1
|
Pang APS, Corley MJ. Epigenetic reprogramming of the host immune system during acute HIV. Curr Opin HIV AIDS 2025; 20:209-217. [PMID: 40178436 DOI: 10.1097/coh.0000000000000935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW This review explores the epigenetic mechanisms driving immune dysregulation during acute HIV, focusing on how early HIV exploits host epigenetic machinery to establish viral persistence and evade immune clearance. RECENT FINDINGS Epigenetic reprogramming during acute HIV plays a pivotal role in shaping immune responses, establishing viral reservoirs, and driving persistent immune dysfunction. Recent studies leveraging genome-wide DNA methylation profiling, single-cell transcriptomics, and chromatin accessibility assays are elucidating key mechanisms through which HIV exploits the host epigenome to evade immune surveillance and promote viral persistence. SUMMARY Epigenetic reprogramming during acute HIV is a critical determinant of viral persistence and immune dysfunction. Understanding these mechanisms offers new avenues for therapeutic strategies aimed at modulating the epigenome to disrupt reservoir formation, enhance immune responses, and advance HIV cure efforts.
Collapse
Affiliation(s)
- Alina P S Pang
- Deparment of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
2
|
Xiao Q, He S, Wang C, Zhou Y, Zeng C, Liu J, Liu T, Li T, Quan X, Wang L, Zhai L, Liu Y, Li J, Zhang X, Liu Y. Deep Thought on the HIV Cured Cases: Where Have We Been and What Lies Ahead? Biomolecules 2025; 15:378. [PMID: 40149913 PMCID: PMC11940578 DOI: 10.3390/biom15030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Antiretroviral therapy (ART) can effectively suppress the replication of human immunodeficiency virus (HIV), but it cannot completely eradicate the virus. The persistent existence of the HIV reservoir is a major obstacle in the quest for a cure. To date, there have been a total of seven cured cases of HIV worldwide. These patients all cleared HIV while undergoing allogeneic stem cell transplantation (allo-HSCT) for hematological malignancies. However, in these cases, the specific mechanism by which allo-HSCT leads to the eradication of HIV remains unclear, so it is necessary to conduct an in-depth analysis. Due to the difficulty in obtaining donors and the risks associated with transplantation, this treatment method is not applicable to all HIV patients. There is still a need to explore new treatment strategies. In recent years, emerging therapies such as neutralizing antibody immunotherapy, chimeric antigen receptor T cell (CAR-T) therapy, gene editing, and antiviral therapies targeting the reservoir have attracted wide attention due to their ability to effectively inhibit HIV replication. This article first elaborates on the nature of the HIV reservoir, then deeply explores the treatment modalities and potential success factors of HIV cured cases, and finally discusses the current novel treatment methods, hoping to provide comprehensive and feasible strategies for achieving the cure of HIV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
3
|
Rappaport AR, Bekerman E, Boucher GR, Sung J, Carr B, Corzo CA, Larson H, Kachura MA, Scallan CD, Geleziunas R, SenGupta D, Jooss K. Differential shaping of T cell responses elicited by heterologous ChAd68/self-amplifying mRNA SIV vaccine in macaques in combination with αCTLA4, αPD-1, or FLT3R agonist. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae052. [PMID: 40073084 DOI: 10.1093/jimmun/vkae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/03/2024] [Indexed: 03/14/2025]
Abstract
While therapeutic vaccines are a promising strategy for inducing human immunodeficiency virus (HIV) control, HIV vaccines tested to date have offered limited benefit to people living with HIV. The barriers to success may include the use of vaccine platforms and/or immunogens that drive weak or suboptimal immune responses, immune escape and/or immune dysfunction associated with chronic infection despite effective antiretroviral therapy. Combining vaccines with immune modulators in a safe manner may address some of the challenges and thus increase the efficacy of therapeutic HIV vaccines. We evaluated the immunogenicity of a ChAd68/samRNA-based simian immunodeficiency virus (SIV) vaccine regimen alone and in combination with a series of immune modulators in a preclinical rhesus macaque (M. mulatta) model. The vaccine was co-delivered with the checkpoint inhibitors αPD-1 or αCTLA-4, or with a FLT3 receptor agonist (FLT3Ra) shown to differentiate and expand dendritic cells and improve T cell priming. We demonstrate that the magnitude, breadth and functionality of SIV-specific vaccine-elicited CD8+ T cell responses were enhanced by combination with either αPD-1, αCTLA-4, or FLT3Ra. Combination with FLT3Ra also expanded polyfunctional CD4+ T cell responses. Our data demonstrate enhanced and distinct shaping of vaccine-elicited immune responses by immune modulators with implications for developing a functional HIV cure.
