1
|
Golwala ZM, Spiridou Goncalves H, Moirangthem RD, Evans G, Lizot S, de Koning C, Garrigue A, Corredera MM, Ocampo-Godinez JM, Howley E, Kricke S, Awuah A, Obiri-Yeboa I, Rai R, Sebire N, Bernard F, Bordon Cueto De Braem V, Boztug K, Cole T, Gennery AR, Hackett S, Hambleton S, Holm M, Kusters MA, Klocperk A, Marzollo A, Marcus N, Nademi Z, Pachlopnik Schmid J, Pichler H, Sellmer A, Soler-Palacin P, Soomann M, Torpiano P, van Montfrans J, Nierkens S, Adams S, Buckland M, Gilmour K, Worth A, Thrasher AJ, Davies EG, André I, Kreins AY. Ex vivo T-lymphopoiesis assays assisting corrective treatment choice for genetically undefined T-lymphocytopenia. Clin Immunol 2025; 274:110453. [PMID: 39965724 DOI: 10.1016/j.clim.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Persistent selective T-lymphocytopenia is found both in SCID and congenital athymia. Without molecular diagnosis, it is challenging to determine whether HCT or thymus transplantation ought to be performed. Ex vivo T-lymphopoiesis assays have been proposed to assist clinical decision-making for genetically undefined patients. We investigated 20 T-lymphocytopenic patients, including 13 patients awaiting first-line treatment and 7 patients with failed immune reconstitution after previous HCT or thymus transplantation. Whilst developmental blocks in ex vivo T-lymphopoiesis indicated hematopoietic cell-intrinsic defects, successful T-lymphocyte differentiation required careful interpretation, in conjunction with clinical status, immunophenotyping, and genetic investigations. Of the 20 patients, 13 proceeded to treatment, with successful immune reconstitution observed in 4 of the 6 patients post-HCT and 4 of the 7 patients after thymus transplantation, the latter including two patients who had previously undergone HCT. Whilst further validation and standardization are required, we conclude that assessing ex vivo T-lymphopoiesis during the diagnostic pathway for genetically undefined T-lymphocytopenia improves patient outcomes by facilitating corrective treatment choice.
Collapse
Affiliation(s)
- Zainab M Golwala
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Helena Spiridou Goncalves
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - Ranjita Devi Moirangthem
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France; Smart Immune; Paris, France
| | - Grace Evans
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - Sabrina Lizot
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France
| | - Coco de Koning
- Center for Translational Immunology (CTI), University Medical Center Utrecht; Utrecht, Netherlands
| | - Alexandrine Garrigue
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France
| | - Marta Martin Corredera
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France; Smart Immune; Paris, France
| | - Juan Moises Ocampo-Godinez
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Susanne Kricke
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Arnold Awuah
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Irene Obiri-Yeboa
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - Neil Sebire
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Fanette Bernard
- Paediatric Onco-Haematology Unit, Geneva University Hospital; Geneva, Switzerland
| | - Victoria Bordon Cueto De Braem
- Department of Pediatric Hemato-Oncology and Hematopoietic Stem cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute, Vienna, Austria; Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Hospital, Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Theresa Cole
- Allergy and Immunology Department, The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Scott Hackett
- Paediatric Immunology Department, University Hospitals of Birmingham, Birmingham, United Kingdom
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Mette Holm
- Department of Paediatrics and Adolescent Medicine, Infections and Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Maaike A Kusters
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czechia
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Nufar Marcus
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Kipper Institute of Immunology, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zohreh Nademi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Jana Pachlopnik Schmid
- Division of Immunology and the Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland; Pediatric Immunology, University of Zurich, Zurich, Switzerland
| | - Herbert Pichler
- St. Anna Children's Cancer Research Institute, Vienna, Austria; St. Anna Children's Hospital, Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Anna Sellmer
- Department of Paediatrics and Adolescent Medicine, Infections and Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Department of Pediatrics, Hospital Infantil Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Department of Pediatrics, Obstetrics and Gynecology, Preventive Medicine and Public Health, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Infection in Immunocompromised Pediatric Patients, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maarja Soomann
- Division of Immunology and the Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Paul Torpiano
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht; Utrecht, Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology (CTI), University Medical Center Utrecht; Utrecht, Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stuart Adams
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Matthew Buckland
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Kimberly Gilmour
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - E Graham Davies
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France
| | - Alexandra Y Kreins
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom.
| |
Collapse
|
2
|
Ahmed HS, Dias AF, Pulkurthi SR. Thymus transplantation for DiGeorge Syndrome: a systematic review. Pediatr Surg Int 2025; 41:82. [PMID: 39960552 DOI: 10.1007/s00383-025-05976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND DiGeorge syndrome (DGS) is a condition typically associated with athymia, parathyroid hypoplasia or aplasia, and congenital heart defects. Athymia in these patients causes severe immunodeficiency, causing high mortality and morbidity, often requiring thymic tissue transplantation. The present systematic review aims to consolidate the present evidence on thymus transplantation in DGS. METHODS An electronic literature search of five databases (PubMed, Medline, Scopus, EBSCOhost, and CINAHL) was performed from inception till September 2024. Relevant articles were selected, and data was extracted by two independent reviewers. RESULTS A total of 16 articles were included from an initial set of 1227 articles. Patients diagnosed with DGS in the included studies were predominantly male, and the age at which thymus transplantation was done typically varied from 0.8 to 26 months. Several patients had chromosome 22q11 hemizygosity. Thymic tissue was taken from tissues of pediatric patients undergoing cardiothoracic surgery. Pre-transplant medication included immunosuppressants with rabbit anti-thymocyte globulin (RATGAM) being frequently used alongside steroids and tacrolimus. This tissue was cultured and transplanted into the quadriceps muscle of the patients under general anesthesia. Thymopoiesis was well described in most patients with graft failures and rejections occurring rarely. Naive T-cell development was noted in almost all patients with clearance of infections in many cases. Common postoperative complications include sepsis, haemorrhage, gastrointestinal disturbances, among others. Mortality was uncommon but often associated with intracerebral hemorrhages and sepsis. CONCLUSION Thymus transplantation is a relatively safe and effective procedure in patients with DGS with athymia. Future research should explore the addition of allogenic parathyroid gland transplantation along with thymic tissue.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, K.R Road, Bangalore, 560002, Karnataka, India.
