days post-fertilization; EEA1: early endosome antigen 1; HOPS: homotypic fusion and protein sorting; LAMP1: lysosomal associated membrane protein 1; Lcp1: lymphocyte cytosolic protein 1 (L-plastin); Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NR: neutral red; PBS: phosphate-buffered saline; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol (3,5)-bisphosphate; RAB4: RAB4, member RAS oncogene family; RAB5: RAB5, member RAS oncogene family; RAB7: RAB7, member RAS oncogene family; TCIRG1/Atp6v0a3/a3: T cell immune regulator 1, ATPase H+-transporting V0 subunit a3; V-ATPase: vacuolar-type H+-translocating adenosine triphosphatase; Xla.Tubb2b/NBT: tubulin beta 2B class IIb.
Collapse
Affiliation(s)
- Qi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PRChina
| | - Hanjing Kou
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Doris Lou Demy
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, France
- CNRS, UMR 3738, Paris, France
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianchao Li
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Hong Kong, PRChina
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental & Stem Cell Biology, Paris, France
- CNRS, UMR 3738, Paris, France
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jin Xu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Zhang X, Li C, Zhu D, Mao H, Jiang X. In Situ Engineering Cancer Mask to Immobilize Tumor Cells and Block Metastasis. Adv Healthc Mater 2024; 13:e2400742. [PMID: 38676706 DOI: 10.1002/adhm.202400742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Indexed: 04/29/2024]
Abstract
This work reports a new concept of cancer mask in situ to alter the specific biological functions of cancer cells. Metastatic cancer cells are highly invasive in part due to the presence of the glycan matrix in the cell membrane. Using a rational designed bio-orthogonal reaction, the cancer cell surface is reconstructed in situ by incorporating endogenous polysialic acids in the glycan matrix on the cell membrane to form a mesh-like network, called cancer mask. The network of the glycan matrix can not only immobilize cancer cells but also effectively block the stimulation of metastasis promoters to tumor cells and inhibit the formation of epithelial to mesenchymal transition (EMT), causing metastatic cancer cells incarceration. The results demonstrate a new strategy to control and even eliminate the cancer metastasis that is a major cause of treatment failure and poor patient outcome.
Collapse
Affiliation(s)
- Xiaoke Zhang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Cheng Li
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Dan Zhu
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Xiqun Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
15
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Wei F, Liu H, Wang Y, Li Y, Han S. Engineering macrophages and their derivatives: A new hope for antitumor therapy. Biomed Pharmacother 2024; 177:116925. [PMID: 38878637 DOI: 10.1016/j.biopha.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 07/28/2024] Open
Abstract
Macrophages are central to the immune system and are found in nearly all tissues. Recently, the development of therapies based on macrophages has attracted significant interest. These therapies utilize macrophages' key roles in immunity, their ability to navigate biological barriers, and their tendency to accumulate in tumors. This review explores the advancement of macrophage-based treatments. We discuss the bioengineering of macrophages for improved anti-tumor effects, the use of CAR macrophage therapy for targeting cancer cells, and macrophages as vehicles for therapeutic delivery. Additionally, we examine engineered macrophage products, like extracellular vesicles and membrane-coated nanoparticles, for their potential in precise and less toxic tumor therapy. Challenges in moving these therapies from research to clinical practice are also highlighted. The aim is to succinctly summarize the current status, challenges, and future directions of engineered macrophages in cancer therapy.
Collapse
Affiliation(s)
- Fang Wei
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Haiyang Liu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China.
| | - Shuo Han
- Department of Cardiology, the Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province 110032, China.
| |
Collapse
|
17
|
Antonsen KW, Jensen AG, Carstensen M, Nejsum LN, Sorensen BS, Etzerodt A, Moestrup SK, Møller HJ. Proinflammatory polarization strongly reduces human macrophage in vitro phagocytosis of tumor cells in response to CD47 blockade. Eur J Immunol 2024; 54:e2350824. [PMID: 38593339 DOI: 10.1002/eji.202350824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Antibody-based CD47 blockade aims to activate macrophage phagocytosis of tumor cells. However, macrophages possess a high degree of phenotype heterogeneity that likely influences phagocytic capacity. In murine models, proinflammatory (M1) activation increases macrophage phagocytosis of tumor cells, but in human models, results have been conflicting. Here, we investigated the effects of proinflammatory polarization on the phagocytic response of human monocyte-derived macrophages in an in vitro model. Using both flow cytometry-based and fluorescence live-cell imaging-based phagocytosis assays, we observed that mouse monoclonal anti-CD47 antibody (B6H12) induced monocyte-derived macrophage phagocytosis of cancer cells in vitro. Proinflammatory (M1) macrophage polarization with IFN-γ+LPS resulted in a severe reduction in phagocytic response to CD47 blockade. This reduction coincided with increased expression of the antiphagocytic membrane proteins LILRB1 and Siglec-10 but was not rescued by combination blockade of the corresponding ligands. However, matrix metalloproteinase inhibitors (TAPI-0 or GM6001) partly restored response to CD47 blockade in a dose-dependent manner. In summary, these data suggest that proinflammatory (M1) activation reduces phagocytic response to CD47 blockade in human monocyte-derived macrophages.
Collapse
Affiliation(s)
- Kristian W Antonsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne G Jensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Fliri A, Kajiji S. Effects of vitamin D signaling in cardiovascular disease: centrality of macrophage polarization. Front Cardiovasc Med 2024; 11:1388025. [PMID: 38984353 PMCID: PMC11232491 DOI: 10.3389/fcvm.2024.1388025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.
