1
|
Liu R, Yang L, Feng J, Zhang S, Wu L, Du Y, Kong D, Xu Y, Peng T. M2e/NP Dual Epitope-Displaying Nanoparticles Enhance Cross-Protection of Recombinant HA Influenza Vaccine: A Universal Boosting Strategy. Vaccines (Basel) 2025; 13:412. [PMID: 40333315 PMCID: PMC12031538 DOI: 10.3390/vaccines13040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: Vaccination remains the most effective means of preventing influenza virus infections. However, the continuous antigenic drift and shift of influenza viruses lead to a reduced efficacy of the existing vaccines, necessitating vaccines capable of broad protection. Methods: To address this, we developed a modular vaccine strategy pairing a clinical-stage adjuvanted recombinant hemagglutinin (HA) vaccine (SCVC101) with OMN, a heptameric nanoparticle displaying conserved influenza A virus T-cell epitopes from nucleoprotein (NP) and matrix 2 ectodomain (M2e). Results: OMN induced cross-reactive M2e-specific antibodies, binding to diverse influenza A subtypes. Critically, the co-administration of OMN with SCVC101 enhanced cellular immunity and cross-protection without diminishing HA-induced humoral responses. Conclusions: This dual-antigen delivery system enables annual HA component updates, aligned with WHO recommendations, while the conserved OMN nanoparticle acts as a universal booster, leveraging existing production infrastructure. This approach offers a promising strategy for improving the influenza vaccine's efficacy against emerging viral variants.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Lejun Yang
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Jin Feng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China; (L.W.); (Y.X.)
| | - Songchen Zhang
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Liping Wu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China; (L.W.); (Y.X.)
| | - Yingying Du
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Dexin Kong
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
| | - Yuhua Xu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China; (L.W.); (Y.X.)
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; (R.L.); (L.Y.); (J.F.); (S.Z.)
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510663, China; (L.W.); (Y.X.)
| |
Collapse
|
2
|
Del Campo J, Valsesia S, Nikly E, Ruiu R, Iacoviello A, Quaglino E, Cavallo F, Hannani D, Boucher E, Nicolas F, Le Vert A, Doro F. OligoDOM TM: a T-cell response-enhancing platform applied to cancer immunotherapy. Front Immunol 2025; 16:1549112. [PMID: 40160825 PMCID: PMC11951937 DOI: 10.3389/fimmu.2025.1549112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Background Neoepitopes derived (0) from tumors are attractive cancer immunotherapy targets, especially when combined with immune checkpoint inhibitors (CPIs). Vaccines using lipid nanoparticle (LNP)-encapsulated mRNA to deliver neoepitopes have shown encouraging results in patients and animal models, due to T cell-dependent responses. However, a low mutational burden is often a predictor of poor CPI response: the immune response against the few available mutations can be insufficient. An enhanced response to these few mutations could increase CPI efficacy. Here, we investigate the potential of oligoDOM™, a self-assembling sequence, to improve neoepitope immunogenicity and antitumor efficacy in murine cancer models. Methods LNP-formulated mRNA constructs encoding short epitope strings fused with oligoDOM™ were tested. Immune responses in mice were compared between constructs with oligoDOM™ and their controls. Specific T-cell responses against four tumor models (MC38, CT26, TC-1, B16-OVA) were measured using ELISpot in naïve mice. Two models (TC-1 and B16-OVA) were further selected for tumor growth efficacy testing. Results LNP-formulated neoepitope-oligoDOM™ mRNA constructs induced a significantly superior immune response as compared with the control groups in four neoantigens tested. This increased specific immunogenicity is linked to antitumor growth effects in murine syngeneic cancer models such as the B16-OVA and TC-1. The induced T-cell immune response significantly correlated with tumor growth rate reduction. Discussion Combining oligoDOM™ and LNP-mRNA technologies offers a versatile platform that allows for efficient short neoepitope strings delivery. This approach represents a feasible, potentially effective strategy for personalized cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Mice
- Cancer Vaccines/immunology
- Cancer Vaccines/administration & dosage
- Immunotherapy/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Line, Tumor
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Female
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Nanoparticles
- Mice, Inbred C57BL
- RNA, Messenger/immunology
- RNA, Messenger/genetics
- RNA, Messenger/administration & dosage
- Disease Models, Animal
- Immune Checkpoint Inhibitors/pharmacology
- Liposomes
Collapse
Affiliation(s)
| | | | | | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Antonella Iacoviello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Dalil Hannani
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, University Grenoble Alpes, Grenoble, France
| | - Emilie Boucher
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, University Grenoble Alpes, Grenoble, France
| | | | | | | |
Collapse
|
3
|