| | - Akhil Fravis Dias
- M S Ramaiah Medical College, M S Ramaiah Nagar, Bangalore, 560054, Karnataka, India
| | | |
Collapse
|
3
|
Kreins AY, Dhalla F, Flinn AM, Howley E, Ekwall O, Villa A, Staal FJT, Anderson G, Gennery AR, Holländer GA, Davies EG. European Society for Immunodeficiencies guidelines for the management of patients with congenital athymia. J Allergy Clin Immunol 2024; 154:1391-1408. [PMID: 39303894 DOI: 10.1016/j.jaci.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Congenital athymia is a life-limiting disorder due to rare inborn errors of immunity causing impaired thymus organogenesis or abnormal thymic stromal cell development and function. Athymic infants have a T-lymphocyte-negative, B-lymphocyte-positive, natural killer cell-positive immunophenotype with profound T-lymphocyte deficiency and are susceptible to severe infections and autoimmunity. Patients variably display syndromic features. Expanding access to newborn screening for severe combined immunodeficiency and T lymphocytopenia and broad genetic testing, including next-generation sequencing technologies, increasingly facilitate their timely identification. The recommended first-line treatment is allogeneic thymus transplantation, which is a specialized procedure available in Europe and the United States. Outcomes for athymic patients are best with early diagnosis and thymus transplantation before the development of infectious and inflammatory complications. These guidelines on behalf of the European Society for Immunodeficiencies provide a comprehensive review for clinicians who manage patients with inborn thymic stromal cell defects; they offer clinical practice recommendations focused on the diagnosis, investigation, risk stratification, and management of congenital athymia with the aim of improving patient outcomes.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Infection Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| | - Fatima Dhalla
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom; Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Aisling M Flinn
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Crumlin, Ireland
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital, Milan, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale Delle Ricerche (IRGB-CNR), Milan, Italy
| | - Frank J T Staal
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Willem-Alexander Children's Hospital, Leiden, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Georg A Holländer
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom; Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E Graham Davies
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Infection Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
4
|
Cildir G, Aba U, Pehlivan D, Tvorogov D, Warnock NI, Ipsir C, Arik E, Kok CH, Bozkurt C, Tekeoglu S, Inal G, Cesur M, Kucukosmanoglu E, Karahan I, Savas B, Balci D, Yaman A, Demirbaş ND, Tezcan I, Haskologlu S, Dogu F, Ikinciogulları A, Keskin O, Tumes DJ, Erman B. Defective kinase activity of IKKα leads to combined immunodeficiency and disruption of immune tolerance in humans. Nat Commun 2024; 15:9944. [PMID: 39550372 PMCID: PMC11569180 DOI: 10.1038/s41467-024-54345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
IKKα is a multifunctional serine/threonine kinase that controls various biological processes, either dependent on or independent of its kinase activity. However, the importance of the kinase function of IKKα in human physiology remains unknown since no biallelic variants disrupting its kinase activity have been reported. In this study, we present a homozygous germline missense variant in the kinase domain of IKKα, which is present in three children from two Turkish families. This variant, referred to as IKKαG167R, is in the activation segment of the kinase domain and affects the conserved (DF/LG) motif responsible for coordinating magnesium atoms for ATP binding. As a result, IKKαG167R abolishes the kinase activity of IKKα, leading to impaired activation of the non-canonical NF-κB pathway. Patients carrying IKKαG167R exhibit a range of immune system abnormalities, including the absence of secondary lymphoid organs, hypogammaglobulinemia and limited diversity of T and B cell receptors with evidence of autoreactivity. Overall, our findings indicate that, unlike a nonsense IKKα variant that results in early embryonic lethality in humans, the deficiency of IKKα's kinase activity is compatible with human life. However, it significantly disrupts the homeostasis of the immune system, underscoring the essential and non-redundant kinase function of IKKα in humans.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Umran Aba
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Nicholas I Warnock
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Canberk Ipsir
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Elif Arik
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Chung Hoow Kok
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Gaye Inal
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Mahmut Cesur
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ercan Kucukosmanoglu
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ibrahim Karahan
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Berna Savas
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Deniz Balci
- Department of General Surgery and Organ Transplantation, Bahcesehir University School of Medicine, Istanbul, Türkiye
| | - Ayhan Yaman
- Pediatric Intensive Care Unit, Department of Pediatrics, Istinye University, Bahcesehir Liv Hospital, Istanbul, Türkiye
| | - Nazli Deveci Demirbaş
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ilhan Tezcan
- Department of Paediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| | - Sule Haskologlu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Figen Dogu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Aydan Ikinciogulları
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ozlem Keskin
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye.
| | - Damon J Tumes
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| | - Baran Erman
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye.
- Institute of Child Health, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
5
|
Ocampo-Godinez JM, Kreins AY. Finding NEMO in the thymus. J Exp Med 2024; 221:e20241590. [PMID: 39432904 PMCID: PMC11497410 DOI: 10.1084/jem.20241590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Rosain et al. (https://doi.org/10.1084/jem.20231152) describe the association between anti-type I interferon autoantibodies and severe viral infections in patients with incontinentia pigmenti and heterozygous loss-of-function NEMO variants, suggesting a role for canonical NF-κB signaling in immune tolerance. The mechanisms behind this selective autoimmunity remain unclear.
Collapse
Affiliation(s)
- Juan Moises Ocampo-Godinez
- Infection Immunity and Inflammation Research and Teaching Department, University College London Institute of Child Health, London, UK
| | - Alexandra Y. Kreins
- Infection Immunity and Inflammation Research and Teaching Department, University College London Institute of Child Health, London, UK
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Anderson G, Cosway EJ, James KD, Ohigashi I, Takahama Y. Generation and repair of thymic epithelial cells. J Exp Med 2024; 221:e20230894. [PMID: 38980292 PMCID: PMC11232892 DOI: 10.1084/jem.20230894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the vertebrate immune system, thymus stromal microenvironments support the generation of αβT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.
Collapse
Affiliation(s)
- Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Emilie J. Cosway
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kieran D. James
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Haskologlu S, Kocak S, Tufan LS, Aksoy FE, Bastug D, Oner DA, Islamoglu C, Baskin K, Esenboga S, Acican D, Ceylaner S, Guner SN, Keles S, Cagdas D, Reisli I, Tezel B, Dogu F, Tezcan I, Ikinciogullari A. Newborn screening for SCID: the very first prospective pilot study from Türkiye. Front Immunol 2024; 15:1384195. [PMID: 39483481 PMCID: PMC11526446 DOI: 10.3389/fimmu.2024.1384195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024] Open
Abstract
Purpose The measurement of T-cell receptor excision circle (TREC) is used for newborn screening (NBS) in dried blood spot (DBS) samples from Guthrie card for severe combined immunodeficiency (SCID). Here, we report the results of first newborn screening pilot program for SCID conducted in Türkiye. Methods The study was carried out together with Ankara University School of Medicine and The Ministry of Health, Public Health General Directorate, Pediatric and Adolescent Health Department. TREC measurements were performed in randomly selected Guthrie card samples obtained from 20253 babies born between October 2018 and October 2020. The TREC analyses were performed together with beta Actin (β-Actin) via RT-PCR (Real Time Polymerase Chain Reaction). Results TRECs found to be normal (≥15 copies/µl) in 98,6% of the newborns (n: 19975) but low (<15 copies/µl) in 1.4% (n:278) at the initial analyses. TRECs were retested in 278 suspected infants and found to be normal in 160 (0.8%) while low in 118 (0.58%). New DBS were obtained from the babies with low TRECs (new sample test). TRECs were normal in 108 (0.53%) of the new sample tests and low in 10 (0.049%). Two among 10 babies who had abnormal (undetectable) TRECs were diagnosed as SCID; ADA (P1) and RAG1 (P2) defects were confirmed respectively. They both received curative treatments [gene therapy (P1) and HSCT (P2)]. The remaining 6 of 8 newborns with abnormal TRECs were found normal after clinical and laboratory immune work-up, while medical records of other two revealed early postnatal death due to extreme prematurity. Conclusion In the light of this study the incidence of SCID was detected at least 1/10000 live births in Türkiye. This study shows the feasibility and usefulness of initiating SCID screening in Türkiye.
