1
|
Gao A, Wu R, Mu Y, Jin R, Jiang S, Gao C, Li X, Wang C. Restoring immune tolerance in pre-RA: immunometabolic dialogue between gut microbiota and regulatory T cells. Front Immunol 2025; 16:1565133. [PMID: 40181974 PMCID: PMC11965651 DOI: 10.3389/fimmu.2025.1565133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Rheumatoid arthritis (RA) is a complex chronic autoimmune disease that remains incurable for most patients. With advances in our understanding of the disease's natural history, the concept of pre-RA has emerged as a window of opportunity to intervene before irreversible joint damage occurs. Numerous studies have indicated that the key step driving autoimmunity in early pre-RA lies at an extra-articular site, which is closely related to the regulatory T (Treg) cell-established immune tolerance to the gut microbiota. The intricate immunometabolic crosstalk between Treg cells and the gut microbiota is beginning to be understood, with the re-recognition of Treg cells as metabolic sensors in recent years. In the future, deciphering their immunometabolic dialogue may help to elucidate the underlying mechanisms of pre-RA. Identifying novel biological pathways in the pre-RA stage will bring insights into restoring immune tolerance, thereby potentially curing or preventing the onset of RA.
Collapse
Affiliation(s)
- Anqi Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Yanfei Mu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Ruqing Jin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Saixin Jiang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Precision Medical Engineering Research Center for Rheumatology, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Długosz A, Błaszak B, Czarnecki D, Szulc J. Mechanism of Action and Therapeutic Potential of Xanthohumol in Prevention of Selected Neurodegenerative Diseases. Molecules 2025; 30:694. [PMID: 39942798 PMCID: PMC11821245 DOI: 10.3390/molecules30030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Xanthohumol (XN), a bioactive plant flavonoid, is an antioxidant, and as such, it exhibits numerous beneficial properties, including anti-inflammatory, antimicrobial, and antioxidative effects. The main dietary source of XN is beer, where it is introduced through hops. Although the concentration of XN in beer is low, the large quantities of hop-related post-production waste present an opportunity to extract XN residues for technological or pharmaceutical purposes. The presented study focuses on the role of XN in the prevention of neurodegenerative diseases, analyzing its effect at a molecular level and including its signal transduction and metabolism. The paper brings up XN's mechanism of action, potential effects, and experimental and clinical studies on Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Additionally, challenges and future research directions on XN, including its bioavailability, safety, and tolerance, have been discussed.
Collapse
Affiliation(s)
- Anna Długosz
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Błażej Błaszak
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Faculty of Health Sciences, Department of Preventive Nursing, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-821 Bydgoszcz, Poland;
| | - Joanna Szulc
- Faculty of Chemical Technology and Engineering, Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Song MK, Gu MF, Liu L, He LJ, Ye P, Yang K, Wang DD, Olatunji OJ, Yin Q, Zuo J. GPIHBP1 increase accounts for rheumatic arthritis-related hypotriglyceridemia by facilitating lipids uptake of white adipose tissues. Arthritis Res Ther 2025; 27:16. [PMID: 39856718 PMCID: PMC11762532 DOI: 10.1186/s13075-025-03483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Metabolism alteration is a common complication of rheumatic arthritis (RA). This work investigated the reason behind RA-caused triglyceride (TG) changes. METHODS Fresh RA patients' whole blood was transfused into NOD-SCID mice. Metabolism-regulatory tissues were examined after sacrifice. To verify the findings, tissues of the rats with long-lasting adjuvant-induced arthritis (AIA) were analyzed. Some rats were injected with human plasma and GPIHBP1, and their blood TG was monitored. Various cells were stimulated by cytokines or rheumatic subjects' serum. Some pre-adipocytes were cultured by human serum or in the presence of HUVEC cells and GPIHBP1. RESULTS TG decrease occurred in blood and white adipose tissues (WAT) of the RA blood-transfused NOD-SCID mice and chronic AIA rats. Fatty acids (FA) oxidation in muscles was accelerated a bit, while TG catabolism status in their livers was varied. TNF-α, IL-1β, IL-6 and RA/AIA serum promoted expression of TG utilization-related enzymes and FA uptake transporters in pre-adipocytes, but barely affected LPL. Mild IL-6 stimulus promoted GPIHBP1 release of HUVEC cells. GPIHBP1 was increased in RA serum. This change can decrease blood TG in rats, which was overshadowed by an injection of excessive GPIHBP1. RA serum slightly inhibited LPL secretion in pre-adipocytes. Both HUVEC cells co-culture and GPIHBP1 supplement reduced LPL distribution on pre-adipocytes, and eliminated LPL activity difference between normal and RA serum-treated cells. No TG uptake difference was observed in these circumstances. CONCLUSION RA-associated inflammation induces GPIHBP1 secretion of endothelial cells, which facilitates blood TG hydrolysis and uptake to compensate the loss in WAT.
Collapse
Affiliation(s)
- Meng-Ke Song
- Xin'an Medicine Research Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), No 2, West Zheshan Road, Wuhu, Anhui, 241000, China
| | - Meng-Fan Gu
- Xin'an Medicine Research Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), No 2, West Zheshan Road, Wuhu, Anhui, 241000, China
| | - Ling Liu
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, No 10, Kangfu Road, Wuhu, Anhui, 241000, China
| | - Lian-Jun He
- Precision Medicine Centre, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Peng Ye
- Xin'an Medicine Research Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), No 2, West Zheshan Road, Wuhu, Anhui, 241000, China
| | - Kui Yang
- Xin'an Medicine Research Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), No 2, West Zheshan Road, Wuhu, Anhui, 241000, China
| | - Dan-Dan Wang
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, No 10, Kangfu Road, Wuhu, Anhui, 241000, China
| | | | - Qin Yin
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, No 10, Kangfu Road, Wuhu, Anhui, 241000, China.
| | - Jian Zuo
- Xin'an Medicine Research Center, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), No 2, West Zheshan Road, Wuhu, Anhui, 241000, China.
- Department of Pharmacy, the Second Affiliated Hospital of Wannan Medical College, No 10, Kangfu Road, Wuhu, Anhui, 241000, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
5
|
Chen X, Zhang C, Peng F, Wu L, Zhuo D, Wang L, Zhang M, Li Z, Tian L, Jie Y, Huang Y, Yang X, Li X, Lei F, Cheng Y. Identification of glutamine as a potential therapeutic target in dry eye disease. Signal Transduct Target Ther 2025; 10:27. [PMID: 39837870 PMCID: PMC11751114 DOI: 10.1038/s41392-024-02119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
Dry eye disease (DED) is a prevalent inflammatory condition significantly impacting quality of life, yet lacks effective pharmacological therapies. Herein, we proposed a novel approach to modulate the inflammation through metabolic remodeling, thus promoting dry eye recovery. Our study demonstrated that co-treatment with mesenchymal stem cells (MSCs) and thymosin beta-4 (Tβ4) yielded the best therapeutic outcome against dry eye, surpassing monotherapy outcomes. In situ metabolomics through matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) revealed increased glutamine levels in cornea following MSC + Tβ4 combined therapy. Inhibition of glutamine reversed the anti-inflammatory, anti-apoptotic, and homeostasis-preserving effects observed with combined therapy, highlighting the critical role of glutamine in dry eye therapy. Clinical cases and rodent model showed elevated expression of glutaminase (GLS1), an upstream enzyme in glutamine metabolism, following dry eye injury. Mechanistic studies indicated that overexpression and inhibition of GLS1 counteracted and enhanced, respectively, the anti-inflammatory effects of combined therapy, underscoring GLS1's pivotal role in regulating glutamine metabolism. Furthermore, single-cell sequencing revealed a distinct subset of pro-inflammatory and pro-fibrotic corneal epithelial cells in the dry eye model, while glutamine treatment downregulated those subclusters, thereby reducing their inflammatory cytokine secretion. In summary, glutamine effectively ameliorated inflammation and the occurrence of apoptosis by downregulating the pro-inflammatory and pro-fibrotic corneal epithelial cells subclusters and the related IκBα/NF-κB signaling. The present study suggests that glutamine metabolism plays a critical, previously unrecognized role in DED and proposes an attractive strategy to enhance glutamine metabolism by inhibiting the enzyme GLS1 and thus alleviating inflammation-driven DED progression.
Collapse
Affiliation(s)
- Xiaoniao Chen
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China.
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China.
| | - Chuyue Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Fei Peng
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Lingling Wu
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Deyi Zhuo
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Min Zhang
- Department of Nephrology, the First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaohui Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinji Yang
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoqi Li
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fengyang Lei
- Beijing Institute of Ophthalmology, Beijing TongRen Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Cheng
- Department of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Jacob A, He J, Peck A, Jamil A, Bunya V, Alexander JJ, Ambrus JL. Metabolic changes during evolution of Sjögren's in both an animal model and human patients. Heliyon 2025; 11:e41082. [PMID: 39801970 PMCID: PMC11720936 DOI: 10.1016/j.heliyon.2024.e41082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Sjögren's (SS) involves salivary and lacrimal gland dysfunction. These studies examined metabolic profiles in the B6. Il14α transgene mouse model of SS and a cohort of human SS patients at different stages of disease. In B6. Il14α mice, products of glucose and fatty acid were common at 6 months of age, while products of amino acid metabolism were common at 12 months of age. Treating B6. Il14α mice with the glycolysis inhibitor 2-deoxyglucose from 6 to 10 months of age normalized salivary gland secretions, dacryoadenitis, hypergammaglobulinemia and physical performance, while treatment from 10 to 14 months of age failed to improve any of the clinical manifestations. Similarly, SS patients at an early stage of disease showed high glycolysis. SS patients with long-standing disease utilized predominantly amino acid metabolism, like B6. Il14α mice at 10-12 months of age. Additional studies are suggested to further define metabolic activities at the various disease stages.