Chen C, Li M, Guo A, Guo P, Zhang W, Gu C, Wen G, Zhou H, Tao P. Addressing unexpected bacterial RNA safety concerns of E. coli produced influenza NP through CpG loaded mutant. NPJ Vaccines 2025; 10:32. [PMID: 39955275 PMCID: PMC11829966 DOI: 10.1038/s41541-025-01087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Influenza virus nucleoprotein (NP) is a promising target for universal influenza vaccines due to its conservation and high immunogenicity. Here, we uncovered a previously unknown factor that E. coli-produced NP carries bacterial RNA, which is crucial for its high immunogenicity but may pose safety and consistency concerns due to batch variability. To address these concerns, we developed a NP mutant (NPmut) that lacks RNA binding activity but can be loaded with CpG1826, a synthetic oligodeoxynucleotide adjuvant that has been used in the FDA-approved Hepatitis B vaccine. The CpG1826-loaded NPmut induced immune responses comparable to RNA-bound NP while eliminating safety risks. Additionally, the mixture of CpG1826-loaded NPmut and 3M2e protein (three tandem copies of the ectodomain of influenza M2 protein) provided enhanced protection against influenza viruses challenge. Our findings highlight the adjuvant activity of bacterial RNA in E. coli-produced NP and propose a safer strategy for developing universal influenza vaccines.
Collapse
Affiliation(s)
- Cen Chen
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Aili Guo
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Pengju Guo
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Wanpo Zhang
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changqin Gu
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Zong Y, Li H, Chang Y, Li J, He L, Shi W, Guo J. Global research trends in the relationship between influenza and CD4 + T/CD8 + T cells: A bibliometric analysis. Hum Vaccin Immunother 2024; 20:2435644. [PMID: 39680034 DOI: 10.1080/21645515.2024.2435644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Influenza pathogens cause many illnesses and deaths yearly, posing a serious threat to global public health. As a result, most studies are increasingly focusing on the role of specific CD4+ T/CD8+ T cells in combating influenza. This study examines the key themes and trends in this field using bibliometric analysis. Literature on influenza and CD4+ T/CD8+ T cells were searched (from 1985 to 2023) in the Web of Science Core Collection (WoSCC) database. Eligible articles were screened according to the inclusion and exclusion criteria for bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." A total of 1,071 publications from 47 countries or regions and 1,148 institutions associated with 5,728 authors in the disciplines of immunology, virology, biochemistry, and molecular biology were included. The findings indicate a yearly increase in publications related to influenza and CD4+ T/CD8+ T cells, with the United States, Australia, and China leading in publication volume. The University of Melbourne had the highest volume of publications. Only a few researchers collaborated, and the collaborations were mostly concentrated in the same countries/regions. Professor Katherine Kedzierska, associated with The Peter Doherty Institute for Infection and Immunity, was the most productive academic in this field. According to the analysis of highly cited literature and keywords, the application of cellular immunity in formulating pioneering influenza vaccines is a key direction for future research.The role of CD4+ T/CD8+ T cells in combating the influenza virus has emerged as a significant focus within influenza research literature. This article summarizes the research institutions, authors, journals, hotspots, and application trends of CD4+ T/CD8+ T cells in influenza.
Collapse
Affiliation(s)
- Yanping Zong
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Li
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiajie Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei He
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Weibing Shi
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jinchen Guo
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Jacobs B, Leroux-Roels I, Bruhwyler J, Groth N, Waerlop G, Janssens Y, Tourneur J, De Boever F, Alhatemi A, Moris P, Le Vert A, Leroux-Roels G, Nicolas F. Evaluation of Safety, Immunogenicity and Cross-Reactive Immunity of OVX836, a Nucleoprotein-Based Universal Influenza Vaccine, in Older Adults. Vaccines (Basel) 2024; 12:1391. [PMID: 39772052 PMCID: PMC11728545 DOI: 10.3390/vaccines12121391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: In a Phase 2a, double-blind, placebo-controlled study including healthy participants aged 18-55 years, OVX836, a nucleoprotein (NP)-based candidate vaccine, previously showed a good safety profile, a robust immune response (both humoral and cellular) and a preliminary signal of protection (VE = 84%) against PCR-confirmed symptomatic influenza after a single intramuscular dose of 180 µg, 300 µg or 480 µg. Methods: Using the same methodology, we confirmed the good safety and strong immunogenicity of OVX836 at the same doses in older adults (≥65 years), a key target population for influenza vaccination. Results: Significant humoral (anti-NP IgG) and cellular (interferon gamma (IFNγ) spot-forming cells per million peripheral blood mononuclear cells and specific CD4+ IFNγ+ T-cells) immune responses were observed at the three dose levels, without clear dose-response relationship. T-cell responses were shown to be highly cross-reactive against various influenza A strains, both seasonal and highly pathogenic avian strains. We also evaluated the effect of sex (stronger immune response in females) and age (stronger immune response in young adults) on the immune response to OVX836 after adjustment based on the pre-vaccination immune status. Conclusions: The results obtained with OVX836 lay the groundwork for a future placebo-controlled, field proof of concept efficacy Phase 2b trial.
