1
|
Ruan P, Li J, Abdelhalim KA, Tang Z, Tan W, Yao J, Tan Y, Wang L. GIMAP1 interacts with TMX1 to improve lung adenocarcinoma prognosis by influencing tumor immune microenvironment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167661. [PMID: 39805394 DOI: 10.1016/j.bbadis.2025.167661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Recent studies have indicated that the GIMAP family is downregulated in lung cancer and correlates with poor prognosis, although the underlying mechanisms remain unclear. This study aimed to elucidate the mechanism behind GIMAP1 downregulation in lung cancer. Bioinformatics tools were employed to assess the correlation between the GIMAP family and various cancers. Specifically, GIMAP1 was selected for further investigation, and its role in lung adenocarcinoma was confirmed through RNA sequencing analysis, Gene Set Enrichment Analysis (GSEA) of differentially expressed genes, correlation analysis with immune cell infiltration, and assay of the GIMAP1-TMX1 interaction. Based on bioinformatics analysis and real-world cohort studies, it was found that GIMAP1 was underexpressed in lung cancer tissues but exhibited elevated expression following immunotherapy. Overexpression of GIMAP1 was shown to influence several immune signaling pathways. In patients with high GIMAP1 expression, there was a significant increase in the infiltration of CD8+ T cells, activated memory CD4+ T cells, monocytes, and M1 macrophages; conversely, infiltration by M0 macrophages, resting dendritic cells (DCs), and plasma cells was significantly reduced. In vitro experiments showed that high levels of GIMAP1 increased the percentage of Treg, NK, and NKT cells. Additionally, GIMAP1 directly interacted with TMX1 and modulated the expression of downstream immune-related genes including CMTM5, IL17F, TRAV34, and XCR1. Therefore, GIMAP1 may serve as a promising therapeutic target in lung cancer, influencing both disease initiation and progression.
Collapse
Affiliation(s)
- Pinglang Ruan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiani Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Khalid A Abdelhalim
- Izmir Biomedicine and Genome Center, 35340 Izmir, Turkiye; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Weitong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiaoyang Yao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Horin LJ, Sonnett M, Li B, Mitchison TJ. Diverse microtubule-destabilizing drugs induce equivalent molecular pathway responses in endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.632572. [PMID: 39896568 PMCID: PMC11785092 DOI: 10.1101/2025.01.22.632572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Drugs that modulate microtubule (MT) dynamics are well-characterized at the molecular level, yet the mechanisms linking these molecular effects to their distinct clinical outcomes remain unclear. Several MT-destabilizing drugs, including vinblastine, combretastatin A4, and plinabulin, are widely used, or are under evaluation for cancer treatment. Although all three depolymerize MTs, they do so through distinct biochemical mechanisms. Furthermore, their clinical profiles and therapeutic uses differ considerably. To investigate whether differential modulation of molecular pathways might account for clinical differences, we compared gene expression and signaling pathway responses in human pulmonary microvascular endothelial cells (HPMECs), alongside the MT-stabilizing drug docetaxel and the pro-inflammatory cytokine TNF-α. RNA-sequencing and phosphoproteomics revealed that all three MT destabilizers triggered equivalent molecular responses. The substantial changes in gene expression caused by MT destabilization were completely dependent on Rho family GTPase activation. These findings suggest that the distinct clinical profiles of the destabilizing drugs depend on differences in pharmacokinetics (PK) and tissue distribution rather than molecular actions. The washout rate of the three drugs differed, which likely translates to PK differences. Our data provide insights into how MT destabilization triggers signaling changes, potentially explaining how these drugs induce cell cycle re-entry in quiescent cells and how plinabulin ameliorates chemotherapy-induced neutropenia.
Collapse
Affiliation(s)
- Lillian J Horin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Matthew Sonnett
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Boyan Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
3
|
Luo R, Li X, Gao R, Yang M, Cai J, Dai L, Lou N, Fan G, Zhu H, Wang S, Zhang Z, Tang L, Yao J, Wu D, Shi Y, Han X. A Novel IgG-IgM Autoantibody Panel Enhances Detection of Early-stage Lung Adenocarcinoma from Benign Nodules. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae085. [PMID: 39661479 PMCID: PMC12032526 DOI: 10.1093/gpbjnl/qzae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Autoantibodies hold promise for diagnosing lung cancer. However, their effectiveness in early-stage detection needs improvement. In this study, we investigated novel IgG and IgM autoantibodies for detecting early-stage lung adenocarcinoma (Early-LUAD) by employing a multi-step approach, including Human Proteome Microarray (HuProtTM) discovery, focused microarray verification, and ELISA validation, on 1246 individuals consisting of 634 patients with Early-LUAD (stage 0-I), 280 patients with benign lung disease (BLD), and 332 normal healthy controls (NHCs). HuProtTM selected 417 IgG/IgM candidates, and focused microarray further verified 55 significantly elevated IgG/IgM autoantibodies targeting 32 tumor-associated antigens in Early-LUAD compared to BLD/NHC/BLD+NHC. A novel panel of 10 autoantibodies (ELAVL4-IgM, GDA-IgM, GIMAP4-IgM, GIMAP4-IgG, MGMT-IgM, UCHL1-IgM, DCTPP1-IgM, KCMF1-IgM, UCHL1-IgG, and WWP2-IgM) demonstrated a sensitivity of 70.5% and a specificity of 77.0% or 80.0% for distinguishing Early-LUAD from BLD or NHC in ELISA validation. Positive predictive values for distinguishing Early-LUAD from BLD with nodules ≤ 8 mm, 9-20 mm, and > 20 mm significantly increased from 47.27%, 52.00%, and 62.90% [low-dose computed tomography (LDCT) alone] to 79.17%, 71.13%, and 87.88% (10-autoantibody panel combined with LDCT), respectively. The combined risk score (CRS), based on the 10-autoantibody panel, sex, and imaging maximum diameter, effectively stratified the risk for Early-LUAD. Individuals with 10 ≤ CRS ≤ 25 and CRS > 25 indicated a higher risk of Early-LUAD compared to the reference (CRS < 10), with adjusted odds ratios of 5.28 [95% confidence interval (CI): 3.18-8.76] and 9.05 (95% CI: 5.40-15.15), respectively. This novel panel of IgG and IgM autoantibodies offers a complementary approach to LDCT in distinguishing Early-LUAD from benign nodules.