Collapse
Affiliation(s)
- Alexander Jacob
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital Beijing China, Beijing, China
| | - Ammon Peck
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, Florida, USA
| | - Ali Jamil
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Vatinee Bunya
- Department of Ophthalmology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jessy J. Alexander
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| | - Julian L. Ambrus
- Department of Medicine, SUNY at Buffalo School of Medicine, Buffalo, NY, USA
| |
Collapse
|
7
|
Weyand CM, Goronzy JJ. Immune Aging in Rheumatoid Arthritis. Arthritis Rheumatol 2025. [PMID: 39800938 DOI: 10.1002/art.43105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 02/12/2025]
Abstract
Rheumatoid arthritis (RA) is a life-long autoimmune disease caused by the confluence of genetic and environmental variables that lead to loss of self-tolerance and persistent joint inflammation. RA occurs at the highest incidence in individuals >65 years old, implicating the aging process in disease susceptibility. Transformative approaches in molecular immunology and in functional genomics have paved the way for pathway paradigms underlying the replacement of immune homeostasis with autodestructive immunity in affected patients, including the process of immune aging. Patients with RA have a signature of premature immune aging, best understood for CD4+ T cells, which function as pathogenic effectors in this HLA class II-associated disease. Premature immune aging is present in healthy HLA-DRB1*04+ individuals, placing accelerated immune aging before joint inflammation. Aging-related molecular abnormalities directly implicated in turning RA CD4+ T cells into proinflammatory effector cells are linked to malfunction of subcellular organelles, such as mitochondria, lysosomes, lipid droplets, and the endoplasmic reticulum. Resulting changes in T cell behavior include cellular hypermobility, tissue invasiveness, unopposed mammalian target of rapamycin complex (mTORC)1 activation, excessive release of tumor necrosis factor, lysosomal failure, clonal expansion, and immunogenic cell death. Aged and metabolically reprogrammed T cells in patients with RA are accompanied by age-associated B cells, which specialize in autoantibody production. Clonal hematopoiesis drives myeloid cell aging by producing aged monocytes and hypermetabolic macrophages, which sustain the process of inflammaging. Here, we synthesize insights into the relationship of RA risk and immune aging and discuss mechanisms through which immune aging can cause autoimmunity.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, and Stanford University School of Medicine, Stanford, California
| | - Jörg J Goronzy
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, and Stanford University School of Medicine, Stanford, California
| |
Collapse
|
8
|
Wang W, Wang H, Wang Q, Yu X, Ouyang L. Lactate-induced protein lactylation in cancer: functions, biomarkers and immunotherapy strategies. Front Immunol 2025; 15:1513047. [PMID: 39867891 PMCID: PMC11757118 DOI: 10.3389/fimmu.2024.1513047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Lactate, long viewed as a byproduct of glycolysis and metabolic waste. Initially identified within the context of yogurt fermentation, lactate's role extends beyond culinary applications to its significance in biochemical processes. Contemporary research reveals that lactate functions not merely as the terminal product of glycolysis but also as a nexus for initiating physiological and pathological responses within the body. Lysine lactylation (Kla), a novel post-translational modification (PTM) of proteins, has emerged as a pivotal mechanism by which lactate exerts its regulatory influence. This epigenetic modification has the potential to alter gene expression patterns, thereby impacting physiological and pathological processes. Increasing evidence indicates a correlation between lactylation and adverse prognosis in various malignancies. Consequently, this review article aims to encapsulate the proteins that interact with lactate, elucidate the role of lactylation in tumorigenesis and progression, and explore the potential therapeutic targets afforded by the modulation of lactylation. The objective of this review is to clarify the oncogenic significance of lactylation and to provide a strategic framework for future research directions in this burgeoning field.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Hong Wang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Qi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Xiaojing Yu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Liangliang Ouyang
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
9
|
Wang Y, Ruan YQ, He LJ, Song MK, Olatunji OJ, Wang X, Zuo J. PPARγ Functional Deficiency Expedited Fatty Acid Utilization in the Liver: A Foundation of Inflammatory Adipokine-Induced Hypolipemia in Rheumatoid Arthritis. ACS Pharmacol Transl Sci 2024; 7:3969-3983. [PMID: 39698269 PMCID: PMC11650746 DOI: 10.1021/acsptsci.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
Triglyceride (TG) and its derivatives tend to be decreased in rheumatoid arthritis (RA) patients' blood when inflammation progresses. Aside from the role as a lipid buffer, white adipose tissue (WAT) contributes to this abnormality via adipokines, which regulate many metabolic signals. This work investigated adipokine-caused hepatic changes and their involvement in RA-related hypolipemia. Given their immune similarities with RA and pathological representativeness, adjuvant-induced arthritis (AIA) rats and antigen-induced arthritis (AA) mice were adopted. Adipokine levels in the liver were quantified, and their hepatic conditions were assessed by oxidative/enzymatic indicators. Besides kit-based metabolite quantification, fatty acid levels in blood were accurately determined by GC-MS. Metabolic differences between healthy and AIA rats were further characterized by UPLC-MS2. In vitro, preadipocytes were stimulated by RA/AIA blood serum or together with rosiglitazone, a PPARγ agonist. The medium was used to culture HepG2 cells. Some AIA rats were subjected to adipectomy or rosiglitazone therapies. Being WAT-released mediators, IL-1β, IL-6, MCP-1, adiponectin, and visfatin were apparently increased in AIA/AA rodent models' liver, causing oxidative stress escalation, liver injuries, and fatty acid oxidation acceleration. This metabolic change was coincided to expression increase of CD36, FABP1, ATGL, and CPT-1A. PPARγ deficiency occurred both in vivo and in vitro under rheumatic conditions. RA serum reduced PPARγ expression and impaired its inhibition on NF-κB transcription activity in preadipocytes, which then led to excessive secretion of inflammatory adipokines. The corresponding medium down-regulated PPARγ and promoted expression of lipid catabolic enzymes in HepG2 cells. These effects were abrogated by rosiglitazone. Both the therapies impeded inflammatory secretion of WAT and fat catabolism of the liver. These data demonstrate that RA potentiates the capacity of WAT to secrete inflammatory adipokines. The resulting condition represses PPARγ expression and disrupts TG anabolism/catabolism balance in the liver. Because hepatocytes utilize more lipids but synthesize less, hypolipemia develops.
Collapse
Affiliation(s)
- Yan Wang
- Department
of Pharmacy, The Second Affiliated Hospital
of Wannan Medical College, Wuhu 241000, China
- Xin’an
Medicine Research Center, The First Affiliated
Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Yu-Qing Ruan
- Department
of Pharmacy, The Second Affiliated Hospital
of Wannan Medical College, Wuhu 241000, China
- Xin’an
Medicine Research Center, The First Affiliated
Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Lian-Jun He
- Precision
Medicine Centre, The First Affiliated Hospital
of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | - Meng-Ke Song
- Department
of Pharmacy, The Second Affiliated Hospital
of Wannan Medical College, Wuhu 241000, China
- Xin’an
Medicine Research Center, The First Affiliated
Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
| | | | - Xiu Wang
- Research
Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu 241000, China
| | - Jian Zuo
- Department
of Pharmacy, The Second Affiliated Hospital
of Wannan Medical College, Wuhu 241000, China
- Xin’an
Medicine Research Center, The First Affiliated
Hospital of Wannan Medical College (Yijishan Hospital), Wuhu 241000, China
- Anhui Province
Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu 241000, China
| |
Collapse
|
10
|
Wu T, Su D, Zhang L, Liu T, Wang Q, Yan C, Liu M, Ji H, Lei J, Zheng M, Wen Z. Mitochondrial Control of Proteasomal Psmb5 Drives the Differentiation of Tissue-Resident Memory T Cells in Patients with Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1743-1757. [PMID: 39037181 DOI: 10.1002/art.42954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE To explore T cell-intrinsic mechanisms underpinning the mal-differentiation of tissue-resident memory T (Trm) cells in patients with rheumatoid arthritis (RA). METHODS Circulating T cells from patient with RA and healthy individuals were used for Trm cell differentiation. The role of Hobit in Trm differentiation was investigated through targeted silencing experiments. Psmb5 expression regulation was explored by identifying BRD2 as a key transcription factor, with the interaction validated through chromatin immunoprecipitation-quantitative polymerase chain reaction. The impact of BRD2 succinylation on Trm differentiation was examined by manipulating succinyl-CoA levels in T cells. Humanized NSG chimeras representing synovitis provided insights into Trm infiltration in RA synovitis and were used for translational experiments. RESULTS In patients with RA, a notable predisposition of CD4+ T cells toward differentiation into Trm cells was observed, demonstrating a positive correlation with the disease activity score 28. Remarkably, Hobit was a pivotal facilitator in the formation of RA CD4+ Trm cells. Mechanistic studies unveiled the dysregulation of proteasomal Psmb5 in T cells of patients with RA as the key factor contributing to elevated Hobit protein levels. The deficiency of proteasomal Psmb5 was intricately linked to BRD2, with succinylation exerting a significant impact on Psmb5 transcription and Trm cell differentiation. This heightened BRD2 succinylation was attributed to elevated levels of mitochondrial succinyl-CoA in RA T cells. Consequently, targeting succinyl-CoA within CD4+ T cells controlled the inflammation of synovial tissues in humanized chimeras. CONCLUSION Mitochondrial succinyl-CoA fosters the succinylation of BRD2, resulting in compromised transcription of proteasomal Psmb5 and the differentiation of Trm cells in RA.
Collapse
Affiliation(s)
- Tong Wu
- Soochow University, Suzhou, China
| | | | | | - Ting Liu
- Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
13
|
Xu W, Ouyang M, Peng D, Jiang Z. Bidirectional Mendelian randomization explores the causal relationship between dietary habits and rheumatoid arthritis. Medicine (Baltimore) 2024; 103:e39779. [PMID: 39312328 PMCID: PMC11419428 DOI: 10.1097/md.0000000000039779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Epidemiological and other studies have shown that the occurrence and progression of rheumatoid arthritis (RA) are closely related to diet. To further explore the causal association between dietary habits and RA, we performed a bidirectional Mendelian randomization (MR) analysis. The dataset related to dietary habits is from genome-wide association studies, including 143 dietary habits. The dataset of RA is from the FinnGen database. Inverse variance weighted (IVW), MR-Egger, simple mode, weighted median, and weighted mode were used for the 2-sample, 2-way MR analysis. At the same time, a variety of pleiotropic and heterogeneity tests were used to ensure the accuracy of the results. IVW results show that among current drinkers (drinks usually with meals yes + it varies vs no) was positively correlated with RA (β, 0.563 [95% confidence interval [CI], 0.286-0.840]; P = 6.7 × 10-5). Spread type (low fat spread vs any other) was negatively correlated with RA (β, -2.536 [95% CI, -3.725 to -1.346]; P = 2.9 × 10-5). In addition, the reverse MR results showed that RA was positively correlated with milk type (skimmed vs any other; β, 0.006 [95% CI, 0.000-0.011]; P = 4.5 × 10-2). RA was positively correlated with spread type (tub margarine vs never; β, 0.016 [95% CI, 0.002-0.029]; P = 2.5 × 10-2). The results of pleiotropy and heterogeneity tests showed that there was no pleiotropy (P > .05) in the obtained results. The analysis results of MR-Egger, simple mode, weighted median, and weighted mode are consistent with our IVW results. This study reveals a potential association between specific dietary habits and RA. Among current drinkers (drinks usually with meals yes + it varies vs no) was positively correlated with RA. Spread type (low fat spread vs any other) was negatively correlated with RA. RA was positively correlated with milk type (skimmed vs any other) and spread type (tub margarine vs never).
Collapse
Affiliation(s)
- Wantong Xu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Minghe Ouyang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Dan Peng
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongbiao Jiang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Xu S, Zhang Y, Zheng Z, Sun J, Wei Y, Ding G. Mesenchymal stem cells and their extracellular vesicles in bone and joint diseases: targeting the NLRP3 inflammasome. Hum Cell 2024; 37:1276-1289. [PMID: 38985391 DOI: 10.1007/s13577-024-01101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
The nucleotide-binding oligomerization domain-like-receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a cytosolic multi-subunit protein complex, and recent studies have demonstrated the vital role of the NLRP3 inflammasome in the pathological and physiological conditions, which cleaves gasdermin D to induce inflammatory cell death called pyroptosis and mediates the release of interleukin-1 beta and interleukin-18 in response to microbial infection or cellular injury. Over-activation of the NLRP3 inflammasome is associated with the pathogenesis of many disorders affecting bone and joints, including gouty arthritis, osteoarthritis, rheumatoid arthritis, osteoporosis, and periodontitis. Moreover, mesenchymal stem cells (MSCs) have been discovered to facilitate the inhibition of NLRP3 and maybe ideal for treating bone and joint diseases. In this review, we implicate the structure and activation of the NLRP3 inflammasome along with the detail on the involvement of NLRP3 inflammasome in bone and joint diseases pathology. In addition, we focused on MSCs and MSC-extracellular vesicles targeting NLRP3 inflammasomes in bone and joint diseases. Finally, the existing problems and future direction are also discussed.