Collapse
Affiliation(s)
- Sule Haskologlu
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| | - Senem Kocak
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| | - Lale Satiroglu Tufan
- Department of Forensic Medicine, Forensic Genetics Laboratory, School of Medicine, Ankara University, Ankara, Türkiye
| | - Fethiye Eken Aksoy
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| | - Dilan Bastug
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| | - Deniz Aslar Oner
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| | - Candan Islamoglu
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| | - Kubra Baskin
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| | - Saliha Esenboga
- Department of Pediatrics, Division of Immunology, School of Medicine, Hacettepe University, Ankara, Türkiye
| | - Deniz Acican
- Pediatric and Adolescent Health Department, The Ministry of Health, Public Health General Directorate, Ankara, Türkiye
| | - Serdar Ceylaner
- Intergen Genetic and Rare Diseases Diagnosis Centre, Ankara, Türkiye
| | - Sukru Nail Guner
- Department of Pediatrics Division of Immunology and Allergy, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - Sevgi Keles
- Department of Pediatrics Division of Immunology and Allergy, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - Deniz Cagdas
- Department of Pediatrics, Division of Immunology, School of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ismail Reisli
- Department of Pediatrics Division of Immunology and Allergy, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Türkiye
| | - Basak Tezel
- Pediatric and Adolescent Health Department, The Ministry of Health, Public Health General Directorate, Ankara, Türkiye
| | - Figen Dogu
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Immunology, School of Medicine, Hacettepe University, Ankara, Türkiye
| | - Aydan Ikinciogullari
- Department of Pediatrics, Division of Immunology and Allergy, School of Medicine, Ankara University, Ankara, Türkiye
| |
Collapse
|
8
|
Zhang Y, Wei S, Li M, Lv G. Revolutionizing tracheal reconstruction: innovations in vascularized composite allograft transplantation. Front Bioeng Biotechnol 2024; 12:1452780. [PMID: 39234265 PMCID: PMC11371696 DOI: 10.3389/fbioe.2024.1452780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Tracheal defects, particularly those extending over long segments, present substantial challenges in reconstructive surgery due to complications in vascularization and integration with host tissues. Traditional methods, such as extended tracheostomies and alloplastic stents, often result in significant morbidity due to mucus plugging and mechanical erosion. Recent advances in vascularized composite allograft (VCA) transplantation have opened new avenues for effective tracheal reconstruction. This article reviews the evolution of tracheal reconstruction techniques, focusing on the shift from non-vascularized approaches to innovative revascularization methods that enhance graft integration and functionality. Key advancements include indirect revascularization techniques and the integration of regenerative medicine, which have shown promise in overcoming historical barriers to successful tracheal transplantation. Clinical case studies are presented to illustrate the complexities and outcomes of recent tracheal transplantation procedures, highlighting the potential for long-term success through the integration of advanced vascular engineering and immune modulation strategies. Furthermore, the role of chimerism in reducing graft rejection and the implications for future tracheal transplantation and tissue engineering efforts are discussed. This review underscores the transformative potential of VCA in tracheal reconstruction, paving the way for more reliable and effective treatments for extensive tracheal defects.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Sonoda M, Ishimura M, Inoue H, Eguchi K, Ochiai M, Sakai Y, Doi T, Suzuki K, Inoue T, Mizukami T, Nakamura K, Takada H, Ohga S. Non-conditioned cord blood transplantation for infection control in athymic CHARGE syndrome. Pediatr Blood Cancer 2024; 71:e30809. [PMID: 38078568 DOI: 10.1002/pbc.30809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
OBJECTIVE CHARGE syndrome is a congenital malformation syndrome caused by heterozygous mutations in the CHD7 gene. Severe combined immunodeficiency (SCID) arises from congenital athymia called CHARGE/complete DiGeorge syndrome. While cultured thymus tissue implantation (CTTI) provides an immunological cure, hematopoietic cell transplantation (HCT) is an alternative option for immuno-reconstitution of affected infants. We aimed to clarify the clinical outcomes of patients with athymic CHARGE syndrome after HCT. METHODS We studied the immunological reconstitution and outcomes of four patients who received non-conditioned unrelated donor cord blood transplantation (CBT) at Kyushu University Hospital from 2007 to 2022. The posttransplant outcomes were compared with the outcomes of eight reported patients. RESULTS Four index cases received CBT 70-144 days after birth and had no higher than grade II acute graft-versus-host disease. One infant was the first newborn-screened athymic case in Japan. They achieved more than 500/μL naïve T cells with balanced repertoire 1 month post transplant, and survived more than 12 months with home care. Twelve patients including the index cases received HCT at a median 106 days after birth (range: 70-195 days). One-year overall survival rate was significantly higher in patients who underwent non-conditioned HCT than in those who received conditioned HCT (100% vs. 37.5%, p = .02). Nine patients died, and the major cause of death was cardiopulmonary failure. CONCLUSIONS Athymic infants achieved a prompt reconstitution of non-skewing naïve T cells after non-conditioned CBT that led to home care in infancy without significant infections. Non-conditioned CBT is a useful bridging therapy for newborn-screened cases toward an immunological cure by CTTI.
Collapse
Affiliation(s)
- Motoshi Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirosuke Inoue
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayuki Ochiai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Research Center for Environment and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiko Doi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kyoko Suzuki
- Department of Pediatrics, Juntendo University, Urayasu Hospital, Chiba, Japan
| | - Takeshi Inoue
- Division of Neonatology, Perinatal Center, Kumamoto City Hospital, Kumamoto, Japan
| | - Tomoyuki Mizukami
- Department of Pediatrics, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Hidetoshi Takada
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Kreins AY, Roux E, Pang J, Cheng I, Charles O, Roy S, Mohammed R, Owens S, Lowe DM, Brugha R, Williams R, Howley E, Best T, Davies EG, Worth A, Solas C, Standing JF, Goldstein RA, Rocha-Pereira J, Breuer J. Favipiravir induces HuNoV viral mutagenesis and infectivity loss with clinical improvement in immunocompromised patients. Clin Immunol 2024; 259:109901. [PMID: 38218209 PMCID: PMC11933534 DOI: 10.1016/j.clim.2024.109901] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Chronic human norovirus (HuNoV) infections in immunocompromised patients result in severe disease, yet approved antivirals are lacking. RNA-dependent RNA polymerase (RdRp) inhibitors inducing viral mutagenesis display broad-spectrum in vitro antiviral activity, but clinical efficacy in HuNoV infections is anecdotal and the potential emergence of drug-resistant variants is concerning. Upon favipiravir (and nitazoxanide) treatment of four immunocompromised patients with life-threatening HuNoV infections, viral whole-genome sequencing showed accumulation of favipiravir-induced mutations which coincided with clinical improvement although treatment failed to clear HuNoV. Infection of zebrafish larvae demonstrated drug-associated loss of viral infectivity and favipiravir treatment showed efficacy despite occurrence of RdRp variants potentially causing favipiravir resistance. This indicates that within-host resistance evolution did not reverse loss of viral fitness caused by genome-wide accumulation of sequence changes. This off-label approach supports the use of mutagenic antivirals for treating prolonged RNA viral infections and further informs the debate surrounding their impact on virus evolution.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Emma Roux
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Juanita Pang
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Iek Cheng
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Pharmacy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Oscar Charles
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sunando Roy
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Reem Mohammed
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Stephen Owens
- Department of Paediatric Allergy, Immunology and Infectious Diseases, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - David M Lowe
- Immunology Department, Royal Free Hospital NHS Foundation Trust, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, UK
| | - Rossa Brugha
- Department of Cardiothoracic Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Rachel Williams
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Timothy Best
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - E Graham Davies
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Caroline Solas
- Unité des Virus Émergents IRD 190, INSERM 1207, Aix-Marseille Université, Marseille, France; APHM, Laboratoire de Pharmacocinétique et Toxicologie, Hôpital La Timone, Marseille, France
| | - Joseph F Standing
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Pharmacy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Richard A Goldstein
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Joana Rocha-Pereira
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Judith Breuer
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
12
|
Howley E, Golwala Z, Buckland M, Barzaghi F, Ghosh S, Hackett S, Hague R, Hauck F, Holzer U, Klocperk A, Koskenvuo M, Marcus N, Marzollo A, Pac M, Sinclair J, Speckmann C, Soomann M, Speirs L, Suresh S, Taque S, van Montfrans J, von Bernuth H, Wainstein BK, Worth A, Davies EG, Kreins AY. Impact of newborn screening for SCID on the management of congenital athymia. J Allergy Clin Immunol 2024; 153:330-334. [PMID: 37678573 PMCID: PMC10940165 DOI: 10.1016/j.jaci.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Newborn screening (NBS) programs for severe combined immunodeficiency facilitate early diagnosis of severe combined immunodeficiency and promote early treatment with hematopoietic stem cell transplantation, resulting in improved clinical outcomes. Infants with congenital athymia are also identified through NBS because of severe T-cell lymphopenia. With the expanding introduction of NBS programs, referrals of athymic patients for treatment with thymus transplantation have recently increased at Great Ormond Street Hospital (GOSH) (London, United Kingdom). OBJECTIVE We studied the impact of NBS on timely diagnosis and treatment of athymic infants with thymus transplantation at GOSH. METHODS We compared age at referral and complications between athymic infants diagnosed after clinical presentation (n = 25) and infants identified through NBS (n = 19) who were referred for thymus transplantation at GOSH between October 2019 and February 2023. We assessed whether age at time of treatment influences thymic output at 6 and 12 months after transplantation. RESULTS The infants referred after identification through NBS were significantly younger and had fewer complications, in particular fewer infections. All deaths occurred in the group of those who did not undergo NBS, including 6 patients before and 2 after thymus transplantation because of preexisting infections. In the absence of significant comorbidities or diagnostic uncertainties, timely treatment was achieved more frequently after NBS. Treatment when younger than age 4 months was associated with higher thymic output at 6 and 12 months after transplantation. CONCLUSION NBS contributes to earlier recognition of congenital athymia, promoting referral of athymic patients for thymus transplantation before they acquire infections or other complications and facilitating treatment at a younger age, thus playing an important role in improving their outcomes.
