1
|
Scanu A, Maccarone MC, Caldara F, Regazzo G, Luisetto R, Masiero S. Thermal Water Reduces the Inflammatory Process Induced by the SARS-CoV-2 Spike Protein in Human Airway Epithelial Cells In Vitro. Biomedicines 2024; 12:2917. [PMID: 39767823 PMCID: PMC11672968 DOI: 10.3390/biomedicines12122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Although treatments using thermal water have yielded beneficial effects in respiratory tract infections, the effects of thermal water under experimental conditions similar to those triggered by SARS-CoV-2 have yet to be evaluated. This study aimed to assess whether thermal water could interfere with the interaction between SARS-CoV-2 and host cells and influence inflammatory factors. Methods: Human nasal epithelial primary cells (HNEpCs) were stimulated with SARS-CoV-2 spike protein in the presence or absence of thermal water or tap water. Cell viability, cytokine concentration, ACE2 and TMPRSS2 levels, and ACE2 activity were determined in the cell cultures. Results: Exposure of HNEpCs to spike protein increased IL-6, IL-8, and IL-1β production, with decreased production observed in the presence of thermal water at an optimal dose. Treatment of cells with tap water did not affect cytokine release in unstimulated or spike-stimulated cells. Spike-protein-stimulated HNEpCs showed reduced levels of ACE2, which were partially restored only in the presence of thermal water. Spike protein did not affect the TMPRSS2 levels of the cell lysates. Stimulation with spike protein induced an increase in the concentration of both receptors in the supernatants, while treatment with thermal water reduced TMPRSS2 levels in both the cells and supernatants. Stimulation with spike protein increased ACE2 activity, which was reduced with thermal water. Conclusions: This study shows the regulatory effects of mineral-rich thermal water on spike-protein-induced pro-inflammatory cytokine production and the amount and activity of receptors mainly involved in viral entry, suggesting a potential use of this treatment as a support therapy for SARS-CoV-2 infection of the upper respiratory tract.
Collapse
Affiliation(s)
- Anna Scanu
- Rehabilitation Unit, Department of Neuroscience-DNS, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (M.C.M.); (S.M.)
| | - Maria Chiara Maccarone
- Rehabilitation Unit, Department of Neuroscience-DNS, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (M.C.M.); (S.M.)
| | - Fabrizio Caldara
- Pietro d’Abano Thermal Studies Center, Via Jappelli 5, 35031 Abano Terme, Italy;
| | - Gianluca Regazzo
- Physical Medicine and Rehabilitation School, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Roberto Luisetto
- Department of Surgical Oncological and Gastroenterological Sciences-DISCOG, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Stefano Masiero
- Rehabilitation Unit, Department of Neuroscience-DNS, University of Padova, Via Giustiniani 2, 35128 Padova, Italy; (M.C.M.); (S.M.)
- Physical Medicine and Rehabilitation School, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| |
Collapse
|
2
|
Khanal R, Heinen N, Bogomolova A, Meister TL, Herrmann ST, Westhoven S, Nocke MK, Todt D, Jockenhövel F, Klein IM, Hartmann L, Vondran FWR, Steinmann E, Zimmer G, Ott M, Brown RJP, Sharma AD, Pfaender S. MicroRNAs modulate SARS-CoV-2 infection of primary human hepatocytes by regulating the entry factors ACE2 and TMPRSS2. Liver Int 2024; 44:2983-2995. [PMID: 39175256 DOI: 10.1111/liv.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND AND AIMS Severe acute respiratory syndrome coronavirus (SARS-CoV-2) preferentially infects the respiratory tract; however, several studies have implicated a multi-organ involvement. Hepatic dysfunctions caused by SARS-CoV-2 infection have been increasingly recognized and described to correlate with disease severity. To elucidate molecular factors that could contribute towards hepatic infection, we concentrated on microRNAs (miRNAs), a class of small non-coding RNAs that modulate various cellular processes and which are reported to be differentially regulated during liver injury. We aimed to study the infection of primary human hepatocytes (PHH) with SARS-CoV-2 and to evaluate the potential of miRNAs for modulating viral infection. METHODS We analysed liver autopsies from a coronavirus disease 19 (COVID-19)-positive cohort for the presence of viral RNA using Nanopore sequencing. PHH were used for the infection with SARS-CoV-2. The candidate miRNAs targeting angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) were identified using in silico approaches. To discover the potential regulatory mechanism, transfection experiments, qRT-PCRs, western blots and luciferase reporter assays were performed. RESULTS We could detect SARS-CoV-2 RNA in COVID-19-positive liver autopsies. We show that PHH express ACE2 and TMPRSS2 and can be readily infected with SARS-CoV-2, resulting in robust replication. Transfection of selected miRNA mimics reduced SARS-CoV-2 receptor expression and SARS-CoV-2 burden in PHH. In silico and biochemical analyses supported a potential direct binding of miR-141-3p to the SARS-CoV-2 genome. CONCLUSION We confirm that PHH are susceptible to SARS-CoV-2 infection and demonstrate selected miRNAs targeting SARS-CoV-2 entry factors and/or the viral genome reduce viral loads. These data provide novel insights into hepatic susceptibility to SARS-CoV-2 and associated dysfunctions in COVID-19.
Collapse
Affiliation(s)
- Rajendra Khanal
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Natalie Heinen
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Bogomolova
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Toni L Meister
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institute for Infection Research and Vaccine Development (IIRVD), Centre for Internal Medicine, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Simon T Herrmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Saskia Westhoven
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Maximilian K Nocke
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Freya Jockenhövel
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Isabel M Klein
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laura Hartmann
- Tissue Bank of the German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard J P Brown
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- Research Group Liver Regeneration & RNA Therapeutics, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Stephanie Pfaender
- Department for Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Research Unit Emerging Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Currey J, Ellsworth C, Khatun MS, Wang C, Chen Z, Liu S, Midkiff C, Xiao M, Ren M, Liu F, Elgazzaz M, Fox S, Maness NJ, Rappaport J, Lazartigues E, Blair R, Kolls JK, Mauvais-Jarvis F, Qin X. Upregulation of inflammatory genes and pathways links obesity to severe COVID-19. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167322. [PMID: 38942338 PMCID: PMC11330358 DOI: 10.1016/j.bbadis.2024.167322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
Obesity is a risk factor for developing severe COVID-19. However, the mechanism underlying obesity-accelerated COVID-19 remains unclear. Here, we report results from a study in which 2-3-month-old K18-hACE2 (K18) mice were fed a western high-fat diet (WD) or normal chow (NC) over 3 months before intranasal infection with a sublethal dose of SARS-CoV2 WA1 (a strain ancestral to the Wuhan variant). After infection, the WD-fed K18 mice lost significantly more body weight and had more severe lung inflammation than normal chow (NC)-fed mice. Bulk RNA-seq analysis of lungs and adipose tissue revealed a diverse landscape of various immune cells, inflammatory markers, and pathways upregulated in the infected WD-fed K18 mice when compared with the infected NC-fed control mice. The transcript levels of IL-6, an important marker of COVID-19 disease severity, were upregulated in the lung at 6-9 days post-infection in the WD-fed mice when compared to NC-fed mice. Transcriptome analysis of the lung and adipose tissue obtained from deceased COVID-19 patients found that the obese patients had an increase in the expression of genes and the activation of pathways associated with inflammation as compared to normal-weight patients (n = 2). The K18 mouse model and human COVID-19 patient data support a link between inflammation and an obesity-accelerated COVID-19 disease phenotype. These results also indicate that obesity-accelerated severe COVID-19 caused by SARS-CoV-2 WA1 infection in the K18 mouse model would be a suitable model for dissecting the cellular and molecular mechanisms underlying pathogenesis.