Collapse
Affiliation(s)
| | | | | | - Janette Sung
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Brian Carr
- Gilead Sciences, Inc, Foster City, CA, United States
| | | | | | | | | | | | - Devi SenGupta
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Karin Jooss
- Gritstone Bio, Inc, Emeryville, CA, United States
| |
Collapse
|
4
|
Borrajo A. Breaking Barriers to an HIV-1 Cure: Innovations in Gene Editing, Immune Modulation, and Reservoir Eradication. Life (Basel) 2025; 15:276. [PMID: 40003685 PMCID: PMC11856976 DOI: 10.3390/life15020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Recent advances in virology, particularly in the study of HIV-1, have significantly progressed the pursuit of a definitive cure for the disease. Emerging therapeutic strategies encompass innovative gene-editing technologies, immune-modulatory interventions, and next-generation antiretroviral agents. Efforts to eliminate or control viral reservoirs have also gained momentum, with the aim of achieving durable viral remission without the continuous requirement for antiretroviral therapy. Despite these promising developments, critical challenges persist in bridging the gap between laboratory findings and clinical implementation. This review provides a comprehensive analysis of recent breakthroughs, ongoing clinical trials, and the barriers that must be addressed to translate these advancements into effective treatments, emphasizing the multifaceted approaches being pursued to achieve a curative solution for HIV-1 infection.
Collapse
Affiliation(s)
- Ana Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
5
|
Caetano DG, Toledo TS, de Lima ACS, Giacoia-Gripp CBW, de Almeida DV, de Lima SMB, Azevedo ADS, Morata M, Grinsztejn B, Cardoso SW, da Costa MD, Brandão LGP, Bispo de Filippis AM, Scott-Algara D, Coelho LE, Côrtes FH. Impact of HIV-Related Immune Impairment of Yellow Fever Vaccine Immunogenicity in People Living with HIV-ANRS 12403. Vaccines (Basel) 2024; 12:578. [PMID: 38932307 PMCID: PMC11209244 DOI: 10.3390/vaccines12060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The yellow fever (YF) vaccine is one of the safest and most effective vaccines currently available. Still, its administration in people living with HIV (PLWH) is limited due to safety concerns and a lack of consensus regarding decreased immunogenicity and long-lasting protection for this population. The mechanisms associated with impaired YF vaccine immunogenicity in PLWH are not fully understood, but the general immune deregulation during HIV infection may play an important role. To assess if HIV infection impacts YF vaccine immunogenicity and if markers of immune deregulation could predict lower immunogenicity, we evaluated the association of YF neutralization antibody (NAb) titers with the pre-vaccination frequency of activated and exhausted T cells, levels of pro-inflammatory cytokines, and frequency of T cells, B cells, and monocyte subsets in PLWH and HIV-negative controls. We observed impaired YF vaccine immunogenicity in PLWH with lower titers of YF-NAbs 30 days after vaccination, mainly in individuals with CD4 count <350 cells/mm3. At the baseline, those individuals were characterized by having a higher frequency of activated and exhausted T cells and tissue-like memory B cells. Elevated levels of those markers were also observed in individuals with CD4 count between 500 and 350 cells/mm3. We observed a negative correlation between the pre-vaccination level of CD8+ T cell exhaustion and CD4+ T cell activation with YF-NAb titers at D365 and the pre-vaccination level of IP-10 with YF-NAb titers at D30 and D365. Our results emphasize the impact of immune activation, exhaustion, and inflammation in YF vaccine immunogenicity in PLWH.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Thais Stelzer Toledo
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Ana Carolina Souza de Lima
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Carmem Beatriz Wagner Giacoia-Gripp
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Dalziza Victalina de Almeida
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-Clínico (DEDEP), Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomolecular (LANIM), Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | - Michelle Morata
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Sandra Wagner Cardoso
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Marcellus Dias da Costa
- Laboratório de Pesquisa em Imunização e Vigilância em Saúde (LIVS), Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.D.d.C.); (L.G.P.B.)
| | - Luciana Gomes Pedro Brandão
- Laboratório de Pesquisa em Imunização e Vigilância em Saúde (LIVS), Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.D.d.C.); (L.G.P.B.)