Collapse
Affiliation(s)
- Rongrong Luo
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Xiying Li
- Department of Blood Transfusion, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Mengwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Juan Cai
- Department of Blood Transfusion, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Nin Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Haohua Zhu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Shasha Wang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Zhishang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Di Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research & Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
4
|
Graham LA, Davies PL. Convergent evolution of type I antifreeze proteins from four different progenitors in response to global cooling. BMC Mol Cell Biol 2024; 25:27. [PMID: 39736515 DOI: 10.1186/s12860-024-00525-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs. The cunner AFP has arisen by a similar route from the duplication and divergence of a GIMAP gene. The coding region for this AFP stems from an alanine-rich region flanking the GTPase domain of GIMAPa. The AFP gene has remained in the GIMAP gene locus and has undergone amplification there along with the GIMAPa gene. The AFP gene originated after the cunner diverged from its common ancestor with the closely related spotty and ballan wrasses, which exhibit similar gene synteny but lack AFP genes. Snailfish AFPs have also recently evolved because they are confined to a single genus of this family. In these AFP-producing species, the AFP locus does not share any similarity to functional genes. Instead, it is replete with repetitive DNAs and transposons, several stretches of which could encode alanine tracts with a dominant codon (GCC) that matches the bias observed in the AFP genes. All four known instances of type I AFPs occurring in fishes are independent evolutionary events that occurred soon after the onset of Northern Hemisphere Cenozoic glaciation events. Collectively, these results provide a remarkable example of convergent evolution to one AFP type.
Collapse
Affiliation(s)
- Laurie A Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.
| |
Collapse
|
5
|
Zhang L, Li H, Sun F, Wu Q, Jin L, Xu A, Chen J, Yang R. Identification of novel markers for neuroblastoma immunoclustering using machine learning. Front Immunol 2024; 15:1446273. [PMID: 39559348 PMCID: PMC11570813 DOI: 10.3389/fimmu.2024.1446273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background Due to the unique heterogeneity of neuroblastoma, its treatment and prognosis are closely related to the biological behavior of the tumor. However, the effect of the tumor immune microenvironment on neuroblastoma needs to be investigated, and there is a lack of biomarkers to reflect the condition of the tumor immune microenvironment. Methods The GEO Database was used to download transcriptome data (both training dataset and test dataset) on neuroblastoma. Immunity scores were calculated for each sample using ssGSEA, and hierarchical clustering was used to categorize the samples into high and low immunity groups. Subsequently, the differences in clinicopathological characteristics and treatment between the different groups were examined. Three machine learning algorithms (LASSO, SVM-RFE, and Random Forest) were used to screen biomarkers and synthesize their function in neuroblastoma. Results In the training set, there were 362 samples in the immunity_L group and 136 samples in the immunity_H group, with differences in age, MYCN status, etc. Additionally, the tumor microenvironment can also affect the therapeutic response of neuroblastoma. Six characteristic genes (BATF, CXCR3, GIMAP5, GPR18, ISG20, and IGHM) were identified by machine learning, and these genes are associated with multiple immune-related pathways and immune cells in neuroblastoma. Conclusions BATF, CXCR3, GIMAP5, GPR18, ISG20, and IGHM may serve as biomarkers that reflect the conditions of the immune microenvironment of neuroblastoma and hold promise in guiding neuroblastoma treatment.
Collapse
Affiliation(s)
- Longguo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Huixin Li
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fangyan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiuping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiarui Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Pharmacy, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| |
Collapse
|
6
|
Cury J, Haudiquet M, Hernandez Trejo V, Mordret E, Hanouna A, Rotival M, Tesson F, Bonhomme D, Ofir G, Quintana-Murci L, Benaroch P, Poirier EZ, Bernheim A. Conservation of antiviral systems across domains of life reveals immune genes in humans. Cell Host Microbe 2024; 32:1594-1607.e5. [PMID: 39208803 DOI: 10.1016/j.chom.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Deciphering the immune organization of eukaryotes is important for human health and for understanding ecosystems. The recent discovery of antiphage systems revealed that various eukaryotic immune proteins originate from prokaryotic antiphage systems. However, whether bacterial antiphage proteins can illuminate immune organization in eukaryotes remains unexplored. Here, we use a phylogeny-driven approach to uncover eukaryotic immune proteins by searching for homologs of bacterial antiphage systems. We demonstrate that proteins displaying sequence similarity with recently discovered antiphage systems are widespread in eukaryotes and maintain a role in human immunity. Two eukaryotic proteins of the anti-transposon piRNA pathway are evolutionarily linked to the antiphage system Mokosh. Additionally, human GTPases of immunity-associated proteins (GIMAPs) as well as two genes encoded in microsynteny, FHAD1 and CTRC, are respectively related to the Eleos and Lamassu prokaryotic systems and exhibit antiviral activity. Our work illustrates how comparative genomics of immune mechanisms can uncover defense genes in eukaryotes.
Collapse
Affiliation(s)
- Jean Cury
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Matthieu Haudiquet
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France; Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Veronica Hernandez Trejo
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Ernest Mordret
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Anael Hanouna
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France
| | - Florian Tesson
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France
| | - Delphine Bonhomme
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Gal Ofir
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, 75015 Paris, France; Human Genomics and Evolution, Collège de France, 75005 Paris, France
| | - Philippe Benaroch
- Myeloid Cells and Immunity Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Enzo Z Poirier
- Innate Immunity in Physiology and Cancer Team, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| | - Aude Bernheim
- Molecular Diversity of Microbes, Institut Pasteur, CNRS UMR3525, INSERM U1284, Université Paris-Cité, 75015 Paris, France.