Collapse
Affiliation(s)
- Anton Fliri
- Emergent System Analytics LLC, Clinton, CT, United States
| | - Shama Kajiji
- Emergent System Analytics LLC, Clinton, CT, United States
| |
Collapse
|
19
|
Shui X, Chen J, Fu Z, Zhu H, Tao H, Li Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J Inflamm Res 2024; 17:3335-3352. [PMID: 38800598 PMCID: PMC11128258 DOI: 10.2147/jir.s461795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xinyao Shui
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingsong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ziyue Fu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Haoyue Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
20
|
Cieniewicz B, Oliveira E, Saxton M, Torabi D, Bhatta A, Kukutla P, Arballo A, Yang Z, Yu B, Fate M, Ning H, Corey L, Maiti A, Corey D. Therapeutic Targeting of TIM-4-L with Engineered T Cells for Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:1878-1888. [PMID: 38451195 DOI: 10.1158/1078-0432.ccr-23-3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Disruption of lipid bilayer asymmetry is a common feature observed in cancer cells and offers novel routes for therapeutic targeting. We used the natural immune receptor TIM-4 to interrogate for loss of plasma membrane phospholipid polarity in primary acute myelogenous leukemia (AML) samples and evaluated the anti-leukemic activity of TIM-4-L-directed T-cell therapy in preclinical AML models. EXPERIMENTAL DESIGN We performed FACS analysis on 33 primary AML bone marrow specimens and correlated TIM-4-L expression frequency and intensity with molecular disease characteristics. Using Kasumi-1 and MV-4-11 AML cell lines, we further tested the anti-leukemic effects of TIM-4-L-directed engineered T cells in vitro and in vivo. RESULTS We found that 86% of untreated AML blasts displayed upregulation of cell surface TIM-4-L. These observations were agnostic to AML genetic classification, as samples with mutations in TP53, ASXL1, and RUNX1 displayed TIM-4-L upregulation similar to that seen in favorable and intermediate subtypes. TIM-4-L dysregulation was also stably present in AML cell lines. To evaluate the potential of targeting upregulated TIM-4-L with adoptive T-cell therapy, we constructed TIM-4-L-directed engineered T cells, which demonstrated potent anti-leukemic effects, effectively eliminating AML cell lines with a range of endogenous TIM-4-L expression levels both in vitro and in vivo. CONCLUSIONS These results highlight TIM-4-L as a highly prevalent target on AML across a range of genetic classifications and novel target for T-cell-based therapy in AML. Further investigations into the role of TIM-4-L in AML pathogenesis and its potential as an anti-leukemic target for clinical development are warranted.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Female
- Male
- Middle Aged
- Adult
- Aged
- Immunotherapy, Adoptive/methods
Collapse
Affiliation(s)
| | | | - Mike Saxton
- CERo Therapeutics Inc., South San Francisco, California
| | - Damoun Torabi
- CERo Therapeutics Inc., South San Francisco, California
| | - Ankit Bhatta
- CERo Therapeutics Inc., South San Francisco, California
| | | | | | - Zhuo Yang
- CERo Therapeutics Inc., South San Francisco, California
| | - Bi Yu
- CERo Therapeutics Inc., South San Francisco, California
| | - Maria Fate
- CERo Therapeutics Inc., South San Francisco, California
| | - Hongxiu Ning
- CERo Therapeutics Inc., South San Francisco, California
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Abhishek Maiti
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Corey
- CERo Therapeutics Inc., South San Francisco, California
| |
Collapse
|
21
|
Zhao Y, Luo X, Hu J, Panga MJ, Appiah C, Du Z, Zhu L, Retyunskiy V, Gao X, Ma B, Zhang Q. Syringin alleviates bisphenol A-induced spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish. Int Immunopharmacol 2024; 131:111830. [PMID: 38520788 DOI: 10.1016/j.intimp.2024.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 μg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qi Zhang
- School of Food Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
22
|
Wang G, Liu HY, Meng XW, Chen Y, Zhao WM, Li WT, Xu HB, Peng K, Ji FH. Complement C1q-mediated microglial synaptic elimination by enhancing desialylation underlies sevoflurane-induced developmental neurotoxicity. Cell Biosci 2024; 14:42. [PMID: 38556890 PMCID: PMC10983687 DOI: 10.1186/s13578-024-01223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Repeated neonatal sevoflurane exposures led to neurocognitive disorders in young mice. We aimed to assess the role of microglia and complement C1q in sevoflurane-induced neurotoxicity and explore the underlying mechanisms. METHODS Neonatal mice were treated with sevoflurane on postnatal days 6, 8, and 10, and the Morris water maze was performed to assess cognitive functions. For mechanistic explorations, mice were treated with minocycline, C1q-antibody ANX005, and sialidase-inhibitor N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA) before sevoflurane exposures. Western blotting, RT-qPCR, Golgi staining, 3D reconstruction and engulfment analysis, immunofluorescence, and microglial morphology analysis were performed. In vitro experiments were conducted in microglial cell line BV2 cells. RESULTS Repeated neonatal sevoflurane exposures resulted in deficiencies in learning and cognition of young mice, accompanied by microglial activation and synapse loss. Sevoflurane enhanced microglia-mediated synapse elimination through C1q binding to synapses. Inhibition of microglial activation and phagocytosis with minocycline significantly reduced the loss of synapses. We further revealed the involvement of neuronal sialic acids in this process. The enhanced activity of sialidase by sevoflurane led to the loss of sialic acids, which facilitated C1q binding to synapses. Inhibition of C1q with ANX005 or inhibition of sialidase with NADNA significantly rescued microglia-mediated synapse loss and improved neurocognitive function. Sevoflurane enhanced the engulfment of BV2 cells, which was reversed by ANX005. CONCLUSIONS Our findings demonstrated that C1q-mediated microglial synaptic elimination by enhancing desialylation contributed to sevoflurane-induced developmental neurotoxicity. Inhibition of C1q or sialidase may be a potential therapeutic strategy for this neurotoxicity.
Collapse
Affiliation(s)
- Gang Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Hua-Yue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China
- Ambulatory Surgery Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiao-Wen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ying Chen
- Departments of Neurology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wei-Ming Zhao
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wen-Ting Li
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Han-Bing Xu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Fu-Hai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
23
|
Asghari Adib E, Shadrach JL, Reilly-Jankowiak L, Dwivedi MK, Rogers AE, Shahzad S, Passino R, Giger RJ, Pierchala BA, Collins CA. DLK signaling in axotomized neurons triggers complement activation and loss of upstream synapses. Cell Rep 2024; 43:113801. [PMID: 38363678 PMCID: PMC11088462 DOI: 10.1016/j.celrep.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Axotomized spinal motoneurons (MNs) lose presynaptic inputs following peripheral nerve injury; however, the cellular mechanisms that lead to this form of synapse loss are currently unknown. Here, we delineate a critical role for neuronal kinase dual leucine zipper kinase (DLK)/MAP3K12, which becomes activated in axotomized neurons. Studies with conditional knockout mice indicate that DLK signaling activation in injured MNs triggers the induction of phagocytic microglia and synapse loss. Aspects of the DLK-regulated response include expression of C1q first from the axotomized MN and then later in surrounding microglia, which subsequently phagocytose presynaptic components of upstream synapses. Pharmacological ablation of microglia inhibits the loss of cholinergic C boutons from axotomized MNs. Together, the observations implicate a neuronal mechanism, governed by the DLK, in the induction of inflammation and the removal of synapses.
Collapse
Affiliation(s)
- Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jennifer L Shadrach
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | - Manish K Dwivedi
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Abigail E Rogers
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shameena Shahzad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian A Pierchala
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Catherine A Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
24
|
Abstract
Cells can die as a consequence of being phagocytosed by other cells - a form of cell death that has been called phagotrophy, cell cannibalism, programmed cell removal and primary phagocytosis. However, these are all different manifestations of cell death by phagocytosis (termed 'phagoptosis' for short). The engulfed cells die as a result of cytotoxic oxidants, peptides and degradative enzymes within acidic phagolysosomes. Cell death by phagocytosis was discovered by Metchnikov in the 1880s, but was neglected until recently. It is now known to contribute to developmental cell death in nematodes, Drosophila and mammals, and is central to innate and adaptive immunity against pathogens. Cell death by phagocytosis mediates physiological turnover of erythrocytes and other leucocytes, making it the most abundant form of cell death in the mammalian body. Immunity against cancer is also partly mediated by macrophage phagocytosis of cancer cells, but cancer cells can also phagocytose host cells and other cancer cells in order to survive. Recent evidence indicates neurodegeneration and other neuropathologies can be mediated by microglial phagocytosis of stressed neurons. Thus, despite cell death by phagocytosis being poorly recognized, it is one of the oldest, commonest and most important forms of cell death.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Kitchener EJA, Dundee JM, Brown GC. Activated microglia release β-galactosidase that promotes inflammatory neurodegeneration. Front Aging Neurosci 2024; 15:1327756. [PMID: 38283068 PMCID: PMC10811154 DOI: 10.3389/fnagi.2023.1327756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Beta (β)-galactosidase is a lysosomal enzyme that removes terminal galactose residues from glycolipids and glycoproteins. It is upregulated in, and used as a marker for, senescent cells. Microglia are brain macrophages implicated in neurodegeneration, and can upregulate β-galactosidase when senescent. We find that inflammatory activation of microglia induced by lipopolysaccharide results in translocation of β-galactosidase to the cell surface and release into the medium. Similarly, microglia in aged mouse brains appear to have more β-galactosidase on their surface. Addition of β-galactosidase to neuronal-glial cultures causes microglial activation and neuronal loss mediated by microglia. Inhibition of β-galactosidase in neuronal-glial cultures reduces inflammation and neuronal loss induced by lipopolysaccharide. Thus, activated microglia release β-galactosidase that promotes microglial-mediated neurodegeneration which is prevented by inhibition of β-galactosidase.