Collapse
Affiliation(s)
- Bart Jacobs
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Jacques Bruhwyler
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Nicola Groth
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Yorick Janssens
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Jessika Tourneur
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Fien De Boever
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Azhar Alhatemi
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Philippe Moris
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Alexandre Le Vert
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), 10 Corneel Heymanslaan, 9000 Ghent, Belgium; (B.J.); (I.L.-R.); (G.W.); (Y.J.); (F.D.B.); (A.A.); (G.L.-R.)
| | - Florence Nicolas
- Osivax, 70 Rue Saint-Jean-de-Dieu, 69007 Lyon, France; (N.G.); (J.T.); (P.M.); (A.L.V.); (F.N.)
| |
Collapse
|
6
|
Mosmann TR, McMichael AJ, LeVert A, McCauley JW, Almond JW. Opportunities and challenges for T cell-based influenza vaccines. Nat Rev Immunol 2024; 24:736-752. [PMID: 38698082 DOI: 10.1038/s41577-024-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Vaccination remains our main defence against influenza, which causes substantial annual mortality and poses a serious pandemic threat. Influenza virus evades immunity by rapidly changing its surface antigens but, even when the vaccine is well matched to the current circulating virus strains, influenza vaccines are not as effective as many other vaccines. Influenza vaccine development has traditionally focused on the induction of protective antibodies, but there is mounting evidence that T cell responses are also protective against influenza. Thus, future vaccines designed to promote both broad T cell effector functions and antibodies may provide enhanced protection. As we discuss, such vaccines present several challenges that require new strategic and economic considerations. Vaccine-induced T cells relevant to protection may reside in the lungs or lymphoid tissues, requiring more invasive assays to assess the immunogenicity of vaccine candidates. T cell functions may contain and resolve infection rather than completely prevent infection and early illness, requiring vaccine effectiveness to be assessed based on the prevention of severe disease and death rather than symptomatic infection. It can be complex and costly to measure T cell responses and infrequent clinical outcomes, and thus innovations in clinical trial design are needed for economic reasons. Nevertheless, the goal of more effective influenza vaccines justifies renewed and intensive efforts.
Collapse
Affiliation(s)
- Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | | | | | - Jeffrey W Almond
- The Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Schulze K, Weber U, Schuy C, Durante M, Guzmán CA. Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses. Pharmaceutics 2024; 16:465. [PMID: 38675126 PMCID: PMC11054185 DOI: 10.3390/pharmaceutics16040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| | - Ulrich Weber
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Fachbereich Mathematik, Naturwissenschaften und Informatik, Technische Hochschule Mittelhessen, 35390 Gießen, Germany
| | - Christoph Schuy
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Department of Physics “Ettore Pancini”, University Federico II, 80138 Naples, Italy
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| |
Collapse
|
8
|
Rak A, Isakova-Sivak I, Rudenko L. Overview of Nucleocapsid-Targeting Vaccines against COVID-19. Vaccines (Basel) 2023; 11:1810. [PMID: 38140214 PMCID: PMC10747980 DOI: 10.3390/vaccines11121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The new SARS-CoV-2 coronavirus, which emerged in late 2019, is a highly variable causative agent of COVID-19, a contagious respiratory disease with potentially severe complications. Vaccination is considered the most effective measure to prevent the spread and complications of this infection. Spike (S) protein-based vaccines were very successful in preventing COVID-19 caused by the ancestral SARS-CoV-2 strain; however, their efficacy was significantly reduced when coronavirus variants antigenically different from the original strain emerged in circulation. This is due to the high variability of this major viral antigen caused by escape from the immunity caused by the infection or vaccination with spike-targeting vaccines. The nucleocapsid protein (N) is a much more conserved SARS-CoV-2 antigen than the spike protein and has therefore attracted the attention of scientists as a promising target for broad-spectrum vaccine development. Here, we summarized the current data on various N-based COVID-19 vaccines that have been tested in animal challenge models or clinical trials. Despite the high conservatism of the N protein, escape mutations gradually occurring in the N sequence can affect its protective properties. During the three years of the pandemic, at least 12 mutations have arisen in the N sequence, affecting more than 40 known immunogenic T-cell epitopes, so the antigenicity of the N protein of recent SARS-CoV-2 variants may be altered. This fact should be taken into account as a limitation in the development of cross-reactive vaccines based on N-protein.