| |
Collapse
|
7
|
Rives N, Lamba V, Cheng CHC, Zhuang X. Diverse Origins of Near-Identical Antifreeze Proteins in Unrelated Fish Lineages Provide Insights Into Evolutionary Mechanisms of New Gene Birth and Protein Sequence Convergence. Mol Biol Evol 2024; 41:msae182. [PMID: 39213383 PMCID: PMC11403476 DOI: 10.1093/molbev/msae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Determining the origins of novel genes and the mechanisms driving the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. Recently evolved fish antifreeze proteins (AFPs) offer a unique opportunity to explore these processes, particularly the near-identical type I AFP (AFPI) found in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages. Through comprehensive comparative analyses of newly sequenced genomes of winter flounder and grubby sculpin, along with available high-quality genomes of cunner and 14 other related species, the study revealed that near-identical AFPI proteins originated from distinct genetic precursors in each lineage. Each lineage independently evolved a de novo coding region for the novel ice-binding protein while repurposing fragments from their respective ancestors into potential regulatory regions, representing partial de novo origination-a process that bridges de novo gene formation and the neofunctionalization of duplicated genes. The study supports existing models of new gene origination and introduces new ones: the innovation-amplification-divergence model, where novel changes precede gene duplication; the newly proposed duplication-degeneration-divergence model, which describes new functions arising from degenerated pseudogenes; and the duplication-degeneration-divergence gene fission model, where each new sibling gene differentially degenerates and renovates distinct functional domains from their parental gene. These findings highlight the diverse evolutionary pathways through which a novel functional gene with convergent sequences at the protein level can evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.
Collapse
Affiliation(s)
- Nathan Rives
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Vinita Lamba
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - C H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL, USA
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
8
|
Maezawa M, Watanabe KI, Kobayashi Y, Yoshida K, Chambers JK, Uchida K, Maruyama R, Inokuma H. Diffuse large B-cell lymphoma with DNA copy number changes in a Japanese black calf. Vet Res Commun 2024; 48:2651-2656. [PMID: 38575802 PMCID: PMC11315774 DOI: 10.1007/s11259-024-10371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
A 2-month-old Japanese Black calf exhibited mandibular and superficial cervical lymph node swelling. Fine needle aspiration cytology of the superficial cervical lymph node revealed large lymphoblast-like cells with mitoses. Hematological examination revealed remarkable lymphocytosis with atypical lymphocytes. Increased activities of serum total lactate dehydrogenase and thymidine kinase were detected. At necropsy, generalized swelling of lymph nodes was observed. Histopathological analysis revealed diffuse proliferation of medium-sized round centroblastic neoplastic cells that were positive for CD20, CD79α, PAX5, and BLA-36, and negative for CD3, CD5, CD10, and CD34. The calf was diagnosed with centroblastic diffuse large B-cell lymphoma (DLBCL) based on these findings. Analysis of DNA copy number variation revealed an increased copy number for the GIMAP family relative to that in healthy cattle. Moreover, decreases in copy numbers of GBP-1, MIR3141, OR5P1E, and PTPRG relative to those in healthy cattle were also observed. Because DNA copy number variation represent a major contribution to the somatic mutation landscapes in human tumors, these findings suggest that DNA copy number changes might have contributed to the onset of DLBCL in the present case.
Collapse
Affiliation(s)
- Masaki Maezawa
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan.
| | - Ken-Ichi Watanabe
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Inada, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Yoshiyasu Kobayashi
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Inada, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Kio Yoshida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - James K Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, 135-8550, Japan
| | - Hisashi Inokuma
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Laboratory of Farm Animal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
9
|
Rives N, Lamba V, Cheng CHC, Zhuang X. Diverse origins of near-identical antifreeze proteins in unrelated fish lineages provide insights into evolutionary mechanisms of new gene birth and protein sequence convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584730. [PMID: 38559027 PMCID: PMC10980009 DOI: 10.1101/2024.03.12.584730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Determining the origins of novel genes and the genetic mechanisms underlying the emergence of new functions is challenging yet crucial for understanding evolutionary innovations. The convergently evolved fish antifreeze proteins provide excellent opportunities to investigate evolutionary origins and pathways of new genes. Particularly notable is the near-identical type I antifreeze proteins (AFPI) in four phylogenetically divergent fish taxa. This study tested the hypothesis of protein sequence convergence beyond functional convergence in three unrelated AFPI-bearing fish lineages, revealing different paths by which a similar protein arose from diverse genomic resources. Comprehensive comparative analyses of de novo sequenced genome of the winter flounder and grubby sculpin, available high-quality genome of the cunner and 14 other relevant species found that the near-identical AFPI originated from a distinct genetic precursor in each lineage. Each independently evolved a coding region for the novel ice-binding protein while retaining sequence identity in the regulatory regions with their respective ancestor. The deduced evolutionary processes and molecular mechanisms are consistent with the Innovation-Amplification-Divergence (IAD) model applicable to AFPI formation in all three lineages, a new Duplication-Degeneration-Divergence (DDD) model we propose for the sculpin lineage, and a DDD model with gene fission for the cunner lineage. This investigation illustrates the multiple ways by which a novel functional gene with sequence convergence at the protein level could evolve across divergent species, advancing our understanding of the mechanistic intricacies in new gene formation.
Collapse
|
10
|
Marulanda-Gomez AM, Ribes M, Franzenburg S, Hentschel U, Pita L. Transcriptomic responses of Mediterranean sponges upon encounter with symbiont microbial consortia. BMC Genomics 2024; 25:674. [PMID: 38972970 PMCID: PMC11229196 DOI: 10.1186/s12864-024-10548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Sponges (phylum Porifera) constantly interact with microbes. They graze on microbes from the water column by filter-feeding and they harbor symbiotic partners within their bodies. In experimental setups, sponges take up symbionts at lower rates compared with seawater microbes. This suggests that sponges have the capacity to differentiate between microbes and preferentially graze in non-symbiotic microbes, although the underlying mechanisms of discrimination are still poorly understood. Genomic studies showed that, compared to other animal groups, sponges present an extended repertoire of immune receptors, in particular NLRs, SRCRs, and GPCRs, and a handful of experiments showed that sponges regulate the expression of these receptors upon encounter with microbial elicitors. We hypothesize that sponges may rely on differential expression of their diverse repertoire of poriferan immune receptors to sense different microbial consortia while filter-feeding. To test this, we characterized the transcriptomic response of two sponge species, Aplysina aerophoba and Dysidea avara, upon incubation with microbial consortia extracted from A. aerophoba in comparison with incubation with seawater microbes. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. RESULTS D. avara incubated with A. aerophoba-symbionts regulated the expression of genes related to immunity, ubiquitination, and signaling. Within the set of differentially-expressed immune genes we identified different families of Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs). These results represent the first experimental evidence that different types of NLRs are involved in microbial discrimination in a sponge. In contrast, the transcriptomic response of A. aerophoba to its own symbionts involved comparatively fewer genes and lacked genes encoding for immune receptors. CONCLUSION Our work suggests that: (i) the transcriptomic response of sponges upon microbial exposure may imply "fine-tuning" of baseline gene expression as a result of their interaction with microbes, (ii) the differential response of sponges to microbial encounters varied between the species, probably due to species-specific characteristics or related to host's traits, and (iii) immune receptors belonging to different families of NLR-like genes played a role in the differential response to microbes, whether symbionts or food bacteria. The regulation of these receptors in sponges provides further evidence of the potential role of NLRs in invertebrate host-microbe interactions. The study of sponge responses to microbes exemplifies how investigating different animal groups broadens our knowledge of the evolution of immune specificity and symbiosis.