Collapse
Affiliation(s)
- Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Zainab Golwala
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Matthew Buckland
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Scott Hackett
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Rosie Hague
- Department of Paediatric Infectious Diseases and Immunology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ursula Holzer
- University Children's Hospital, Eberhard Karls University, Tübingen, Germany
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Israel
| | - Minna Koskenvuo
- Division of Hematology-Oncology and Stem Cell Transplantation, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Nufar Marcus
- Kipper Institute for Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jan Sinclair
- Starship Children's Hospital, Auckland, New Zealand
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center-University of Freiburg, Germany
| | - Maarja Soomann
- Division of Immunology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lynne Speirs
- Department of Paediatrics, Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| | - Sneha Suresh
- Division of IHOPE, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Sophie Taque
- Department of Paediatrics, CHU Rennes, Rennes, France
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany; Labor Berlin Charité-Vivantes, Department of Immunology, Berlin, Germany; Berlin Institute of Health, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Brynn K Wainstein
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, Australia; School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - E Graham Davies
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
13
|
Schorpp M, Swann JB, Hess I, Ho HC, Pietsch TW, Boehm T. Foxn1 is not essential for T-cell development in teleosts. Eur J Immunol 2023; 53:e2350725. [PMID: 37724048 DOI: 10.1002/eji.202350725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
In mammals, T-cell development depends on the activity of the Foxn1 transcription factor in the thymic epithelium; mutations in the vertebrate-specific Foxn1 gene are associated with profound T-cell lymphopenia and fatal immunodeficiency. Here, we examined the extent of T-cell development in teleosts lacking a functional foxn1 gene. In zebrafish carrying a deleterious internal deletion of foxn1, reduced but robust lymphopoietic activity is maintained in the mutant thymus. Moreover, pseudogenization or loss of foxn1 in the genomes of deep-sea anglerfishes is independent of the presence or absence of the canonical signatures of the T-cell lineage. Thus, in contrast to the situation in mammals, the teleost thymus can support foxn1-independent lymphopoiesis, most likely through the activity of the Foxn4, an ancient metazoan paralog of Foxn1. Our results imply that during the early stages of vertebrate evolution, genetic control of thymopoiesis was functionally redundant and thus robust; in mammals, the genetic network was reorganized to become uniquely dependent on the FOXN1 transcription factor.
Collapse
Affiliation(s)
| | - Jeremy B Swann
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Isabell Hess
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | - Hsuan-Ching Ho
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
- Department and Graduate Institution of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Theodore W Pietsch
- School of Aquatic and Fishery Sciences and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Thomas Boehm
- Max Planck Institute of Immunobiology, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Min H, Valente LA, Xu L, O'Neil SM, Begg LR, Kurtzberg J, Filiano AJ. Improving thymus implantation for congenital athymia with interleukin-7. Clin Transl Immunology 2023; 12:e1475. [PMID: 38020730 PMCID: PMC10665642 DOI: 10.1002/cti2.1475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Thymus implantation is a recently FDA-approved therapy for congenital athymia. Patients receiving thymus implantation develop a functional but incomplete T cell compartment. Our objective was to develop a mouse model to study clinical thymus implantation in congenital athymia and to optimise implantation procedures to maximise T cell education and expansion of naïve T cells. Methods Using Foxn1 nu athymic mice as recipients, we tested MHC-matched and -mismatched donor thymi that were implanted as fresh tissue or cultured to remove donor T cells. We first implanted thymus under the kidney capsule and then optimised intramuscular implantation. Using competitive adoptive transfer assays, we investigated whether the failure of newly developed T cells to expand into a complete T cell compartment was because of intrinsic deficits or whether there were deficits in engaging MHC molecules in the periphery. Finally, we tested whether recombinant IL-7 would promote the expansion of host naïve T cells educated by the implanted thymus. Results We determined that thymus implants in Foxn1 nu athymic mice mimic many aspects of clinical thymus implants in patients with congenital athymia. When we implanted cultured, MHC-mismatched donor thymus into Foxn1 nu athymic mice, mice developed a limited T cell compartment with notably underdeveloped naïve populations and overrepresented memory-like T cells. Newly generated T cells were predominantly educated by MHC molecules expressed by the donor thymus, thus potentially undergoing another round of selection once in the peripheral circulation. Using competitive adoptive transfer assays, we compared expansion rates of T cells educated on donor thymus versus T cells educated during typical thymopoiesis in MHC-matched and -mismatched environments. Once in the circulation, regardless of the MHC haplotypes, T cells educated on a donor thymus underwent abnormal expansion with initially more robust proliferation coupled with greater cell death, resembling IL-7 independent spontaneous expansion. Treating implanted mice with recombinant interleukin (IL-7) promoted homeostatic expansion that improved T cell development, expanded the T cell receptor repertoire, and normalised the naïve T cell compartment. Conclusion We conclude that implanting cultured thymus into the muscle of Foxn1 nu athymic mice is an appropriate system to study thymus implantation for congenital athymia and immunodeficiencies. T cells are educated by the donor thymus, yet naïve T cells have deficits in expansion. IL-7 greatly improves T cell development after thymus implantation and may offer a novel strategy to improve outcomes of clinical thymus implantation.
Collapse
Affiliation(s)
- Hyunjung Min
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Laura A Valente
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PathologyDuke UniversityDurhamNCUSA
| | - Li Xu
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Shane M O'Neil
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Lauren R Begg
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
| | - Joanne Kurtzberg
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PediatricsDuke UniversityDurhamNCUSA
| | - Anthony J Filiano
- Marcus Center for Cellular CuresDuke UniversityDurhamNCUSA
- Department of PathologyDuke UniversityDurhamNCUSA
- Department of NeurosurgeryDuke UniversityDurhamNCUSA
- Department of ImmunologyDuke UniversityDurhamNCUSA
| |
Collapse
|
15
|
Ragazzini R, Boeing S, Zanieri L, Green M, D'Agostino G, Bartolovic K, Agua-Doce A, Greco M, Watson SA, Batsivari A, Ariza-McNaughton L, Gjinovci A, Scoville D, Nam A, Hayday AC, Bonnet D, Bonfanti P. Defining the identity and the niches of epithelial stem cells with highly pleiotropic multilineage potency in the human thymus. Dev Cell 2023; 58:2428-2446.e9. [PMID: 37652013 PMCID: PMC10957394 DOI: 10.1016/j.devcel.2023.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/19/2022] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Thymus is necessary for lifelong immunological tolerance and immunity. It displays a distinctive epithelial complexity and undergoes age-dependent atrophy. Nonetheless, it also retains regenerative capacity, which, if harnessed appropriately, might permit rejuvenation of adaptive immunity. By characterizing cortical and medullary compartments in the human thymus at single-cell resolution, in this study we have defined specific epithelial populations, including those that share properties with bona fide stem cells (SCs) of lifelong regenerating epidermis. Thymic epithelial SCs display a distinctive transcriptional profile and phenotypic traits, including pleiotropic multilineage potency, to give rise to several cell types that were not previously considered to have shared origin. Using here identified SC markers, we have defined their cortical and medullary niches and shown that, in vitro, the cells display long-term clonal expansion and self-organizing capacity. These data substantively broaden our knowledge of SC biology and set a stage for tackling thymic atrophy and related disorders.