Collapse
Affiliation(s)
- Joshua Currey
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mst Shamima Khatun
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zheng Chen
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shumei Liu
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Cecily Midkiff
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mark Xiao
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mi Ren
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fengming Liu
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mona Elgazzaz
- Southeast Louisiana VA Medical Center, New Orleans, LA 70119, USA
| | - Sharon Fox
- Southeast Louisiana VA Medical Center, New Orleans, LA 70119, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Eric Lazartigues
- Southeast Louisiana VA Medical Center, New Orleans, LA 70119, USA
| | - Robert Blair
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA 70112, USA; Southeast Louisiana VA Medical Center, New Orleans, LA 70119, USA
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
5
|
Jeremiah SS, Das P, Venkatesan M, Albinzayed R, Ahmed A, Stevenson NJ, Corbally M, Alqahtani M, Al-Wedaie F, Farid E, Hejres S. Humoral and Innate Immunological Profile of Paediatric Recipients of Pfizer-BioNTech BNT162b2 mRNA Vaccine. Microorganisms 2024; 12:1389. [PMID: 39065157 PMCID: PMC11278604 DOI: 10.3390/microorganisms12071389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The Pfizer-BioNTech vaccine was one of the essential tools in curtailing the COVID-19 pandemic. Unlike conventional vaccines, this newly approved mRNA vaccine is taken up by cells, which leads to the synthesis of the specific viral Spike antigen. The vaccine was initially introduced for adults, and the immunological profile of adult recipients is well-characterized. The vaccine was approved for paediatric use much later after its efficacy and safety had been confirmed in children. However, the complete picture of how the paediatric immune system in children reacts to the vaccine is not well documented. Therefore, in order to better understand the immune response in children, we analysed the humoral response, immune cell count, and interferon signalling in paediatric vaccine recipients ranging between 5 and 17 years of age. Our findings suggest that the paediatric recipients elicit a robust humoral response that is sustained for at least three months. We also found that the vaccine triggered a transient lymphocytopenia similar to that observed during viral infection. Interestingly, we also found that the vaccine may sensitise the interferon signalling pathway, priming the cells to mount a potent response when exposed to interferons during a subsequent infection. The study offers new insights into the workings of the paediatric immune system and innate immunity, thereby opening the doors for further research in this field.
Collapse
Affiliation(s)
- Sundararaj Stanleyraj Jeremiah
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland—Medical University of Bahrain, Building 2441, Road 2835, Busaiteen 228, Bahrain; (P.D.)
| | - Priya Das
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland—Medical University of Bahrain, Building 2441, Road 2835, Busaiteen 228, Bahrain; (P.D.)
| | - Manu Venkatesan
- Hematology and Hematopathology Laboratory, King Hamad University Hospital, Busaiteen 228, Bahrain; (M.V.); (S.H.)
| | - Reem Albinzayed
- Medical Internship, King Hamad University Hospital, Busaiteen 228, Bahrain; (R.A.); (A.A.)
| | - Aysha Ahmed
- Medical Internship, King Hamad University Hospital, Busaiteen 228, Bahrain; (R.A.); (A.A.)
| | - Nigel John Stevenson
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland—Medical University of Bahrain, Building 2441, Road 2835, Busaiteen 228, Bahrain; (P.D.)
| | - Martin Corbally
- Department of Surgery, Royal College of Surgeons in Ireland—Medical University of Bahrain, Busaiteen 228, Bahrain;
| | - Manaf Alqahtani
- Department of Microbiology, Royal College of Surgeons in Ireland—Medical University of Bahrain, Busaiteen 228, Bahrain;
| | - Fatima Al-Wedaie
- Department of Pathology, Salmaniya Medical Complex, Government Hospital, Manama 329, Bahrain; (F.A.-W.); (E.F.)
| | - Eman Farid
- Department of Pathology, Salmaniya Medical Complex, Government Hospital, Manama 329, Bahrain; (F.A.-W.); (E.F.)
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine, Arabian Gulf University, Manama 329, Bahrain
| | - Suha Hejres
- Hematology and Hematopathology Laboratory, King Hamad University Hospital, Busaiteen 228, Bahrain; (M.V.); (S.H.)
| |
Collapse
|
6
|
Grune J, Bajpai G, Ocak PT, Kaufmann E, Mentkowski K, Pabel S, Kumowski N, Pulous FE, Tran KA, Rohde D, Zhang S, Iwamoto Y, Wojtkiewicz GR, Vinegoni C, Green U, Swirski FK, Stone JR, Lennerz JK, Divangahi M, Hulsmans M, Nahrendorf M. Virus-Induced Acute Respiratory Distress Syndrome Causes Cardiomyopathy Through Eliciting Inflammatory Responses in the Heart. Circulation 2024; 150:49-61. [PMID: 38506045 PMCID: PMC11216864 DOI: 10.1161/circulationaha.123.066433] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Viral infections can cause acute respiratory distress syndrome (ARDS), systemic inflammation, and secondary cardiovascular complications. Lung macrophage subsets change during ARDS, but the role of heart macrophages in cardiac injury during viral ARDS remains unknown. Here we investigate how immune signals typical for viral ARDS affect cardiac macrophage subsets, cardiovascular health, and systemic inflammation. METHODS We assessed cardiac macrophage subsets using immunofluorescence histology of autopsy specimens from 21 patients with COVID-19 with SARS-CoV-2-associated ARDS and 33 patients who died from other causes. In mice, we compared cardiac immune cell dynamics after SARS-CoV-2 infection with ARDS induced by intratracheal instillation of Toll-like receptor ligands and an ACE2 (angiotensin-converting enzyme 2) inhibitor. RESULTS In humans, SARS-CoV-2 increased total cardiac macrophage counts and led to a higher proportion of CCR2+ (C-C chemokine receptor type 2 positive) macrophages. In mice, SARS-CoV-2 and virus-free lung injury triggered profound remodeling of cardiac resident macrophages, recapitulating the clinical expansion of CCR2+ macrophages. Treating mice exposed to virus-like ARDS with a tumor necrosis factor α-neutralizing antibody reduced cardiac monocytes and inflammatory MHCIIlo CCR2+ macrophages while also preserving cardiac function. Virus-like ARDS elevated mortality in mice with pre-existing heart failure. CONCLUSIONS Our data suggest that viral ARDS promotes cardiac inflammation by expanding the CCR2+ macrophage subset, and the associated cardiac phenotypes in mice can be elicited by activating the host immune system even without viral presence in the heart.
Collapse
Affiliation(s)
- Jana Grune
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité, Berlin, Germany (J.G.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Physiology, Germany (J.G.)
- German Center for Cardiovascular Research, Partner Site Berlin (J.G.)
| | - Geetika Bajpai
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Pervin Tülin Ocak
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Cardiology, University Hospital Heidelberg, Germany (P.T.O.)
| | - Eva Kaufmann
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada (E.K.)
| | - Kyle Mentkowski
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Steffen Pabel
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Internal Medicine II, University Medical Center Regensburg, Germany (S.P.)
| | - Nina Kumowski
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Internal Medicine I, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Germany (N.K.)
| | - Fadi E Pulous
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Kim A Tran
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
| | - David Rohde
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Shuang Zhang
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Yoshiko Iwamoto
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Gregory R Wojtkiewicz
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Claudio Vinegoni
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Ursula Green
- Department of Pathology, Center for Integrated Diagnostics (U.G., J.K.L.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (F.K.S.)
| | - James R Stone
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (J.R.S.)
- Massachusetts General Hospital, Boston (J.R.S.)