Collapse
Affiliation(s)
| | - Marta Ribes
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain
| | - Sören Franzenburg
- Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Lucia Pita
- Institut de Ciències del Mar, ICM - CSIC, Barcelona, Spain.
| |
Collapse
|
11
|
Zhang Y, Liu S, Liu D, Zhao Z, Song H, Peng K. Identification and validation of GIMAP family genes as immune-related prognostic biomarkers in lung adenocarcinoma. Heliyon 2024; 10:e33111. [PMID: 38948046 PMCID: PMC11211882 DOI: 10.1016/j.heliyon.2024.e33111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Background The GIMAP family genes play a key role in immune function. Increasing evidence suggests that GIMAP genes were implicated in the tumorigenesis of lung adenocarcinoma (LUAD). This study aimed to investigate the clinical significance of GIMAP family genes in LUAD. Methods In this study, we explored the expression, mutation, prognostic value of GIMAP family genes and the correlation with immune microenvironment in LUAD. We further investigated the relationship between GIMAP family genes expression and immunotherapy response in GEO LUAD and melanoma cohorts. Results Among the GIMAP family genes, the expression levels of GIMAP1, GIMAP2, GIMAP4, GIMAP5, GIMAP6, GIMAP7, and GIMAP8 were significantly lower in LUAD tumor tissues than normal tissues. Most GIMAP genes were closely related to age, tumor grade and T stage, but not significantly related to sex, N stage and M stage. In the overall population, patients with high expression of GIMAP family genes had a significant longer overall survival (OS). GO and KEGG enrichment analysis showed that GIMAP family genes were highly enriched in immune-related biological process. The expression of GIMAP family genes was positively correlated with immune cell infiltration and immune checkpoint molecules. Furthermore, high expression of GIMAP family genes were correlated with therapeutic response to immunotherapy in LUAD and melanoma patients. Conclusion In this study, we identified that GIMAP family genes were significantly associated with immune cell infiltration and immune checkpoint molecules. They potentially play a critical role in anti-tumor immunity and serve as immunotherapy biomarkers.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Infectious Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shan Liu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease, Guangzhou, Guangdong, China
| | - Deyi Liu
- Department of General Practice, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuxiang Zhao
- Department of Infectious Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Haifeng Song
- Department of Oncology, Lianzhou People's Hospital, Lianzhou, Guangdong, China
| | - Kunwei Peng
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Jiang C, Chao CC, Li J, Ge X, Shen A, Jucaud V, Cheng C, Shen X. Tissue-resident memory T cell signatures from single-cell analysis associated with better melanoma prognosis. iScience 2024; 27:109277. [PMID: 38455971 PMCID: PMC10918229 DOI: 10.1016/j.isci.2024.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/05/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
Tissue-resident memory T cells (TRM) are a specialized T cell population residing in peripheral tissues. The presence and potential impact of TRM in the tumor immune microenvironment (TIME) remain to be elucidated. Here, we systematically investigated the relationship between TRM and melanoma TIME based on multiple clinical single-cell RNA-seq datasets and developed signatures indicative of TRM infiltration. TRM infiltration is associated with longer overall survival and abundance of T cells, NK cells, M1 macrophages, and memory B cells in the TIME. A 22-gene TRM-derived risk score was further developed to effectively classify patients into low- and high-risk categories, distinguishing overall survival and immune activation, particularly in T cell-mediated responses. Altogether, our analysis suggests that TRM abundance is associated with melanoma TIME activation and patient survival, and the TRM-based machine learning model can potentially predict prognosis in melanoma patients.
Collapse
Affiliation(s)
- Chongming Jiang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc, San Francisco, CA, USA
| | - Jianrong Li
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xin Ge
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Aidan Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Chao Cheng
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
- Xilis, Inc., Durham, NC 27713, USA
| |
Collapse
|
13
|
Gope A, Mauro C. When ceramides meet immune senescence, a GIMAP5 connection. Nat Immunol 2024; 25:196-197. [PMID: 38263464 DOI: 10.1038/s41590-023-01736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Affiliation(s)
- Atrayee Gope
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Park AY, Leney-Greene M, Lynberg M, Gabrielski JQ, Xu X, Schwarz B, Zheng L, Balasubramaniyam A, Ham H, Chao B, Zhang Y, Matthews HF, Cui J, Yao Y, Kubo S, Chanchu JM, Morawski AR, Cook SA, Jiang P, Ravell JC, Cheng YH, George A, Faruqi A, Pagalilauan AM, Bergerson JRE, Ganesan S, Chauvin SD, Aluri J, Edwards-Hicks J, Bohrnsen E, Tippett C, Omar H, Xu L, Butcher GW, Pascall J, Karakoc-Aydiner E, Kiykim A, Maecker H, Tezcan İ, Esenboga S, Heredia RJ, Akata D, Tekin S, Kara A, Kuloglu Z, Unal E, Kendirli T, Dogu F, Karabiber E, Atkinson TP, Cochet C, Filhol O, Bosio CM, Davis MM, Lifton RP, Pearce EL, Daumke O, Aytekin C, Şahin GE, Aksu AÜ, Uzel G, Koneti Rao V, Sari S, Dalgıç B, Boztug K, Cagdas D, Haskologlu S, Ikinciogullari A, Schwefel D, Vilarinho S, Baris S, Ozen A, Su HC, Lenardo MJ. GIMAP5 deficiency reveals a mammalian ceramide-driven longevity assurance pathway. Nat Immunol 2024; 25:282-293. [PMID: 38172257 PMCID: PMC11151279 DOI: 10.1038/s41590-023-01691-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.