Collapse
Affiliation(s)
| | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Tawbeh A, Raas Q, Tahri-Joutey M, Keime C, Kaiser R, Trompier D, Nasser B, Bellanger E, Dessard M, Hamon Y, Benani A, Di Cara F, Cunha Alves T, Berger J, Weinhofer I, Mandard S, Cherkaoui-Malki M, Andreoletti P, Gondcaille C, Savary S. Immune response of BV-2 microglial cells is impacted by peroxisomal beta-oxidation. Front Mol Neurosci 2023; 16:1299314. [PMID: 38164407 PMCID: PMC10757945 DOI: 10.3389/fnmol.2023.1299314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal β-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal β-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.
Collapse
Affiliation(s)
- Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Marie Dessard
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS, Canada
| | - Tânia Cunha Alves
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stéphane Mandard
- LipSTIC LabEx, University of Bourgogne, INSERM LNC UMR1231, Dijon, France
| | | | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| |
Collapse
|
27
|
Wang J, Ma J, Tai Z, Li L, Zhang T, Cheng T, Yu J, Zhu Q, Bao L, Chen Z. Nanocarrier-Mediated Immunogenic Cell Death for Melanoma Treatment. Int J Nanomedicine 2023; 18:7149-7172. [PMID: 38059000 PMCID: PMC10697015 DOI: 10.2147/ijn.s434582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Melanoma, a highly aggressive skin tumor, exhibits notable features including heterogeneity, a high mutational load, and innate immune escape. Despite advancements in melanoma treatment, current immunotherapies fail to fully exploit the immune system's maximum potential. Activating immunogenic cell death (ICD) holds promise in enhancing tumor cell immunogenicity, stimulating immune amplification response, improving drug sensitivity, and eliminating tumors. Nanotechnology-enabled ICD has emerged as a compelling therapeutic strategy for augmenting cancer immunotherapy. Nanoparticles possess versatile attributes, such as prolonged blood circulation, stability, and tumor-targeting capabilities, rendering them ideal for drug delivery. In this review, we elucidate the mechanisms underlying ICD induction and associated therapeutic strategies. Additionally, we provide a concise overview of the immune stress response associated with ICD and explore the potential synergistic benefits of combining ICD induction methods with the utilization of nanocarriers.
Collapse
Affiliation(s)
- Jiandong Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Tingting Cheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Junxia Yu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People’s Republic of China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, 200443, People’s Republic of China
| |
Collapse
|
28
|
Dundee JM, Puigdellívol M, Butler R, Brown GC. P2Y 6 Receptor-Dependent Microglial Phagocytosis of Synapses during Development Regulates Synapse Density and Memory. J Neurosci 2023; 43:8090-8103. [PMID: 37758475 PMCID: PMC10697425 DOI: 10.1523/jneurosci.1089-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
During brain development, excess synapses are pruned (i.e., removed), in part by microglial phagocytosis, and dysregulated synaptic pruning can lead to behavioral deficits. The P2Y6 receptor (P2Y6R) is known to regulate microglial phagocytosis of neurons, and to regulate microglial phagocytosis of synapses in cell culture and in vivo during aging. However, currently it is unknown whether P2Y6R regulates synaptic pruning during development. Here, we show that P2Y6R KO mice of both sexes had strongly reduced microglial internalization of synaptic material, measured as Vglut1 within CD68-staining lysosomes of microglia at postnatal day 30 (P30), suggesting reduced microglial phagocytosis of synapses. Consistent with this, we found an increased density of synapses in the somatosensory cortex and the CA3 region and dentate gyrus of the hippocampus at P30. We also show that adult P2Y6R KO mice have impaired short- and long-term spatial memory and impaired short- and long-term recognition memory compared with WT mice, as measured by novel location recognition, novel object recognition, and Y-maze memory tests. Overall, this indicates that P2Y6R regulates microglial phagocytosis of synapses during development, and this contributes to memory capacity.SIGNIFICANCE STATEMENT The P2Y6 receptor (P2Y6R) is activated by uridine diphosphate released by neurons, inducing microglial phagocytosis of such neurons or synapses. We tested whether P2Y6R regulates developmental synaptic pruning in mice and found that P2Y6R KO mice have reduced synaptic material within microglial lysosomes, and increased synaptic density in the brains of postnatal day 30 mice, consistent with reduced synaptic pruning during development. We also found that adult P2Y6R KO mice had reduced memory, consistent with persistent deficits in brain function, resulting from impaired synaptic pruning. Overall, the results suggest that P2Y6R mediates microglial phagocytosis of synapses during development, and the absence of this results in memory deficits in the adult.
Collapse
Affiliation(s)
- Jacob M Dundee
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
- Institute of Neurosciences, University of Barcelona, Barcelona, 08035, Spain
| | - Richard Butler
- The Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, United Kingdom
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, United Kingdom
| |
Collapse
|
29
|
Liu S, Lu H, Mao S, Zhang Z, Zhu W, Cheng J, Xue Y. Undernutrition-induced substance metabolism and energy production disorders affected the structure and function of the pituitary gland in a pregnant sheep model. Front Nutr 2023; 10:1251936. [PMID: 38035344 PMCID: PMC10684748 DOI: 10.3389/fnut.2023.1251936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Undernutrition spontaneously occurs in ewes during late gestation and the pituitary is an important hinge in the neurohumoral regulatory system. However, little is known about the effect of undernutrition on pituitary metabolism. Methods Here, 10 multiparous ewes were restricted to a 30% feeding level during late gestation to establish an undernutrition model while another 10 ewes were fed normally as controls. All the ewes were sacrificed, and pituitary samples were collected to perform transcriptome, metabolome, and quantitative real-time PCR analysis and investigate the metabolic changes. Results PCA and PLS-DA of total genes showed that undernutrition changed the total transcriptome profile of the pituitary gland, and 581 differentially expressed genes (DEGs) were identified between the two groups. Clusters of orthologous groups for eukaryotic complete genomes demonstrated that substance transport and metabolism, including lipids, carbohydrates, and amino acids, energy production and conversion, ribosomal structure and biogenesis, and the cytoskeleton were enriched by DEGs. Kyoto encyclopedia of genes and genomes pathway enrichment analysis displayed that the phagosome, intestinal immune network, and oxidative phosphorylation were enriched by DEGs. Further analysis found that undernutrition enhanced the lipid degradation and amino acid transport, repressing lipid synthesis and transport and amino acid degradation of the pituitary gland. Moreover, the general metabolic profiles and metabolic pathways were affected by undernutrition, repressing the 60S, 40S, 28S, and 39S subunits of the ribosomal structure for translation and myosin and actin synthesis for cytoskeleton. Undernutrition was found also to be implicated in the suppression of oxidative phosphorylation for energy production and conversion into a downregulation of genes related to T cell function and the immune response and an upregulation of genes involved in inflammatory reactions enriching phagosomes. Discussion This study comprehensively analyses the effect of undernutrition on the pituitary gland in a pregnant sheep model, which provides a foundation for further research into the mechanisms of undernutrition-caused hormone secretion and metabolic disorders.