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics (U.G., J.K.L.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, Research Institute McGill University Health Centre, and McGill International TB Centre Montreal, Canada (E.K., K.A.T., M.D.)
| | - Maarten Hulsmans
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- Center for Systems Biology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., Y.I., G.R.W., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (J.G., G.B., P.T.O., K.M., S.P., N.K., F.E.P., D.R., S.Z., C.V., M.H., M.N.), Massachusetts General Hospital and Harvard Medical School, Boston
- Gordon Center for Medical Imaging (M.N.)
- Department of Internal Medicine, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
7
|
Sui Y, Meyer TJ, Fennessey CM, Keele BF, Dadkhah K, Ma C, LaBranche CC, Breed MW, Kramer JA, Li J, Howe SE, Ferrari G, Williams LD, Cam M, Kelly MC, Shen X, Tomaras GD, Montefiori D, Greten TF, Miller CJ, Berzofsky JA. Innate protection against intrarectal SIV acquisition by a live SHIV vaccine. JCI Insight 2024; 9:e175800. [PMID: 38912579 PMCID: PMC11383375 DOI: 10.1172/jci.insight.175800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Identifying immune correlates of protection is a major challenge in AIDS vaccine development. Anti-Envelope antibodies have been considered critical for protection against SIV/HIV (SHIV) acquisition. Here, we evaluated the efficacy of an SHIV vaccine against SIVmac251 challenge, where the role of antibody was excluded, as there was no cross-reactivity between SIV and SHIV envelope antibodies. After 8 low-dose intrarectal challenges with SIVmac251, 12 SHIV-vaccinated animals demonstrated efficacy, compared with 6 naive controls, suggesting protection was achieved in the absence of anti-envelope antibodies. Interestingly, CD8+ T cells (and some NK cells) were not essential for preventing viral acquisition, as none of the CD8-depleted macaques were infected by SIVmac251 challenges. Initial investigation of protective innate immunity revealed that protected animals had elevated pathways related to platelet aggregation/activation and reduced pathways related to interferon and responses to virus. Moreover, higher expression of platelet factor 4 on circulating platelet-leukocyte aggregates was associated with reduced viral acquisition. Our data highlighted the importance of innate immunity, identified mechanisms, and may provide opportunities for novel HIV vaccines or therapeutic strategy development.
Collapse
Affiliation(s)
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Kimia Dadkhah
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chi Ma
- Thoracic and GI Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Celia C. LaBranche
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Josh A. Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | | | | | | | - LaTonya D. Williams
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Michael C. Kelly
- Single Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David Montefiori
- Duke Human Vaccine Institute and
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tim F. Greten
- Thoracic and GI Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California, Davis, Davis, California, USA
| | | |
Collapse
|
8
|
Zhou L, Chen S, Wei Y, Sun Y, Yang Y, Lin B, Li Y, Wang C. Glycyrrhizic acid restores the downregulated hepatic ACE2 signaling in the attenuation of mouse steatohepatitis. Eur J Pharmacol 2024; 967:176365. [PMID: 38316247 DOI: 10.1016/j.ejphar.2024.176365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Glycyrrhizic acid (GA), one of the major active components derived from licorice root, exerts liver-protecting activity. Its molecular mechanisms of action, however, remain not completely understood. The angiotensin (Ang) converting enzyme (ACE) 2/Ang-(1-7)/Mas axis, regulated by ACE2 through converting Ang II into Ang-(1-7) to activate Mas receptor, counteracts the pro-inflammatory and pro-steatotic effects of the ACE/Ang II/Ang II receptor type 1 (AT1) axis. Here, it was found that pretreatment with GA suppressed LPS/D-galactosamine-induced serum hyperactivities of alanine aminotransferase and aspartate aminotransferase, hepatomegaly, pathological changes, and over-accumulation of triglycerides and fatty droplets in the liver of mice. GA also diminished LPS/free fatty acid-induced inflammation and steatosis in cultured hepatocytes. Mechanistically, GA restored hepatic protein hypoexpression of ACE2 and Mas receptor, and the decrease in hepatic Ang-(1-7) content. Hepatic overexpression of angiotensin II and AT1 was also suppressed. However, GA did not alter hepatic protein expression of renin and ACE. In addition, GA inhibited hepatic protein over-phosphorylation of the p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and nuclear factor κB at Ser536. Hepatic overexpression of tumor necrosis factor α, interleukin 6, interleukin 1β, sterol regulatory element-binding protein 1c, and fatty acid synthase was also inhibited. GA-elicited recovery of ACE2 and Mas protein hypoexpression was further confirmed in the hepatocyte. Thus, the present results demonstrate that GA restores the downregulated hepatic ACE2-mediated anti-inflammatory and anti-steatotic signaling in the amelioration of steatohepatitis. We suggest that GA may protect the liver from injury by regulating the hepatic ACE2-mediated signaling.
Collapse
Affiliation(s)
- Longyue Zhou
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shankang Chen
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanyi Wei
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yihui Sun
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Yifan Yang
- Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW, 2000, Australia.
| | - Bingqi Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhao Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Endocrinology and Metabolism Group, Sydney Institute of Health Sciences/Sydney Institute of Traditional Chinese Medicine, Sydney, NSW, 2000, Australia.
| | - Chunxia Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Feinstein P. Rapid Degradation of the Human ACE2 Receptor Upon Binding and Internalization of SARS-Cov-2-Spike-RBD Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583884. [PMID: 38496410 PMCID: PMC10942428 DOI: 10.1101/2024.03.07.583884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
It is widely accepted that the SARS-CoV-2 betacoronavirus infects humans through binding the human Angiotensin Receptor 2 (ACE2) that lines the nasal cavity and lungs, followed by import into a cell utilizing the Transmembrane Protease, Serine 2 (TMPRSS2) cofactor. ACE2 binding is mediated by an approximately 200-residue portion of the SARS-CoV-2 extracellular spike protein, the receptor binding domain (RBD). Robust interactions are shown using a novel cell-based assay between an RBD membrane tethered-GFP fusion protein and the membrane bound ACE2-Cherry fusion protein. Several observations were not predicted including, quick and sustained interactions leading to internalization of RBD fusion protein into the ACE2 cells and rapid downregulation of the ACE2-Cherry fluorescence. Targeted mutation in the RBD disulfide Loop 4 led to a loss of internalization for several variants tested. However, a secreted RBD did not cause ACE2 downregulation of ACE2-Cherry fluorescence. Thus, the membrane associated form of RBD found on the viral coat may have long-term system wide consequences on ACE2 expressing cells.
Collapse
Affiliation(s)
- Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, 365 5th Ave, New York, NY 10016
| |
Collapse
|
10
|
Nikiforuk AM, Kuchinski KS, Short K, Roman S, Irvine MA, Prystajecky N, Jassem AN, Patrick DM, Sekirov I. Nasopharyngeal angiotensin converting enzyme 2 (ACE2) expression as a risk-factor for SARS-CoV-2 transmission in concurrent hospital associated outbreaks. BMC Infect Dis 2024; 24:262. [PMID: 38408924 PMCID: PMC10898082 DOI: 10.1186/s12879-024-09067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/28/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Widespread human-to-human transmission of the severe acute respiratory syndrome coronavirus two (SARS-CoV-2) stems from a strong affinity for the cellular receptor angiotensin converting enzyme two (ACE2). We investigate the relationship between a patient's nasopharyngeal ACE2 transcription and secondary transmission within a series of concurrent hospital associated SARS-CoV-2 outbreaks in British Columbia, Canada. METHODS Epidemiological case data from the outbreak investigations was merged with public health laboratory records and viral lineage calls, from whole genome sequencing, to reconstruct the concurrent outbreaks using infection tracing transmission network analysis. ACE2 transcription and RNA viral load were measured by quantitative real-time polymerase chain reaction. The transmission network was resolved to calculate the number of potential secondary cases. Bivariate and multivariable analyses using Poisson and Negative Binomial regression models was performed to estimate the association between ACE2 transcription the number of SARS-CoV-2 secondary cases. RESULTS The infection tracing transmission network provided n = 76 potential transmission events across n = 103 cases. Bivariate comparisons found that on average ACE2 transcription did not differ between patients and healthcare workers (P = 0.86). High ACE2 transcription was observed in 98.6% of transmission events, either the primary or secondary case had above average ACE2. Multivariable analysis found that the association between ACE2 transcription (log2 fold-change) and the number of secondary transmission events differs between patients and healthcare workers. In health care workers Negative Binomial regression estimated that a one-unit change in ACE2 transcription decreases the number of secondary cases (β = -0.132 (95%CI: -0.255 to -0.0181) adjusting for RNA viral load. Conversely, in patients a one-unit change in ACE2 transcription increases the number of secondary cases (β = 0.187 (95% CI: 0.0101 to 0.370) adjusting for RNA viral load. Sensitivity analysis found no significant relationship between ACE2 and secondary transmission in health care workers and confirmed the positive association among patients. CONCLUSION Our study suggests that ACE2 transcription has a positive association with SARS-CoV-2 secondary transmission in admitted inpatients, but not health care workers in concurrent hospital associated outbreaks, and it should be further investigated as a risk-factor for viral transmission.