Collapse
Affiliation(s)
- Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Stefan Boeing
- Bioinformatics & Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Luca Zanieri
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | - Mary Green
- Experimental Histopathology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giuseppe D'Agostino
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Plasticell Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Kerol Bartolovic
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Agua-Doce
- Flow Cytometry Core, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maria Greco
- Single Cell Facility, MRC WIMM, University of Oxford, Oxford OX3 9DS, UK
| | - Sara A Watson
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antoniana Batsivari
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Asllan Gjinovci
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK
| | | | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, USA
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rosslyn Hill, London NW3 2PP, UK.
| |
Collapse
|
16
|
Moses A, Bhalla P, Thompson A, Lai L, Coskun FS, Seroogy CM, de la Morena MT, Wysocki CA, van Oers NSC. Comprehensive phenotypic analysis of diverse FOXN1 variants. J Allergy Clin Immunol 2023; 152:1273-1291.e15. [PMID: 37419334 PMCID: PMC11071152 DOI: 10.1016/j.jaci.2023.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/05/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Thymus hypoplasia due to stromal cell problems has been linked to mutations in several transcription factors, including Forkhead box N1 (FOXN1). FOXN1 supports T-cell development by regulating the formation and expansion of thymic epithelial cells (TECs). While autosomal recessive FOXN1 mutations result in a nude and severe combined immunodeficiency phenotype, the impact of single-allelic or compound heterozygous FOXN1 mutations is less well-defined. OBJECTIVE With more than 400 FOXN1 mutations reported, their impact on protein function and thymopoiesis remains unclear for most variants. We developed a systematic approach to delineate the functional impact of diverse FOXN1 variants. METHODS Selected FOXN1 variants were tested with transcriptional reporter assays and imaging studies. Thymopoiesis was assessed in mouse lines genocopying several human FOXN1 variants. Reaggregate thymus organ cultures were used to compare the thymopoietic potential of the FOXN1 variants. RESULTS FOXN1 variants were categorized into benign, loss- or gain-of-function, and/or dominant-negatives. Dominant negative activities mapped to frameshift variants impacting the transactivation domain. A nuclear localization signal was mapped within the DNA binding domain. Thymopoiesis analyses with mouse models and reaggregate thymus organ cultures revealed distinct consequences of particular Foxn1 variants on T-cell development. CONCLUSIONS The potential effect of a FOXN1 variant on T-cell output from the thymus may relate to its effects on transcriptional activity, nuclear localization, and/or dominant negative functions. A combination of functional assays and thymopoiesis comparisons enabled a categorization of diverse FOXN1 variants and their potential impact on T-cell output from the thymus.
Collapse
Affiliation(s)
- Angela Moses
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Pratibha Bhalla
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Austin Thompson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Conn
| | - Fatma S Coskun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Christine M Seroogy
- the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Maria Teresa de la Morena
- the Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Christian A Wysocki
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Nicolai S C van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex; Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex; Microbiology, University of Texas Southwestern Medical Center, Dallas, Tex.
| |
Collapse
|
17
|
Yakici N, Kreins AY, Catak MC, Babayeva R, Erman B, Kenney H, Gungor HE, Cea PA, Kawai T, Bosticardo M, Delmonte OM, Adams S, Fan YT, Pala F, Turkyilmaz A, Howley E, Worth A, Kot H, Sefer AP, Kara A, Bulutoglu A, Bilgic-Eltan S, Altunbas MY, Bayram Catak F, Karakus IS, Karatay E, Tekeoglu SD, Eser M, Albayrak D, Citli S, Kiykim A, Karakoc-Aydiner E, Ozen A, Ghosh S, Gohlke H, Orhan F, Notarangelo LD, Davies EG, Baris S. Expanding the clinical and immunological phenotypes of PAX1-deficient SCID and CID patients. Clin Immunol 2023; 255:109757. [PMID: 37689091 PMCID: PMC10958138 DOI: 10.1016/j.clim.2023.109757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Paired box 1 (PAX1) deficiency has been reported in a small number of patients diagnosed with otofaciocervical syndrome type 2 (OFCS2). We described six new patients who demonstrated variable clinical penetrance. Reduced transcriptional activity of pathogenic variants confirmed partial or complete PAX1 deficiency. Thymic aplasia and hypoplasia were associated with impaired T cell immunity. Corrective treatment was required in 4/6 patients. Hematopoietic stem cell transplantation resulted in poor immune reconstitution with absent naïve T cells, contrasting with the superior recovery of T cell immunity after thymus transplantation. Normal ex vivo differentiation of PAX1-deficient CD34+ cells into mature T cells demonstrated the absence of a hematopoietic cell-intrinsic defect. New overlapping features with DiGeorge syndrome included primary hypoparathyroidism (n = 5) and congenital heart defects (n = 2), in line with PAX1 expression during early embryogenesis. Our results highlight new features of PAX1 deficiency, which are relevant to improving early diagnosis and identifying patients requiring corrective treatment.
Collapse
Affiliation(s)
- Nalan Yakici
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Alexandra Y Kreins
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom; Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey; Can Sucak, Research Laboratory for Translational Immunology, Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Turkey
| | - Heather Kenney
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Hatice Eke Gungor
- Division of Pediatric Allergy and Immunology, Erciyes City Hospital, Turkey
| | - Pablo A Cea
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Tomoki Kawai
- Shizuoka Children's Hospital, Shizuoka, Department of Allergy and Clinical Immunology, Japan
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Ottavia Maria Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Stuart Adams
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Yu-Tong Fan
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Evey Howley
- Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Hakan Kot
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Alper Bulutoglu
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic-Eltan
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Feyza Bayram Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Emrah Karatay
- Department of Radiology, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Sidem Didar Tekeoglu
- Can Sucak, Research Laboratory for Translational Immunology, Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Turkey; Department of Pediatric Immunology, Hacettepe University, Ankara, Turkey
| | - Metin Eser
- Department of Medical Genetics, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Davut Albayrak
- Department of Pediatrics, Division of Pediatric Hematology, Medicalpark Hospital, Samsun, Turkey
| | - Senol Citli
- Department of Medical Genetics, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ayca Kiykim
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sujal Ghosh
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Düsseldorf, Germany; Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fazil Orhan
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Faculty of Medicine, Karadeniz Technical University Trabzon, Turkey
| | - Luigi D Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - E Graham Davies
- Great Ormond Street Institute of Child Health, Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, United Kingdom; Department of Immunology and Gene therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
18
|
Dias A, Damaceno-Rodrigues N, Gimenez T, Oliveira P, Zerbini M, Carneiro-Sampaio M, Odone V, Jatene M, Vasconcelos D, Rocha V, Novak E. A model for preservation of thymocyte-depleted thymus. Braz J Med Biol Res 2023; 56:e12647. [PMID: 37585915 PMCID: PMC10427159 DOI: 10.1590/1414-431x2023e12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
DiGeorge syndrome is a disorder caused by a microdeletion on the long arm of chromosome 22. Approximately 1% of patients diagnosed with DiGeorge syndrome may have an absence of a functional thymus, which characterizes the complete form of the syndrome. These patients require urgent treatment to reconstitute T cell immunity. Thymus transplantation is a promising investigational procedure for reconstitution of thymic function in infants with congenital athymia. Here, we demonstrate a possible optimization of the preparation of thymus slices for transplantation through prior depletion of thymocytes and leukocyte cell lineages followed by cryopreservation with cryoprotective media (5% dextran FP 40, 5% Me2SO, and 5% FBS) while preserving tissue architecture. Thymus fragments were stored in liquid nitrogen at -196°C for 30 days or one year. The tissue architecture of the fragments was preserved, including the distinction between medullary thymic epithelial cells (TECs), cortical TECs, and Hassall bodies. Moreover, depleted thymus fragments cryopreserved for one year were recolonized by intrathymic injections of 3×106 thymocytes per mL, demonstrating the capability of these fragments to support T cell development. Thus, this technique opens up the possibility of freezing and storing large volumes of thymus tissue for immediate transplantation into patients with DiGeorge syndrome or atypical (Omenn-like) phenotype.