Collapse
Affiliation(s)
- Shuai Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
30
|
Perna A, Montine KS, White LR, Montine TJ, Cholerton BA. Paradigm Shift: Multiple Potential Pathways to Neurodegenerative Dementia. Neurotherapeutics 2023; 20:1641-1652. [PMID: 37733209 PMCID: PMC10684852 DOI: 10.1007/s13311-023-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 09/22/2023] Open
Abstract
Neurodegenerative dementia can result from multiple underlying abnormalities, including neurotransmitter imbalances, protein aggregation, and other neurotoxic events. A major complication in identifying effective treatment targets is the frequent co-occurrence of multiple neurodegenerative processes, occurring either in parallel or sequentially. The path towards developing effective treatments for Alzheimer's disease (AD) and other dementias has been relatively slow and until recently has focused on disease symptoms. Aducanumab and lecanemab, recently approved by the FDA, are meant to target disease structures but have only modest benefit on symptom progression and remain unproven in reversing or preventing dementia. A third, donanemab, appears more promising but awaits FDA approval. Ongoing trials include potential cognition enhancers, new combinations of known drugs for synergistic effects, prodrugs with less toxicity, and increasing interest in drugs targeting neuroinflammation or microbiome. Scientific and technological advances offer the opportunity to move in new therapy directions, such as modifying microglia to prevent or suppress underlying disease. A major challenge, however, is that underlying comorbidities likely influence the effectiveness of therapies. Indeed, the full range of comorbidity, today only definitively identified postmortem, likely contributes to failed clinical trials and overmedication of older adults, since it is difficult to exclude (during life) people unlikely to respond. Our current knowledge thus signals that a paradigm shift towards individualized and multimodal treatments is necessary to effectively advance the field of dementia therapeutics.
Collapse
Affiliation(s)
- Amalia Perna
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA.
| | - Kathleen S Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Lon R White
- Pacific Health Research and Education Institute, Honolulu, HI, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Brenna A Cholerton
- Department of Pathology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| |
Collapse
|
31
|
Zeller T, Münnich IA, Windisch R, Hilger P, Schewe DM, Humpe A, Kellner C. Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer. Front Immunol 2023; 14:1240275. [PMID: 37781391 PMCID: PMC10533923 DOI: 10.3389/fimmu.2023.1240275] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Denis M. Schewe
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
32
|
Neumaier M, Giesler S, Ast V, Roemer M, Voß TD, Reinz E, Costina V, Schmelz M, Nürnberg E, Nittka S, Leppä AM, Rudolf R, Trumpp A, Fuchs T. Opsonization-independent antigen-specific recognition by myeloid phagocytes expressing monoclonal antibodies. SCIENCE ADVANCES 2023; 9:eadg1812. [PMID: 37656789 PMCID: PMC11314243 DOI: 10.1126/sciadv.adg1812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
This report demonstrates a novel class of innate immune cells designated "variable immunoreceptor-expressing myeloids" (VIREMs). Using single-cell transcriptomics and genome-wide epigenetic profiling, we establish that VIREMs are myeloid cells unrelated to lymphocytes. We visualize the phenotype of B-VIREMs that are capable of genetically recombining and expressing antibody genes, the exclusive hallmark function of B lymphocytes. These cells, designated B-VIREMs, display monoclonal antibody cell surface signatures and regularly circulate in the blood of healthy individuals. Single-cell data reveal clonal expansion of circulating B-VIREMs as a dynamic response to disease stimuli. Live-cell imaging models suggest that B-VIREMs load their own Fc receptors with endogenous antibodies during vesicle transport to the cell surface. A first cloned B-VIREM-derived antibody (Vab1) specifically binds stomatin, a ubiquitous scaffold protein that is strictly expressed intracellularly, allowing Vab1-bearing macrophages to phagocytose cell debris without requiring prior opsonization. Our results suggest important antigen-specific tissue maintenance functionalities in these innate immune cells.
Collapse
Affiliation(s)
- Michael Neumaier
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Sophie Giesler
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Department of Medicine I - Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Ast
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Mathis Roemer
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
| | - Timo-Daniel Voß
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Stuttgart, Germany
| | - Eileen Reinz
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
| | - Victor Costina
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
| | - Martin Schmelz
- Department of Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Elina Nürnberg
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Stefanie Nittka
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
| | - Aino-Maija Leppä
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ)-Center for Molecular Biology of Heidelberg University (ZMBH) Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Ruediger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ)-Center for Molecular Biology of Heidelberg University (ZMBH) Alliance, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Tina Fuchs
- Institute for Clinical Chemistry, University Medicine Mannheim, Mannheim, Germany
- Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| |
Collapse
|
33
|
Cheng J, Wang W, Xia Y, Li Y, Jia J, Xiao G. Regulators of phagocytosis as pharmacologic targets for stroke treatment. Front Pharmacol 2023; 14:1122527. [PMID: 37601043 PMCID: PMC10433754 DOI: 10.3389/fphar.2023.1122527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Stroke, including ischemic and hemorrhagic stroke, causes massive cell death in the brain, which is followed by secondary inflammatory injury initiated by disease-associated molecular patterns released from dead cells. Phagocytosis, a cellular process of engulfment and digestion of dead cells, promotes the resolution of inflammation and repair following stroke. However, professional or non-professional phagocytes also phagocytose stressed but viable cells in the brain or excessively phagocytose myelin sheaths or prune synapses, consequently exacerbating brain injury and impairing repair following stroke. Phagocytosis includes the smell, eating and digestion phases. Notably, efficient phagocytosis critically depends on phagocyte capacity to take up dead cells continually due to the limited number of phagocytes vs. dead cells after injury. Moreover, phenotypic polarization of phagocytes occurring after phagocytosis is also essential to the proresolving and prorepair properties of phagocytosis. Much has been learned about the molecular signals and regulatory mechanisms governing the sense and recognition of dead cells by phagocytes during the smell and eating phase following stroke. However, some key areas remain extremely understudied, including the mechanisms involved in digestion regulation, continual phagocytosis and phagocytosis-induced phenotypic switching following stroke. Here, we summarize new discoveries related to the molecular mechanisms and multifaceted effects of phagocytosis on brain injury and repair following stroke and highlight the knowledge gaps in poststroke phagocytosis. We suggest that advancing the understanding of poststroke phagocytosis will help identify more biological targets for stroke treatment.