Collapse
Affiliation(s)
- Aidan M Nikiforuk
- British Columbia Centre for Disease Control, V5Z 4R4, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Kevin S Kuchinski
- British Columbia Centre for Disease Control, V5Z 4R4, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Katy Short
- Fraser Health Authority, V3L 3C2, New Westminster, BC, Canada
| | - Susan Roman
- Fraser Health Authority, V3L 3C2, New Westminster, BC, Canada
| | - Mike A Irvine
- British Columbia Centre for Disease Control, V5Z 4R4, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, V5A 1S6, Burnaby, BC, Canada
| | - Natalie Prystajecky
- British Columbia Centre for Disease Control, V5Z 4R4, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Agatha N Jassem
- British Columbia Centre for Disease Control, V5Z 4R4, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - David M Patrick
- British Columbia Centre for Disease Control, V5Z 4R4, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Inna Sekirov
- British Columbia Centre for Disease Control, V5Z 4R4, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, V6T 1Z4, Vancouver, BC, Canada.
| |
Collapse
|
11
|
Ayyubova G, Gychka SG, Nikolaienko SI, Alghenaim FA, Teramoto T, Shults NV, Suzuki YJ. The Role of Furin in the Pathogenesis of COVID-19-Associated Neurological Disorders. Life (Basel) 2024; 14:279. [PMID: 38398788 PMCID: PMC10890058 DOI: 10.3390/life14020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Neurological disorders have been reported in a large number of coronavirus disease 2019 (COVID-19) patients, suggesting that this disease may have long-term adverse neurological consequences. COVID-19 occurs from infection by a positive-sense single-stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The membrane fusion protein of SARS-CoV-2, the spike protein, binds to its human host receptor, angiotensin-converting enzyme 2 (ACE2), to initiate membrane fusion between the virus and host cell. The spike protein of SARS-CoV-2 contains the furin protease recognition site and its cleavage enhances the infectivity of this virus. The binding of SARS-CoV-2 to the ACE2 receptor has been shown to downregulate ACE2, thereby increasing the levels of pathogenic angiotensin II (Ang II). The furin protease cleaves between the S1 subunit of the spike protein with the binding domain toward ACE2 and the S2 subunit with the transmembrane domain that anchors to the viral membrane, and this activity releases the S1 subunit into the blood circulation. The released S1 subunit of the spike protein also binds to and downregulates ACE2, in turn increasing the level of Ang II. Considering that a viral particle contains many spike protein molecules, furin-dependent cleavage would release many free S1 protein molecules, each of which can downregulate ACE2, while infection with a viral particle only affects one ACE2 molecule. Therefore, the furin-dependent release of S1 protein would dramatically amplify the ability to downregulate ACE2 and produce Ang II. We hypothesize that this amplification mechanism that the virus possesses, but not the infection per se, is the major driving force behind COVID-19-associated neurological disorders.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku AZ1022, Azerbaijan
| | - Sergiy G Gychka
- Department of Pathological Anatomy, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Sofia I Nikolaienko
- Department of Pathological Anatomy, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Fada A Alghenaim
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Nataliia V Shults
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
12
|
Willett JDS, Gravel A, Dubuc I, Gudimard L, Dos Santos Pereira Andrade AC, Lacasse É, Fortin P, Liu JL, Cervantes JA, Galvez JH, Djambazian HHV, Zwaig M, Roy AM, Lee S, Chen SH, Ragoussis J, Flamand L. SARS-CoV-2 rapidly evolves lineage-specific phenotypic differences when passaged repeatedly in immune-naïve mice. Commun Biol 2024; 7:191. [PMID: 38365933 PMCID: PMC10873417 DOI: 10.1038/s42003-024-05878-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The persistence of SARS-CoV-2 despite the development of vaccines and a degree of herd immunity is partly due to viral evolution reducing vaccine and treatment efficacy. Serial infections of wild-type (WT) SARS-CoV-2 in Balb/c mice yield mouse-adapted strains with greater infectivity and mortality. We investigate if passaging unmodified B.1.351 (Beta) and B.1.617.2 (Delta) 20 times in K18-ACE2 mice, expressing the human ACE2 receptor, in a BSL-3 laboratory without selective pressures, drives human health-relevant evolution and if evolution is lineage-dependent. Late-passage virus causes more severe disease, at organism and lung tissue scales, with late-passage Delta demonstrating antibody resistance and interferon suppression. This resistance co-occurs with a de novo spike S371F mutation, linked with both traits. S371F, an Omicron-characteristic mutation, is co-inherited at times with spike E1182G per Nanopore sequencing, existing in different within-sample viral variants at others. Both S371F and E1182G are linked to mammalian GOLGA7 and ZDHHC5 interactions, which mediate viral-cell entry and antiviral response. This study demonstrates SARS-CoV-2's tendency to evolve with phenotypic consequences, its evolution varying by lineage, and suggests non-dominant quasi-species contribution.
Collapse
Affiliation(s)
- Julian Daniel Sunday Willett
- Quantitative Life Sciences Ph.D. Program, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Annie Gravel
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Isabelle Dubuc
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Leslie Gudimard
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | | | - Émile Lacasse
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Paul Fortin
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Ju-Ling Liu
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jose Avila Cervantes
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Haig Hugo Vrej Djambazian
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Zwaig
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Anne-Marie Roy
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sally Lee
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shu-Huang Chen
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Louis Flamand
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada.
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
13
|
Maeda Y, Toyoda M, Kuwata T, Terasawa H, Tokugawa U, Monde K, Sawa T, Ueno T, Matsushita S. Differential Ability of Spike Protein of SARS-CoV-2 Variants to Downregulate ACE2. Int J Mol Sci 2024; 25:1353. [PMID: 38279353 PMCID: PMC10816870 DOI: 10.3390/ijms25021353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) and employs angiotensin-converting enzyme 2 (ACE2) as the receptor. Although the expression of ACE2 is crucial for cellular entry, we found that the interaction between ACE2 and the Spike (S) protein in the same cells led to its downregulation through degradation in the lysosomal compartment via the endocytic pathway. Interestingly, the ability of the S protein from previous variants of concern (VOCs) to downregulate ACE2 was variant-dependent and correlated with disease severity. The S protein from the Omicron variant, associated with milder disease, exhibited a lower capacity to downregulate ACE2 than that of the Delta variant, which is linked to a higher risk of hospitalization. Chimeric studies between the S proteins from the Delta and Omicron variants revealed that both the receptor-binding domain (RBD) and the S2 subunit played crucial roles in the reduced ACE2 downregulation activity observed in the Omicron variant. In contrast, three mutations (L452R/P681R/D950N) located in the RBD, S1/S2 cleavage site, and HR1 domain were identified as essential for the higher ACE2 downregulation activity observed in the Delta variant compared to that in the other VOCs. Our results suggested that dysregulation of the renin-angiotensin system due to the ACE2 downregulation activity of the S protein of SARS-CoV-2 may play a key role in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Yosuke Maeda
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Mako Toyoda
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (M.T.); (T.K.); (T.U.); (S.M.)
| | - Takeo Kuwata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (M.T.); (T.K.); (T.U.); (S.M.)
| | - Hiromi Terasawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Umiru Tokugawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Tomohiro Sawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan (K.M.); (T.S.)