| | | | | | - Lara Esteves Coelho
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Fernanda Heloise Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| |
Collapse
|
6
|
Doan TA, Forward TS, Schafer JB, Lucas ED, Fleming I, Uecker-Martin A, Ayala E, Guthmiller JJ, Hesselberth JR, Morrison TE, Tamburini BAJ. Immunization-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. NPJ Vaccines 2024; 9:66. [PMID: 38514656 PMCID: PMC10957963 DOI: 10.1038/s41541-024-00856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Antigens from viruses or immunizations can persist or are archived in lymph node stromal cells such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration resulted in cross-presentation of archived antigens and boosted memory CD8 + T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8 + T cells specific to the archived antigen from the immunization were significantly higher than memory CD8 + T cells of a different antigen specificity. Finally, the boosted memory CD8 + T cells resulted in increased protection against Listeria monocytogenes expressing the antigen from the immunization, but only for the duration that the antigen was archived. These findings outline an important mechanism by which lymph node stromal cell archived antigens, in addition to bystander activation, can augment memory CD8 + T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tadg S Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ira Fleming
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aspen Uecker-Martin
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jay R Hesselberth
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
7
|
Burkhart Colorado AS, Lazzaro A, Neff CP, Nusbacher N, Boyd K, Fiorillo S, Martin C, Siebert JC, Campbell TB, Borok M, Palmer BE, Lozupone C. Differential effects of antiretroviral treatment on immunity and gut microbiome composition in people living with HIV in rural versus urban Zimbabwe. MICROBIOME 2024; 12:18. [PMID: 38310301 PMCID: PMC10837999 DOI: 10.1186/s40168-023-01718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND The widespread availability of antiretroviral therapy (ART) has dramatically reduced mortality and improved life expectancy for people living with HIV (PLWH). However, even with HIV-1 suppression, chronic immune activation and elevated inflammation persist and have been linked to a pro-inflammatory gut microbiome composition and compromised intestinal barrier integrity. PLWH in urban versus rural areas of sub-Saharan Africa experience differences in environmental factors that may impact the gut microbiome and immune system, in response to ART, yet this has not previously been investigated in these groups. To address this, we measured T cell activation/exhaustion/trafficking markers, plasma inflammatory markers, and fecal microbiome composition in PLWH and healthy participants recruited from an urban clinic in the city of Harare, Zimbabwe, and a district hospital that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of first-line ART and the antibiotic cotrimoxazole or were ART-experienced at both timepoints. RESULTS Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed with ART-induced viral suppression, these changes were much more pronounced in the urban versus the rural area. Gut microbiome composition was the most highly altered from healthy controls in ART experienced PLWH, and characterized by both reduced alpha diversity and altered composition. However, gut microbiome composition showed a pronounced relationship with T cell activation and exhaustion in ART-naïve PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection. Elevated immune exhaustion after 24 weeks of ART did correlate with both living in the rural location and a more Prevotella-rich/Bacteroides-poor microbiome type, suggesting a potential role for rural-associated microbiome differences or their co-variates in the muted improvements in immune exhaustion in the rural area. CONCLUSION Successful ART was less effective at reducing gut microbiome-associated inflammation and T cell activation in PLWH in rural versus urban Zimbabwe, suggesting that individuals on ART in rural areas of Zimbabwe may be more vulnerable to co-morbidity related to sustained immune dysfunction in treated infection. Video Abstract.
Collapse
Affiliation(s)
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Charles Preston Neff
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nichole Nusbacher
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kathryn Boyd
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, England
| | - Suzanne Fiorillo
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Casey Martin
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Janet C Siebert
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Thomas B Campbell
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Margaret Borok
- Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Brent E Palmer
- Department Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
Affiliation(s)
- A I Schriek
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Y L T Aldon
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - M J van Gils
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - S W de Taeye
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Xu Y, Li M, Lin M, Cui D, Xie J. Glutaminolysis of CD4 + T Cells: A Potential Therapeutic Target in Viral Diseases. J Inflamm Res 2024; 17:603-616. [PMID: 38318243 PMCID: PMC10840576 DOI: 10.2147/jir.s443482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
CD4+ T cells play a critical role in the pathogenesis of viral diseases, which are activated by the internal metabolic pathways encountering with viral antigens. Glutaminolysis converts glutamine into tricarboxylic acid (TCA) circulating metabolites by α-ketoglutaric acid, which is essential for the proliferation and differentiation of CD4+ T cells and plays a central role in providing the energy and structural components needed for viral replication after the virus hijacks the host cell. Changes in glutaminolysis in CD4+ T cells are accompanied by changes in the viral status of the host cell due to competition for glutamine between immune cells and host cells. More recently, attempts have been made to treat tumours, autoimmune diseases, and viral diseases by altering the breakdown of glutamine in T cells. In this review, we will discuss the current knowledge of glutaminolysis in the CD4+ T cell subsets from viral diseases, not only increasing our understanding of immunometabolism but also providing a new perspective for therapeutic target in viral diseases.
Collapse
Affiliation(s)
- Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Miaomiao Li
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Mengjiao Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| |
Collapse
|
10
|
Lê-Bury G, Chen Y, Rhen JM, Grenier JK, Singhal A, Russell DG, Boliar S. HIV-1 active and latent infections induce disparate chromatin reorganization and transcriptional regulation of mRNAs and lncRNAs in SupT1 cells. mBio 2023; 14:e0261923. [PMID: 38038477 PMCID: PMC10746154 DOI: 10.1128/mbio.02619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE HIV-1 infection of T-lymphocytes depends on co-opting cellular transcriptional and translational machineries for viral replication. This requires significant changes in the cellular microenvironment. We have characterized and compared the changes in cellular chromatin structures as well as gene expression landscapes in T cells that are either actively or latently infected with HIV-1. Our results reveal that chromatin accessibility and expression of both protein-coding mRNAs and non-coding lncRNAs are uniquely regulated in HIV-1-infected T cells, depending on whether the virus is actively transcribing or remains in a transcriptionally silent, latent state. HIV-1 latent infection elicits more robust changes in the cellular chromatin organization than active viral infection. Our analysis also identifies the effects of such epigenomic changes on the cellular gene expression and subsequent biological pathways. This study comprehensively characterizes the cellular epigenomic and transcriptomic states that support active and latent HIV-1 infection in an in vitro model of SupT1 cells.