Collapse
Affiliation(s)
- Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Yanan Wei
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
15
|
Gibon E, Takakubo Y, Zwingenberger S, Gallo J, Takagi M, Goodman SB. Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials. J Biomed Mater Res A 2024; 112:1172-1187. [PMID: 37656958 DOI: 10.1002/jbm.a.37599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Takakubo
- Department of Rehabilitation, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc Teaching Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and (by courtesy) Bioengineering, Stanford University Medical Center Outpatient Center, California, USA
| |
Collapse
|
16
|
Gong X, Su L, Huang J, Liu J, Wang Q, Luo X, Yang G, Chi H. An overview of multi-omics technologies in rheumatoid arthritis: applications in biomarker and pathway discovery. Front Immunol 2024; 15:1381272. [PMID: 39139555 PMCID: PMC11319186 DOI: 10.3389/fimmu.2024.1381272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease with a complex pathological mechanism involving autoimmune response, local inflammation and bone destruction. Metabolic pathways play an important role in immune-related diseases and their immune responses. The pathogenesis of rheumatoid arthritis may be related to its metabolic dysregulation. Moreover, histological techniques, including genomics, transcriptomics, proteomics and metabolomics, provide powerful tools for comprehensive analysis of molecular changes in biological systems. The present study explores the molecular and metabolic mechanisms of RA, emphasizing the central role of metabolic dysregulation in the RA disease process and highlighting the complexity of metabolic pathways, particularly metabolic remodeling in synovial tissues and its association with cytokine-mediated inflammation. This paper reveals the potential of histological techniques in identifying metabolically relevant therapeutic targets in RA; specifically, we summarize the genetic basis of RA and the dysregulated metabolic pathways, and explore their functional significance in the context of immune cell activation and differentiation. This study demonstrates the critical role of histological techniques in decoding the complex metabolic network of RA and discusses the integration of histological data with other types of biological data.
Collapse
Affiliation(s)
- Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Geriatric, Dazhou Central Hospital, Dazhou, China
| | - Qinglai Wang
- Orthopedics and Traumatology Department of TCM, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China
| | - Xiufang Luo
- Department of Geriatric, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Nurgaziyev M, Issilbayeva A, Bersimbaev R, Ilderbayev O, Vinogradova E, Jarmukhanov Z, Nurgozhina A, Sergazy S, Kozhabergen N, Akhmetova Z, Meiramova A, Chulenbayeva L, Ibrayeva A, Mukhanbetzhanov N, Mukhanbetzhanova Z, Kozhakhmetov S, Ainabekova B, Kushugulova A. Gut microbiome-immune interactions and their role in rheumatoid arthritis development. PeerJ 2024; 12:e17477. [PMID: 39006008 PMCID: PMC11246623 DOI: 10.7717/peerj.17477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/06/2024] [Indexed: 07/16/2024] Open
Abstract
Objective The primary objective is to study the impact of gut microbiota and their interactions with diverse immunological markers on the development of rheumatoid arthritis. Methods This study was performed in Astana, Kazakhstan, and included 77 Kazakh female patients older than 18 years, who met the American College of Rheumatology 2010 classification criteria for rheumatoid arthritis (RA), and 113 healthy controls. The DNA was extracted from fecal samples obtained from all study participants for subsequent sequencing at the 16S rRNA gene V1-V3 locus, facilitating the analysis of the gut microbiome. The Multiplex immunoassay was employed to measure the concentrations of inflammatory cytokines, chemokines, and immunoglobulins in both fecal and plasma samples. Results Our taxonomic analysis revealed significant differences in the composition of the gut microbiota between the healthy control cohort and the cohort with rheumatoid arthritis RA. Alpha diversity was significantly lower in the RA group. Lachnospiraceae were the most abundant taxon and found to be crucial, showing correlations with immunological markers such as IL5. Additionally, Lachnospiraceae and Oscillospiraceae exhibited the most predictable power and distinguished the composition of both study groups. Conclusion Our study identifies key differences in the gut microbiome of RA patients, revealing distinct microbial patterns and specific taxa abundance. We highlight potential biomarkers in immunological and bacterial pathways, offering insights into RA development and indicating possibilities for personalized treatment.
Collapse
Affiliation(s)
- Madiyar Nurgaziyev
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Argul Issilbayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- NJSC Astana Medical University, Astana, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Oralbek Ilderbayev
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| | - Elizaveta Vinogradova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zharkyn Jarmukhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ayaulym Nurgozhina
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Shynggys Sergazy
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Nuray Kozhabergen
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Assel Meiramova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- NJSC Astana Medical University, Astana, Kazakhstan
| | - Laura Chulenbayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Aigerim Ibrayeva
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Nurislam Mukhanbetzhanov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zhanel Mukhanbetzhanova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Bayan Ainabekova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- NJSC Astana Medical University, Astana, Kazakhstan
| | - Almagul Kushugulova
- Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
18
|
Ma H, Liang X, Li SS, Li W, Li TF. The role of anti-citrullinated protein antibody in pathogenesis of RA. Clin Exp Med 2024; 24:153. [PMID: 38972923 PMCID: PMC11228005 DOI: 10.1007/s10238-024-01359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/21/2024] [Indexed: 07/09/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune rheumatic disease that causes chronic synovitis, bone erosion, and joint destruction. The autoantigens in RA include a wide array of posttranslational modified proteins, such as citrullinated proteins catalyzed by peptidyl arginine deiminase4a. Pathogenic anti-citrullinated protein antibodies (ACPAs) directed against a variety of citrullinated epitopes are abundant both in plasma and synovial fluid of RA patients. ACPAs play an important role in the onset and progression of RA. Intensive and extensive studies are being conducted to unveil the mechanisms of RA pathogenesis and evaluate the efficacy of some investigative drugs. In this review, we focus on the formation and pathogenic function of ACPAs.
Collapse
Affiliation(s)
- Hang Ma
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
19
|
Verheijen FWM, Tran TNM, Chang J, Broere F, Zaal EA, Berkers CR. Deciphering metabolic crosstalk in context: lessons from inflammatory diseases. Mol Oncol 2024; 18:1759-1776. [PMID: 38275212 PMCID: PMC11223610 DOI: 10.1002/1878-0261.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Metabolism plays a crucial role in regulating the function of immune cells in both health and disease, with altered metabolism contributing to the pathogenesis of cancer and many inflammatory diseases. The local microenvironment has a profound impact on the metabolism of immune cells. Therefore, immunological and metabolic heterogeneity as well as the spatial organization of cells in tissues should be taken into account when studying immunometabolism. Here, we highlight challenges of investigating metabolic communication. Additionally, we review the capabilities and limitations of current technologies for studying metabolism in inflamed microenvironments, including single-cell omics techniques, flow cytometry-based methods (Met-Flow, single-cell energetic metabolism by profiling translation inhibition (SCENITH)), cytometry by time of flight (CyTOF), cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), and mass spectrometry imaging. Considering the importance of metabolism in regulating immune cells in diseased states, we also discuss the applications of metabolomics in clinical research, as well as some hurdles to overcome to implement these techniques in standard clinical practice. Finally, we provide a flowchart to assist scientists in designing effective strategies to unravel immunometabolism in disease-relevant contexts.
Collapse
Affiliation(s)
- Fenne W. M. Verheijen
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Thi N. M. Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular ResearchUtrecht UniversityThe Netherlands
| | - Jung‐Chin Chang
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
20
|
Parab A, Bhatt LK. T-cell metabolism in rheumatoid arthritis: focus on mitochondrial and lysosomal dysfunction. Immunopharmacol Immunotoxicol 2024; 46:378-384. [PMID: 38478010 DOI: 10.1080/08923973.2024.2330645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by immune cell dysregulation, synovial hyperplasia, and progressive cartilage destruction. The loss of immunological self-tolerance against autoantigens is the crucial insult responsible for the pathogenesis of RA. These immune abnormalities are experienced many years before the onset of clinical arthritis. OBJECTIVE This review aims to discuss the metabolic status of T-cells in RA and focuses mainly on mitochondrial and lysosomal dysfunctions involved in altering the T-cell metabolism. DISCUSSION T-cells are identified as the primary initiators of immunological abnormalities in RA. These RA T-cells show a distinct metabolic pattern compared to the healthy individuals. Dampened glycolytic flux, poor ATP production, and shifting of glucose to the pentose phosphate pathway resulting in increased NADPH and decreased ROS levels are the common metabolic patterns observed in RA T-cells. Defective mtDNA due to lack of MRE11A gene, a key molecular actor for resection, and inefficient lysosomal function due to misplacement of AMPK on the lysosomal surface were found to be responsible for mitochondrial and lysosome dysfunction in RA. Targeting this mechanism in RA can alleviate aggressive T-cell phenotype and may control the severity of RA.
Collapse
Affiliation(s)
- Asmita Parab
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
21
|
Mihaylova V, Kazakova M, Batalov Z, Karalilova R, Batalov A, Sarafian V. JAK inhibitors improve ATP production and mitochondrial function in rheumatoid arthritis: a pilot study. Rheumatol Int 2024; 44:57-65. [PMID: 37985499 PMCID: PMC10766792 DOI: 10.1007/s00296-023-05501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease associated by inflammation of the synovial tissue and autoantibody production. Oxidative stress and free radicals are known to be indirectly implicated in joint damage and cartilage destruction in RA. Several studies describe the presence of mitochondrial dysfunction in RA, but few of them follow the dynamics in energy parameters after therapy. The aim of our investigation is to evaluate the direct effect of JAK inhibitors on cellular metabolism (and under induced oxidative stress) in RA patients. Ten newly diagnosed RA patients were included in the study. Peripheral blood mononuclear cells (PBMCs) and plasma were isolated before and 6 months after therapy with JAK inhibitors. A real-time metabolic analysis was performed to assess mitochondrial function and cell metabolism in PBMCs. Sonographic examination, DAS28 and conventional clinical laboratory parameters were determined also prior and post therapy. A significant decrease in proton leak after therapy with JAK inhibitors was found. The increased production of ATP indicates improvement of cellular bioenergetics status. These findings could be related to the catalytic action of JAK inhibitors on oxidative phosphorylation which corresponds to the amelioration of clinical and ultra-sonographic parameters after treatment. Our study is the first to establish the dynamics of mitochondrial parameters in PBMCs from RA patients before and after in vivo therapy with JAK inhibitors.
Collapse
Affiliation(s)
- Valentina Mihaylova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria.