Collapse
Affiliation(s)
- Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Q Gabrielski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xijin Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arasu Balasubramaniyam
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hyoungjun Ham
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brittany Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Zhang
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen F Matthews
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jing Cui
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jean Michel Chanchu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aaron R Morawski
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A Cook
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ping Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juan C Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Internal Medicine, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Yan H Cheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alex George
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aiman Faruqi
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison M Pagalilauan
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jahnavi Aluri
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joy Edwards-Hicks
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Caroline Tippett
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Habib Omar
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leilei Xu
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - John Pascall
- Laboratory of Lymphocyte Signaling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - İlhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Raul Jimenez Heredia
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Deniz Akata
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Saban Tekin
- Department of Basic Medical Sciences, Hamidiye Faculty of Medicine, Division of Medical Biology, University of Health Sciences, İstanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Zarife Kuloglu
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Ankara University School of Medicine, Ankara, Türkiye
| | - Emel Unal
- Department of Pediatric Oncology, Ankara University Medical School, Ankara, Turkey
| | - Tanıl Kendirli
- Department of Pediatric Intensive Care Unit, Ankara University Medical School, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Esra Karabiber
- Department of Chest Diseases, Faculty of Medicine, Division of Adult Allergy-Immunology, Marmara University, Istanbul, Turkey
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Claude Cochet
- University Grenoble Alpes, INSERM, CEA, UMR Biosanté, Grenoble, France
| | - Odile Filhol
- University Grenoble Alpes, INSERM, CEA, UMR Biosanté, Grenoble, France
| | - Catherine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Palo Alto, CA, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Oliver Daumke
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gülseren Evirgen Şahin
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Aysel Ünlüsoy Aksu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, University of Health Sciences, Dr Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sinan Sari
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Buket Dalgıç
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Kaan Boztug
- St Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St Anna Children's Hospital, Vienna, Austria
| | - Deniz Cagdas
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - Aydan Ikinciogullari
- Department of Pediatric Immunology and Allergy, Ankara University Medical School, Ankara, Turkey
| | - David Schwefel
- Department of Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Silvia Vilarinho
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, School of Medicine Pendik, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Marmara University, Pendik, Istanbul, Turkey
| | - Helen C Su
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Vu LT, Ahmed F, Zhu H, Iu DSH, Fogarty EA, Kwak Y, Chen W, Franconi CJ, Munn PR, Tate AE, Levine SM, Stevens J, Mao X, Shungu DC, Moore GE, Keller BA, Hanson MR, Grenier JK, Grimson A. Single-cell transcriptomics of the immune system in ME/CFS at baseline and following symptom provocation. Cell Rep Med 2024; 5:101373. [PMID: 38232699 PMCID: PMC10829790 DOI: 10.1016/j.xcrm.2023.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/10/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious and poorly understood disease. To understand immune dysregulation in ME/CFS, we use single-cell RNA sequencing (scRNA-seq) to examine immune cells in patient and control cohorts. Postexertional malaise (PEM), an exacerbation of symptoms following strenuous exercise, is a characteristic symptom of ME/CFS. To detect changes coincident with PEM, we applied scRNA-seq on the same cohorts following exercise. At baseline, ME/CFS patients display classical monocyte dysregulation suggestive of inappropriate differentiation and migration to tissue. We identify both diseased and more normal monocytes within patients, and the fraction of diseased cells correlates with disease severity. Comparing the transcriptome at baseline and postexercise challenge, we discover patterns indicative of improper platelet activation in patients, with minimal changes elsewhere in the immune system. Taken together, these data identify immunological defects present at baseline in patients and an additional layer of dysregulation in platelets.
Collapse
Affiliation(s)
- Luyen Tien Vu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Faraz Ahmed
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Hongya Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - David Shing Huk Iu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yeonui Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Weizhong Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Carl J Franconi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Paul R Munn
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Ann E Tate
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey E Moore
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, USA
| | - Betsy A Keller
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer K Grenier
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Chen X, Li Z, Wang X, Zhou J, Wei Q, Chen K, Jiang R. Investigation and verification of GIMAP6 as a robust biomarker for prognosis and tumor immunity in lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:11041-11055. [PMID: 37338641 DOI: 10.1007/s00432-023-04980-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND AND AIM According to previous reports, GTPase of immunity-associated protein 6 (GIMAP6) is essential for autophagy. However, it is unclear how GIMAP6 affects the development and tumor immunity of lung adenocarcinoma (LUAD). METHODS In the present study, the role of GIMAP6 in vivo and in vitro was examined using reverse transcription-quantitative PCR, western blotting, and Cell Counting Kit-8, colony formation and Transwell assays. Datasets from The Cancer Genome Atlas and Genotype-Tissue Expression databases were thoroughly analyzed using R software. A nomogram was created using GIMAP6 and prognostic characteristics. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were applied to explore the potential mechanism of GIMAP6 in lung cancer. The link between GIMAP6 and the immunological landscape was studied using single-cell RNA sequencing datasets from Tumor Immune Estimation Resource (TIMER) 2.0 and Tumor Immune Single-cell Hub. RESULTS Patients with high GIMAP6 expression had improved overall and disease-specific survival compared with those patients with low GIMAP6 expression. According to the receiver operating characteristic and calibration curve, the nomogram based on T stage, N stage and GIMAP6 had predictive value for prognosis. According to functional enrichment analysis, GIMAP6 was primarily involved in T-cell receptor signaling pathway, chemokine signaling pathway, cytokine and cytokine receptor interaction. GIMAP6 was shown to be favorably linked with the infiltration of immune cells and immune-related molecules, including cytotoxic T-lymphocyte associated protein 4, programmed death-ligand 1, and T cell immunoreceptor with Ig and ITIM domains, by single-cell sequencing and TIMER2.0 analysis. The role of GIMAP6 in lung cancer cell proliferation, invasion, migration and immunity was experimentally verified. CONCLUSION These findings confirmed that GIMAP6 was an effective prognostic molecule that was involved in the regulation of the immune microenvironment of LUAD, and may become a predictor for the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Zhaona Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Qianhui Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Kaidi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
17
|
Nguyen ED, Fard VN, Kim BY, Collins S, Galey M, Nelson BR, Wakenight P, Gable SM, McKenna A, Bammler TK, MacDonald J, Okamura DM, Shendure J, Beier DR, Ramirez JM, Majesky MW, Millen KJ, Tollis M, Miller DE. Genome Report: chromosome-scale genome assembly of the African spiny mouse (Acomys cahirinus). G3 (BETHESDA, MD.) 2023; 13:jkad177. [PMID: 37552705 PMCID: PMC10542272 DOI: 10.1093/g3journal/jkad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023]
Abstract
There is increasing interest in the African spiny mouse (Acomys cahirinus) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from 4 different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.