Collapse
Affiliation(s)
- Gabrielle Lê-Bury
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yao Chen
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jordan M. Rhen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer K. Grenier
- Transcription Regulation and Expression Facility, Cornell University, Ithaca, New York, USA
| | - Amit Singhal
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research, Singapore, Singapore
| | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Solis-Leal A, Boby N, Mallick S, Cheng Y, Wu F, De La Torre G, Dufour J, Alvarez X, Shivanna V, Liu Y, Fennessey CM, Lifson JD, Li Q, Keele BF, Ling B. Lymphoid tissues contribute to plasma viral clonotypes early after antiretroviral therapy interruption in SIV-infected rhesus macaques. Sci Transl Med 2023; 15:eadi9867. [PMID: 38091409 PMCID: PMC11244655 DOI: 10.1126/scitranslmed.adi9867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023]
Abstract
The rebound-competent viral reservoir, composed of a virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after ART interruption (ATI), remains the biggest obstacle to treating HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop therapeutic strategies for reducing the rebound-competent viral reservoir. In this study, barcoded simian immunodeficiency virus (SIV), SIVmac239M, was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood and tissues from secondary lymphoid organs (spleen, mesenteric lymph nodes, and inguinal lymph nodes) and from the colon, ileum, lung, liver, and brain were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX and RNAscope in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy, although plasma viral RNA remained below 22 copies per milliliter. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. CD4+ T cells were the main cell type harboring viral RNA after ATI. Furthermore, T cell zones in lymphoid tissues showed higher viral RNA abundance than B cell zones for most animals. These findings are consistent with lymphoid tissues contributing to the virus present in plasma early after ATI.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Nongthombam Boby
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Suvadip Mallick
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Yilun Cheng
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, USA
| | - Fei Wu
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Grey De La Torre
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Jason Dufour
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA 70433, USA
| | - Xavier Alvarez
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Vinay Shivanna
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| | - Yaozhong Liu
- Tulane University School of Public Health and Tropical Medicine, 1440 Canal St, New Orleans, LA 70112, USA
| | | | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702 USA
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702 USA
| | - Binhua Ling
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX 78227, USA
| |
Collapse
|
12
|
Vergori A, Cozzi-Lepri A, Matusali G, Cicalini S, Bordoni V, Meschi S, Mazzotta V, Colavita F, Fusto M, Cimini E, Notari S, D’Aquila V, Lanini S, Lapa D, Gagliardini R, Mariotti D, Giannico G, Girardi E, Vaia F, Agrati C, Maggi F, Antinori A. Long Term Assessment of Anti-SARS-CoV-2 Immunogenicity after mRNA Vaccine in Persons Living with HIV. Vaccines (Basel) 2023; 11:1739. [PMID: 38140145 PMCID: PMC10747871 DOI: 10.3390/vaccines11121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Waning of neutralizing and cell-mediated immune response after the primary vaccine cycle (PVC) and the first booster dose (BD) is of concern, especially for PLWH with a CD4 count ≤200 cells/mm3. (2) Methods: Neutralizing antibodies (nAbs) titers by microneutralization assay against WD614G/Omicron BA.1 and IFNγ production by ELISA assay were measured in samples of PLWH at four time points [2 and 4 months post-PVC (T1 and T2), 2 weeks and 5 months after the BD (T3 and T4)]. Participants were stratified by CD4 count after PVC (LCD4, ≤200/mm3; ICD4, 201-500/mm3, and HCD4, >500/mm3). Mixed models were used to compare mean responses over T1-T4 across CD4 groups. (3) Results: 314 PLWH on ART (LCD4 = 56; ICD4 = 120; HCD4 = 138) were enrolled. At T2, levels of nAbs were significantly lower in LCD4 vs. ICD4/HCD4 (p = 0.04). The BD was crucial for increasing nAbs titers above 1:40 at T3 and up to T4 for WD614G. A positive T cell response after PVC was observed in all groups, regardless of CD4 (p = 0.31). (4) Conclusions: Waning of nAbs after PVC was more important in LCD4 group. The BD managed to re-establish higher levels of nAbs against WD614G, which were retained for 5 months, but for shorter time for Omicron BA.1. The T cellular response in the LCD4 group was lower than that seen in participants with higher CD4 count, but, importantly, it remained above detectable levels over the entire study period.
Collapse
Affiliation(s)
- Alessandra Vergori
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute of Global Health, University College London, London NW3 2PF, UK
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Stefania Cicalini
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Veronica Bordoni
- Unit of Pathogen Specific Immunity, Department of Paediatric Haematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (V.B.); (C.A.)
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Valentina Mazzotta
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Marisa Fusto
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (E.C.); (S.N.)