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Zguro Batalov
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital "Kaspela", Plovdiv, Plovdiv, Bulgaria
| | - Rositsa Karalilova
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital "Kaspela", Plovdiv, Plovdiv, Bulgaria
| | - Anastas Batalov
- Department of Propedeutics of Internal Diseases, Medical University-Plovdiv, Plovdiv, Bulgaria
- Clinic of Rheumatology, University Hospital "Kaspela", Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
22
|
Reiser C, Klotsche J, Hospach T, Heubner G, Windschall D, Trauzeddel R, Groesch N, Niewerth M, Minden K, Girschick H. Long-term follow-up of children with chronic non-bacterial osteomyelitis-assessment of disease activity, risk factors, and outcome. Arthritis Res Ther 2023; 25:228. [PMID: 38017565 PMCID: PMC10683360 DOI: 10.1186/s13075-023-03195-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023] Open
Abstract
INTRODUCTION Chronic non-bacterial osteomyelitis (CNO) is an autoinflammatory bone-disease of unknown origin. The National Pediatric Rheumatologic Database (NPRD) collects long-term data of children and adolescents with rheumatic diseases including CNO. OBJECTIVE To assess characteristics, courses, and outcomes of CNO with onset in childhood and adolescence and to identify outcome predictors. METHODS From 2015 to 2021 patients with a confirmed diagnosis of CNO, who were registered in the NPRD during their first year of disease and at least one follow-up visit, were included in this analysis and observed for up to 4 years. RESULTS Four hundred patients with recent diagnosis of CNO were enrolled in the NRPD during the study period. After 4 years, patient data documentation was sufficient to be analyzed in 81 patients. A significant decline of clinical and radiological lesions is reported: at inclusion in the registry, the mean number of clinical lesions was 2.0 and 3.0 MRI lesions per patient. A significant decrease of manifestations during 4 years of follow-up (mean clinical lesions 0.5, p < 0.001; mean MRI lesions 0.9 (p < 0.001)) was documented. A significant improvement of physician global disease activity (PGDA), patient-reported overall well-being, and childhood health assessment questionnaire (C-HAQ) was documented. Therapeutically, an increase of disease-modifying anti-rheumatic drugs over the years can be stated, while bisphosphonates rather seem to be considered as a therapeutic DMARD option in the first years of disease. Only 5-7% of the patients had a severe disease course as defined by a PGDA > = 4. Predictors associated with a severe disease course include the site of inflammation (pelvis, lower extremity, clavicle), increased erythrocyte sedimentation rate, and multifocal disease at first documentation. The previously published composite PedCNO disease activity score was analyzed revealing a PedCNO70 in 55% of the patients at 4YFU. CONCLUSION An improvement of physician global disease activity (PGDA), patient reported overall well-being and imaging-defined disease activity measures was documented, suggesting that inactivity of CNO disease can be reached. PedCNO score and especially PGDA, MRI-defined lesions and in a number of patients also the C-HAQ seem to be reliable parameters for describing disease activity. The identification of risk factors at the beginning of the disease might influence treatment decision in the future.
Collapse
Affiliation(s)
- Christiane Reiser
- Department of Pediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria.
- Department of Pediatrics, Division of Pediatric Rheumatology and autoinflammation reference center Tuebingen (arcT), Tuebingen, Germany.
| | - Jens Klotsche
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Toni Hospach
- Department of Pediatrics, Olgahospital, Klinikum Stuttgart, Stuttgart, Germany
| | - Georg Heubner
- Städtisches Klinikum Dresden-Neustadt, Klinik für Kinder- und Jugendmedizin, Dresden, Germany
| | - Daniel Windschall
- Clinic for Pediatric and Adolescent Rheumatology, St. Josef-Stift, Sendenhorst, Germany
- University of Halle -Wittenberg, Halle, Germany
| | - Ralf Trauzeddel
- Fachambulanz Kinderrheumatologie, Helios Klinikum Berlin-Buch, Klinik für Kinder- und Jugendmedizin, Berlin, Germany
| | - Nadine Groesch
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Martina Niewerth
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Kirsten Minden
- Deutsches Rheuma-Forschungszentrum Berlin, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Hermann Girschick
- Vivantes Klinikum Friedrichshain, Children's Hospital, Berlin, Germany
- German Center for Growth and Development DeuzWeg, Berlin, Germany
- Childrens' Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
23
|
Weng W, Zhang Y, Gui L, Chen J, Zhu W, Liang Z, Wu Z, Liang Y, Xie J, Wei Q, Liao Z, Gu J, Pan Y, Jiang Y. PKM2 promotes proinflammatory macrophage activation in ankylosing spondylitis. J Leukoc Biol 2023; 114:595-603. [PMID: 37192369 DOI: 10.1093/jleuko/qiad054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Macrophages play a critical role in ankylosing spondylitis by promoting autoimmune tissue inflammation through various effector functions. The inflammatory potential of macrophages is highly influenced by their metabolic environment. Here, we demonstrate that glycolysis is linked to the proinflammatory activation of human blood monocyte-derived macrophages in ankylosing spondylitis. Specifically, ankylosing spondylitis macrophages produced excessive inflammation, including TNFα, IL1β, and IL23, and displayed an overactive status by exhibiting stronger costimulatory signals, such as CD80, CD86, and HLA-DR. Moreover, we found that patient-derived monocyte-derived M1-type macrophages (M1 macrophages) exhibited intensified glycolysis, as evidenced by a higher extracellular acidification rate. Upregulation of PKM2 and GLUT1 was observed in ankylosing spondylitis-derived monocytes and monocyte-derived macrophages, especially in M1 macrophages, indicating glucose metabolic alteration in ankylosing spondylitis macrophages. To investigate the impact of glycolysis on macrophage inflammatory ability, we treated ankylosing spondylitis M1 macrophages with 2 inhibitors: 2-deoxy-D-glucose, a glycolysis inhibitor, and shikonin, a PKM2 inhibitor. Both inhibitors reduced proinflammatory function and reversed the overactive status of ankylosing spondylitis macrophages, suggesting their potential utility in treating the disease. These data place PKM2 at the crosstalk between glucose metabolic changes and the activation of inflammatory macrophages in patients with ankylosing spondylitis.
Collapse
Affiliation(s)
- Weizhen Weng
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yanli Zhang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Lian Gui
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jingrong Chen
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Weihang Zhu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zhenguo Liang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zhongming Wu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yao Liang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jiewen Xie
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Zetao Liao
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yunfeng Pan
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| | - Yutong Jiang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou, China
| |
Collapse
|
24
|
Wang H, Xu S, Li S, Su B, Sherrill-Mix S, Liang G. Virome in immunodeficiency: what we know currently. Chin Med J (Engl) 2023; 136:2647-2657. [PMID: 37914672 PMCID: PMC10684123 DOI: 10.1097/cm9.0000000000002899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT Over the past few years, the human virome and its complex interactions with microbial communities and the immune system have gained recognition as a crucial factor in human health. Individuals with compromised immune function encounter distinctive challenges due to their heightened vulnerability to a diverse range of infectious diseases. This review aims to comprehensively explore and analyze the growing evidence regarding the role of the virome in immunocompromised disease status. By surveying the latest literature, we present a detailed overview of virome alterations observed in various immunodeficiency conditions. We then delve into the influence and mechanisms of these virome changes on the pathogenesis of specific diseases in immunocompromised individuals. Furthermore, this review explores the clinical relevance of virome studies in the context of immunodeficiency, highlighting the potential diagnostic and therapeutic gains from a better understanding of virome contributions to disease manifestations.
Collapse
Affiliation(s)
- Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Scott Sherrill-Mix
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
25
|
Min Y, Heo Y, Feng F, Kim D, Kim M, Yang J, Kim HJ, Jee Y, Ghosh M, Kang I, Son YO. High-Sucrose Diet Accelerates Arthritis Progression in a Collagen-Induced Rheumatoid Arthritis Model. Mol Nutr Food Res 2023; 67:e2300244. [PMID: 37688304 DOI: 10.1002/mnfr.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Indexed: 09/10/2023]
Abstract
SCOPE High dietary sugar and sweeteners are suspected to cause the development of rheumatoid arthritis (RA) symptoms through the induction of proinflammatory cytokine release. However, the mechanisms by which increased dietary sugar affects RA etiology are not yet fully understood. The study uses a mouse model of collagen-induced RA (CIA) to investigate the relationship between excessive sugar consumption and RA risk. METHODS AND RESULTS RA-associated pathological features are assessed in the nonimmunized (NI) control group, the CIA-positive control group, and the CIA + high-sucrose diet (CIA+HS, 63% calories from sucrose) group. Compared with the CIA group, the CIA+HS group shows a greater increase in paw thickness and clinical scores, as well as, a higher degree of pannus formation and inflammation in the knee, ankle, and sole tissues. Moreover, the infiltration of immune cells is increased in the CIA+HS group. Although the expression of hepatic lipogenic genes, is not altered, that of toll-like receptor (TLR4) and IL-1β is considerably elevated in the CIA+HS group. CONCLUSIONS These findings suggest that excessive sucrose consumption causes hepatic fibrosis and inflammation, contributing to the pathophysiology of RA.
Collapse
Affiliation(s)
- Yunhui Min
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Fang Feng
- Department of Food Science and Nutrition, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Dahye Kim
- Division of Animal Genetics and Bioinformatics, The National Institute of Animal Science, RDA, Wanju, 55465, Republic of Korea
| | - Mangeun Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Jiwon Yang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Hyo Jin Kim
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Youngheun Jee
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Biotechnology, School of Bio, Chemical and Processing Engineering (SBCE), Kalasalingam Academy of Research and Educational, Krishnankoil, 626126, India
| | - Inhae Kang
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Food Science and Nutrition, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| | - Young-Ok Son
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Jeju, 63243, Republic of Korea
| |
Collapse
|
26
|
Zhang X, Wang B, Chen S, Fu Y. Protective effects of Typhonii Rhizoma in rheumatoid arthritis rats revealed by integrated metabolomics and network pharmacology. Biomed Chromatogr 2023; 37:e5683. [PMID: 37161606 DOI: 10.1002/bmc.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with a 0.5% prevalence worldwide. Inflammation, periosteal proliferation and joint destruction are the main clinical symptoms of RA. Typhonii Rhizoma (TR) is the dry tuber of the Araceae plant Typhonium giganteum Engl, and possesses many uses such as dispelling obstructive wind-phlegm and relieving pain. It is used for the clinical treatment of arthromyodynia and RA. However, the mechanism of action remains unclear. In this study, we first evaluated the effects of TR in type II collagen-induced RA model rats. Secondly, in serum metabolomics, TR could ameliorate 11 potential metabolites in RA model rats and reversed RA through pentose and glucuronate interconversions, sphingolipid metabolism, glycerophospholipid metabolism and tryptophan metabolism. To further explore the mechanisms of TR, 40 chemical constituents were used to establish a component-target interaction network. Some key genes were verified by in vitro pharmacological tests by integrating the results from the network pharmacology and metabolomics. The verification results showed that the mechanisms of TR against RA may be related to the inhibition of the production of inflammatory cytokines and the expression and function of HIF1-α. This study serves as a theoretical basis for the treatment of RA with TR.