Collapse
Affiliation(s)
- Jian Cheng
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiqing Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yi Li
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guodong Xiao
- Suzhou Clinical Research Center of Neurological Disease, Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Huntoon K, Lee D, Dong S, Antony A, Kim BYS, Jiang W. Targeting phagocytosis to enhance antitumor immunity. Trends Cancer 2023; 9:650-665. [PMID: 37150626 DOI: 10.1016/j.trecan.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023]
Abstract
Many patients with metastatic or treatment-resistant cancer have experienced improved outcomes after immunotherapy that targets adaptive immune checkpoints. However, innate immune checkpoints, which can hinder the detection and clearance of malignant cells, are also crucial in tumor-mediated immune escape and may also serve as targets in cancer immunotherapy. In this review, we discuss the current understanding of immune evasion by cancer cells via disruption of phagocytic clearance, and the potential effects of blocking phagocytosis checkpoints on the activation of antitumor immune responses. We propose that a more effective combination immunotherapy strategy could be to exploit tumor-intrinsic processes that inhibit key innate immune surveillance processes, such as phagocytosis, and incorporate both innate and adaptive immune responses for treating patients with cancer.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
35
|
Choe U, Pham Q, Kim YS, Yu L, Wang TTY. Identification and elucidation of cross talk between SLAM Family Member 7 (SLAMF7) and Toll-like receptor (TLR) pathways in monocytes and macrophages. Sci Rep 2023; 13:11007. [PMID: 37420084 PMCID: PMC10329007 DOI: 10.1038/s41598-023-37040-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
To further elucidate the expression, regulation and function of Signaling Lymphocytic Activation Molecule Family (SLAMF) protein members in human monocytes and macrophages. Un-differentiated monocytic THP-1 cell (u-THP-1) and differentiated THP-1 macrophage (d-THP-1) were used as culture models in the study. Responses of cells to the differentiation agents phorbol ester (25 ng/ml) and TLR (Toll-like receptor) ligands were assessed. RT-PCR and Western blot analysis were used to determine mRNA and protein level. Pro-inflammatory cytokine mRNA expression levels and phagocytosis were used as functional markers. Data analyzed using t-test, one-way or two-way ANOVA followed by post hoc test. SLAMFs were differentially expressed in THP-1 cells. Differentiation of u-THP-1 to d-THP-1 led to significantly higher SLAMF7 mRNA and protein levels than other SLAMF. In addition, TLR stimuli increased SLAMF7 mRNA expression but not protein expression. Importantly, SLAMF7 agonist antibody and TLR ligands synergistically increased the mRNA expression levels of IL-1β, IL-6 and TNF-α, but had no effect on phagocytosis. SLAMF7 knocked-down in d-THP-1 significantly lowered TLR-induced mRNA expressions of pro-inflammatory markers. SLAM family proteins are differentially regulated by differentiation and TLRs. SLAMF7 enhanced TLR-mediated induction of pro-inflammatory cytokines in monocytes and macrophages but not phagocytosis.
Collapse
Affiliation(s)
- Uyory Choe
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Quynhchi Pham
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA
| | - Young S Kim
- Cancer Prevention Science Branch, Division of Cancer Prevention, NCI, Rockville, MD, 20850, USA
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Thomas T Y Wang
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|
36
|
Zhang W, Chen Y, Pei H. C1q and central nervous system disorders. Front Immunol 2023; 14:1145649. [PMID: 37033981 PMCID: PMC10076750 DOI: 10.3389/fimmu.2023.1145649] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
C1q is a crucial component of the complement system, which is activated through the classical pathway to perform non-specific immune functions, serving as the first line of defense against pathogens. C1q can also bind to specific receptors to carry out immune and other functions, playing a vital role in maintaining immune homeostasis and normal physiological functions. In the developing central nervous system (CNS), C1q functions in synapse formation and pruning, serving as a key player in the development and homeostasis of neuronal networks in the CNS. C1q has a close relationship with microglia and astrocytes, and under their influence, C1q may contribute to the development of CNS disorders. Furthermore, C1q can also have independent effects on neurological disorders, producing either beneficial or detrimental outcomes. Most of the evidence for these functions comes from animal models, with some also from human specimen studies. C1q is now emerging as a promising target for the treatment of a variety of diseases, and clinical trials are already underway for CNS disorders. This article highlights the role of C1q in CNS diseases, offering new directions for the diagnosis and treatment of these conditions.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of General Practice, Xingyang Sishui Central Health Center, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Pei
- Department of Emergency Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
38
|
Pickett LA, VanRyzin JW, Marquardt AE, McCarthy MM. Microglia phagocytosis mediates the volume and function of the rat sexually dimorphic nucleus of the preoptic area. Proc Natl Acad Sci U S A 2023; 120:e2212646120. [PMID: 36848562 PMCID: PMC10013839 DOI: 10.1073/pnas.2212646120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/24/2023] [Indexed: 03/01/2023] Open
Abstract
The sexually dimorphic nucleus of the preoptic area (SDN-POA) is the oldest and most robust sex difference reported in mammalian brain and is singular for its presence across a wide range of species from rodents to ungulates to man. This small collection of Nissl-dense neurons is reliably larger in volume in males. Despite its notoriety and intense interrogation, both the mechanism establishing the sex difference and the functional role of the SDN have remained elusive. Convergent evidence from rodent studies led to the conclusion that testicular androgens aromatized to estrogens are neuroprotective in males and that higher apoptosis (naturally occurring cell death) in females determines their smaller SDN. In several species, including humans, a smaller SDN correlates with a preference for mating with males. We report here that this volume difference is dependent upon a participatory role of phagocytic microglia which engulf more neurons in the female SDN and assure their destruction. Selectively blocking microglia phagocytosis temporarily spared neurons from apoptotic death and increased SDN volume in females without hormone treatment. Increasing the number of neurons in the SDN in neonatal females resulted in loss of preference for male odors in adulthood, an effect paralleled by dampened excitation of SDN neurons as evidenced by reduced immediate early gene (IEG) expression when exposed to male urine. Thus, the mechanism establishing a sex difference in SDN volume includes an essential role for microglia, and SDN function as a regulator of sexual partner preference is confirmed.
Collapse
Affiliation(s)
- Lindsay A. Pickett
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
| | - Ashley E. Marquardt
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
| | - Margaret M. McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
39
|
Peradinovic J, Mohovic N, Bulic K, Markovinovic A, Cimbro R, Munitic I. Ageing-Induced Decline in Primary Myeloid Cell Phagocytosis Is Unaffected by Optineurin Insufficiency. BIOLOGY 2023; 12:biology12020240. [PMID: 36829517 PMCID: PMC9953198 DOI: 10.3390/biology12020240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Optineurin is a ubiquitin-binding adaptor protein involved in multiple cellular processes, including innate inflammatory signalling. Mutations in optineurin were found in amyotrophic lateral sclerosis, an adult-onset fatal neurodegenerative disease that targets motor neurons. Neurodegeneration results in generation of neuronal debris, which is primarily cleared by myeloid cells. To assess the role of optineurin in phagocytosis, we performed a flow cytometry-based phagocytic assay of apoptotic neuronal debris and E. coli bioparticles in bone marrow-derived macrophages (BMDMs), and primary neonatal microglia from wild-type (WT) and optineurin-insufficient (Optn470T) mice. We found no difference in phagocytosis efficiency and the accompanying cytokine secretion in WT and Optn470T BMDMs and microglia. This was true at both steady state and upon proinflammatory polarization with lipopolysaccharide. When we analysed the effect of ageing as a major risk factor for neurodegeneration, we found a substantial decrease in the percentage of phagocytic cells and proinflammatory cytokine secretion in BMDMs from 2-year-old mice. However, this ageing-induced phagocytic decline was unaffected by optineurin insufficiency. All together, these results indicate that ageing is the factor that perturbs normal phagocytosis and proinflammatory cytokine secretion, but that optineurin is dispensable for these processes.
Collapse
Affiliation(s)
- Josip Peradinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| | - Nikolina Mohovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| | - Katarina Bulic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| | - Andrea Markovinovic
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - Raffaello Cimbro
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
- Correspondence: (R.C.); (I.M.)