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (E.C.); (S.N.)
| | - Veronica D’Aquila
- Department of System Medicine, Faculty of Medicine, Tor Vergata University, 00133 Rome, Italy;
| | - Simone Lanini
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Daniele Lapa
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Roberta Gagliardini
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Davide Mariotti
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Giuseppina Giannico
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy;
| | - Francesco Vaia
- General Directorate of Prevention, Ministry of Health, 00144 Rome, Italy;
| | - Chiara Agrati
- Unit of Pathogen Specific Immunity, Department of Paediatric Haematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (V.B.); (C.A.)
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (E.C.); (S.N.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (G.M.); (S.M.); (F.C.); (D.L.); (D.M.); (F.M.)
| | - Andrea Antinori
- HIV/AIDS Unit, National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00149 Rome, Italy; (A.V.); (S.C.); (V.M.); (M.F.); (S.L.); (R.G.); (G.G.); (A.A.)
| |
Collapse
|
13
|
Khan A, Paneerselvam N, Lawson BR. Antiretrovirals to CCR5 CRISPR/Cas9 gene editing - A paradigm shift chasing an HIV cure. Clin Immunol 2023; 255:109741. [PMID: 37611838 PMCID: PMC10631514 DOI: 10.1016/j.clim.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
The evolution of drug-resistant viral strains and anatomical and cellular reservoirs of HIV pose significant clinical challenges to antiretroviral therapy. CCR5 is a coreceptor critical for HIV host cell fusion, and a homozygous 32-bp gene deletion (∆32) leads to its loss of function. Interestingly, an allogeneic HSCT from an HIV-negative ∆32 donor to an HIV-1-infected recipient demonstrated a curative approach by rendering the recipient's blood cells resistant to viral entry. Ex vivo gene editing tools, such as CRISPR/Cas9, hold tremendous promise in generating allogeneic HSC grafts that can potentially replace allogeneic ∆32 HSCTs. Here, we review antiretroviral therapeutic challenges, clinical successes, and failures of allogeneic and allogeneic ∆32 HSCTs, and newer exciting developments within CCR5 editing using CRISPR/Cas9 in the search to cure HIV.
Collapse
Affiliation(s)
- Amber Khan
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA
| | | | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA 92121, USA.
| |
Collapse
|
14
|
Tamburini B, Doan T, Forward T, Lucas E, Fleming I, Uecker-Martin A, Hesselberth J, Morrison T. Vaccine-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. RESEARCH SQUARE 2023:rs.3.rs-3307809. [PMID: 37841845 PMCID: PMC10571600 DOI: 10.21203/rs.3.rs-3307809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Viral and vaccine antigens persist or are archived in lymph node stromal cells (LNSC) such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration boosted memory CD8+ T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8+ T cells specific to the vaccine archived antigen were significantly higher than memory CD8+ T cells of a different antigen specificity. Finally, the boosted memory CD8+ T cells resulted in increased protection against Listeria monocytogenes expressing the vaccine antigen, but only for the duration that the vaccine antigen was archived. These findings outline a novel mechanism by which LNSC archived antigens, in addition to bystander activation, can augment memory CD8+ T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
| | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | - Erin Lucas
- University of Colorado Anschutz Medical Campus
| | - Ira Fleming
- University of Colorado Anschutz Medical Campus
| | | | | | | |
Collapse
|
15
|
Bhattacharyya S, Crain CR, Goldberg B, Gaiha GD. Features of functional and dysfunctional CD8+ T cells to guide HIV vaccine development. Curr Opin HIV AIDS 2023; 18:257-263. [PMID: 37535040 PMCID: PMC10503300 DOI: 10.1097/coh.0000000000000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
PURPOSE OF REVIEW CD8+ T cell responses are a key component of the host immune response to human immunodeficiency virus (HIV) but vary significantly across individuals with distinct clinical outcomes. These differences help inform the qualitative features of HIV-specific CD8+ T cells that we should aim to induce by vaccination. RECENT FINDINGS We review previous and more recent findings on the features of dysfunctional and functional CD8+ T cell responses that develop in individuals with uncontrolled and controlled HIV infection, with particular emphasis on proliferation, cytotoxic effector function, epitope specificity, and responses in lymph nodes. We also discuss the implications of these findings for both prophylactic and therapeutic T cell vaccine development within the context of T cell vaccine trials. SUMMARY The induction of HIV specific CD8+ T cell responses is an important goal of ongoing vaccine efforts. Emerging data on the key features of CD8+ T cell responses that distinguish individuals who spontaneously control from those with progressive disease continues to provide key guidance.