Collapse
Affiliation(s)
- Xinya Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Biying Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment and Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yu Fu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Henan Lingrui Pharmaceutical Company, Xinyang, Henan, China
| |
Collapse
|
27
|
Rodríguez-Muguruza S, Altuna-Coy A, Arreaza-Gil V, Mendieta-Homs M, Castro-Oreiro S, Poveda-Elices MJ, del Castillo-Piñol N, Fontova-Garrofé R, Chacón MR. A serum metabolic biomarker panel for early rheumatoid arthritis. Front Immunol 2023; 14:1253913. [PMID: 37720214 PMCID: PMC10502709 DOI: 10.3389/fimmu.2023.1253913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Objective There is an urgent need for novel biomarkers to improve the early diagnosis of rheumatoid arthritis (ERA). Current serum biomarkers used in the management of ERA, including rheumatoid factor and anti-cyclic citrullinated peptide (ACPA), show limited specificity and sensitivity. Here, we used metabolomics to uncover new serum biomarkers of ERA. Methods We applied an untargeted metabolomics approach including gas chromatography time-of-flight mass spectrometry in serum samples from an ERA cohort (n=32) and healthy controls (n=19). Metabolite set enrichment analysis was performed to explore potentially important biological pathways. Partial least squares discriminant analysis and variable importance in projection analysis were performed to construct an ERA biomarker panel. Results Significant differences in the content of 11/81 serum metabolites were identified in patients with ERA. Receiver operating characteristic (ROC) analysis showed that a panel of only three metabolites (glyceric acid, lactic acid, and 3-hydroxisovaleric acid) could correctly classify 96.7% of patients with ERA, with an area under the ROC curve of 0.963 and with 94.4% specificity and 93.5% sensitivity, outperforming ACPA-based diagnosis by 2.9% and, thus, improving the preclinical detection of ERA. Aminoacyl-tRNA biosynthesis and serine, glycine, and phenylalanine metabolism were the most significant dysregulated pathways in patients with ERA. Conclusion A metabolomics serum-based biomarker panel composed of glyceric acid, lactic acid, and 3-hydroxisovaleric acid offers potential for the early clinical diagnosis of RA.
Collapse
Affiliation(s)
- Samantha Rodríguez-Muguruza
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
- Rheumatology Department, Joan XXIII University Hospital, Tarragona, Spain
| | - Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Verónica Arreaza-Gil
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | - Marina Mendieta-Homs
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| | | | | | | | - Ramon Fontova-Garrofé
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
- Rheumatology Department, Joan XXIII University Hospital, Tarragona, Spain
| | - Matilde R. Chacón
- Disease Biomarkers and Molecular Mechanisms Group, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
28
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
29
|
Tang R, Zhong T, Lei K, Lin X, Li X. Recovery of intracellular glucose uptake in T cells during partial remission of type 1 diabetes. Diabetologia 2023; 66:1532-1543. [PMID: 37300581 DOI: 10.1007/s00125-023-05938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/21/2023] [Indexed: 06/12/2023]
Abstract
AIMS/HYPOTHESIS Notwithstanding the irreversible beta cell failure seen in type 1 diabetes, some individuals may experience a special phase named 'partial remission' or 'the honeymoon period', in which there is a transient recovery of beta cell function. Importantly, this stage of partial remission shows spontaneous immune downregulation, although the exact mechanisms are unclear. Intracellular energy metabolism is crucial for the differentiation and function of T cells, and provides promising targets for immunometabolic intervention strategies, but its role during partial remission is unknown. In this study, we aim to investigate the association between T cell intracellular glucose and fatty acid metabolism and the partial remission phase. METHODS This is a cross-sectional study with a follow-up component. Intracellular uptake of glucose and fatty acids by T cells was detected in participants with either new-onset type 1 diabetes or type 1 diabetes that was already in partial remission, and compared with heathy individuals and participants with type 2 diabetes. Subsequently, the participants with new-onset type 1 diabetes were followed up to determine whether they experienced a partial remission (remitters) or not (non-remitters). The trajectory of changes in T cell glucose metabolism was observed in remitters and non-remitters. Expression of programmed cell death-1 (PD-1) was also analysed to investigate possible mechanisms driving altered glucose metabolism. Partial remission was defined when patients had convalescent fasting or 2 h postprandial C-peptide >300 pmol/l after insulin treatment. RESULTS Compared with participants with new-onset type 1 diabetes, intracellular glucose uptake by T cells decreased significantly in individuals with partial remission. The trajectory of these changes during follow-up showed that intracelluar glucose uptake in T cells fluctuated during different disease stages, with a decreased uptake during partial remission that rebounded after remission. This dynamic in T cell glucose uptake was only detected in remitters and not in non-remitters. Further analysis demonstrated that changes of intracellular glucose uptake were found in subsets of CD4+ and CD8+ T cells, including Th17, Th1, CD8+ naive T cells (Tn) and CD8+ terminally differentiated effector memory T cells (Temra). Moreover, glucose uptake in CD8+ T cells was negatively related to PD-1 expression. The intracellular metabolism of fatty acids was not found to be different between new-onset participants and those in partial remission. CONCLUSIONS/INTERPRETATION Intracellular glucose uptake in T cells was specifically decreased during partial remission in type 1 diabetes and may be related to PD-1 upregulation, which may be involved in the down-modulation of immune responses during partial remission. This study suggests that altered immune metabolism could be a target for interventions at the point of diagnosis of type 1 diabetes.
Collapse
Affiliation(s)
- Rong Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ting Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Kang Lei
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxi Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
30
|
Feng L, Chen X, Huang Y, Zhang X, Zheng S, Xie N. Immunometabolism changes in fibrosis: from mechanisms to therapeutic strategies. Front Pharmacol 2023; 14:1243675. [PMID: 37576819 PMCID: PMC10412938 DOI: 10.3389/fphar.2023.1243675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Immune cells are essential for initiating and developing the fibrotic process by releasing cytokines and growth factors that activate fibroblasts and promote extracellular matrix deposition. Immunometabolism describes how metabolic alterations affect the function of immune cells and how inflammation and immune responses regulate systemic metabolism. The disturbed immune cell function and their interactions with other cells in the tissue microenvironment lead to the origin and advancement of fibrosis. Understanding the dysregulated metabolic alterations and interactions between fibroblasts and the immune cells is critical for providing new therapeutic targets for fibrosis. This review provides an overview of recent advances in the pathophysiology of fibrosis from the immunometabolism aspect, highlighting the altered metabolic pathways in critical immune cell populations and the impact of inflammation on fibroblast metabolism during the development of fibrosis. We also discuss how this knowledge could be leveraged to develop novel therapeutic strategies for treating fibrotic diseases.
Collapse
Affiliation(s)
- Lixiang Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xingyu Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yujing Huang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaodian Zhang
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Hainan Cancer Clinical Medical Center of the First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province and Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
- Department of Pathology, Hainan Women and Children Medical Center, Hainan Medical University, Haikou, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
31
|
Straub RH, Pongratz G, Buttgereit F, Gaber T. [Energy metabolism of the immune system : Consequences in chronic inflammation]. Z Rheumatol 2023:10.1007/s00393-023-01389-4. [PMID: 37488246 DOI: 10.1007/s00393-023-01389-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Energy is the currency of life. The systemic and intracellular energy metabolism plays an essential role for the energy supply of the resting and activated immune system and this also applies to chronic inflammatory diseases. OBJECTIVE This presentation examines both components of the systemic and cellular energy metabolism in health and chronic inflammation. MATERIAL AND METHODS A literature search was conducted using PubMed, Embase and the Cochrane Library. The information is presented in the form of a narrative review. RESULTS A chronically activated immune system acquires large amounts of energy-rich substrates that are lost for other functions of the body. In particular, the immune system and the brain are in competition. The consequences of this competition are many known diseases, such as fatigue, anxiety, depression, anorexia, sleep problems, sarcopenia, osteoporosis, insulin resistance, hypertension and others. The permanent change in the brain causes long-term alterations that stimulate disease sequelae even after disease remission. In the intracellular energy supply, chronic inflammation typically involves a conversion to glycolysis (to lactate, which has its own regulatory functions) and the pentose phosphate pathway in disorders of mitochondrial function. The chronic changes in immune cells of patients with rheumatoid arthritis (RA) lead to a disruption of the citric acid cycle (Krebs cycle). The hypoxic situation in the inflamed tissue stimulates many alterations. A differentiation is made between effector functions and regulatory functions of immune cells. CONCLUSION Based on the energy changes mentioned, novel treatment suggestions can be made in addition to those already known in energy metabolism.
Collapse
Affiliation(s)
- Rainer H Straub
- Labor für Experimentelle Rheumatologie und Neuroendokrin-Immunologie, Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum Regensburg, 93042, Regensburg, Deutschland.
| | - Georg Pongratz
- Abteilung für Rheumatologie, Klinik für Gastroenterologie, Krankenhaus Barmherzige Brüder Regensburg, 93049, Regensburg, Deutschland
| | - Frank Buttgereit
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Timo Gaber
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| |
Collapse
|
32
|
Zhuang W, Liu X, Liu G, Lv J, Qin H, Wang C, Xie L, Saimaier K, Han S, Shi C, Hua Q, Zhang R, Du C. Purinergic receptor P2Y12 boosts autoimmune hepatitis through hexokinase 2-dependent glycolysis in T cells. Int J Biol Sci 2023; 19:3576-3594. [PMID: 37497007 PMCID: PMC10367548 DOI: 10.7150/ijbs.85133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Increasing evidence suggests that immunometabolism has started to unveil the role of metabolism in shaping immune function and autoimmune diseases. In this study, our data show that purinergic receptor P2Y12 (P2RY12) is highly expressed in concanavalin A (ConA)-induced immune hepatitis mouse model and serves as a potential metabolic regulator in promoting metabolic reprogramming from oxidative phosphorylation to glycolysis in T cells. P2RY12 deficiency or inhibition of P2RY12 with P2RY12 inhibitors (clopidogrel and ticagrelor) are proved to reduce the expression of inflammatory mediators, cause CD4+ and CD8+ effector T cells hypofunction and protect the ConA-induced immune hepatitis. A combined proteomics and metabolomics analysis revealed that P2RY12 deficiency causes redox imbalance and leads to reduced aerobic glycolysis by downregulating the expression of hexokinase 2 (HK2), a rate-limiting enzyme of the glycolytic pathway, indicating that HK2 might be a promising candidate for the treatment of diseases associated with T cell activation. Further analysis showed that P2RY12 prevents HK2 degradation by activating the PI3K/Akt pathway and inhibiting lysosomal degradation. Our findings highlight the importance of the function of P2RY12 for HK2 stability and metabolism in the regulation of T cell activation and suggest that P2RY12 might be a pivotal regulator of T cell metabolism in ConA-induced immune hepatitis.