Collapse
Affiliation(s)
- Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (I.I.-S.); (L.R.)
| | | | | |
Collapse
|
9
|
Leroux-Roels I, Willems P, Waerlop G, Janssens Y, Tourneur J, De Boever F, Bruhwyler J, Alhatemi A, Jacobs B, Nicolas F, Leroux-Roels G, Le Vert A. Immunogenicity, safety, and preliminary efficacy evaluation of OVX836, a nucleoprotein-based universal influenza A vaccine candidate: a randomised, double-blind, placebo-controlled, phase 2a trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:1360-1369. [PMID: 37517422 DOI: 10.1016/s1473-3099(23)00351-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND OVX836, a recombinant vaccine containing the nucleoprotein of the influenza A virus A/WSN/1933 (H1N1) and the oligomerisation domain OVX313, has displayed a good safety profile and elicited dose-dependent humoral and cellular immune responses at 90 μg or 180 μg (intramuscularly) in previous clinical trials. The aim of this study was to explore higher doses, since no maximum tolerated dose had been reached. METHODS In this phase 2a, randomised, double-blind, placebo-controlled study, we recruited 137 healthy adults aged 18-55 years in a single centre in Belgium. Participants were randomly assigned (interactive web response system; block size=4) using SAS (version 9.4) to receive one single intramuscular administration of OVX836 influenza vaccine at three doses (180 μg [n=33], 300 μg [n=35], and 480 μg [n=36]) or placebo (n=33). The two primary endpoints were the safety and the cell-mediated immune response to OVX836 at the three doses in terms of change of nucleoprotein-specific IFNγ spot forming cell (SFC) frequencies in the peripheral blood mononuclear cell (PBMC) population, measured by IFNγ ELISpot, at day 8 versus pre-injection baseline (day 1). The population used for the safety analysis is the modified intention-to-treat cohort. The population used for the immunogenicity analysis is the per-protocol cohort. This trial is registered with ClinicalTrials.gov, NCT05060887, and EudraCT, 2021-002535-39. FINDINGS Participants were recruited between Nov 15, 2021, and Feb 1, 2022. OVX836 had a favourable safety profile up to 480 μg without reaching the maximum tolerated dose, and showed a good safety profile at all doses with mild local and systemic reactogenicity. 7 days after vaccination, although no significant differences were observed between the doses, OVX836 increased the frequency of nucleoprotein-specific IFNγ SFCs per million PBMCs from days 1 to 8 (primary endpoint): by 124 SFCs per 106 PMBCs (95% CI 67 to 180; p=0·002) at 180 μg; by 202 SFCs per 106 PMBCs (95% CI 138 to 267; p<0·0001) at 300 μg; by 223 SFCs per 106 PMBCs (95% CI 147 to 299; p<0·0001) at 480 μg; and decreased by 1 SFCs per 106 PMBCs (95% CI -24 to 22] in the placebo group (Kruskal-Wallis test p<0·0001 followed by Mann-Whitney's tests; per-protocol cohort). Dose-dependent and polyfunctional nucleoprotein-specific CD4 T-cell responses were observed, and CD8 T-cell responses were elicited at 300 μg and 480 μg (secondary endpoints). INTERPRETATION OVX836 appears to be a safe and well tolerated candidate vaccine that elicits humoral and cellular nucleoprotein-specific immune responses (including CD8 T cells at the highest dose levels) and showed a preliminary signal of protection against influenza. Therefore, OVX836 is a promising vaccine candidate for universal influenza A prevention, that warrants further trials. FUNDING OSIVAX, Bpifrance, Wallonia Region, and the EUs Horizon 2020 Research and Innovation Program.