Collapse
Affiliation(s)
- Shaown Bhattacharyya
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Charles R Crain
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Benjamin Goldberg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Gaurav D Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02115
| |
Collapse
|
16
|
Lazzaro A, Colorado ASB, Neff CP, Nusbacher N, Boyd K, Fiorillo S, Martin C, Siebert J, Campbell T, Borok M, Palmer B, Lozupone C. Antiretroviral treatment is less effective at reducing gut microbiome-associated inflammation and T cell activation in people living with HIV in rural versus urban Zimbabwe. RESEARCH SQUARE 2023:rs.3.rs-3300723. [PMID: 37693491 PMCID: PMC10491326 DOI: 10.21203/rs.3.rs-3300723/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The widespread availability of antiretroviral therapy (ART) for people living with HIV (PLWH) has dramatically reduced mortality and improved life expectancy. However, even with suppression of HIV-1 replication, chronic immune activation and elevated inflammation persist. Chronic immune activation has been linked to a pro-inflammatory gut microbiome composition, exacerbated by compromised intestinal barrier integrity that occurs after HIV infection. Individuals living in urban versus rural areas of sub-Saharan Africa have differences in environmental factors such as water source or diet that may impact gut microbiome composition, yet immune phenotype and gut microbiome composition response to ART in PLWH living in rural versus urban areas of sub-Saharan Africa have not been compared. Here, we measured immune phenotypes and fecal microbiome composition in PLWH and healthy participants recruited from the urban Mabvuku polyclinic in the city of Harare, Zimbabwe and the Mutoko District hospital located in a district 146 km from Harare that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of treatment with efavirenz/lamivudine/tenofovir disoproxil fumarate (EFV/3TC/TDF) and the prophylactic antibiotic cotrimoxazole or were ART experienced at both timepoints. Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed in individuals who had suppressed HIV-1 with treatment, these changes were significant only when considering individuals in the urban and not the rural area. Gut microbiome composition showed more marked differences from healthy controls in the ART experienced compared to ART naïve cohort, and consistent longitudinal changes were also observed in ART naïve PLWH after 24 weeks of treatment, including a reduction in alpha diversity and altered composition. However, gut microbiome composition showed a more pronounced relationship with chronic immune activation and exhaustion phenotypes in the ART naïve compared to ART experienced PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection.
Collapse
|
17
|
Griffin DW, Pai Mangalore R, Hoy JF, McMahon JH. Immunogenicity, effectiveness, and safety of SARS-CoV-2 vaccination in people with HIV. AIDS 2023; 37:1345-1360. [PMID: 37070539 PMCID: PMC10328433 DOI: 10.1097/qad.0000000000003579] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES People with HIV (PWH) experience a greater risk of morbidity and mortality following COVID-19 infection, and poorer immunological responses to several vaccines. We explored existing evidence regarding the immunogenicity, effectiveness, and safety of SARS-CoV-2 vaccines in PWH compared with controls. METHODS We conducted a systematic search of electronic databases from January 2020 until June 2022, in addition to conference databases, to identify studies comparing clinical, immunogenicity, and safety in PWH and controls. We compared results between those with low (<350 cells/μl) and high (>350 cells/μl) CD4 + T-cell counts where possible. We performed a meta-analysis of seroconversion and neutralization responses to calculate a pooled risk ratio as the measure of effect. RESULTS We identified 30 studies, including four reporting clinical effectiveness, 27 immunogenicity, and 12 reporting safety outcomes. PWH were 3% [risk ratio 0.97, 95% confidence interval (95% CI) 0.95-0.99] less likely to seroconvert and 5% less likely to demonstrate neutralization responses (risk ratio 0.95, 95% CI 0.91-0.99) following a primary vaccine schedule. Having a CD4 + T-cell count less than 350 cells/μl (risk ratio 0.91, 95% CI 0.83-0.99) compared with a CD4 + T-cell count more than 350 cells/μl, and receipt of a non-mRNA vaccine in PWH compared with controls (risk ratio 0.86, 95% CI 0.77-0.96) were associated with reduced seroconversion. Two studies reported worse clinical outcomes in PWH. CONCLUSION Although vaccines appear well tolerated in PWH, this group experience poorer immunological responses following vaccination than controls, particularly with non-mRNA vaccines and low CD4 + T-cell counts. PWH should be prioritized for mRNA COVID-19 vaccines, especially PWH with more advanced immunodeficiency.