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (M.T.); (T.K.); (T.U.); (S.M.)
| | - Shuzo Matsushita
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; (M.T.); (T.K.); (T.U.); (S.M.)
| |
Collapse
|
14
|
Wang C, Khatun MS, Zhang Z, Allen MJ, Chen Z, Ellsworth CR, Currey JM, Dai G, Tian D, Bach K, Yin XM, Traina-Dorge V, Rappaport J, Maness NJ, Blair RV, Kolls JK, Pociask DA, Qin X. COVID-19 and influenza infections mediate distinct pulmonary cellular and transcriptomic changes. Commun Biol 2023; 6:1265. [PMID: 38092883 PMCID: PMC10719262 DOI: 10.1038/s42003-023-05626-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
SARS-CoV-2 infection can cause persistent respiratory sequelae. However, the underlying mechanisms remain unclear. Here we report that sub-lethally infected K18-human ACE2 mice show patchy pneumonia associated with histiocytic inflammation and collagen deposition at 21 and 45 days post infection (DPI). Transcriptomic analyses revealed that compared to influenza-infected mice, SARS-CoV-2-infected mice had reduced interferon-gamma/alpha responses at 4 DPI and failed to induce keratin 5 (Krt5) at 6 DPI in lung, a marker of nascent pulmonary progenitor cells. Histologically, influenza- but not SARS-CoV-2-infected mice showed extensive Krt5+ "pods" structure co-stained with stem cell markers Trp63/NGFR proliferated in the pulmonary consolidation area at both 7 and 14 DPI, with regression at 21 DPI. These Krt5+ "pods" structures were not observed in the lungs of SARS-CoV-2-infected humans or nonhuman primates. These results suggest that SARS-CoV-2 infection fails to induce nascent Krt5+ cell proliferation in consolidated regions, leading to incomplete repair of the injured lung.
Collapse
Affiliation(s)
- Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mst Shamima Khatun
- Department of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zhe Zhang
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Michaela J Allen
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zheng Chen
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Calder R Ellsworth
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joshua M Currey
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Guixiang Dai
- Department of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Di Tian
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Konrad Bach
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Vicki Traina-Dorge
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Robert V Blair
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Jay K Kolls
- Department of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Derek A Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA, 70433, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
15
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
16
|
Han S, Xu B, Feng Q, Feng Z, Zhu Y, Ai J, Deng L, Li C, Cao L, Sun Y, Fu Z, Jin R, Shang Y, Chen Z, Xu L, Xie Z, Shen K. Multicenter analysis of epidemiological and clinical features of pediatric acute lower respiratory tract infections associated with common human coronaviruses in China, 2014-2019. Virol J 2023; 20:229. [PMID: 37817170 PMCID: PMC10566024 DOI: 10.1186/s12985-023-02198-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
The common human coronaviruses (HCoVs) HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 which are members of the coronavirus family are long co-existed with humans and widely distributed globally. Common HCoVs usually cause mild, self-limited upper respiratory tract infections (URTI), and also associated with lower respiratory tract infections (LRTI), especially in children. However, there are little multicentre studies have been conducted in children of several different areas in China, and the epidemic potential of common HCoVs remains unclear. Understanding of the common HCoVs is valuable for clinical and public health. Herein, we retrospectively analysed the medical records of children with acute lower respiratory tract infection admitted to 9 hospitals from different regions in China from 2014 to 2019. Of the 124 patients who tested positive for coronaviruses, OC43 was the predominant type, accounting for 36.3% (45/124) of the detections. Children aged ≤ 6 months and 12-23 months had the highest detection rate of common HCoVs, and the detection rate gradually declined after 2 years old. These four HCoVs could be detected all year round. Among the areas of our study, the overall positive rate was higher in southern China, especially in Guangzhou (29/124, 23.4%). Moreover, common HCoV-positive patients were codetected with 9 other common respiratory pathogens. 229E (11/13, 84.6%) was the most frequently associated with codetection, with EV/RhV was the most frequently codetected virus. Cough (113/124, 91.1%) and fever (73/124, 58.9%) were the most common symptoms of common HCoVs infection.
Collapse
Affiliation(s)
- Shuaibing Han
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Baoping Xu
- Department of Respiratory Diseases I, Beijing Children's Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Qianyu Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China
| | - Li Deng
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Changchong Li
- The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ling Cao
- Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yun Sun
- Yinchuan Maternal and Child Health Hospital, Yinchuan, 750000, China
| | - Zhou Fu
- Children's Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Rong Jin
- Guiyang Women and Children Healthcare Hospital, Guiyang, 550003, China
| | - Yunxiao Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhiming Chen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, 310005, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, 100045, China.
| | - Kunling Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
17
|
Kyriakopoulos AM, Nigh G, McCullough PA, Olivier MD, Seneff S. Bell's palsy or an aggressive infiltrating basaloid carcinoma post-mRNA vaccination for COVID-19? A case report and review of the literature. EXCLI JOURNAL 2023; 22:992-1011. [PMID: 37927346 PMCID: PMC10620857 DOI: 10.17179/excli2023-6145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
We report on an aggressive, infiltrating, metastatic, and ultimately lethal basaloid type of carcinoma arising shortly after an mRNA vaccination for COVID-19. The wife of the patient, since deceased, gave the consent for publishing the case. The malignancy was of cutaneous origin and the case showed symptoms consistent with Bell's palsy and trigeminal neuralgia beginning four days post-vaccination (right side head temporal pain). The temporal pain was suggestive for inflammation and impairment of T cell immune activation. Magnetic Resonance Imaging (MRI) showed a vascular loop on the left lateral aspect of the 5th cranial root exit of cerebellopontine angle constituting presumably a normal variant and was considered as an unrelated factor to the right-sided palsy and pain symptoms that corresponded to cranial nerves V (trigeminal nerve) and VII (facial nerve). In this study we describe all aspects of this case and discuss possible causal links between the rapid emergence of this metastatic cancer and mRNA vaccination. We place this within the context of multiple immune impairments potentially related to the mRNA injections that would be expected to potentiate more aggressive presentation and progression of cancer. The type of malignancy we describe suggests a population risk for occurrence of a large variety of relatively common basaloid phenotype cancer cells, which may have the potential for metastatic disease. This can be avoidable with early diagnosis and adequate treatment. Since facial paralysis/pain is one of the more common adverse neurological events following mRNA injection, careful inspection of cutaneous/soft tissue should be conducted to rule out malignancy. An extensive literature review is carried out, in order to elucidate the toxicity of mRNA vaccination that may have led to the death of this patient. Preventive and precise routine clinical investigations can potentially avoid future mortalities. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Anthony M. Kyriakopoulos
- Director and Head of Research and Development, Nasco AD Biotechnology Laboratory, Department of Research and Development, Sachtouri 11, 18536, Piraeus, Greece
| | - Greg Nigh
- Naturopathic Oncologist, Immersion Health, Portland, OR 97214, USA
| | | | - Maria D. Olivier
- Director and medical practitioner, Dr. Maré Olivier, Inc., Kuils River, South Africa
| | - Stephanie Seneff
- Senior Research Scientist, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Ramasamy A, Wang C, Brode WM, Verduzco-Gutierrez M, Melamed E. Immunologic and Autoimmune-Related Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 Infection: Clinical Symptoms and Mechanisms of Disease. Phys Med Rehabil Clin N Am 2023; 34:623-642. [PMID: 37419536 PMCID: PMC10086105 DOI: 10.1016/j.pmr.2023.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
The COVID-19 pandemic has resulted in a significant number of people developing long-term health effects of postacute sequelae SARS-CoV-2 infection (PASC). Both acute COVID-19 and PASC are now recognized as multiorgan diseases with multiple symptoms and disease causes. The development of immune dysregulation during acute COVID-19 and PASC is of high epidemiologic concern. Both conditions may also be influenced by comorbid conditions such as pulmonary dysfunction, cardiovascular disease, neuropsychiatric conditions, prior autoimmune conditions and cancer. This review discusses the clinical symptoms, pathophysiology, and risk factors that affect both acute COVID-19 and PASC.