Collapse
Affiliation(s)
- Wei Zhuang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Guangyu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jie Lv
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hao Qin
- Department of Thoracic Surgery, Huadong Hospital Affiliated to FuDan University, Shanghai, 200040, China
| | - Chun Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ling Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kaidireya Saimaier
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Sanxing Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changjie Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiuhong Hua
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ru Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
33
|
Thumsi A, Swaminathan SJ, Mangal JL, Suresh AP, Acharya AP. Vaccines prevent reinduction of rheumatoid arthritis symptoms in collagen-induced arthritis mouse model. Drug Deliv Transl Res 2023; 13:1925-1935. [PMID: 36971998 PMCID: PMC10899801 DOI: 10.1007/s13346-023-01333-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
Metabolic reprogramming of immune cells modulates their function and reduces the severity of autoimmune diseases. However, the long-term effects of the metabolically reprogrammed cells, specifically in the case of immune flare-ups, need to be examined. Herein, a re-induction rheumatoid arthritis (RA) mouse model was developed by injecting T-cells from RA mice into drug-treated mice to recapitulate the effects of T-cell-mediated inflammation and mimic immune flare-ups. Immune metabolic modulator paKG(PFK15 + bc2) microparticles (MPs) were shown to reduce clinical symptoms of RA in collagen-induced arthritis (CIA) mice. Upon re-induction, a significant delay in the reappearance of clinical symptoms in the paKG(PFK15 + bc2) microparticle treatment group was observed as compared to equal or higher doses of the clinically utilized U.S. Food and Drug Administration (FDA)-approved drug, Methotrexate (MTX). Furthermore, paKG(PFK15 + bc2) microparticle-treated mice were able to lower activated dendritic cells (DCs) and inflammatory T helper cell 1 (TH1) and increased activated, proliferating regulatory T-cells (Tregs) more effectively than MTX. The paKG(PFK15 + bc2) microparticles also led to a significant reduction in paw inflammation in mice as compared to MTX treatment. This study can pave the way for the development of flare-up mouse models and antigen-specific drug treatments.
Collapse
Affiliation(s)
- Abhirami Thumsi
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Joslyn L Mangal
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami P Suresh
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhinav P Acharya
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA.
- Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA.
- Biodesign Center for Biomaterials Innovation and Translation, Tempe, AZ, 85281, USA.
| |
Collapse
|
34
|
Zhong Y, Zhang W, Liu D, Zeng Z, Liao S, Cai W, Liu J, Li L, Hong X, Tang D, Dai Y. Screening biomarkers for Sjogren's Syndrome by computer analysis and evaluating the expression correlations with the levels of immune cells. Front Immunol 2023; 14:1023248. [PMID: 37383223 PMCID: PMC10294232 DOI: 10.3389/fimmu.2023.1023248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background Sjögren's syndrome (SS) is a systemic autoimmune disease that affects about 0.04-0.1% of the general population. SS diagnosis depends on symptoms, clinical signs, autoimmune serology, and even invasive histopathological examination. This study explored biomarkers for SS diagnosis. Methods We downloaded three datasets of SS patients' and healthy pepole's whole blood (GSE51092, GSE66795, and GSE140161) from the Gene Expression Omnibus (GEO) database. We used machine learning algorithm to mine possible diagnostic biomarkers for SS patients. Additionally, we assessed the biomarkers' diagnostic value using the receiver operating characteristic (ROC) curve. Moreover, we confirmed the expression of the biomarkers through the reverse transcription quantitative polymerase chain reaction (RT-qPCR) using our own Chinese cohort. Eventually, the proportions of 22 immune cells in SS patients were calculated by CIBERSORT, and connections between the expression of the biomarkers and immune cell ratios were studied. Results We obtained 43 DEGs that were mainly involved in immune-related pathways. Next, 11 candidate biomarkers were selected and validated by the validation cohort data set. Besides, the area under curves (AUC) of XAF1, STAT1, IFI27, HES4, TTC21A, and OTOF in the discovery and validation datasets were 0.903 and 0.877, respectively. Subsequently, eight genes, including HES4, IFI27, LY6E, OTOF, STAT1, TTC21A, XAF1, and ZCCHC2, were selected as prospective biomarkers and verified by RT-qPCR. Finally, we revealed the most relevant immune cells with the expression of HES4, IFI27, LY6E, OTOF, TTC21A, XAF1, and ZCCHC2. Conclusion In this paper, we identified seven key biomarkers that have potential value for diagnosing Chinese SS patients.
Collapse
Affiliation(s)
- Yafang Zhong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Wei Zhang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
- Innovative Markers Department, Fapon Biotech Inc., Dongguan, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Shengyou Liao
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Jiayi Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Lian Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
35
|
Muller IB, Lin M, de Jonge R, Will N, López-Navarro B, van der Laken C, Struys EA, Oudejans CBM, Assaraf YG, Cloos J, Puig-Kröger A, Jansen G. Methotrexate Provokes Disparate Folate Metabolism Gene Expression and Alternative Splicing in Ex Vivo Monocytes and GM-CSF- and M-CSF-Polarized Macrophages. Int J Mol Sci 2023; 24:9641. [PMID: 37298590 PMCID: PMC10253671 DOI: 10.3390/ijms24119641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Macrophages constitute important immune cell targets of the antifolate methotrexate (MTX) in autoimmune diseases, including rheumatoid arthritis. Regulation of folate/MTX metabolism remains poorly understood upon pro-inflammatory (M1-type/GM-CSF-polarized) and anti-inflammatory (M2-type/M-CSF-polarized) macrophages. MTX activity strictly relies on the folylpolyglutamate synthetase (FPGS) dependent intracellular conversion and hence retention to MTX-polyglutamate (MTX-PG) forms. Here, we determined FPGS pre-mRNA splicing, FPGS enzyme activity and MTX-polyglutamylation in human monocyte-derived M1- and M2-macrophages exposed to 50 nmol/L MTX ex vivo. Moreover, RNA-sequencing analysis was used to investigate global splicing profiles and differential gene expression in monocytic and MTX-exposed macrophages. Monocytes displayed six-eight-fold higher ratios of alternatively-spliced/wild type FPGS transcripts than M1- and M2-macrophages. These ratios were inversely associated with a six-ten-fold increase in FPGS activity in M1- and M2-macrophages versus monocytes. Total MTX-PG accumulation was four-fold higher in M1- versus M2-macrophages. Differential splicing after MTX-exposure was particularly apparent in M2-macrophages for histone methylation/modification genes. MTX predominantly induced differential gene expression in M1-macrophages, involving folate metabolic pathway genes, signaling pathways, chemokines/cytokines and energy metabolism. Collectively, macrophage polarization-related differences in folate/MTX metabolism and downstream pathways at the level of pre-mRNA splicing and gene expression may account for variable accumulation of MTX-PGs, hence possibly impacting MTX treatment efficacy.
Collapse
Affiliation(s)
- Ittai B. Muller
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Marry Lin
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Robert de Jonge
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Nico Will
- Facility for Environment and Natural Science, Brandenburg Technical University Cottbus-Senftenberg, 01968 Senftenberg, Germany;
| | - Baltasar López-Navarro
- Laboratorio de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital Gregorio Marañón, 28007 Madrid, Spain; (B.L.-N.); (A.P.-K.)
| | - Conny van der Laken
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center–location VUmc, 1081 HV Amsterdam, The Netherlands;
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Cees B. M. Oudejans
- Department of Laboratory Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (I.B.M.); (M.L.); (R.d.J.); (E.A.S.); (C.B.M.O.)
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center–location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Amaya Puig-Kröger
- Laboratorio de Inmuno-Metabolismo e Inflamación, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital Gregorio Marañón, 28007 Madrid, Spain; (B.L.-N.); (A.P.-K.)
| | - Gerrit Jansen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Center–location VUmc, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
36
|
Lei Q, Yang J, Li L, Zhao N, Lu C, Lu A, He X. Lipid metabolism and rheumatoid arthritis. Front Immunol 2023; 14:1190607. [PMID: 37325667 PMCID: PMC10264672 DOI: 10.3389/fimmu.2023.1190607] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
As a chronic progressive autoimmune disease, rheumatoid arthritis (RA) is characterized by mainly damaging the synovium of peripheral joints and causing joint destruction and early disability. RA is also associated with a high incidence rate and mortality of cardiovascular disease. Recently, the relationship between lipid metabolism and RA has gradually attracted attention. Plasma lipid changes in RA patients are often detected in clinical tests, the systemic inflammatory status and drug treatment of RA patients can interact with the metabolic level of the body. With the development of lipid metabolomics, the changes of lipid small molecules and potential metabolic pathways have been gradually discovered, which makes the lipid metabolism of RA patients or the systemic changes of lipid metabolism after treatment more and more comprehensive. This article reviews the lipid level of RA patients, as well as the relationship between inflammation, joint destruction, cardiovascular disease, and lipid level. In addition, this review describes the effect of anti-rheumatic drugs or dietary intervention on the lipid profile of RA patients to better understand RA.
Collapse
Affiliation(s)
- Qian Lei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Guo Z, Ma Y, Wang Y, Xiang H, Cui H, Fan Z, Zhu Y, Xing D, Chen B, Tao H, Guo Z, Wu X. Identification and validation of metabolism-related genes signature and immune infiltration landscape of rheumatoid arthritis based on machine learning. Aging (Albany NY) 2023; 15:3807-3825. [PMID: 37166429 PMCID: PMC10449312 DOI: 10.18632/aging.204714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis (RA) causes irreversible joint damage, but the pathogenesis is unknown. Therefore, it is crucial to identify diagnostic biomarkers of RA metabolism-related genes (MRGs). This study obtained transcriptome data from healthy individuals (HC) and RA patients from the GEO database. Weighted gene correlation network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), and random forest (RF) algorithms were adopted to identify the diagnostic feature biomarker for RA. In addition, biomarkers were verified by qRT-PCR and Western blot analysis. We established a mouse model of collagen-induced arthritis (CIA), which was confirmed by HE staining and bone structure micro-CT analysis, and then further verified the biomarkers by immunofluorescence. In vitro NMR analysis was used to analyze and identify possible metabolites. The correlation of diagnostic feature biomarkers and immune cells was performed using the Spearman-rank correlation algorithm. In this study, a total of 434 DE-MRGs were identified. GO and KEGG enrichment analysis indicated that the DE-MRGs were significantly enriched in small molecules, catabolic process, purine metabolism, carbon metabolism, and inositol phosphate metabolism. AKR1C3, MCEE, POLE4, and PFKM were identified through WGCNA, LASSO, and RF algorithms. The nomogram result should have a significant diagnostic capacity of four biomarkers in RA. Immune infiltration landscape analysis revealed a significant difference in immune cells between HC and RA groups. Our findings suggest that AKR1C3, MCEE, POLE4, and PFKM were identified as potential diagnostic feature biomarkers associated with RA's immune cell infiltrations, providing a new perspective for future research and clinical management of RA.