Collapse
Affiliation(s)
- David W.J. Griffin
- Department of Infectious Diseases, Alfred Health
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Rekha Pai Mangalore
- Department of Infectious Diseases, Alfred Health
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jennifer F. Hoy
- Department of Infectious Diseases, Alfred Health
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Health
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Solis-Leal A, Boby N, Mallick S, Cheng Y, Wu F, De La Torre G, Dufour J, Alvarez X, Shivanna V, Liu Y, Fennessey CM, Lifson JD, Li Q, Keele BF, Ling B. Lymphoid tissues contribute to viral clonotypes present in plasma at early post-ATI in SIV-infected rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542512. [PMID: 37398418 PMCID: PMC10312542 DOI: 10.1101/2023.05.30.542512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The rebound-competent viral reservoir (RCVR), comprised of virus that is able to persist during antiretroviral therapy (ART) and mediate reactivation of systemic viral replication and rebound viremia after antiretroviral therapy interruption (ATI), remains the biggest obstacle to the eradication of HIV infection. A better understanding of the cellular and tissue origins and the dynamics of viral populations that initiate rebound upon ATI could help develop targeted therapeutic strategies for reducing the RCVR. In this study, barcoded SIVmac239M was used to infect rhesus macaques to enable monitoring of viral barcode clonotypes contributing to virus detectable in plasma after ATI. Blood, lymphoid tissues (LTs, spleen, mesenteric and inguinal lymph nodes), and non-lymphoid tissues (NLTs, colon, ileum, lung, liver, and brain) were analyzed using viral barcode sequencing, intact proviral DNA assay, single-cell RNA sequencing, and combined CODEX/RNAscope/ in situ hybridization. Four of seven animals had viral barcodes detectable by deep sequencing of plasma at necropsy although plasma viral RNA remained < 22 copies/mL. Among the tissues studied, mesenteric and inguinal lymph nodes, and spleen contained viral barcodes detected in plasma, and trended to have higher cell-associated viral loads, higher intact provirus levels, and greater diversity of viral barcodes. CD4+ T cells were the main cell type harboring viral RNA (vRNA) after ATI. Further, T cell zones in LTs showed higher vRNA levels than B cell zones for most animals. These findings are consistent with LTs contributing to virus present in plasma early after ATI. One Sentence Summary The reemerging of SIV clonotypes at early post-ATI are likely from the secondary lymphoid tissues.
Collapse
|
19
|
Ford BR, Poholek AC. Regulation and Immunotherapeutic Targeting of the Epigenome in Exhausted CD8 T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:869-879. [PMID: 36947818 PMCID: PMC10037537 DOI: 10.4049/jimmunol.2200681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 03/24/2023]
Abstract
Exhaustion is a state of CD8 T cell differentiation that occurs in settings of chronic Ag such as tumors, chronic viral infection, and autoimmunity. Cellular differentiation is driven by a series of environmental signals that promote epigenetic landscapes that set transcriptomes needed for function. For CD8 T cells, the epigenome that underlies exhaustion is distinct from effector and memory cell differentiation, suggesting that signals early on set in motion a process where the epigenome is modified to promote a trajectory toward a dysfunctional state. Although we know many signals that promote exhaustion, putting this in the context of the epigenetic changes that occur during differentiation has been less clear. In this review, we aim to summarize the epigenetic changes associated with exhaustion in the context of signals that promote it, highlighting immunotherapeutic studies that support these observations or areas for future therapeutic opportunities.
Collapse
Affiliation(s)
- B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
20
|
Advances in molecular biomarkers research and clinical application progress for gastric cancer immunotherapy. Biomark Res 2022; 10:67. [PMID: 36042469 PMCID: PMC9426247 DOI: 10.1186/s40364-022-00413-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Gastric cancer is characterized by high morbidity and mortality worldwide. Early-stage gastric cancer is mainly treated with surgery, while for advanced gastric cancer, the current treatment options remain insufficient. In the 2022 NCCN Guidelines for Gastric Cancer, immunotherapy is listed as a first-line option for certain conditions. Immunotherapy for gastric cancer mainly targets the PD-1 molecule and achieves therapeutic effects by activating T cells. In addition, therapeutic strategies targeting other molecules, such as CTLA4, LAG3, Tim3, TIGIT, and OX40, have also been developed to improve the treatment efficacy of gastric cancer immunotherapy. This review summarizes the molecular biomarkers of gastric cancer immunotherapy and their clinical trials.
Collapse
|
21
|
Svanberg C, Nyström S, Govender M, Bhattacharya P, Che KF, Ellegård R, Shankar EM, Larsson M. HIV-1 induction of tolerogenic dendritic cells is mediated by cellular interaction with suppressive T cells. Front Immunol 2022; 13:790276. [PMID: 36032117 PMCID: PMC9399885 DOI: 10.3389/fimmu.2022.790276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-1 infection gives rise to a multi-layered immune impairment in most infected individuals. The chronic presence of HIV-1 during the priming and activation of T cells by dendritic cells (DCs) promotes the expansion of suppressive T cells in a contact-dependent manner. The mechanism behind the T cell side of this HIV-induced impairment is well studied, whereas little is known about the reverse effects exerted on the DCs. Herein we assessed the phenotype and transcriptome profile of mature DCs that have been in contact with suppressive T cells. The HIV exposed DCs from cocultures between DCs and T cells resulted in a more tolerogenic phenotype with increased expression of e.g., PDL1, Gal-9, HVEM, and B7H3, mediated by interaction with T cells. Transcriptomic analysis of the DCs separated from the DC-T cell coculture revealed a type I IFN response profile as well as an activation of pathways involved in T cell exhaustion. Taken together, our data indicate that the prolonged and strong type I IFN signaling in DCs, induced by the presence of HIV during DC-T cell cross talk, could play an important role in the induction of tolerogenic DCs and suppressed immune responses seen in HIV-1 infected individuals.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pradyot Bhattacharya
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karlhans F. Che
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Rada Ellegård
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Marie Larsson,