Collapse
Affiliation(s)
- Akshara Ramasamy
- Department of Neurology, Dell Medical School, University of Texas at Austin, Health Discovery Building, 1601 Trinity Street, Austin, TX 78712, USA
| | - Chumeng Wang
- Department of Neurology, Dell Medical School, University of Texas at Austin, Health Discovery Building, 1601 Trinity Street, Austin, TX 78712, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School, University of Texas at Austin, 1601 Trinity Street, Austin, TX 78712, USA
| | - Monica Verduzco-Gutierrez
- Department of Physical Medicine and Rehabilitation, University of Texas at San Antonio, 7703 Floyd Curl Drive, Mail Code 7798, San Antonio, TX 78229, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Health Discovery Building, 1601 Trinity Street, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Ziablitsev DS, Kozyk M, Strubchevska K, Dyadyk OO, Ziablitsev SV. Lung Expression of Macrophage Markers CD68 and CD163, Angiotensin Converting Enzyme 2 (ACE2), and Caspase-3 in COVID-19. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040714. [PMID: 37109672 PMCID: PMC10144424 DOI: 10.3390/medicina59040714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: The coronavirus (SARS-CoV-2) damages all systems and organs. Yet, to a greater extent, the lungs are particularly involved, due to the formation of diffuse exudative inflammation in the form of acute respiratory distress syndrome (ARDS) with next progression to pulmonary fibrosis. SARS-associated lung damage is accompanied by the pronounced activation of mononuclear cells, damage of the alveoli and microvessels, and the development of organized pneumonia. To study the expression of macrophage markers (CD68 and CD163), angiotensin-converting enzyme-2 (ACE2), and caspase-3 on the results of two fatal clinical observations of COVID-19. Materials and Methods: In both clinical cases, the female patients died from complications of confirmed COVID-19. Conventional morphological and immunohistochemical methods were used. Results: There was an acute exudative hemorrhagic pneumonia with the formation of hyaline membranes, focal organization of fibrin, stromal sclerosis, stasis, and thrombus formation in the lung vessels. Signs such as the formation of hyaline membranes, organization, and fibrosis were more pronounced in severe disease activity. The activation of CD68+/CD163+ macrophages could cause cell damage at an early stage of pneumonia development, and subsequently cause fibrotic changes in lung tissue. ACE2 expression in lung tissue was not detected in severe pneumonia, while in moderate pneumonia, weak expression was noted in individual cells of the alveolar epithelium and vascular endothelium. Conclusions: This finding could show the dependence of ACE2 expression on the severity of the inflammatory process in the lungs. The expression of caspase-3 was more pronounced in severe pneumonia.
Collapse
Affiliation(s)
- Denis S Ziablitsev
- Department of Pathophysiology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Marko Kozyk
- Department of Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Kateryna Strubchevska
- Department of Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48073, USA
| | - Olena O Dyadyk
- Department of Pathologic and Topographic Anatomy, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine
| | - Sergiy V Ziablitsev
- Department of Pathophysiology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| |
Collapse
|
20
|
Chiok K, Hutchison K, Miller LG, Bose S, Miura TA. Proinflammatory Responses in SARS-CoV-2 and Soluble Spike Glycoprotein S1 Subunit Activated Human Macrophages. Viruses 2023; 15:754. [PMID: 36992463 PMCID: PMC10052676 DOI: 10.3390/v15030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Critically ill COVID-19 patients display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We inoculated and treated human macrophage cell line THP-1 with SARS-CoV-2 and purified, glycosylated, soluble SARS-CoV-2 spike protein S1 subunit (S1) to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication or viral entry, virus exposure resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that extracellular soluble S1 protein is a key viral component inducing pro-inflammatory responses in macrophages, independent of virus replication. Thus, virus- or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Kim Chiok
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Kevin Hutchison
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Lindsay Grace Miller
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
21
|
Patel MA, Knauer MJ, Nicholson M, Daley M, Van Nynatten LR, Cepinskas G, Fraser DD. Organ and cell-specific biomarkers of Long-COVID identified with targeted proteomics and machine learning. Mol Med 2023; 29:26. [PMID: 36809921 PMCID: PMC9942653 DOI: 10.1186/s10020-023-00610-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Survivors of acute COVID-19 often suffer prolonged, diffuse symptoms post-infection, referred to as "Long-COVID". A lack of Long-COVID biomarkers and pathophysiological mechanisms limits effective diagnosis, treatment and disease surveillance. We performed targeted proteomics and machine learning analyses to identify novel blood biomarkers of Long-COVID. METHODS A case-control study comparing the expression of 2925 unique blood proteins in Long-COVID outpatients versus COVID-19 inpatients and healthy control subjects. Targeted proteomics was accomplished with proximity extension assays, and machine learning was used to identify the most important proteins for identifying Long-COVID patients. Organ system and cell type expression patterns were identified with Natural Language Processing (NLP) of the UniProt Knowledgebase. RESULTS Machine learning analysis identified 119 relevant proteins for differentiating Long-COVID outpatients (Bonferonni corrected P < 0.01). Protein combinations were narrowed down to two optimal models, with nine and five proteins each, and with both having excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, F1 = 1.00). NLP expression analysis highlighted the diffuse organ system involvement in Long-COVID, as well as the involved cell types, including leukocytes and platelets, as key components associated with Long-COVID. CONCLUSIONS Proteomic analysis of plasma from Long-COVID patients identified 119 highly relevant proteins and two optimal models with nine and five proteins, respectively. The identified proteins reflected widespread organ and cell type expression. Optimal protein models, as well as individual proteins, hold the potential for accurate diagnosis of Long-COVID and targeted therapeutics.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Michael J Knauer
- Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | | | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology and Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- Room C2-C82, London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
22
|
Abou-Hamdan M, Saleh R, Mani S, Dournaud P, Metifiot M, Blondot ML, Andreola ML, Abdel-Sater F, De Reggi M, Gressens P, Laforge M. Potential antiviral effects of pantethine against SARS-CoV-2. Sci Rep 2023; 13:2237. [PMID: 36754974 PMCID: PMC9906591 DOI: 10.1038/s41598-023-29245-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
SARS-CoV-2 interacts with cellular cholesterol during many stages of its replication cycle. Pantethine was reported to reduce total cholesterol levels and fatty acid synthesis and potentially alter different processes that might be involved in the SARS-CoV-2 replication cycle. Here, we explored the potential antiviral effects of pantethine in two in vitro experimental models of SARS-CoV-2 infection, in Vero E6 cells and in Calu-3a cells. Pantethine reduced the infection of cells by SARS-CoV-2 in both preinfection and postinfection treatment regimens. Accordingly, cellular expression of the viral spike and nucleocapsid proteins was substantially reduced, and we observed a significant reduction in viral copy numbers in the supernatant of cells treated with pantethine. In addition, pantethine inhibited the infection-induced increase in TMPRSS2 and HECT E3 ligase expression in infected cells as well as the increase in antiviral interferon-beta response and inflammatory gene expression in Calu-3a cells. Our results demonstrate that pantethine, which is well tolerated in humans, was very effective in controlling SARS-CoV-2 infection and might represent a new therapeutic drug that can be repurposed for the prevention or treatment of COVID-19 and long COVID syndrome.