Collapse
|
10
|
Sun W, Xu J, Wang Z, Li D, Sun Y, Zhu M, Liu X, Li Y, Li F, Wang T, Feng N, Guo Z, Xia X, Gao Y. Clade 2.3.4.4 H5 chimeric cold-adapted attenuated influenza vaccines induced cross-reactive protection in mice and ferrets. J Virol 2023; 97:e0110123. [PMID: 37916835 PMCID: PMC10688331 DOI: 10.1128/jvi.01101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Clade 2.3.4.4 H5Nx avian influenza viruses (AIVs) have circulated globally and caused substantial economic loss. Increasing numbers of humans have been infected with Clade 2.3.4.4 H5N6 AIVs in recent years. Only a few human influenza vaccines have been licensed to date. However, the licensed live attenuated influenza virus vaccine exhibited the potential of being recombinant with the wild-type influenza A virus (IAV). Therefore, we developed a chimeric cold-adapted attenuated influenza vaccine based on the Clade 2.3.4.4 H5 AIVs. These H5 vaccines demonstrate the advantage of being non-recombinant with circulated IAVs in the future influenza vaccine study. The findings of our current study reveal that these H5 vaccines can induce cross-reactive protective efficacy in mice and ferrets. Our H5 vaccines may provide a novel option for developing human-infected Clade 2.3.4.4 H5 AIV vaccines.
Collapse
Affiliation(s)
- Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jiaqi Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences,Shandong Normal University, Jinan, China
| | - Zhenfei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jilin Agricultural University, Changchun, China
| | - Dongxu Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yue Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Menghan Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, School of Basic Medical Sciences, Kaifeng, China
| | - Xiawei Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, School of Basic Medical Sciences, Kaifeng, China
| | - Yuanguo Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fangxu Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences,Shandong Normal University, Jinan, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhendong Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
12
|
Primard C, Monchâtre-Leroy E, Del Campo J, Valsesia S, Nikly E, Chevandier M, Boué F, Servat A, Wasniewski M, Picard-Meyer E, Courant T, Collin N, Salguero FJ, Le Vert A, Guyon-Gellin D, Nicolas F. OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model. Front Immunol 2023; 14:1188605. [PMID: 37409116 PMCID: PMC10319154 DOI: 10.3389/fimmu.2023.1188605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM®, a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franck Boué
- ANSES, Laboratory for Rabies and Wildlife, Malzéville, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hu L, Lao G, Liu R, Feng J, Long F, Peng T. The race toward a universal influenza vaccine: Front runners and the future directions. Antiviral Res 2023; 210:105505. [PMID: 36574905 DOI: 10.1016/j.antiviral.2022.105505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Influenza virus is the pathogen of influenza (flu) and millions of people suffer from the infection worldwide, posing a significant health risk. The current influenza vaccines induce neutralizing antibodies against hemagglutinin (HA) to achieve strain-specific neutralization. The effectiveness of seasonal vaccines is usually low and unpredictable because of the antigenic variation and genetic plasticity of viruses, as well as the interference of preexisting immunity. A universal influenza vaccine is urgently needed to prevent a wide variety of influenza viruses. Nevertheless, reaching this difficult optimal goal requires a step-by-step approach. Innovative strategies and vaccine platforms are being developed in order to generate robust cross-protective immunity. In this review, we summarize candidate influenza vaccines that meet two criteria: first, they are designed to provide protection against multiple influenza viruses; second, they had passed regulatory evaluations and have entered various stages of clinical trials. We discuss these vaccine candidates based on the different vaccine-production platforms, with the focus on antigen selection, design, adjuvants, immunomodulators, and routes of vaccine delivery in the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Longbo Hu
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Geqi Lao
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Rui Liu
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jin Feng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fei Long
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong South China Vaccine, Guangzhou, China; Greater Bay Area Innovative Vaccine Technology Development Center, Guangzhou International Bio-island Laboratory, Guangzhou, China.
| |
Collapse
|
14
|
Li J, Zhang Y, Zhang X, Liu L. Influenza and Universal Vaccine Research in China. Viruses 2022; 15:116. [PMID: 36680158 PMCID: PMC9861666 DOI: 10.3390/v15010116] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Influenza viruses usually cause seasonal influenza epidemics and influenza pandemics, resulting in acute respiratory illness and, in severe cases, multiple organ complications and even death, posing a serious global and human health burden. Compared with other countries, China has a large population base and a large number of influenza cases and deaths. Currently, influenza vaccination remains the most cost-effective and efficient way to prevent and control influenza, which can significantly reduce the risk of influenza virus infection and serious complications. The antigenicity of the influenza vaccine exhibits good protective efficacy when matched to the seasonal epidemic strain. However, when influenza viruses undergo rapid and sustained antigenic drift resulting in a mismatch between the vaccine strain and the epidemic strain, the protective effect is greatly reduced. As a result, the flu vaccine must be reformulated and readministered annually, causing a significant drain on human and financial resources. Therefore, the development of a universal influenza vaccine is necessary for the complete fight against the influenza virus. By statistically analyzing cases related to influenza virus infection and death in China in recent years, this paper describes the existing marketed vaccines, vaccine distribution and vaccination in China and summarizes the candidate immunogens designed based on the structure of influenza virus, hoping to provide ideas for the design and development of new influenza vaccines in the future.