Collapse
Affiliation(s)
- A.S. Dias
- Laboratório de Pediatria Clínica LIM36, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Tratamento de Câncer Infantil, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N.R. Damaceno-Rodrigues
- Departamento de Patologia, Laboratório de Biologia Celular (LIM 59), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - T.M. Gimenez
- Laboratório de Pediatria Clínica LIM36, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Tratamento de Câncer Infantil, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - P.M. Oliveira
- Setor de Cirurgia Cardíaca Pediátrica, Hospital do Coração da Associação do Beneficente Síria, São Paulo, SP, Brasil
| | - M.C. Zerbini
- Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M. Carneiro-Sampaio
- Laboratório de Pediatria Clínica LIM36, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Odone
- Laboratório de Pediatria Clínica LIM36, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Instituto de Tratamento de Câncer Infantil, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.B. Jatene
- Setor de Cirurgia Cardíaca Pediátrica, Hospital do Coração da Associação do Beneficente Síria, São Paulo, SP, Brasil
| | - D.M. Vasconcelos
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM 56), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM 31), Serviço de Hematologia, Hemoterapia e Terapia Celular, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Rocha
- Fundação Pró-Sangue São Paulo, Hemocentro de São Paulo, São Paulo, SP, Brasil
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM 31), Serviço de Hematologia, Hemoterapia e Terapia Celular, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.M. Novak
- Fundação Pró-Sangue São Paulo, Hemocentro de São Paulo, São Paulo, SP, Brasil
- Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM 31), Serviço de Hematologia, Hemoterapia e Terapia Celular, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
19
|
Corbali O, Gemici Karaaslan HB, Aydemir S, Onal P, Kendir Demirkol Y, Nepesov S, Kiykim A, Cokugras H. Immune Reconstitution Inflammatory Syndrome After Hematopoietic Stem Cell Transplantation in a FOXN1 -deficient Patient. J Pediatr Hematol Oncol 2023; 45:275-277. [PMID: 37146104 DOI: 10.1097/mph.0000000000002677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 03/22/2023] [Indexed: 05/07/2023]
Abstract
The FOXN1 gene mutation is a unique disorder that causes the nude severe combined immunodeficiency phenotype. In patients with severe combined immunodeficiency, hematopoietic stem cell transplantation (HSCT) is life-saving if performed earlier. Thymic transplantation is the curative treatment for FOXN1 deficiency because the main pathology is thymic stromal changes. In this report, we describe the clinical features of a Turkish patient with a homozygous FOXN1 mutation treated with HSCT from his human leukocyte antigen-matched sibling. On follow-up, he showed Bacille Calmette Guerin adenitis and was evaluated as having immune reconstitution inflammatory syndrome. By presenting our patient, we aimed to draw attention to the development of HSCT and subsequent immune reconstitution inflammatory syndrome as a treatment option in patients with FOXN1 deficiency.
Collapse
Affiliation(s)
- Osman Corbali
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine
| | | | - Sezin Aydemir
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Immunology and Allergy
| | - Pinar Onal
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Infectious Diseases
| | | | - Serdar Nepesov
- Istanbul Medipol University, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Immunology and Allergy
| | - Haluk Cokugras
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Immunology and Allergy
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Infectious Diseases
| |
Collapse
|
20
|
Oftedal BE, Assing K, Baris S, Safgren SL, Johansen IS, Jakobsen MA, Babovic-Vuksanovic D, Agre K, Klee EW, Majcic E, Ferré EM, Schmitt MM, DiMaggio T, Rosen LB, Rahman MO, Chrysis D, Giannakopoulos A, Garcia MT, González-Granado LI, Stanley K, Galant-Swafford J, Suwannarat P, Meyts I, Lionakis MS, Husebye ES. Dominant-negative heterozygous mutations in AIRE confer diverse autoimmune phenotypes. iScience 2023; 26:106818. [PMID: 37235056 PMCID: PMC10206195 DOI: 10.1016/j.isci.2023.106818] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1) is an autosomal recessive disease characterized by severe and childhood onset organ-specific autoimmunity caused by mutations in the autoimmune regulator (AIRE) gene. More recently, dominant-negative mutations within the PHD1, PHD2, and SAND domains have been associated with an incompletely penetrant milder phenotype with later onset familial clustering, often masquerading as organ-specific autoimmunity. Patients with immunodeficiencies or autoimmunity where genetic analyses revealed heterozygous AIRE mutations were included in the study and the dominant-negative effects of the AIRE mutations were functionally assessed in vitro. We here report additional families with phenotypes ranging from immunodeficiency, enteropathy, and vitiligo to asymptomatic carrier status. APS-1-specific autoantibodies can hint to the presence of these pathogenic AIRE variants although their absence does not rule out their presence. Our findings suggest functional studies of heterozygous AIRE variants and close follow-up of identified individuals and their families.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Safa Baris
- Marmara University, Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Stephanie L. Safgren
- Center for Individualized Medicine, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Isik S. Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | | | | | | | - Eric W. Klee
- Mayo Clinic, Department of Quantitative Health Sciences, Rochester, MN, USA
| | - Emina Majcic
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elise M.N. Ferré
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Monica M. Schmitt
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tom DiMaggio
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Muhammad Obaidur Rahman
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Dionisios Chrysis
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical School, University of Patras, Rion, Greece
| | - Aristeidis Giannakopoulos
- Department of Pediatrics, Division of Pediatric Endocrinology, Medical School, University of Patras, Rion, Greece
| | - Maria Tallon Garcia
- Pediatric Hematology and Oncology Department, Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Luis Ignacio González-Granado
- Unidad de Inmunodeficiencias, Pediatría, Instituto de Investigación Hospital 12 de Octubre, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Katherine Stanley
- Mid-Atlantic Permanente Medical Group, Kaiser Permanente MidAtlantic, Rockville, MD, USA
| | | | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Kaiser Permanente MidAtlantic, Rockville, MD, USA
| | - Isabelle Meyts
- Department of Pediatrics, University Hospital Leuven, Laboratory for Inborn Errors of Immunity, Department of Microbiology Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen and Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
Szczawińska-Popłonyk A, Schwartzmann E, Chmara Z, Głukowska A, Krysa T, Majchrzycki M, Olejnicki M, Ostrowska P, Babik J. Chromosome 22q11.2 Deletion Syndrome: A Comprehensive Review of Molecular Genetics in the Context of Multidisciplinary Clinical Approach. Int J Mol Sci 2023; 24:ijms24098317. [PMID: 37176024 PMCID: PMC10179617 DOI: 10.3390/ijms24098317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The 22q11.2 deletion syndrome is a multisystemic disorder characterized by a marked variability of phenotypic features, making the diagnosis challenging for clinicians. The wide spectrum of clinical manifestations includes congenital heart defects-most frequently conotruncal cardiac anomalies-thymic hypoplasia and predominating cellular immune deficiency, laryngeal developmental defects, midline anomalies with cleft palate and velar insufficiency, structural airway defects, facial dysmorphism, parathyroid and thyroid gland hormonal dysfunctions, speech delay, developmental delay, and neurocognitive and psychiatric disorders. Significant progress has been made in understanding the complex molecular genetic etiology of 22q11.2 deletion syndrome underpinning the heterogeneity of clinical manifestations. The deletion is caused by chromosomal rearrangements in meiosis and is mediated by non-allelic homologous recombination events between low copy repeats or segmental duplications in the 22q11.2 region. A range of genetic modifiers and environmental factors, as well as the impact of hemizygosity on the remaining allele, contribute to the intricate genotype-phenotype relationships. This comprehensive review has been aimed at highlighting the molecular genetic background of 22q11.2 deletion syndrome in correlation with a clinical multidisciplinary approach.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Eyal Schwartzmann