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
- Correspondence: (R.C.); (I.M.)
| |
Collapse
|
40
|
Rizkiantino R, Pasaribu FH, Soejoedono RD, Arnafia W, Reisinta D, Yadiansyah RI, Halalludin B, Ardini Y, Khanaria G, Wibawan IWT. Chicken Enterococcus faecalis-induced immunoglobulin Y as a prophylactic and therapeutic agent against streptococcosis in red tilapia ( Oreochromis hybrid). Vet World 2023; 16:175-186. [PMID: 36855368 PMCID: PMC9967709 DOI: 10.14202/vetworld.2023.175-186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/30/2023] Open
Abstract
Background and Aim Streptococcosis is a common bacterial disease in red tilapia, in which Enterococcus faecalis infection has not been widely reported. This study aimed to evaluate the efficacy of pellets that contain chicken E. faecalis-induced immunoglobulin Y (IgY) to treat and prevent streptococcosis in red tilapia. Materials and Methods We conducted a 28-day study for immunoprophylaxis and immunotherapy, each using four groups with two replications: Healthy control fish (KS), non-IgY pellets (PA and TA), pellets with 25% egg yolk containing E. faecalis-induced IgY (PB and TB), and pellets with 50% egg yolk containing E. faecalis-induced IgY(PC and TC). Indirect enzyme-linked immunosorbent assay was performed on prototype pellets produced with an IgY suspension at 1.63 mg/mL as the standard optical density curve. For the immunoprophylaxis study, pellets of 3% of the average body weight of the experimental fish (0.50 g per fish per day) were given daily until day 14 before the challenge test with E. faecalis (2.1 × 109 Colony-forming unit/mL peroral) on day 15. The data from the observation period on days 15-28 were analyzed. For the immunotherapy study, pellets of 3% of the average body weight (0.50 g per fish per day) were given daily for 21 days (days 8-28) 7 day spost-infection. The data from the immunotherapy study were collected during the observation period on days 8-28. Statistical analysis was performed on non-specific immune variables: Total leukocytes, monocytes, lymphocytes, neutrophils, phagocytic activity, and macrophage capacity; and the semi-quantitative distribution of melanomacrophage centers (MMCs) in the lymphoid organs, such as spleen and liver. Photomacrographic data were analyzed descriptively and qualitatively by comparing the healing process and clinical signs found between experiments in the immunotherapy study. Results The pellet with 50% egg yolk with an IgY at 2.43 mg/g pellet, 3% of body weight once daily, was the best formula on experimental fish. The administration of this formulation can also increase non-specific immunity and the distribution of MMCs in the spleen and liver with a survival rate of 55% for 14 days of challenge period in the immunoprophylaxis study and 70% for 21 days of therapy period in the immunotherapy study. Conclusion Immunoglobulin Y can be a prophylactic and therapeutic agent against streptococcal infections caused E. faecalis in red tilapia with an optimum dosage of 2.43 mg/g pellet.
Collapse
Affiliation(s)
- Rifky Rizkiantino
- Division of Medical Microbiology, Department of Infectious Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia,Department of Central Laboratory, Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Indonesia
| | - Fachriyan Hasmi Pasaribu
- Division of Medical Microbiology, Department of Infectious Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Retno Damajanti Soejoedono
- Division of Medical Microbiology, Department of Infectious Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Wyanda Arnafia
- Division of Research and Development, Tekad Mandiri Citra Co., Bandung, Indonesia
| | - Dinda Reisinta
- Division of Research and Development, Tekad Mandiri Citra Co., Bandung, Indonesia
| | - Rifaldi Iqbal Yadiansyah
- Undergraduate Program of Applied Biology, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Lampung, Bandar Lampung, Indonesia
| | - Beni Halalludin
- Department of Central Laboratory, Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Indonesia
| | - Yunita Ardini
- Department of Central Laboratory, Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Indonesia
| | - Granita Khanaria
- Department of Central Laboratory, Division of Central Laboratory and Disease Research Center, Technology and Research Development, Central Proteina Prima (CP Prima) Inc., Tangerang, Indonesia
| | - I Wayan Teguh Wibawan
- Division of Medical Microbiology, Department of Infectious Animal Diseases and Veterinary Public Health, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia,Corresponding author: I Wayan Teguh Wibawan, e-mail: Co-authors: RR: , FHP: , RDS: , WA: , DR: , RIY: , BH: , YA: , GK:
| |
Collapse
|
41
|
Wu Y, Huang L, Sai W, Chen F, Liu Y, Han C, Barker JM, Zwaini ZD, Lowe MP, Brunskill NJ, Yang B. HBSP improves kidney ischemia-reperfusion injury and promotes repair in properdin deficient mice via enhancing phagocytosis of tubular epithelial cells. Front Immunol 2023; 14:1183768. [PMID: 37207230 PMCID: PMC10188997 DOI: 10.3389/fimmu.2023.1183768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Phagocytosis plays vital roles in injury and repair, while its regulation by properdin and innate repair receptor, a heterodimer receptor of erythropoietin receptor (EPOR)/β common receptor (βcR), in renal ischaemia-reperfusion (IR) remains unclear. Properdin, a pattern recognition molecule, facilitates phagocytosis by opsonizing damaged cells. Our previous study showed that the phagocytic function of tubular epithelial cells isolated from properdin knockout (PKO) mouse kidneys was compromised, with upregulated EPOR in IR kidneys that was further raised by PKO at repair phase. Here, helix B surface peptide (HBSP), derived from EPO only recognizing EPOR/βcR, ameliorated IR-induced functional and structural damage in both PKO and wild-type (WT) mice. In particular, HBSP treatment led to less cell apoptosis and F4/80+ macrophage infiltration in the interstitium of PKO IR kidneys compared to the WT control. In addition, the expression of EPOR/βcR was increased by IR in WT kidneys, and furthered increased in IR PKO kidneys, but greatly reduced by HBSP in the IR kidneys of PKO mice. HBSP also increased PCNA expression in IR kidneys of both genotypes. Moreover, iridium-labelled HBSP (HBSP-Ir) was localized mainly in the tubular epithelia after 17-h renal IR in WT mice. HBSP-Ir also anchored to mouse kidney epithelial (TCMK-1) cells treated by H2O2. Both EPOR and EPOR/βcR were significantly increased by H2O2 treatment, while further increased EPOR was showed in cells transfected with small interfering RNA (siRNA) targeting properdin, but a lower level of EPOR was seen in EPOR siRNA and HBSP-treated cells. The number of early apoptotic cells was increased by EPOR siRNA in H2O2-treated TCMK-1, but markedly reversed by HBSP. The phagocytic function of TCMK-1 cells assessed by uptake fluorescence-labelled E.coli was enhanced by HBSP dose-dependently. Our data demonstrate for the first time that HBSP improves the phagocytic function of tubular epithelial cells and kidney repair post IR injury, via upregulated EPOR/βcR triggered by both IR and properdin deficiency.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Pathology, Medical School of Nantong University, Nantong, China
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Lili Huang
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Weili Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Chen
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Liu
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cheng Han
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Joanna M. Barker
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Zinah D. Zwaini
- Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Mark P. Lowe
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Nigel J. Brunskill
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Bin Yang,
| |
Collapse
|
42
|
Baraniecki Ł, Tokarz-Deptuła B, Syrenicz A, Deptuła W. Macrophage efferocytosis in atherosclerosis. Scand J Immunol 2022; 97:e13251. [PMID: 36583598 DOI: 10.1111/sji.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/17/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
This paper presents the role of macrophage efferocytosis, the process of elimination of apoptotic bodies-elements formed during vascular atherosclerosis. The mechanisms of macrophage efferocytosis are presented, introducing the specific signals of this process, that is, 'find me', 'eat me' and 'don't eat me'. The role of the process of efferocytosis in the formation of vascular atherosclerosis is also presented, including the factors and mechanisms that determine it, as well as the factors that determine the maintenance of homeostasis in the vessels, including the formation of vascular atherosclerosis.