Collapse
Affiliation(s)
- M Abou-Hamdan
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.,Biology Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon
| | - R Saleh
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - S Mani
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - P Dournaud
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - M Metifiot
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - M L Blondot
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - M L Andreola
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - F Abdel-Sater
- Biochemistry Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon
| | - M De Reggi
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - P Gressens
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - M Laforge
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
23
|
Bellavite P, Ferraresi A, Isidoro C. Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines 2023; 11:451. [PMID: 36830987 PMCID: PMC9953067 DOI: 10.3390/biomedicines11020451] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus responsible for the COVID-19 disease) uses the Spike proteins of its envelope for infecting target cells expressing on the membrane the angiotensin converting enzyme 2 (ACE2) enzyme that acts as a receptor. To control the pandemic, genetically engineered vaccines have been designed for inducing neutralizing antibodies against the Spike proteins. These vaccines do not act like traditional protein-based vaccines, as they deliver the message in the form of mRNA or DNA to host cells that then produce and expose the Spike protein on the membrane (from which it can be shed in soluble form) to alert the immune system. Mass vaccination has brought to light various adverse effects associated with these genetically based vaccines, mainly affecting the circulatory and cardiovascular system. ACE2 is present as membrane-bound on several cell types, including the mucosa of the upper respiratory and of the gastrointestinal tracts, the endothelium, the platelets, and in soluble form in the plasma. The ACE2 enzyme converts the vasoconstrictor angiotensin II into peptides with vasodilator properties. Here we review the pathways for immunization and the molecular mechanisms through which the Spike protein, either from SARS-CoV-2 or encoded by the mRNA-based vaccines, interferes with the Renin-Angiotensin-System governed by ACE2, thus altering the homeostasis of the circulation and of the cardiovascular system. Understanding the molecular interactions of the Spike protein with ACE2 and the consequent impact on cardiovascular system homeostasis will direct the diagnosis and therapy of the vaccine-related adverse effects and provide information for development of a personalized vaccination that considers pathophysiological conditions predisposing to such adverse events.
Collapse
Affiliation(s)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
24
|
Muacevic A, Adler JR, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus 2023; 15:e34872. [PMID: 36788995 PMCID: PMC9922164 DOI: 10.7759/cureus.34872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.
Collapse
|
25
|
Altman NL, Berning AA, Saxon CE, Adamek KE, Wagner JA, Slavov D, Quaife RA, Gill EA, Minobe WA, Jonas ER, Carroll IA, Huebler SP, Raines J, Messenger JC, Ambardekar AV, Mestroni L, Rosenberg RM, Rove J, Campbell TB, Bristow MR. Myocardial Injury and Altered Gene Expression Associated With SARS-CoV-2 Infection or mRNA Vaccination. JACC Basic Transl Sci 2023; 8:124-137. [PMID: 36281440 PMCID: PMC9581498 DOI: 10.1016/j.jacbts.2022.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/07/2022]
Abstract
SARS CoV-2 enters host cells via its Spike protein moiety binding to the essential cardiac enzyme angiotensin-converting enzyme (ACE) 2, followed by internalization. COVID-19 mRNA vaccines are RNA sequences that are translated into Spike protein, which follows the same ACE2-binding route as the intact virion. In model systems, isolated Spike protein can produce cell damage and altered gene expression, and myocardial injury or myocarditis can occur during COVID-19 or after mRNA vaccination. We investigated 7 COVID-19 and 6 post-mRNA vaccination patients with myocardial injury and found nearly identical alterations in gene expression that would predispose to inflammation, coagulopathy, and myocardial dysfunction.
Collapse
Key Words
- ACE, angiotensin I–converting enzyme gene
- ACE2, angiotensin-converting enzyme 2 gene
- AGT, angiotensinogen gene
- AGTR1, angiotensin II receptor type 1 gene
- ANG II, angiotensin II
- BNP, B-type natriuretic peptide
- CMR, cardiac magnetic resonance
- COVID-19
- EM, electron microscopy
- F3, coagulation factor III (tissue factor) gene
- ITGA5, integrin subunit alpha 5 gene
- IVS, interventricular septum
- LGE, late gadolinium enhancement
- LM, light microscopy
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- NDC, nonischemic dilated cardiomyopathy
- NPPB, natriuretic peptide B gene
- RV, right ventricular
- S, SARS-CoV-2 Spike
- TnI, troponin I
- gene expression
- mRNA vaccines
- myocardial injury
- myocarditis
Collapse
Affiliation(s)
- Natasha L. Altman
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amber A. Berning
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara E. Saxon
- Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kylie E. Adamek
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jessica A. Wagner
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dobromir Slavov
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Robert A. Quaife
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward A. Gill
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wayne A. Minobe
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric R. Jonas
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Joshua Raines
- Department of Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C. Messenger
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amrut V. Ambardekar
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Luisa Mestroni
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel M. Rosenberg
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Rove
- Division of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas B. Campbell
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael R. Bristow
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- ARCA Biopharma, Westminster, Colorado, USA
| |
Collapse
|
26
|
Long S, Li S, Zhang X, Peng Q, Chen S, Wang J. ACE2 Affects the Expression and Function of IFITM3 During SARS-CoV-2 Pseudovirus Infection in Vero E6 Cells. Viral Immunol 2022; 35:653-662. [PMID: 36178477 DOI: 10.1089/vim.2022.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
COVID-19 is a globally infectious viral epidemic of great public health concern caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2) plays its role as the receptor for SARS-CoV-2 through binding with S protein and the binding results in ACE2 expression decrease. The change of ACE2 is supposed to elicit a series of cellular and molecular events. Other than as the receptor, ACE2's roles on infection by regulating other molecules need to be further studied during SARS-CoV-2 infection. In the present study, we established the ACE2 knockdown model using Vero E6 cells to study how ACE2 influenced the downstream signaling molecules. Analysis of transcriptome sequencing discovered that ACE2 alteration per se caused the alteration of immune factors, including some related to the viral infection-related signaling pathways. We found that ACE2 silencing induced the reduced interferon-induced transmembrane protein 3 (IFITM3) expression. Overexpression of IFITM3 promoted the SARS-CoV-2 pseudovirus infection of Vero E6 cells lacking the ACE2. It indicates that ACE2 can affect IFITM3 expression and function to affect the SARS-CoV-2 infection. Our results reveal possible mechanisms influencing SARS-CoV-2 infectivity and contribute to explaining the rapid spread and pathogenesis especially in the case of ACE2 low expression.