Collapse
Affiliation(s)
| | | | | | - Longding Liu
- Key Laboratory of Systemic Innovative Research on Virus Vaccine, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
15
|
Song Y, Zhu W, Wang Y, Deng L, Ma Y, Dong C, Gonzalez GX, Kim J, Wei L, Kang SM, Wang BZ. Layered protein nanoparticles containing influenza B HA stalk induced sustained cross-protection against viruses spanning both viral lineages. Biomaterials 2022; 287:121664. [PMID: 35810540 PMCID: PMC9822777 DOI: 10.1016/j.biomaterials.2022.121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023]
Abstract
The influenza epidemics pose a significant threat to public health. Of them, type B influenza coincided with several severe flu outbreaks. The efficacy of the current seasonal flu vaccine is limited due to the antigenicity changes of circulating strains. In this study, we generated structure-stabilized HA stalk antigens from influenza B and fabricated double-layered protein nanoparticles as universal influenza B vaccine candidates. In vitro studies found that the resulting protein nanoparticles were effectively taken up to activate dendritic cells. Nanoparticle immunization induced broadly reactive immune responses conferring robust and sustained cross-immune protection against influenza B virus strains of both lineages. The results reveal the potential of layered protein nanoparticles incorporated with structure-stabilized constant antigens as a universal influenza vaccine with improved immune protective potency and breadth.
Collapse
Affiliation(s)
- Yufeng Song
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Lei Deng
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA; Hunan Provincial Kay Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, 410082, China
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Gilbert X Gonzalez
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
16
|
Chen ZM, Yang XY, Li ZT, Guan WJ, Qiu Y, Li SQ, Zhan YQ, Lei ZY, Liu J, Zhang JQ, Wang ZF, Ye F. Anti-Interferon-γ Autoantibodies Impair T-Lymphocyte Responses in Patients with Talaromyces marneffei Infections. Infect Drug Resist 2022; 15:3381-3393. [PMID: 35789796 PMCID: PMC9250332 DOI: 10.2147/idr.s364388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Although anti-IFN-γ autoantibodies predispose patients to Talaromyces marneffei infection, whether this is mediated by T cell attenuation remains elusive. Methods Total peripheral blood mononuclear cells (PBMCs) from healthy donors or patients with T. marneffei infection were stimulated with M158−66, and immunodominant influenza H1N1 peptide, or heat-inactivated T. marneffei in the presence of serum from anti-IFN-γ autoantibody-positive patients or healthy controls. The percentages of IFN-γ+TNF+CD8+ T cells and IFN-γ+CD4+ T cells were determined by flow cytometry and cytokines released in the supernatant were detected by Cytometric Bead Array. Furthermore, PBMCs from patients with T. marneffei infection and healthy individuals were stimulated with IFN-γ and anti-CD3/CD28 beads, and the levels of STAT1 and STAT3 phosphorylation were detected by Western blot. Results The M1-reactive CD8+ T cells that expressed IFN-γ+ TNF-α+ of healthy controls were clearly reduced in serum with high-titer anti-IFN-γ autoantibodies. In addition, the CD4+ T cell response, designated by the expression of IFN-γ, against T. marneffei in PBMCs of patients were significantly decreased when cultured in high-titer anti-IFN-γ autoantibody serum culture, compared to the healthy compartments. Moreover, the release of the cytokines IFN-γ, TNF-α and IL-2 was significantly decreased, while IL-10 was significantly increased. There was no significant difference in the phosphorylation levels of STAT1 and STAT3 protein between patients and healthy controls after IFN-γ or anti-CD3/CD28 beads stimulation. Conclusion Anti-IFN-γ autoantibodies presence in the serum inhibited CD4+ Th1 and CD8+ T cell immune responses. There was no congenital dysfunction of STAT1 and STAT3 in anti-IFN-γ autoantibody-positive patients with T. marneffei infection. These results suggest that the production of anti-IFN-γ autoAbs impair T-lymphocyte responses.