Collapse
Affiliation(s)
| | | | - Anhelli Syrenicz
- Department of Endocrinology, Metabolic Diseases and Internal Diseases, Pomeranian Medical University, Szczecin, Poland
| | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
43
|
Dundee JM, Puigdellívol M, Butler R, Cockram TOJ, Brown GC. P2Y 6 receptor-dependent microglial phagocytosis of synapses mediates synaptic and memory loss in aging. Aging Cell 2022; 22:e13761. [PMID: 36565471 PMCID: PMC9924939 DOI: 10.1111/acel.13761] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Aging causes loss of brain synapses and memory, and microglial phagocytosis of synapses may contribute to this loss. Stressed neurons can release the nucleotide UTP, which is rapidly converted into UDP, that in turn activates the P2Y6 receptor (P2Y6 R) on the surface of microglia, inducing microglial phagocytosis of neurons. However, whether the activation of P2Y6 R affects microglial phagocytosis of synapses is unknown. We show here that inactivation of P2Y6 R decreases microglial phagocytosis of isolated synapses (synaptosomes) and synaptic loss in neuronal-glial co-cultures. In vivo, wild-type mice aged from 4 to 17 months exhibited reduced synaptic density in cortical and hippocampal regions, which correlated with increased internalization of synaptic material within microglia. However, this aging-induced synaptic loss and internalization were absent in P2Y6 R knockout mice, and these mice also lacked any aging-induced memory loss. Thus, P2Y6 R appears to mediate aging-induced loss of synapses and memory by increasing microglial phagocytosis of synapses. Consequently, blocking P2Y6 R has the potential to prevent age-associated memory impairment.
Collapse
Affiliation(s)
- Jacob M. Dundee
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Mar Puigdellívol
- Department of BiochemistryUniversity of CambridgeCambridgeUK,Institute of NeurosciencesUniversity of BarcelonaBarcelonaSpain
| | - Richard Butler
- The Wellcome Trust Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
| | | | - Guy C. Brown
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
44
|
Saas P, Vetter M, Maraux M, Bonnefoy F, Perruche S. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13:1021413. [PMID: 36389733 PMCID: PMC9651061 DOI: 10.3389/fimmu.2022.1021413] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 09/03/2023] Open
Abstract
Several chronic inflammatory diseases are associated with non-resolving inflammation. Conventional anti-inflammatory drugs fail to completely cure these diseases. Resolution pharmacology is a new therapeutic approach based on the use of pro-resolving mediators that accelerate the resolution phase of inflammation by targeting the productive phase of inflammation. Indeed, pro-resolving mediators prevent leukocyte recruitment and induce apoptosis of accumulated leukocytes. This approach is now called resolution therapy with the introduction of complex biological drugs and cell-based therapies. The main objective of resolution therapy is to specifically reduce the duration of the resolution phase to accelerate the return to homeostasis. Under physiological conditions, macrophages play a critical role in the resolution of inflammation. Indeed, after the removal of apoptotic cells (a process called efferocytosis), macrophages display anti-inflammatory reprogramming and subsequently secrete multiple pro-resolving factors. These factors can be used as resolution therapy. Here, we review the different mechanisms leading to anti-inflammatory reprogramming of macrophages after efferocytosis and the pro-resolving factors released by these efferocytic macrophages. We classify these mechanisms in three different categories: macrophage reprogramming induced by apoptotic cell-derived factors, by molecules expressed by apoptotic cells (i.e., "eat-me" signals), and induced by the digestion of apoptotic cell-derived materials. We also evoke that macrophage reprogramming may result from cooperative mechanisms, for instance, implicating the apoptotic cell-induced microenvironment (including cellular metabolites, specific cytokines or immune cells). Then, we describe a new drug candidate belonging to this resolution therapy. This candidate, called SuperMApo, corresponds to the secretome of efferocytic macrophages. We discuss its production, the pro-resolving factors present in this drug, as well as the results obtained in experimental models of chronic (e.g., arthritis, colitis) and acute (e.g., peritonitis or xenogeneic graft-versus-host disease) inflammatory diseases.
Collapse
Affiliation(s)
- Philippe Saas
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Mathieu Vetter
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Melissa Maraux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Sylvain Perruche
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| |
Collapse
|
45
|
Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr Issues Mol Biol 2022; 44:5153-5172. [PMID: 36354663 PMCID: PMC9688732 DOI: 10.3390/cimb44110351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
46
|
Wilmouth JJ, Olabe J, Garcia-Garcia D, Lucas C, Guiton R, Roucher-Boulez F, Dufour D, Damon-Soubeyrand C, Sahut-Barnola I, Pointud JC, Renaud Y, Levasseur A, Tauveron I, Lefrançois-Martinez AM, Martinez A, Val P. Sexually dimorphic activation of innate antitumor immunity prevents adrenocortical carcinoma development. SCIENCE ADVANCES 2022; 8:eadd0422. [PMID: 36240276 PMCID: PMC9565812 DOI: 10.1126/sciadv.add0422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/25/2022] [Indexed: 05/31/2023]
Abstract
Unlike most cancers, adrenocortical carcinomas (ACCs) are more frequent in women than in men, but the underlying mechanisms of this sexual dimorphism remain elusive. Here, we show that inactivation of Znrf3 in the mouse adrenal cortex, recapitulating the most frequent alteration in ACC patients, is associated with sexually dimorphic tumor progression. Although female knockouts develop metastatic carcinomas at 18 months, adrenal hyperplasia regresses in male knockouts. This male-specific phenotype is associated with androgen-dependent induction of senescence, recruitment, and differentiation of highly phagocytic macrophages that clear out senescent cells. In contrast, in females, macrophage recruitment is delayed and dampened, which allows for aggressive tumor progression. Consistently, analysis of TCGA-ACC data shows that phagocytic macrophages are more prominent in men and are associated with better prognosis. Together, these data show that phagocytic macrophages are key players in the sexual dimorphism of ACC that could be previously unidentified allies in the fight against this devastating cancer.
Collapse
Affiliation(s)
- James J. Wilmouth
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Julie Olabe
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Diana Garcia-Garcia
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Cécily Lucas
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Rachel Guiton
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Florence Roucher-Boulez
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Dufour
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Isabelle Sahut-Barnola
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Jean-Christophe Pointud
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Yoan Renaud
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Adrien Levasseur
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Igor Tauveron
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
- Endocrinologie Diabétologie CHU Clermont Ferrand, 58 rue Montalembert, F63000 Clermont-Ferrand, France
| | - Anne-Marie Lefrançois-Martinez
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Antoine Martinez
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Pierre Val
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
47
|
Moran AL, Fehilly JD, Floss Jones D, Collery R, Kennedy BN. Regulation of the rhythmic diversity of daily photoreceptor outer segment phagocytosis in vivo. FASEB J 2022; 36:e22556. [PMID: 36165194 PMCID: PMC9828801 DOI: 10.1096/fj.202200990rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Outer segment phagocytosis (OSP) is a highly-regulated, biological process wherein photoreceptor outer segment (OS) tips are cyclically phagocytosed by the adjacent retinal pigment epithelium (RPE) cells. Often an overlooked retinal process, rhythmic OSP ensures the maintenance of healthy photoreceptors and vision. Daily, the photoreceptors renew OS at their base and the most distal, and likely oldest, OS tips, are phagocytosed by the RPE, preventing the accumulation of photo-oxidative compounds by breaking down phagocytosed OS tips and recycling useful components to the photoreceptors. Light changes often coincide with an escalation of OSP and within hours the phagosomes formed in each RPE cell are resolved. In the last two decades, individual molecular regulators were elucidated. Some of the molecular machinery used by RPE cells for OSP is highly similar to mechanisms used by other phagocytic cells for the clearance of apoptotic cells. Consequently, in the RPE, many molecular regulators of retinal phagocytosis have been elucidated. However, there is still a knowledge gap regarding the key regulators of physiological OSP in vivo between endogenous photoreceptors and the RPE. Understanding the regulation of OSP is of significant clinical interest as age-related macular degeneration (AMD) and inherited retinal diseases (IRD) are linked with altered OSP. Here, we review the in vivo timing of OSP peaks in selected species and focus on the reported in vivo environmental and molecular regulators of OSP.