Collapse
Affiliation(s)
- Elizabeth Dong Nguyen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Vahid Nikoonejad Fard
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sarah Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Branden R Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Paul Wakenight
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Aaron McKenna
- Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, NH 03755, USA
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jim MacDonald
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daryl M Okamura
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - David R Beier
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Mark W Majesky
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kathleen J Millen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Greco F, Panunzio A, Tafuri A, Bernetti C, Pagliarulo V, Beomonte Zobel B, Scardapane A, Mallio CA. Radiogenomic Features of GIMAP Family Genes in Clear Cell Renal Cell Carcinoma: An Observational Study on CT Images. Genes (Basel) 2023; 14:1832. [PMID: 37895181 PMCID: PMC10606653 DOI: 10.3390/genes14101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
GTPases of immunity-associated proteins (GIMAP) genes include seven functional genes and a pseudogene. Most of the GIMAPs have a role in the maintenance and development of lymphocytes. GIMAPs could inhibit the development of tumors by increasing the amount and antitumor activity of infiltrating immunocytes. Knowledge of key factors that affect the tumor immune microenvironment for predicting the efficacy of immunotherapy and establishing new targets in ccRCC is of great importance. A computed tomography (CT)-based radiogenomic approach was used to detect the imaging phenotypic features of GIMAP family gene expression in ccRCC. In this retrospective study we enrolled 193 ccRCC patients divided into two groups: ccRCC patients with GIMAP expression (n = 52) and ccRCC patients without GIMAP expression (n = 141). Several imaging features were evaluated on preoperative CT scan. A statistically significant correlation was found with absence of endophytic growth pattern (p = 0.049), tumor infiltration (p = 0.005), advanced age (p = 0.018), and high Fuhrman grade (p = 0.024). This study demonstrates CT imaging features of GIMAP expression in ccRCC. These results could allow the collection of data on GIMAP expression through a CT-approach and could be used for the development of a targeted therapy.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella Della Salute, Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy
| | - Andrea Panunzio
- Department of Urology, “Vito Fazzi” Hospital, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (A.P.); (A.T.); (V.P.)
| | - Alessandro Tafuri
- Department of Urology, “Vito Fazzi” Hospital, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (A.P.); (A.T.); (V.P.)
| | - Caterina Bernetti
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Vincenzo Pagliarulo
- Department of Urology, “Vito Fazzi” Hospital, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (A.P.); (A.T.); (V.P.)
| | - Bruno Beomonte Zobel
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Arnaldo Scardapane
- Dipartimento Interdisciplinare di Medicina, Sezione di Diagnostica Per Immagini, Università degli Studi di Bari “Aldo Moro”, Piazza Giulio Cesare, 11, 70124 Bari, Italy;
| | - Carlo Augusto Mallio
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy; (C.B.); (B.B.Z.); (C.A.M.)
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| |
Collapse
|
19
|
Wang L, Wang B, Hu C, Wang C, Gao C, Jiang H, Yan Y. Influences of chronic copper exposure on intestinal histology, antioxidative and immune status, and transcriptomic response in freshwater grouper (Acrossocheilus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108861. [PMID: 37257568 DOI: 10.1016/j.fsi.2023.108861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Copper (Cu) contamination is commonly found in both natural water environments and fish farms, and it can cause severe damage to different fish organs, but Cu-induced intestinal damage has been rarely studied. This study subjected three groups of freshwater grouper (Acrossocheilus fasciatus) (initial weight: 1.56 ± 0.10 g) to 0 mg/L, 0.01 mg/L, and 0.04 mg/L Cu2+ for 30 days, named Con, Cu0.01, and Cu0.04 groups, respectively. The histological observation indicated that the Cu0.04 group caused a significant decrease in villus length, lamina propria width, and muscular thickness compared to the Con group (P < 0.05). Additionally, the Cu0.04 group significantly increased intestinal superoxide dismutase (SOD), glutathione peroxidase (GPx), lysozyme (LZM) activities, as well as malondialdehyde (MDA) content than the Con group (P < 0.05). Meanwhile, the Cu0.01 and Cu0.04 groups showed significantly increased immunoglobulin M (IgM), complement 3 (C3), and glutathione (GSH) contents than the Con group (P < 0.05). Transcriptomic analysis revealed a total of 101 differentially expressed genes (DEGs), including 47 up-regulated and 54 down-regulated DEGs, were identified between the Cu0.04 and Con groups. Notably, the DEGs were mainly related to intestinal structure construction, immune functions, apoptosis, and resistance to DNA damage and pathogen infection. The findings suggest that chronic Cu exposure caused intestinal histological alterations, activated the antioxidative and immune systems, and induced systematic adaptation to cope with the physical barrier injury, DNA damage, and potential pathogen growth.
Collapse
Affiliation(s)
- Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Cong Hu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - He Jiang
- Fisheries Research Institution, Anhui Academy of Agricultural Sciences, Hefei, China.