Collapse
Affiliation(s)
- Zhaoyang Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Yuanye Ma
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Yaqing Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hongfei Xiang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Huifei Cui
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Zuoran Fan
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Youfu Zhu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, Shandong, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bohua Chen
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hao Tao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Zhu Guo
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, Shandong, China
| |
Collapse
|
38
|
Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Front Immunol 2023; 14:1160035. [PMID: 37122709 PMCID: PMC10130412 DOI: 10.3389/fimmu.2023.1160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Autoimmune diseases are characterized by vast alterations in immune responses, but the pathogenesis remains sophisticated and yet to be fully elucidated. Multiple mechanisms regulating cell differentiation, maturation, and death are critical, among which mitochondria-related cellular organelle functions have recently gained accumulating attention. Mitochondria, as a highly preserved organelle in eukaryotes, have crucial roles in the cellular response to both exogenous and endogenous stress beyond their fundamental functions in chemical energy conversion. In this review, we aim to summarize recent findings on the function of mitochondria in the innate immune response and its aberrancy in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, etc., mainly focusing on its direct impact on cellular metabolism and its machinery on regulating immune response signaling pathways. More importantly, we summarize the status quo of potential therapeutic targets found in the mitochondrial regulation in the setting of autoimmune diseases and wish to shed light on future studies.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- 4+4 Medical Doctor Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Weyand CM, Wu B, Huang T, Hu Z, Goronzy JJ. Mitochondria as disease-relevant organelles in rheumatoid arthritis. Clin Exp Immunol 2023; 211:208-223. [PMID: 36420636 PMCID: PMC10038327 DOI: 10.1093/cei/uxac107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the controllers of cell metabolism and are recognized as decision makers in cell death pathways, organizers of cytoplasmic signaling networks, managers of cellular stress responses, and regulators of nuclear gene expression. Cells of the immune system are particularly dependent on mitochondrial resources, as they must swiftly respond to danger signals with activation, trafficking, migration, and generation of daughter cells. Analogously, faulty immune responses that lead to autoimmunity and tissue inflammation rely on mitochondria to supply energy, cell building blocks and metabolic intermediates. Emerging data endorse the concept that mitochondrial fitness, and the lack of it, is of particular relevance in the autoimmune disease rheumatoid arthritis (RA) where deviations of bioenergetic and biosynthetic flux affect T cells during early and late stages of disease. During early stages of RA, mitochondrial deficiency allows naïve RA T cells to lose self-tolerance, biasing fundamental choices of the immune system toward immune-mediated tissue damage and away from host protection. During late stages of RA, mitochondrial abnormalities shape the response patterns of RA effector T cells engaged in the inflammatory lesions, enabling chronicity of tissue damage and tissue remodeling. In the inflamed joint, autoreactive T cells partner with metabolically reprogrammed tissue macrophages that specialize in antigen-presentation and survive by adapting to the glucose-deplete tissue microenvironment. Here, we summarize recent data on dysfunctional mitochondria and mitochondria-derived signals relevant in the RA disease process that offer novel opportunities to deter autoimmune tissue inflammation by metabolic interference.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bowen Wu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Tao Huang
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Zhaolan Hu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
40
|
Osteopontin: A Bone-Derived Protein Involved in Rheumatoid Arthritis and Osteoarthritis Immunopathology. Biomolecules 2023; 13:biom13030502. [PMID: 36979437 PMCID: PMC10046882 DOI: 10.3390/biom13030502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Osteopontin (OPN) is a bone-derived phosphoglycoprotein related to physiological and pathological mechanisms that nowadays has gained relevance due to its role in the immune system response to chronic degenerative diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). OPN is an extracellular matrix (ECM) glycoprotein that plays a critical role in bone remodeling. Therefore, it is an effector molecule that promotes joint and cartilage destruction observed in clinical studies, in vitro assays, and animal models of RA and OA. Since OPN undergoes multiple modifications, including posttranslational changes, proteolytic cleavage, and binding to a wide range of receptors, the mechanisms by which it produces its effects, in some cases, remain unclear. Although there is strong evidence that OPN contributes significantly to the immunopathology of RA and OA when considering it as a common denominator molecule, some experimental trial results argue for its protective role in rheumatic diseases. Elucidating in detail OPN involvement in bone and cartilage degeneration is of interest to the field of rheumatology. This review aims to provide evidence of the OPN’s multifaceted role in promoting joint and cartilage destruction and propose it as a common denominator of AR and OA immunopathology.
Collapse
|
41
|
Tomaszewicz M, Ronowska A, Zieliński M, Jankowska-Kulawy A, Trzonkowski P. T regulatory cells metabolism: The influence on functional properties and treatment potential. Front Immunol 2023; 14:1122063. [PMID: 37033990 PMCID: PMC10081158 DOI: 10.3389/fimmu.2023.1122063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
CD4+CD25highFoxP3+ regulatory T cells (Tregs) constitute a small but substantial fraction of lymphocytes in the immune system. Tregs control inflammation associated with infections but also when it is improperly directed against its tissues or cells. The ability of Tregs to suppress (inhibit) the immune system is possible due to direct interactions with other cells but also in a paracrine fashion via the secretion of suppressive compounds. Today, attempts are made to use Tregs to treat autoimmune diseases, allergies, and rejection after bone marrow or organ transplantation. There is strong evidence that the metabolic program of Tregs is connected with the phenotype and function of these cells. A modulation towards a particular metabolic stage of Tregs may improve or weaken cells’ stability and function. This may be an essential tool to drive the immune system keeping it activated during infections or suppressed when autoimmunity occurs.
Collapse
Affiliation(s)
- Martyna Tomaszewicz
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
- *Correspondence: Martyna Tomaszewicz,
| | - Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdanísk, Poland
- Poltreg S.A., Gdanísk, Poland
| |
Collapse
|
42
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
43
|
Beignon AS, Galeotti C, Menager MM, Schvartz A. Trained immunity as a possible newcomer in autoinflammatory and autoimmune diseases pathophysiology. Front Med (Lausanne) 2023; 9:1085339. [PMID: 36743677 PMCID: PMC9896524 DOI: 10.3389/fmed.2022.1085339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Autoimmune disorders have been well characterized over the years and many pathways-but not all of them-have been found to explain their pathophysiology. Autoinflammatory disorders, on the other hand, are still hiding most of their molecular and cellular mechanisms. During the past few years, a newcomer has challenged the idea that only adaptive immunity could display memory response. Trained immunity is defined by innate immune responses that are faster and stronger to a second stimulus than to the first one, being the same or not. In response to the trained immunity inducer, and through metabolic and epigenetic changes of hematopoietic stem and progenitor cells in the bone marrow that are transmitted to their cellular progeny (peripheral trained immunity), or directly of tissue-resident cells (local innate immunity), innate cells responsiveness and functions upon stimulation are improved in the long-term. Innate immunity can be beneficial, but it could also be detrimental when maladaptive. Here, we discuss how trained immunity could contribute to the physiopathology of autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Anne-Sophie Beignon
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Mickael M. Menager
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases/Infectious Diseases Models and Innovative Technologies (IMVA-HB/IDMIT), U1184, Université Paris-Saclay, INSERM, CEA, Fontenay-aux-Roses, France
| | - Adrien Schvartz
- Department of Pediatric Rheumatology, Reference Center for AutoInflammatory Diseases and Amyloidosis (CEREMAIA), Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France,*Correspondence: Adrien Schvartz,
| |
Collapse
|
44
|
Zhou Y, Li X, Ng L, Zhao Q, Guo W, Hu J, Zhong J, Su W, Liu C, Su S. Identification of copper death-associated molecular clusters and immunological profiles in rheumatoid arthritis. Front Immunol 2023; 14:1103509. [PMID: 36891318 PMCID: PMC9986609 DOI: 10.3389/fimmu.2023.1103509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Objective An analysis of the relationship between rheumatoid arthritis (RA) and copper death-related genes (CRG) was explored based on the GEO dataset. Methods Based on the differential gene expression profiles in the GSE93272 dataset, their relationship to CRG and immune signature were analysed. Using 232 RA samples, molecular clusters with CRG were delineated and analysed for expression and immune infiltration. Genes specific to the CRGcluster were identified by the WGCNA algorithm. Four machine learning models were then built and validated after selecting the optimal model to obtain the significant predicted genes, and validated by constructing RA rat models. Results The location of the 13 CRGs on the chromosome was determined and, except for GCSH. LIPT1, FDX1, DLD, DBT, LIAS and ATP7A were expressed at significantly higher levels in RA samples than in non-RA, and DLST was significantly lower. RA samples were significantly expressed in immune cells such as B cells memory and differentially expressed genes such as LIPT1 were also strongly associated with the presence of immune infiltration. Two copper death-related molecular clusters were identified in RA samples. A higher level of immune infiltration and expression of CRGcluster C2 was found in the RA population. There were 314 crossover genes between the 2 molecular clusters, which were further divided into two molecular clusters. A significant difference in immune infiltration and expression levels was found between the two. Based on the five genes obtained from the RF model (AUC = 0.843), the Nomogram model, calibration curve and DCA also demonstrated their accuracy in predicting RA subtypes. The expression levels of the five genes were significantly higher in RA samples than in non-RA, and the ROC curves demonstrated their better predictive effect. Identification of predictive genes by RA animal model experiments was also confirmed. Conclusion This study provides some insight into the correlation between rheumatoid arthritis and copper mortality, as well as a predictive model that is expected to support the development of targeted treatment options in the future.
Collapse
Affiliation(s)
- Yu Zhou
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Foot & Ankle Surgery, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xin Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liqi Ng
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Qing Zhao
- School of Health Management, Tianjin University of Chinese Medicine, Tianjin, China
| | - Wentao Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinhua Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenlong Su
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, United Kingdom
| | - Songchuan Su
- Foot & Ankle Surgery, Chongqing Orthopedic Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
45
|
de Jong TA, Semmelink JF, Denis SW, Bolt JW, Maas M, van de Sande MGH, Houtkooper RHL, van Baarsen LGM. Lower Metabolic Potential and Impaired Metabolic Flexibility in Human Lymph Node Stromal Cells from Patients with Rheumatoid Arthritis. Cells 2022; 12:cells12010001. [PMID: 36611795 PMCID: PMC9818527 DOI: 10.3390/cells12010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolism is important for determining cell function and shaping immune responses. Studies have shown a crucial role for stromal cells in steering proper immune responses in the lymph node microenvironment. These lymph node stromal cells (LNSCs) tightly regulate immune tolerance. We hypothesize that malfunctioning LNSCs create a microenvironment in which normal immune responses are not properly controlled, possibly leading to the development of autoimmune diseases such as rheumatoid arthritis (RA). Therefore, we set out to determine their metabolic profile during health and systemic autoimmunity. We included autoantibody positive individuals at risk of developing RA (RA-risk individuals), RA patients and healthy volunteers. All study subjects underwent lymph node biopsy sampling. Mitochondrial function in cultured LNSCs was assessed by quantitative PCR, flow cytometry, Seahorse and oleate oxidation assays. Overall, mitochondrial respiration was lower in RA(-risk) LNSCs compared with healthy LNSCs, while metabolic potential was only lower in RA LNSCs. To maintain basal mitochondrial respiration, all LNSCs were mostly dependent on fatty acid oxidation. However, RA(-risk) LNSCs were also dependent on glutamine oxidation. Finally, we showed that RA LNSCs have impaired metabolic flexibility. Our results show that the metabolic landscape of LNSCs is not only altered during established disease, but partly already in individuals at risk of developing RA. Future studies are needed to investigate the impact of restoring metabolic capacity in LNSC-mediated immunomodulation and disease progression.