- Medical Student Scientific Society, English Division, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Zuzanna Chmara
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Antonina Głukowska
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Tomasz Krysa
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Maksymilian Majchrzycki
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Maurycy Olejnicki
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Paulina Ostrowska
- Medical Student Scientific Society, Karol Marcinkowski University of Medical Sciences, 60-572 Poznań, Poland
| | - Joanna Babik
- Gynecology and Obstetrics with Pregnancy Pathology Unit, Franciszek Raszeja Municipal Hospital, 60-834 Poznań, Poland
| |
Collapse
|
22
|
Kreins AY, Worth A, Ghosh S, Mohammed RW, Davies EG. First Use of Thymus Transplantation in PAX1 Deficiency. J Clin Immunol 2023:10.1007/s10875-023-01478-8. [PMID: 37060484 DOI: 10.1007/s10875-023-01478-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Affiliation(s)
- Alexandra Y Kreins
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Dusseldorf, Germany
| | - Reem W Mohammed
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - E Graham Davies
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
23
|
Ramos SA, Armitage LH, Morton JJ, Alzofon N, Handler D, Kelly G, Homann D, Jimeno A, Russ HA. Generation of functional thymic organoids from human pluripotent stem cells. Stem Cell Reports 2023; 18:829-840. [PMID: 36963390 PMCID: PMC10147832 DOI: 10.1016/j.stemcr.2023.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/26/2023] Open
Abstract
The thymus is critical for the establishment of a functional and self-tolerant adaptive immune system but involutes with age, resulting in reduced naive T cell output. Generation of a functional human thymus from human pluripotent stem cells (hPSCs) is an attractive regenerative strategy. Direct differentiation of thymic epithelial progenitors (TEPs) from hPSCs has been demonstrated in vitro, but functional thymic epithelial cells (TECs) only form months after transplantation of TEPs in vivo. We show the generation of TECs in vitro in isogenic stem cell-derived thymic organoids (sTOs) consisting of TEPs, hematopoietic progenitor cells, and mesenchymal cells, differentiated from the same hPSC line. sTOs support T cell development, express key markers of negative selection, including the autoimmune regulator (AIRE) protein, and facilitate regulatory T cell development. sTOs provide the basis for functional patient-specific thymic organoid models, allowing for the study of human thymus function, T cell development, and transplant immunity.
Collapse
Affiliation(s)
- Stephan A Ramos
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lucas H Armitage
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John J Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nathaniel Alzofon
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Diana Handler
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dirk Homann
- Diabetes, Metabolism and Obesity Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Holger A Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Diabetes Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pathology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
24
|
Silva CS, Kundu B, Gomes JM, Fernandes EM, Reis RL, Kundu SC, Martins A, Neves NM. Development of bilayered porous silk scaffolds for thymus bioengineering. BIOMATERIALS ADVANCES 2023; 147:213320. [PMID: 36739783 DOI: 10.1016/j.bioadv.2023.213320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
The thymus coordinates the development and selection of T cells. It is structured into two main compartments: the cortex and the medulla. The replication of such complex 3D environment has been challenged by bioengineering approaches. Nevertheless, the effect of the scaffold microstructure on thymic epithelial cell (TEC) cultures has not been deeply investigated. Here, we developed bilayered porous silk fibroin scaffolds and tested their effect on TEC co-cultures. The small and large pore scaffolds presented a mean pore size of 84.33 ± 21.51 μm and 194.90 ± 61.38 μm, respectively. The highly porous bilayered scaffolds presented a high water absorption and water content (> 94 %), together with mechanical properties in the range of the native tissue. TEC (i.e., medullary (mTEC) and cortical (cTEC) cell lines) proliferation is increased in scaffolds with larger pores. The co-culture of both TEC lines in the bilayered porous silk scaffolds presents enhanced cell proliferation and metabolic activity when compared with mTEC in single culture. Also, when the co-culture occurred with cTEC in the small pores layer and mTEC in the large pores layer, a 9.2- and 18.9-fold increase in Foxn1 and Icam1 gene expression in cTEC is evident. These results suggest that scaffold microstructure and the co-culture influence TEC's behaviour. Bilayered silk scaffolds with adjusted microstructure are a valid alternative for TEC culture, having possible applications in advanced thymus bioengineering strategies.
Collapse
Affiliation(s)
- Catarina S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Banani Kundu
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Joana M Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Emanuel M Fernandes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Albino Martins
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
25
|
Giardino G, Romano R, Lougaris V, Castagnoli R, Cillo F, Leonardi L, La Torre F, Soresina A, Federici S, Cancrini C, Pacillo L, Toriello E, Cinicola BL, Corrente S, Volpi S, Marseglia GL, Pignata C, Cardinale F. Immune tolerance breakdown in inborn errors of immunity: Paving the way to novel therapeutic approaches. Clin Immunol 2023; 251:109302. [PMID: 36967025 DOI: 10.1016/j.clim.2023.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/12/2023]
Abstract
Up to 25% of the patients with inborn errors of immunity (IEI) also exhibit immunodysregulatory features. The association of immune dysregulation and immunodeficiency may be explained by different mechanisms. The understanding of mechanisms underlying immune dysregulation in IEI has paved the way for the development of targeted treatments. In this review article, we will summarize the mechanisms of immune tolerance breakdown and the targeted therapeutic approaches to immune dysregulation in IEI.
Collapse
Affiliation(s)
- Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Roberta Romano
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Francesca Cillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Silvia Federici
- Division of Rheumatology, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Toriello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Università degli Studi di Genova, Genoa, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
26
|
Mongkonsritragoon W, Huang J, Fredrickson M, Seth D, Poowuttikul P. Positive Newborn Screening for Severe Combined Immunodeficiency: What Should the Pediatrician Do? CLINICAL MEDICINE INSIGHTS: PEDIATRICS 2023; 17:11795565231162839. [PMID: 37025258 PMCID: PMC10071162 DOI: 10.1177/11795565231162839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/23/2023] [Indexed: 04/03/2023]
Abstract
Severe combined immunodeficiency (SCID) is a group of diseases characterized by low T-cell count and impaired T-cell function, resulting in severe cellular and humoral immune defects. If not diagnosed and treated promptly, infants affected by this condition can develop severe infections which will result in death. Delayed treatment can markedly reduce the survival outcome of infants with SCID. T-cell receptor excision circle (TREC) levels are measured on newborn screening to promptly identify infants with SCID. It is important for primary care providers and pediatricians to understand the approach to managing infants with positive TREC-based newborn screening as they may be the first contact for infants with SCID. Primary care providers should be familiar with providing anticipatory guidance to the family in regard to protective isolation, measures to minimize the risk of infection, and the coordination of care with the SCID coordinating center team of specialists. In this article, we use case-based scenarios to review the principles of TREC-based newborn screening, the genetics and subtypes of SCID, and management for an infant with a positive TREC-based newborn screen.