Collapse
Affiliation(s)
- Zhao-Ming Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiao-Yun Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.,Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, People's Republic of China
| | - Zheng-Tu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.,Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ye Qiu
- Department of Comprehensive Internal Medicine, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shao-Qiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yang-Qing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zi-Ying Lei
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Liu
- Department of Comprehensive Internal Medicine, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jian-Quan Zhang
- Department of Infectious Diseases, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Zhong-Fang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.,Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, People's Republic of China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Carascal MB, Pavon RDN, Rivera WL. Recent Progress in Recombinant Influenza Vaccine Development Toward Heterosubtypic Immune Response. Front Immunol 2022; 13:878943. [PMID: 35663997 PMCID: PMC9162156 DOI: 10.3389/fimmu.2022.878943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Flu, a viral infection caused by the influenza virus, is still a global public health concern with potential to cause seasonal epidemics and pandemics. Vaccination is considered the most effective protective strategy against the infection. However, given the high plasticity of the virus and the suboptimal immunogenicity of existing influenza vaccines, scientists are moving toward the development of universal vaccines. An important property of universal vaccines is their ability to induce heterosubtypic immunity, i.e., a wide immune response coverage toward different influenza subtypes. With the increasing number of studies and mounting evidence on the safety and efficacy of recombinant influenza vaccines (RIVs), they have been proposed as promising platforms for the development of universal vaccines. This review highlights the current progress and advances in the development of RIVs in the context of heterosubtypic immunity induction toward universal vaccine production. In particular, this review discussed existing knowledge on influenza and vaccine development, current hemagglutinin-based RIVs in the market and in the pipeline, other potential vaccine targets for RIVs (neuraminidase, matrix 1 and 2, nucleoprotein, polymerase acidic, and basic 1 and 2 antigens), and deantigenization process. This review also provided discussion points and future perspectives in looking at RIVs as potential universal vaccine candidates for influenza.
Collapse
Affiliation(s)
- Mark B Carascal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.,Clinical and Translational Research Institute, The Medical City, Pasig City, Philippines
| | - Rance Derrick N Pavon
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
18
|
Leroux-Roels I, Waerlop G, Tourneur J, De Boever F, Maes C, Bruhwyler J, Guyon-Gellin D, Moris P, Del Campo J, Willems P, Leroux-Roels G, Le Vert A, Nicolas F. Randomized, Double-Blind, Reference-Controlled, Phase 2a Study Evaluating the Immunogenicity and Safety of OVX836, A Nucleoprotein-Based Influenza Vaccine. Front Immunol 2022; 13:852904. [PMID: 35464450 PMCID: PMC9022189 DOI: 10.3389/fimmu.2022.852904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
OVX836 is a recombinant protein-based vaccine targeting the highly conserved influenza nucleoprotein (NP), which aims to confer a broad-spectrum protection against influenza. In a Phase 1 study, OVX836, administered intramuscularly, has been found safe and immunogenic. The 90µg and 180µg dose levels were selected to be further evaluated in this randomized, monocenter, reference-controlled (Influvac Tetra™: quadrivalent seasonal influenza subunit vaccine), parallel group, double-blind, Phase 2a study in 300 healthy volunteers, aged 18-65 years, during the 2019/2020 flu season. Safety, influenza-like illness episodes (ILI; based on the Flu-PRO® questionnaire) and immunogenicity were assessed up to 180 days post-vaccination. OVX836 was safe and presented a reactogenicity profile similar to Influvac Tetra. It induced a significant increase in terms of NP-specific interferon-gamma (IFNγ) spot forming cells (SFCs), NP-specific CD4+ T-cells (essentially polyfunctional cells) and anti-NP IgG responses. OVX836 was superior to Influvac Tetra for all immunological parameters related to NP, and the 180µg dose was significantly superior to the 90µg dose for SFCs and CD4+ T-cells expressing IFNγ. Both the CD4+ T-cell and the anti-NP IgG responses persisted up to Day 180. An efficacy signal was observed with OVX836 at 180µg through reduction of ILI episodes occurring during the flu season as of 14 days post-vaccination. In conclusion, these results encourage further clinical evaluation of OVX836 in order to confirm the signal of efficacy on ILIs and/or laboratory-confirmed influenza cases. NCT04192500 (https://clinicaltrials.gov/ct2/show/study/NCT04192500).