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| |
Collapse
|
20
|
Kyselová J, Tichý L, Sztankóová Z, Marková J, Kavanová K, Beinhauerová M, Mušková M. Comparative Characterization of Immune Response in Sheep with Caseous Lymphadenitis through Analysis of the Whole Blood Transcriptome. Animals (Basel) 2023; 13:2144. [PMID: 37443943 DOI: 10.3390/ani13132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Caseous lymphadenitis (CL) is a chronic contagious disease that affects small ruminants and is characterized by the formation of pyogranulomas in lymph nodes and other organs. However, the pathogenesis of this disease and the response of the host genome to infection are not yet fully understood. This study aimed to investigate the whole blood transcriptome and evaluate differential gene expression during the later stages of CL in naturally infected ewes. The study included diseased, serologically positive (EP), exposed, serologically negative (EN) ewes from the same infected flock and healthy ewes (CN) from a different flock. RNA sequencing was performed using the Illumina NextSeq system, and differential gene expression was estimated using DESeq2 and Edge R approaches. The analysis identified 191 annotated differentially expressed genes (DEGs) in the EP group (102 upregulated and 89 downregulated) and 256 DEGs in the EN group (106 upregulated and 150 downregulated) compared to the CN group. Numerous immunoregulatory interactions between lymphoid and nonlymphoid cells were influenced in both EP and EN ewes. Immune DEGs were preferentially assigned to antigen presentation through the MHC complex, T lymphocyte-mediated immunity, and extracellular matrix interactions. Furthermore, the EP group showed altered regulation of cytokine and chemokine signaling and activation and recombination of B-cell receptors. Conversely, NF-kappa B signaling, apoptosis, and stress response were the main processes influenced in the EN group. In addition, statistically significant enrichment of the essential immune pathways of binding and uptake of ligands by scavenger receptors in EP and p53 signaling in the EN group was found. In conclusion, this study provides new insights into the disease course and host-pathogen interaction in naturally CL-infected sheep by investigating the blood transcriptome.
Collapse
Affiliation(s)
- Jitka Kyselová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Ladislav Tichý
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Zuzana Sztankóová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Jiřina Marková
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kateřina Kavanová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Monika Beinhauerová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Michala Mušková
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| |
Collapse
|
21
|
Dong B, Zhang F, Zhang W, Gao Y. IncRNA EPB41L4A-AS1 Mitigates the Proliferation of Non-Small-Cell Lung Cancer Cells through the miR-105-5p/GIMAP6 Axis. Crit Rev Eukaryot Gene Expr 2023; 33:27-40. [PMID: 36734855 DOI: 10.1615/critreveukaryotgeneexpr.2022044323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is the major subtype of lung cancer, with a series of long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and proteins involved in its pathogenesis. This study sought to investigate the functionality of lncRNA EPB41L4A antisense RNA 1 (lncRNA EPB41L4A-AS1) in the proliferation of NSCLC cells and provide a novel theoretical reference for NSCLC treatment. Levels of lncRNA EPB41L4A-AS1, miR-105-5p, and GTPase, IMAP family member 6 (GIMAP6) in tissues and cells were measured by RT-qPCR and the correlation between lncRNA EPB41L4A-AS1 and clinicopathological characteristics was analyzed. Cell proliferation was evaluated by cell counting kit-8 and colony formation assays. The subcellular localization of lncRNA EPB41L4A-AS1 was analyzed by the subcellular fractionation assay and the binding of miR-105-5p to lncRNA EPB41L4A-AS1 or GIMAP6 was analyzed by dual-luciferase and RNA pull-down assays. Functional rescue experiments were performed to analyze the role of miR-105-5p/GIMAP6 in NSCLC cell proliferation. lncRNA EPB41L4A-AS1 and GIMAP6 were downregulated while miR-105-5p was upregulated in NSCLC tissues and cells. lncRNA EPB41L4A-AS1 was correlated with tumor size and clinical staging and its overexpression reduced NSCLC cell proliferation. lncRNA EPB41L4A-AS1 was negatively correlated with miR-105-5p and positively correlated with GIMAP6 in NSCLC tissues, and lncRNA EPB41L4A-AS1 sponged miR-105-5p to promote GIMAP6 transcription in NSCLC cells. Overexpression of miR-105-5p or knockdown of GIMAP6 reversed the inhibition of lncRNA EPB41L4A-AS1 overexpression on NSCLC cell proliferation. lncRNA EPB41L4A-AS1 was downregulated in NSCLC and mitigated NSCLC cell proliferation through the miR-105-5p/GI-MAP6 axis.
Collapse
Affiliation(s)
- Bingwei Dong
- Department of Pathology, Xianyang Central Hospital, Xianyang City, 712000 Shaanxi Province, China
| | - Fenjuan Zhang
- Department of Pathology, Xianyang Central Hospital, Xianyang City, 712000 Shaanxi Province, China
| | - Weibo Zhang
- Department of Pathology, Xianyang Central Hospital, Xianyang City, 712000 Shaanxi Province, China
| | - Yingfang Gao
- Department of Pathology, Xianyang Central Hospital, Xianyang City, 712000 Shaanxi Province, China
| |
Collapse
|
22
|
Ismail VA, Naismith T, Kast DJ. The NTPase activity of the double FYVE domain-containing protein 1 regulates lipid droplet metabolism. J Biol Chem 2023; 299:102830. [PMID: 36574842 PMCID: PMC9881219 DOI: 10.1016/j.jbc.2022.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022] Open
Abstract
Lipid droplets (LDs) are transient lipid storage organelles that can be readily tapped to resupply cells with energy or lipid building blocks and therefore play a central role in cellular metabolism. However, the molecular factors and underlying mechanisms that regulate the growth and degradation of LDs are poorly understood. It has emerged that proteins that establish contacts between LDs and the endoplasmic reticulum play a critical role in regulating LD metabolism. Recently, the autophagy-related protein, double FYVE domain-containing protein 1 (DFCP1/ZFYVE1) was shown to reside at the interface of the endoplasmic reticulum and LDs, however, little is known about the involvement of DFCP1 in autophagy and LD metabolism. Here, we show that DFCP1 is a novel NTPase that regulates free fatty acid metabolism. Specifically, we show that DFPC1-knockdown, particularly during starvation, increases cellular free fatty acids and decreases the levels of cellular TAGs, resulting in accumulated small LDs. Using selective truncations, we demonstrate that DFCP1 accumulation on LDs in cells and in vitro is regulated by a previously unknown NTPase domain. Using spectroscopic approaches, we show that this NTPase domain can dimerize and can hydrolyze both ATP and GTP. Furthermore, mutations in DFCP1 that either impact nucleotide hydrolysis or dimerization result in changes in the accumulation of DFCP1 on LDs, changes in LD density and size, and colocalization of LDs to autophagosomes. Collectively, our findings suggest that DFCP1 is an NTPase that modulates the metabolism of LDs in cells.