Collapse
Affiliation(s)
- Ailis L. Moran
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - John D. Fehilly
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - Daniel Floss Jones
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| | - Ross Collery
- Department of Cell Biology, Neurobiology and AnatomyMedical College of WisconsinMilwaukeeWisconsinUSA,Department of Ophthalmology and Visual SciencesMedical College of Wisconsin Eye InstituteMilwaukeeWisconsinUSA
| | - Breandán N. Kennedy
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublinIreland,UCD Conway InstituteUniversity College DublinDublinIreland
| |
Collapse
|
48
|
Yu F, Wang Y, Stetler AR, Leak RK, Hu X, Chen J. Phagocytic microglia and macrophages in brain injury and repair. CNS Neurosci Ther 2022; 28:1279-1293. [PMID: 35751629 PMCID: PMC9344092 DOI: 10.1111/cns.13899] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/21/2022] Open
Abstract
AIMS Phagocytosis is the cellular digestion of extracellular particles, such as pathogens and dying cells, and is a key element in the evolution of central nervous system (CNS) disorders. Microglia and macrophages are the professional phagocytes of the CNS. By clearing toxic cellular debris and reshaping the extracellular matrix, microglia/macrophages help pilot the brain repair and functional recovery process. However, CNS resident and invading immune cells can also magnify tissue damage by igniting runaway inflammation and phagocytosing stressed-but viable-neurons. DISCUSSION Microglia/macrophages help mediate intercellular communication and react quickly to the "find-me" signals expressed by dead/dying neurons. The activated microglia/macrophages then migrate to the injury site to initiate the phagocytic process upon encountering "eat-me" signals on the surfaces of endangered cells. Thus, healthy cells attempt to avoid inappropriate engulfment by expressing "do not-eat-me" signals. Microglia/macrophages also have the capacity to phagocytose immune cells that invade the injured brain (e.g., neutrophils) and to regulate their pro-inflammatory properties. During brain recovery, microglia/macrophages engulf myelin debris, initiate synaptogenesis and neurogenesis, and sculpt a favorable extracellular matrix to support network rewiring, among other favorable roles. Here, we review the multilayered nature of phagocytotic microglia/macrophages, including the molecular and cellular mechanisms that govern microglia/macrophage-induced phagocytosis in acute brain injury, and discuss strategies that tap into the therapeutic potential of this engulfment process. CONCLUSION Identification of biological targets that can temper neuroinflammation after brain injury without hindering the essential phagocytic functions of microglia/macrophages will expedite better medical management of the stroke recovery stage.
Collapse
Affiliation(s)
- Fang Yu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yangfan Wang
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anne R. Stetler
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rehana K. Leak
- Graduate School of Pharmaceutical SciencesSchool of Pharmacy, Duquesne UniversityPittsburghPennsylvaniaUSA
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jun Chen
- Geriatric Research, Education and Clinical CenterVeterans Affairs Pittsburgh Health Care SystemPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders & Recovery and Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
49
|
Neitz H, Paul NB, Häge FR, Lindner C, Graebner R, Kovermann M, Thomas F. Identification of novel functional mini-receptors by combinatorial screening of split-WW domains. Chem Sci 2022; 13:9079-9090. [PMID: 36091217 PMCID: PMC9365081 DOI: 10.1039/d2sc01078j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
β-Sheet motifs such as the WW domain are increasingly being explored as building blocks for synthetic biological applications. Since the sequence-structure relationships of β-sheet motifs are generally complex compared to the well-studied α-helical coiled coil (CC), other approaches such as combinatorial screening should be included to vary the function of the peptide. In this study, we present a combinatorial approach to identify novel functional mini-proteins based on the WW-domain scaffold, which takes advantage of the successful reconstitution of the fragmented WW domain of hPin1 (hPin1WW) by CC association. Fragmentation of hPin1WW was performed in both loop 1 (CC-hPin1WW-L1) and loop 2 (CC-hPin1WW-L2), and the respective fragments were linked to the strands of an antiparallel heterodimeric CC. Structural analysis by CD and NMR spectroscopy revealed structural reconstitution of the WW-domain scaffold only in CC-hPin1WW-L1, but not in CC-hPin1WW-L2. Furthermore, by using 1H-15N HSQC NMR, fluorescence and CD spectroscopy, we demonstrated that binding properties of fragmented hPin1WW in CC-hPin1WW-L1 were fully restored by CC association. To demonstrate the power of this approach as a combinatorial screening platform, we synthesized a four-by-six library of N- and C-terminal hPin1WW-CC peptide fragments that was screened for a WW domain that preferentially binds to ATP over cAMP, phophocholine, or IP6. Using this screening platform, we identified one WW domain, which specifically binds ATP, and a phosphorylcholine-specific WW-based mini-receptor, both having binding dissociation constants in the lower micromolar range.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg Am Hubland Würzburg 97074 Germany
| | - Niels Benjamin Paul
- Institute of Organic and Biomolecular Chemistry, University of Göttingen Tammannstr. 2 Göttingen 37077 Germany
| | - Florian R Häge
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Christina Lindner
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Roman Graebner
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz Universitätsstraße 10 Konstanz 78457 Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University Im Neuenheimer Feld 270 Heidelberg 69120 Germany
- Centre for Advanced Materials, Heidelberg University Im Neuenheimer Feld 225 Heidelberg 69120 Germany
| |
Collapse
|
50
|
Li X, Liu Y, Liu X, Du J, Bhawal UK, Xu J, Guo L, Liu Y. Advances in the Therapeutic Effects of Apoptotic Bodies on Systemic Diseases. Int J Mol Sci 2022; 23:ijms23158202. [PMID: 35897778 PMCID: PMC9331698 DOI: 10.3390/ijms23158202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Apoptosis plays an important role in development and in the maintenance of homeostasis. Apoptotic bodies (ApoBDs) are specifically generated from apoptotic cells and can contain a large variety of biological molecules, which are of great significance in intercellular communications and the regulation of phagocytes. Emerging evidence in recent years has shown that ApoBDs are essential for maintaining homeostasis, including systemic bone density and immune regulation as well as tissue regeneration. Moreover, studies have revealed the therapeutic effects of ApoBDs on systemic diseases, including cancer, atherosclerosis, diabetes, hepatic fibrosis, and wound healing, which can be used to treat potential targets. This review summarizes current research on the generation, application, and reconstruction of ApoBDs regarding their functions in cellular regulation and on systemic diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Xu Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Ujjal Kumar Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100006, China
- Correspondence: (L.G.); (Y.L.)
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
- Immunology Research Center for Oral and Systematic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Correspondence: (L.G.); (Y.L.)
| |
Collapse
|