Collapse
Affiliation(s)
- Tineke A. de Jong
- Laboratory for Experimental Immunology and Department of Rheumatology & Clinical Immunology, Amsterdam UMC Location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105AZ Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105AZ Amsterdam, The Netherlands
| | - Johanna F. Semmelink
- Laboratory for Experimental Immunology and Department of Rheumatology & Clinical Immunology, Amsterdam UMC Location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105AZ Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105AZ Amsterdam, The Netherlands
| | - Simone W. Denis
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Janne W. Bolt
- Laboratory for Experimental Immunology and Department of Rheumatology & Clinical Immunology, Amsterdam UMC Location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105AZ Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105AZ Amsterdam, The Netherlands
| | - Mario Maas
- Department of Radiology, Amsterdam UMC Location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, 1105AZ Amsterdam, The Netherlands
| | - Marleen G. H. van de Sande
- Laboratory for Experimental Immunology and Department of Rheumatology & Clinical Immunology, Amsterdam UMC Location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105AZ Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105AZ Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, 1105AZ Amsterdam, The Netherlands
| | - Riekelt H. L. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism Institute, 1105AZ Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Institute, 1105AZ Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, 1105AZ Amsterdam, The Netherlands
| | - Lisa G. M. van Baarsen
- Laboratory for Experimental Immunology and Department of Rheumatology & Clinical Immunology, Amsterdam UMC Location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, 1105AZ Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center (ARC), Academic Medical Center, 1105AZ Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Tissue Function and Regeneration, 1105AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
46
|
Rajendiran A, Subramanyam SH, Klemm P, Jankowski V, van Loosdregt J, Vastert B, Vollbach K, Wagner N, Tenbrock K, Ohl K. NRF2/Itaconate Axis Regulates Metabolism and Inflammatory Properties of T Cells in Children with JIA. Antioxidants (Basel) 2022; 11:antiox11122426. [PMID: 36552634 PMCID: PMC9774972 DOI: 10.3390/antiox11122426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CD4+ T cells critically contribute to the initiation and perturbation of inflammation. When CD4+ T cells enter inflamed tissues, they adapt to hypoxia and oxidative stress conditions, and to a reduction in nutrients. We aimed to investigate how this distinct environment regulates T cell responses within the inflamed joints of patients with childhood rheumatism (JIA) by analyzing the behavior of NRF2-the key regulator of the anti-oxidative stress response-and its signaling pathways. METHODS Flow cytometry and quantitative RT-PCR were used to perform metabolic profiling of T cells and to measure the production of inflammatory cytokines. Loss of function analyses were carried out by means of siRNA transfection experiments. NRF2 activation was induced by treatment with 4-octyl-Itaconate (4-OI). RESULTS Flow cytometry analyses revealed a high metabolic status in CD4+ T cells taken from synovial fluid (SF) with greater mitochondrial mass, and increased glucose and fatty acid uptake. This resulted in a heightened oxidative status of SF CD4+ T cells. Despite raised ROS levels, expression of NRF2 and its target gene NQO1 were lower in CD4+ T cells from SF than in those from blood. Indeed, NRF2 activation of CD4+ T cells downregulated oxidative stress markers, altered the metabolic phenotype and reduced secretion of IFN-γ. CONCLUSION NRF2 could be a potential regulator in CD4+ T cells during chronic inflammation and could instigate a drift toward disease progression or regression, depending on the inflammatory environment.
Collapse
Affiliation(s)
- Anandhi Rajendiran
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Sudheendra Hebbar Subramanyam
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
- Correspondence: (S.H.S.); (K.O.); Tel.: +49-0241-8089140 (K.O.)
| | - Patricia Klemm
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Jorg van Loosdregt
- Laboratory for Translational Medicine, Department of Pediatric Immunology & Rheumatology, University Medical Centre Utrecht, 3584 Utrecht, The Netherlands
| | - Bas Vastert
- Laboratory for Translational Medicine, Department of Pediatric Immunology & Rheumatology, University Medical Centre Utrecht, 3584 Utrecht, The Netherlands
| | - Kristina Vollbach
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen, 52074 Aachen, Germany
- Correspondence: (S.H.S.); (K.O.); Tel.: +49-0241-8089140 (K.O.)
| |
Collapse
|
47
|
Srivastava RK, Sapra L, Mishra PK. Osteometabolism: Metabolic Alterations in Bone Pathologies. Cells 2022; 11:3943. [PMID: 36497201 PMCID: PMC9735555 DOI: 10.3390/cells11233943] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Renewing interest in the study of intermediate metabolism and cellular bioenergetics is brought on by the global increase in the prevalence of metabolic illnesses. Understanding of the mechanisms that integrate energy metabolism in the entire organism has significantly improved with the application of contemporary biochemical tools for quantifying the fuel substrate metabolism with cutting-edge mouse genetic procedures. Several unexpected findings in genetically altered mice have prompted research into the direction of intermediate metabolism of skeletal cells. These findings point to the possibility of novel endocrine connections through which bone cells can convey their energy status to other metabolic control centers. Understanding the expanded function of skeleton system has in turn inspired new lines of research aimed at characterizing the energy needs and bioenergetic characteristics of these bone cells. Bone-forming osteoblast and bone-resorbing osteoclast cells require a constant and large supply of energy substrates such as glucose, fatty acids, glutamine, etc., for their differentiation and functional activity. According to latest research, important developmental signaling pathways in bone cells are connected to bioenergetic programs, which may accommodate variations in energy requirements during their life cycle. The present review article provides a unique perspective of the past and present research in the metabolic characteristics of bone cells along with mechanisms governing energy substrate utilization and bioenergetics. In addition, we discussed the therapeutic inventions which are currently being utilized for the treatment and management of bone-related diseases such as osteoporosis, rheumatoid arthritis (RA), osteogenesis imperfecta (OIM), etc., by modulating the energetics of bone cells. We further emphasized on the role of GUT-associated metabolites (GAMs) such as short-chain fatty acids (SCFAs), medium-chain fatty acids (MCFAs), indole derivates, bile acids, etc., in regulating the energetics of bone cells and their plausible role in maintaining bone health. Emphasis is importantly placed on highlighting knowledge gaps in this novel field of skeletal biology, i.e., "Osteometabolism" (proposed by our group) that need to be further explored to characterize the physiological importance of skeletal cell bioenergetics in the context of human health and bone related metabolic diseases.
Collapse
Affiliation(s)
- Rupesh K. Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | |
Collapse
|
48
|
Zizmare L, Mehling R, Gonzalez-Menendez I, Lonati C, Quintanilla-Martinez L, Pichler BJ, Kneilling M, Trautwein C. Acute and chronic inflammation alter immunometabolism in a cutaneous delayed-type hypersensitivity reaction (DTHR) mouse model. Commun Biol 2022; 5:1250. [PMID: 36380134 PMCID: PMC9666528 DOI: 10.1038/s42003-022-04179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell-driven immune responses are responsible for several autoimmune disorders, such as psoriasis vulgaris and rheumatoid arthritis. Identification of metabolic signatures in inflamed tissues is needed to facilitate novel and individualised therapeutic developments. Here we show the temporal metabolic dynamics of T-cell-driven inflammation characterised by nuclear magnetic resonance spectroscopy-based metabolomics, histopathology and immunohistochemistry in acute and chronic cutaneous delayed-type hypersensitivity reaction (DTHR). During acute DTHR, an increase in glutathione and glutathione disulfide is consistent with the ear swelling response and degree of neutrophilic infiltration, while taurine and ascorbate dominate the chronic phase, suggesting a switch in redox metabolism. Lowered amino acids, an increase in cell membrane repair-related metabolites and infiltration of T cells and macrophages further characterise chronic DTHR. Acute and chronic cutaneous DTHR can be distinguished by characteristic metabolic patterns associated with individual inflammatory pathways providing knowledge that will aid target discovery of specialised therapeutics. Nuclear magnetic resonance spectroscopy-based tissue metabolomics is used to define detailed temporal signatures of acute and chronic inflammation in cutaneous delayed-type hypersensitivity reaction.
Collapse
|
49
|
Gao Y, Cai W, Zhou Y, Li Y, Cheng J, Wei F. Immunosenescence of T cells: a key player in rheumatoid arthritis. Inflamm Res 2022; 71:1449-1462. [DOI: 10.1007/s00011-022-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
|
50
|
Sonigra A, Nel HJ, Wehr P, Ramnoruth N, Patel S, van Schie KA, Bladen MW, Mehdi AM, Tesiram J, Talekar M, Rossjohn J, Reid HH, Stuurman FE, Roberts H, Vecchio P, Gourley I, Rigby M, Becart S, Toes RE, Scherer HU, Lê Cao KA, Campbell K, Thomas R. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. JCI Insight 2022; 7:e160964. [PMID: 36278483 PMCID: PMC9714780 DOI: 10.1172/jci.insight.160964] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 10/11/2023] Open
Abstract
BACKGROUNDAntigen-specific regulation of autoimmune disease is a major goal. In seropositive rheumatoid arthritis (RA), T cell help to autoreactive B cells matures the citrullinated (Cit) antigen-specific immune response, generating RA-specific V domain glycosylated anti-Cit protein antibodies (ACPA VDG) before arthritis onset. Low or escalating antigen administration under "sub-immunogenic" conditions favors tolerance. We explored safety, pharmacokinetics, and immunological and clinical effects of s.c. DEN-181, comprising liposomes encapsulating self-peptide collagen II259-273 (CII) and NF-κB inhibitor 1,25-dihydroxycholecalciferol.METHODSA double-blind, placebo-controlled, exploratory, single-ascending-dose, phase I trial assessed the impact of low, medium, and high DEN-181 doses on peripheral blood CII-specific and bystander Cit64vimentin59-71-specific (Cit-Vim-specific) autoreactive T cell responses, cytokines, and ACPA in 17 HLA-DRB1*04:01+ or *01:01+ ACPA+ RA patients on methotrexate.RESULTSDEN-181 was well tolerated. Relative to placebo and normalized to baseline values, Cit-Vim-specific T cells decreased in patients administered medium and high doses of DEN-181. Relative to placebo, percentage of CII-specific programmed cell death 1+ T cells increased within 28 days of DEN-181. Exploratory analysis in DEN-181-treated patients suggested improved RA disease activity was associated with expansion of CII-specific and Cit-Vim-specific T cells; reduction in ACPA VDG, memory B cells, and inflammatory myeloid populations; and enrichment in CCR7+ and naive T cells. Single-cell sequencing identified T cell transcripts associated with tolerogenic TCR signaling and exhaustion after low or medium doses of DEN-181.CONCLUSIONThe safety and immunomodulatory activity of low/medium DEN-181 doses provide rationale to further assess antigen-specific immunomodulatory therapy in ACPA+ RA.TRIAL REGISTRATIONAnzctr.org.au identifier ACTRN12617001482358, updated September 8, 2022.FUNDINGInnovative Medicines Initiative 2 Joint Undertaking (grant agreement 777357), supported by European Union's Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations; Arthritis Queensland; National Health and Medical Research Council (NHMRC) Senior Research Fellowship; and NHMRC grant 2008287.
Collapse
Affiliation(s)
- Amee Sonigra
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Hendrik J Nel
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Pascale Wehr
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Nishta Ramnoruth
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Swati Patel
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Karin A van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Maxwell W Bladen
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Ahmed M Mehdi
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Joanne Tesiram
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Meghna Talekar
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Hugh H Reid
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Frederik E Stuurman
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| | - Helen Roberts
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
- Dendright Pty Ltd, Brisbane, Queensland, Australia
| | - Phillip Vecchio
- Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ian Gourley
- Immunology Clinical Development, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Mark Rigby
- Immunology Clinical Development, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Stephane Becart
- Discovery Immunology, Janssen Research & Development, LLC, La Jolla, California, USA
| | - Rene Em Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Kim Campbell
- Immunology Translational Medicine, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Ranjeny Thomas
- University of Queensland Diamantina Institute, the University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|