Collapse
Affiliation(s)
- Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | - Fien De Boever
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Catherine Maes
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | | | | | | | | | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | | |
Collapse
|
19
|
Pinkham R, Eckery D, Mauldin R, Gomm M, Hill F, Vial F, Massei G. Longevity of an immunocontraceptive vaccine effect on fecundity in rats. Vaccine X 2022; 10:100138. [PMID: 35024602 PMCID: PMC8732792 DOI: 10.1016/j.jvacx.2021.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022] Open
Abstract
Increases in human-wildlife conflicts alongside cultural shifts against lethal control methods are driving the need for alternative wildlife management tools such as fertility control. Contraceptive formulations suitable for oral delivery would permit broader remote application in wildlife species. This study evaluated the contraceptive effect and immune response to two novel injectable immunocontraceptive formulations targeting the Gonadotropin Releasing Hormone (GnRH): MAF-IMX294 and MAF-IMX294P conjugates, both identified as having potential as oral contraceptives. The study also explored whether in multiparous species immunocontraceptives may either totally prevent reproduction or also affect litter size. Female rats, chosen as a model species, were given three doses of either MAF-IMX294 or MAF-IMX294P to compare anti-GnRH immune response and reproductive output up to 310 days post-treatment. Both formulations induced anti-GnRH antibody titres in 100% of rats and significantly impaired fertility compared to control animals. Following treatment with MAF-IMX294 and MAF-IMX294P 0 of 9 and 1 of 10 females respectively produced litters following the first mating challenge 45 days post-treatment, compared to 9 of 9 control animals. Across the whole 310 day study period 7 of 9 females from the MAF-IMX294 group and 10 of 10 females in the MAF-IMX294P group became fertile, producing at least one litter throughout six mating challenges. No significant differences were found between the two formulations in antibody titre response or duration of contraceptive effect, with an average time to first pregnancy of 166 days for MAF-IMX294 and 177 days for MAF-IMX294P for all females that became fertile. Following treatment with MAF-IMX294 and MAF-IMX294P the first litter produced post-infertility in treated females was significantly smaller than in control animals. This indicates treatment with immunocontraceptives may induce an overall suppression of fecundity extending past an initial infertility effect. This increases the potential long-term impact of these immunocontraceptives in multiparous species such as commensal rodents.
Collapse
Affiliation(s)
- R Pinkham
- National Wildlife Management Centre, Animal and Plant Health Agency, York YO41 1LZ, UK
| | - D Eckery
- USDA APHIS National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521 USA
| | - R Mauldin
- USDA APHIS National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521 USA
| | - M Gomm
- National Wildlife Management Centre, Animal and Plant Health Agency, York YO41 1LZ, UK
| | - F Hill
- Osivax, 99 rue de Gerland, Lyon, 69007 France
| | - F Vial
- National Wildlife Management Centre, Animal and Plant Health Agency, York YO41 1LZ, UK
| | - G Massei
- National Wildlife Management Centre, Animal and Plant Health Agency, York YO41 1LZ, UK
| |
Collapse
|
20
|
Withanage K, De Coster I, Cools N, Viviani S, Tourneur J, Chevandier M, Lambiel M, Willems P, Le Vert A, Nicolas F, Van Damme P. Phase 1 randomized, placebo-controlled, dose-escalating study to evaluate OVX836, a nucleoprotein-based influenza vaccine: intramuscular results. J Infect Dis 2021; 226:119-127. [PMID: 34653245 PMCID: PMC9373130 DOI: 10.1093/infdis/jiab532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/13/2021] [Indexed: 11/12/2022] Open
Abstract
Background OVX836 is a recombinant protein vaccine targeting the highly conserved influenza nucleoprotein (NP), which could confer broad-spectrum protection against this disease. Methods A randomized, placebo-controlled, double-blind, dose-escalating, single- center, first-in-human study was conducted in 36 healthy adults aged 18–49 years. Twelve subjects per cohort (9 vaccine and 3 placebo) received 2 OVX836 intramuscular administrations on days 1 and 28 at the dose level of 30 µg, 90 µg, or 180 µg. Safety and immunogenicity were assessed after each vaccination and for 150 days in total. Results OVX836 was safe and well tolerated at all dose levels, with no difference in solicited local and systemic symptoms, and unsolicited adverse events between the first and second administration, or between dose levels. All subjects presented pre-existing NP-specific immunity at baseline. OVX836 induced a significant increase in NP-specific interferon-gamma T cells and anti-NP immunoglobulin G at all dose levels after the first vaccination. The second vaccination did not further increase the response. There was a trend for a dose effect in the immune response. Conclusions The safety and reactogenicity profile, as well as the humoral and cellular immune responses, encourage further evaluation of OVX836 in a larger Phase 2a study.
Collapse
Affiliation(s)
- Kanchanamala Withanage
- Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein, Antwerpen, Belgium
| | - Ilse De Coster
- Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein, Antwerpen, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein, Antwerpen, Belgium
| | - Simonetta Viviani
- Independent Scientific Advisor on Vaccines, Epidemiology and Public Health, Via Gramsci, I-Monteriggioni, Siena, Italy. Acting as Chief Medical Officer for Osivax at the time of the clinical study
| | | | | | | | | | | | | | - Pierre Van Damme
- Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein, Antwerpen, Belgium
| |
Collapse
|