| |
Collapse
|
22
|
Ogbe A, Pace M, Bittaye M, Tipoe T, Adele S, Alagaratnam J, Aley PK, Ansari MA, Bara A, Broadhead S, Brown A, Brown H, Cappuccini F, Cinardo P, Dejnirattisai W, Ewer KJ, Fok H, Folegatti PM, Fowler J, Godfrey L, Goodman AL, Jackson B, Jenkin D, Jones M, Longet S, Makinson RA, Marchevsky NG, Mathew M, Mazzella A, Mujadidi YF, Parolini L, Petersen C, Plested E, Pollock KM, Rajeswaran T, Ramasamy MN, Rhead S, Robinson H, Robinson N, Sanders H, Serrano S, Tipton T, Waters A, Zacharopoulou P, Barnes E, Dunachie S, Goulder P, Klenerman P, Screaton GR, Winston A, Hill AV, Gilbert SC, Carroll M, Pollard AJ, Fidler S, Fox J, Lambe T, Frater J. Durability of ChAdOx1 nCoV-19 vaccination in people living with HIV. JCI Insight 2022; 7:e157031. [PMID: 35192543 PMCID: PMC9057612 DOI: 10.1172/jci.insight.157031] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Duration of protection from SARS-CoV-2 infection in people living with HIV (PWH) following vaccination is unclear. In a substudy of the phase II/III the COV002 trial (NCT04400838), 54 HIV+ male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells > 350 cells/μL) received 2 doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and Meso Scale Discovery [MSD]), neutralization, ACE-2 inhibition, IFN-γ ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that, 6 months after vaccination, the majority of measurable immune responses were greater than prevaccination baseline but with evidence of a decline in both humoral and cell-mediated immunity. There was, however, no significant difference compared with a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although they were lower than WT. Preexisting cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater postvaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the ongoing policy to vaccinate PWH against SARS-CoV-2, and they underpin the need for long-term monitoring of responses after vaccination.
Collapse
Affiliation(s)
- Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Mustapha Bittaye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy Tipoe
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Parvinder K. Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - M. Azim Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Anna Bara
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Samantha Broadhead
- NIHR Guy’s and St Thomas’ Biomedical Research Centre, London, United Kingdom
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Federica Cappuccini
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paola Cinardo
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katie J. Ewer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Henry Fok
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Pedro M. Folegatti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jamie Fowler
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leila Godfrey
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna L. Goodman
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Bethany Jackson
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Daniel Jenkin
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mathew Jones
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Stephanie Longet
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca A. Makinson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalie G. Marchevsky
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Moncy Mathew
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Andrea Mazzella
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Yama F. Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
| | - Claire Petersen
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Emma Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Katrina M. Pollock
- NIHR Imperial Clinical Research Facility and NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Thurkka Rajeswaran
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Maheshi N. Ramasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sarah Rhead
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicola Robinson
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Helen Sanders
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sonia Serrano
- NIHR Guy’s and St Thomas’ Biomedical Research Centre, London, United Kingdom
| | - Tom Tipton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anele Waters
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Gavin R. Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Adrian V.S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Miles Carroll
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Public Health England, Porton Down, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of HIV Medicine, St. Mary’s Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julie Fox
- NIHR Guy’s and St Thomas’ Biomedical Research Centre, London, United Kingdom
- Department of Infection, Harrison Wing and NIHR Clinical Research Facility, Guy’s and St Thomas’ NHS Trust, London, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Clinical Medicine, and
- NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Despite improvements in the effectiveness of antiretroviral therapy (ART), there are still unmet needs for people living with HIV which drive the search for a cure for HIV infection. The goal of this review is to discuss the challenges and recent immunotherapeutic advances towards developing a safe, effective and durable cure strategy for HIV. RECENT FINDINGS In recent years, advances have been made in uncovering the mechanisms of persistence of latent HIV and in developing more accurate assays to measure the intact proviral reservoir. Broadly neutralising antibodies and modern techniques to enhance antibody responses have shown promising results. Other strategies including therapeutic vaccination, latency reversal agents, and immunomodulatory agents have shown limited success, but newer interventions including engineered T cells and other immunotherapies may be a potent and flexible strategy for achieving HIV cure. SUMMARY Although progress with newer cure strategies may be encouraging, challenges remain and it is essential to achieve a high threshold of safety and effectiveness in the era of safe and effective ART. It is likely that to achieve sustained HIV remission or cure, a multipronged approach involving a combination of enhancing both adaptive and innate immunity is required.
Collapse
Affiliation(s)
- Ming J Lee
- Department of Infectious Disease, Imperial College London
| | - S Fidler
- Department of Infectious Disease, Imperial College London
- Imperial College NIHR BRC, London
| | - John Frater
- Peter Medawar School of Pathogen Research, Nuffield Department of Medicine, University of Oxford
- Oxford NIHR BRC, Oxford, UK
| |
Collapse
|