Collapse
Affiliation(s)
- Wimwipa Mongkonsritragoon
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Jenny Huang
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Mary Fredrickson
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
| | - Divya Seth
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
| | - Pavadee Poowuttikul
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit,
MI, USA
- Division of Allergy, Immunology and
Rheumatology, Department of Pediatrics, Central Michigan University College of
Medicine, Mt. Pleasant, MI, USA
- Pavadee Poowuttikul, Division Chief of
Allergy/Immunology and Rheumatology, Training Program Director of
Allergy/Immunology, Medical Director of Primary Immunodeficiency Newborn
Screening Follow-up Coordinating Center, Central Michigan University, Children’s
Hospital of Michigan, 3950 Beaubien, 4th Floor, Pediatric Specialty Building,
Detroit, MI 48201, USA.
| |
Collapse
|
27
|
Howley E, Davies EG, Kreins AY. Congenital Athymia: Unmet Needs and Practical Guidance. Ther Clin Risk Manag 2023; 19:239-254. [PMID: 36935770 PMCID: PMC10022451 DOI: 10.2147/tcrm.s379673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
Inborn errors of thymic stromal cell development and function which are associated with congenital athymia result in life-threatening immunodeficiency with susceptibility to infections and autoimmunity. Athymic patients can be treated by thymus transplantation using cultured donor thymus tissue. Outcomes in patients treated at Duke University Medical Center and Great Ormond Street Hospital (GOSH) over the past three decades have shown that sufficient T-cell immunity can be recovered to clear and prevent infections, but post-treatment autoimmune manifestations are relatively common. Whilst thymus transplantation offers the chance of long-term survival, significant challenges remain to optimise the outcomes for the patients. In this review, we will discuss unmet needs and offer practical guidance based on the experience of the European Thymus Transplantation programme at GOSH. Newborn screening (NBS) for severe combined immunodeficiency (SCID) and routine use of next-generation sequencing (NGS) platforms have improved early recognition of congenital athymia and increasing numbers of patients are being referred for thymus transplantation. Nevertheless, there remain delays in diagnosis, in particular when the cause is genetically undefined, and treatment accessibility needs to be improved. The majority of athymic patients have syndromic features with acute and chronic complex health issues, requiring life-long multidisciplinary and multicentre collaboration to optimise their medical and social care. Comprehensive follow up after thymus transplantation including monitoring of immunological results, management of co-morbidities and patient and family quality-of-life experience, is vital to understanding long-term outcomes for this rare cohort of patients. Alongside translational research into improving strategies for thymus replacement therapy, patient-focused clinical research will facilitate the design of strategies to improve the overall care for athymic patients.
Collapse
Affiliation(s)
- Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - E Graham Davies
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, UK
- Correspondence: Alexandra Y Kreins, Email
| |
Collapse
|
28
|
Bhalla P, Du Q, Kumar A, Xing C, Moses A, Dozmorov I, Wysocki CA, Cleaver OB, Pirolli TJ, Markert ML, de la Morena MT, Baldini A, van Oers NS. Mesenchymal cell replacement corrects thymic hypoplasia in murine models of 22q11.2 deletion syndrome. J Clin Invest 2022; 132:e160101. [PMID: 36136514 PMCID: PMC9663160 DOI: 10.1172/jci160101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is the most common human chromosomal microdeletion, causing developmentally linked congenital malformations, thymic hypoplasia, hypoparathyroidism, and/or cardiac defects. Thymic hypoplasia leads to T cell lymphopenia, which most often results in mild SCID. Despite decades of research, the molecular underpinnings leading to thymic hypoplasia in 22q11.2DS remain unknown. Comparison of embryonic thymuses from mouse models of 22q11.2DS (Tbx1neo2/neo2) revealed proportions of mesenchymal, epithelial, and hematopoietic cell types similar to those of control thymuses. Yet, the small thymuses were growth restricted in fetal organ cultures. Replacement of Tbx1neo2/neo2 thymic mesenchymal cells with normal ones restored tissue growth. Comparative single-cell RNA-Seq of embryonic thymuses uncovered 17 distinct cell subsets, with transcriptome differences predominant in the 5 mesenchymal subsets from the Tbx1neo2/neo2 cell line. The transcripts affected included those for extracellular matrix proteins, consistent with the increased collagen deposition we observed in the small thymuses. Attenuating collagen cross-links with minoxidil restored thymic tissue expansion for hypoplastic lobes. In colony-forming assays, the Tbx1neo2/neo2-derived mesenchymal cells had reduced expansion potential, in contrast to the normal growth of thymic epithelial cells. These findings suggest that mesenchymal cells were causal to the small embryonic thymuses in the 22q11.2DS mouse models, which was correctable by substitution with normal mesenchyme.
Collapse
Affiliation(s)
| | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Departments of Bioinformatics and
- Population and Data Sciences, Departments of
| | | | | | | | | | - Timothy J. Pirolli
- Division of Pediatric Cardiothoracic Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Louise Markert
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington, and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Antonio Baldini
- Department Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicolai S.C. van Oers
- Department of Immunology
- Pediatrics
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
29
|
Beken B, Castagnoli R, Candotti F. Editorial comment on "Inborn errors of immunity associated with defects of thymic development". Pediatr Allergy Immunol 2022; 33:e13847. [PMID: 36156817 DOI: 10.1111/pai.13847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Burcin Beken
- Department of Pediatric Allergy and Immunology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Riccardo Castagnoli
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Provin N, Giraud M. Differentiation of Pluripotent Stem Cells Into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED. Front Immunol 2022; 13:930963. [PMID: 35844523 PMCID: PMC9277542 DOI: 10.3389/fimmu.2022.930963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
The thymus is a primary lymphoid organ essential for the induction of central immune tolerance. Maturing T cells undergo several steps of expansion and selection mediated by thymic epithelial cells (TECs). In APECED and other congenital pathologies, a deficiency in genes that regulate TEC development or their ability to select non auto-reactive thymocytes results in a defective immune balance, and consequently in a general autoimmune syndrome. Restoration of thymic function is thus crucial for the emergence of curative treatments. The last decade has seen remarkable progress in both gene editing and pluripotent stem cell differentiation, with the emergence of CRISPR-based gene correction, the trivialization of reprogramming of somatic cells to induced pluripotent stem cells (iPSc) and their subsequent differentiation into multiple cellular fates. The combination of these two approaches has paved the way to the generation of genetically corrected thymic organoids and their use to control thymic genetic pathologies affecting self-tolerance. Here we review the recent advances in differentiation of iPSc into TECs and the ability of the latter to support a proper and efficient maturation of thymocytes into functional and non-autoreactive T cells. A special focus is given on thymus organogenesis and pathway modulation during iPSc differentiation, on the impact of the 2/3D structure on the generated TECs, and on perspectives for therapeutic strategies in APECED based on patient-derived iPSc corrected for AIRE gene mutations.
Collapse
|
32
|
Bhalla P, Su DM, van Oers NSC. Thymus Functionality Needs More Than a Few TECs. Front Immunol 2022; 13:864777. [PMID: 35757725 PMCID: PMC9229346 DOI: 10.3389/fimmu.2022.864777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals’ own tissue is congenitally, clinically, or accidentally rendered non-functional.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology & Genetics, The University of North Texas Health Sciences Center, Fort Worth, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
33
|
Structural and Functional Thymic Biomarkers Are Involved in the Pathogenesis of Thymic Epithelial Tumors: An Overview. IMMUNO 2022. [DOI: 10.3390/immuno2020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The normal human thymus originates from the third branchial cleft as two paired anlages that descend into the thorax and fuse on the midline of the anterior–superior mediastinum. Alongside the epithelial and lymphoid components, different types of lymphoid accessory cells, stromal mesenchymal and endothelial cells migrate to, or develop in, the thymus. After reaching maximum development during early postnatal life, the human thymus decreases in size and lymphocyte output drops with age. However, thymic immunological functions persist, although they deteriorate progressively. Several major techniques were fundamental to increasing the knowledge of thymic development and function during embryogenesis, postnatal and adult life; these include immunohistochemistry, immunofluorescence, flow cytometry, in vitro colony assays, transplantation in mice models, fetal organ cultures (FTOC), re-aggregated thymic organ cultures (RTOC), and whole-organ thymic scaffolds. The thymic morphological and functional characterization, first performed in the mouse, was then extended to humans. The purpose of this overview is to provide a report on selected structural and functional biomarkers of thymic epithelial cells (TEC) involved in thymus development and lymphoid cell maturation, and on the historical aspects of their characterization, with particular attention being paid to biomarkers also involved in Thymic Epithelial Tumor (TET) pathogenesis. Moreover, a short overview of targeted therapies in TET, based on currently available experimental and clinical data and on potential future advances will be proposed.
Collapse
|