Collapse
Affiliation(s)
- Shunhua Long
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shenglong Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiuzhen Zhang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuaizhi Chen
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
27
|
Takanohashi A, Alameh MG, Woidill S, Hacker J, Davis B, Helman G, Gavazzi F, Adang L, D'Aiello R, Winters P, Cordova D, Khandaker T, Ni H, Tam Y, Lin P, Weissman D, Shults J, Vanderver A. SARS-CoV-2 mRNA-based vaccines in the Aicardi Goutières Syndrome. Mol Genet Metab 2022; 137:320-327. [PMID: 36334423 PMCID: PMC9550281 DOI: 10.1016/j.ymgme.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
Aicardi Goutières Syndrome (AGS) is an autoinflammatory disorder resulting in sustained interferon activation through defects in nucleic acid modification and sensing pathways. Thus, mRNA-based vaccination used against SARS-CoV-2, raise disease-specific safety concerns. To assess interferon signaling, we tested mRNA SARS-CoV-2 vaccines in AGS whole blood samples. Interferon activation is measured through quantitation of interferon signaling gene (ISG) expression and is increased in AGS patients. There was no increase in ISG scores from baseline following treatment with the nucleoside modified mRNA formulation compared to an increase with unmodified. A patient-family survey reported that the vaccines were well tolerated. These findings suggest that COVID vaccination using nucleoside-modified forms of mRNA vaccines are unlikely to directly stimulate ISG expression in response to mRNA internalization in AGS tissues. With continued community spread, we recommend vaccination using nucleoside-modified mRNA vaccines in this rare disease group in individuals for whom vaccines were previously well tolerated.
Collapse
Affiliation(s)
- Asako Takanohashi
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Sarah Woidill
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Julia Hacker
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Benjamin Davis
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Guy Helman
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Francesco Gavazzi
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Laura Adang
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Russell D'Aiello
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Patrick Winters
- Aicardi-Goutières Syndrome Advocacy Association, Crested Butte, USA
| | - Devon Cordova
- Aicardi-Goutières Syndrome Advocacy Association, Crested Butte, USA
| | | | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, Canada
| | - Paulo Lin
- Acuitas Therapeutics, Vancouver, Canada
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Justine Shults
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine University of Pennsylvania, Philadelphia, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Adeline Vanderver
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
28
|
Sapir T, Averch Z, Lerman B, Bodzin A, Fishman Y, Maitra R. COVID-19 and the Immune Response: A Multi-Phasic Approach to the Treatment of COVID-19. Int J Mol Sci 2022; 23:ijms23158606. [PMID: 35955740 PMCID: PMC9369212 DOI: 10.3390/ijms23158606] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral agent that causes Coronavirus disease 2019 (COVID-19), a disease that causes flu-like symptoms that, when exacerbated, can have life-threatening consequences. COVID-19 has been linked to persistent symptoms, sequelae, and medical complications that can last months after the initial infection. This systematic review aims to elucidate the innate and adaptive immune mechanisms involved and identify potential characteristics of COVID-19 pathology that may increase symptom duration. We also describe he three different stages of COVID-19—viral replication, immune hyperactivation, and post-acute sequelae—as well as each phase’s corresponding immune response. Finally, we use this multiphasic approach to describe different treatment approaches for each of the three stages—antivirals, immunosuppressants and monoclonal antibodies, and continued immunosuppressants—to fully curate the treatment to the stage of disease.
Collapse
|
29
|
Nabi-Afjadi M, Heydari M, Zalpoor H, Arman I, Sadoughi A, Sahami P, Aghazadeh S. Lectins and lectibodies: potential promising antiviral agents. Cell Mol Biol Lett 2022; 27:37. [PMID: 35562647 PMCID: PMC9100318 DOI: 10.1186/s11658-022-00338-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
In nature, lectins are widely dispersed proteins that selectively recognize and bind to carbohydrates and glycoconjugates via reversible bonds at specific binding sites. Many viral diseases have been treated with lectins due to their wide range of structures, specificity for carbohydrates, and ability to bind carbohydrates. Through hemagglutination assays, these proteins can be detected interacting with various carbohydrates on the surface of cells and viral envelopes. This review discusses the most robust lectins and their rationally engineered versions, such as lectibodies, as antiviral proteins. Fusion of lectin and antibody’s crystallizable fragment (Fc) of immunoglobulin G (IgG) produces a molecule called a “lectibody” that can act as a carbohydrate-targeting antibody. Lectibodies can not only bind to the surface glycoproteins via their lectins and neutralize and clear viruses or infected cells by viruses but also perform Fc-mediated antibody effector functions. These functions include complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cell-mediated phagocytosis (ADCP). In addition to entering host cells, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein S1 binds to angiotensin-converting enzyme 2 (ACE2) and downregulates it and type I interferons in a way that may lead to lung disease. The SARS-CoV-2 spike protein S1 and human immunodeficiency virus (HIV) envelope are heavily glycosylated, which could make them a major target for developing vaccines, diagnostic tests, and therapeutic drugs. Lectibodies can lead to neutralization and clearance of viruses and cells infected by viruses by binding to glycans located on the envelope surface (e.g., the heavily glycosylated SARS-CoV-2 spike protein).
Collapse
Affiliation(s)
- Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Morteza Heydari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 13145-1384, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,American Association of Kidney Patients, Tampa, FL, USA
| | - Ibrahim Arman
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Sahami
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Safiyeh Aghazadeh
- Division of Biochemistry, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, 5756151818, Iran.
| |
Collapse
|
30
|
Freitas RS, Crum TF, Parvatiyar K. SARS-CoV-2 Spike Antagonizes Innate Antiviral Immunity by Targeting Interferon Regulatory Factor 3. Front Cell Infect Microbiol 2022; 11:789462. [PMID: 35083167 PMCID: PMC8785962 DOI: 10.3389/fcimb.2021.789462] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) pathogenesis is intimately linked to the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) and disease severity has been associated with compromised induction of type I interferon (IFN-I) cytokines which coordinate the innate immune response to virus infections. Here we identified the SARS-CoV-2 encoded protein, Spike, as an inhibitor of IFN-I that antagonizes viral RNA pattern recognition receptor RIG-I signaling. Ectopic expression of SARS-CoV-2 Spike blocked RIG-I mediated activation of IFNβ and downstream induction of interferon stimulated genes. Consequently, SARS-CoV-2 Spike expressing cells harbored increased RNA viral burden compared to control cells. Co-immunoprecipitation experiments revealed SARS-CoV-2 Spike associated with interferon regulatory factor 3 (IRF3), a key transcription factor that governs IFN-I activation. Co-expression analysis via immunoassays further indicated Spike specifically suppressed IRF3 expression as NF-κB and STAT1 transcription factor levels remained intact. Further biochemical experiments uncovered SARS-CoV-2 Spike potentiated proteasomal degradation of IRF3, implicating a novel mechanism by which SARS-CoV-2 evades the host innate antiviral immune response to facilitate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Raul S Freitas
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tyler F Crum
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kislay Parvatiyar
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
31
|
Cooper SL, Boyle E, Jefferson SR, Heslop CRA, Mohan P, Mohanraj GGJ, Sidow HA, Tan RCP, Hill SJ, Woolard J. Role of the Renin-Angiotensin-Aldosterone and Kinin-Kallikrein Systems in the Cardiovascular Complications of COVID-19 and Long COVID. Int J Mol Sci 2021; 22:8255. [PMID: 34361021 PMCID: PMC8347967 DOI: 10.3390/ijms22158255] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin-Angiotensin-Aldosterone System (RAAS) and Kinin-Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.
Collapse
Affiliation(s)
- Samantha L. Cooper
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eleanor Boyle
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Sophie R. Jefferson
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Calum R. A. Heslop
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Pirathini Mohan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Gearry G. J. Mohanraj
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Hamza A. Sidow
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Rory C. P. Tan
- School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (E.B.); (S.R.J.); (C.R.A.H.); (P.M.); (G.G.J.M.); (H.A.S.); (R.C.P.T.)
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
- Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
32
|
EXPRESSION OF ANGIOTENSIN-CONVERTING ENZYME-2 IN LUNG TISSUES IN EXPERIMENTAL BRONCHOPNEUMMONIA. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-4-78-208-213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|