Collapse
Affiliation(s)
- V A Ismail
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - T Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - D J Kast
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
23
|
Dai P, Ruan P, Mao Y, Tang Z, Qiu X, Bajinka O, Tan Y. Gimap5 promoted RSV degradation through interaction with M6PR. J Med Virol 2023; 95:e28390. [PMID: 36484389 DOI: 10.1002/jmv.28390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the main pathogens of viral pneumonia and bronchiolitis in infants and young children and life-threatening diseases among infants and young children. GTPases of the immune-associated protein family (GIMAP) are new family members of immune-associated GTPases. In recent years, much attention has been paid to the function of the GIMAP family in coping with infection and stress. Gimap5 is a member of the GIMAP family, which may be correlated with anti-infectious immunity. RT-qPCR, Western blot, and indirect immunofluorescence (IFA) were used to detect the expression of Gimap5, M6PR and IGF1R(the major RSV receptor). Transmission electron microscopy (TEM) was used to detect the degradation of RSV in Gimap5-overexpressed or -silent cell lines. Computer virtual screening was used to screen small molecule compounds targeting Gimap5 and the anti-RSV effects were explored through in vivo and in vitro experiments. GIMAP5 and M6PR were significantly downregulated after RSV infection. Gimap5 accelerated RSV degradation in lysosomes by interacting with M6PR, and further prevented RSV invasion by downregulating the expression of RSV surface receptor IGF1R. Three small molecule compounds targeting Gimap5 were confirmed to be the agonists of Gimap5. The three compounds effectively inhibited RSV infection and RSV-induced complications. Gimap5 promotes the degradation of RSV and its receptor through interacting with M6PR. Gimap5 agonists can effectively reduce RSV infection and RSV-induced complication in vivo and in vitro, which provides a new choice for the treatment of RSV.
Collapse
Affiliation(s)
- Pei Dai
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,Second Department of laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Pinglang Ruan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
24
|
Mensink M, Schrama E, Cuadrado E, Amsen D, de Kivit S, Borst J. Proteomics reveals unique identities of human TGF-β-induced and thymus-derived CD4 + regulatory T cells. Sci Rep 2022; 12:20268. [PMID: 36434024 PMCID: PMC9700829 DOI: 10.1038/s41598-022-23515-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
The CD4+ regulatory T (Treg) cell lineage, defined by FOXP3 expression, comprises thymus-derived (t)Treg cells and peripherally induced (p)Treg cells. As a model for Treg cells, studies employ TGF-β-induced (i)Treg cells generated from CD4+ conventional T (Tconv) cells in vitro. Here, we describe how human iTreg cells relate to human blood-derived tTreg and Tconv cells according to proteomic analysis. Each of these cell populations had a unique protein expression pattern. iTreg cells had very limited overlap in protein expression with tTreg cells, regardless of cell activation status and instead shared signaling and metabolic proteins with Tconv cells. tTreg cells had a uniquely modest response to CD3/CD28-mediated stimulation. As a benchmark, we used a previously defined proteomic signature that discerns ex vivo naïve and effector Treg cells from Tconv cells and includes conserved Treg cell properties. iTreg cells largely lacked this Treg cell core signature and highly expressed e.g. STAT4 and NFATC2, which may contribute to inflammatory responses. We also used a proteomic signature that distinguishes ex vivo effector Treg cells from Tconv cells and naïve Treg cells. iTreg cells contained part of this effector Treg cell signature, suggesting acquisition of pTreg cell features. In conclusion, iTreg cells are distinct from tTreg cells and share limited features with ex vivo Treg cells at the proteomic level.
Collapse
Affiliation(s)
- Mark Mensink
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Schrama
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Eloy Cuadrado
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander de Kivit
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
25
|
Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, Davis-Gardner ME, Linderman S, Dixit K, Sharma P, Mantus G, Cheedarla N, Verkerke HP, Frank F, Neish AS, Roback JD, Davis CW, Wrammert J, Ahmed R, Suthar MS, Sharma A, Murali-Krishna K, Chandele A, Ortlund EA. Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.24.513517. [PMID: 36324804 DOI: 10.1101/2022.10.13.512091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Lilin Lai
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, 110016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Dinesh Ravindra Raju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Georgia Tech, Atlanta, GA 30332, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Grace Mantus
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Patterson AM, Vemula S, Plett PA, Sampson CH, Chua HL, Fisher A, Wu T, Sellamuthu R, Feng H, Katz BP, DesRosiers CM, Pelus LM, Cox GN, MacVittie TJ, Orschell CM. Age and Sex Divergence in Hematopoietic Radiosensitivity in Aged Mouse Models of the Hematopoietic Acute Radiation Syndrome. Radiat Res 2022; 198:221-242. [PMID: 35834823 PMCID: PMC9512046 DOI: 10.1667/rade-22-00071.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022]
Abstract
The hematopoietic system is highly sensitive to stress from both aging and radiation exposure, and the hematopoietic acute radiation syndrome (H-ARS) should be modeled in the geriatric context separately from young for development of age-appropriate medical countermeasures (MCMs). Here we developed aging murine H-ARS models, defining radiation dose response relationships (DRRs) in 12-month-old middle-aged and 24-month-old geriatric male and female C57BL/6J mice, and characterized diverse factors affecting geriatric MCM testing. Groups of approximately 20 mice were exposed to ∼10 different doses of radiation to establish radiation DRRs for estimation of the LD50/30. Radioresistance increased with age and diverged dramatically between sexes. The LD50/30 in young adult mice averaged 853 cGy and was similar between sexes, but increased in middle age to 1,005 cGy in males and 920 cGy in females, with further sex divergence in geriatric mice to 1,008 cGy in males but 842 cGy in females. Correspondingly, neutrophils, platelets, and functional hematopoietic progenitor cells were all increased with age and rebounded faster after irradiation. These effects were higher in aged males, and neutrophil dysfunction was observed in aged females. Upstream of blood production, hematopoietic stem cell (HSC) markers associated with age and myeloid bias (CD61 and CD150) were higher in geriatric males vs. females, and sex-divergent gene signatures were found in HSCs relating to cholesterol metabolism, interferon signaling, and GIMAP family members. Fluid intake per gram body weight decreased with age in males, and decreased after irradiation in all mice. Geriatric mice of substrain C57BL/6JN sourced from the National Institute on Aging were significantly more radiosensitive than C57BL/6J mice from Jackson Labs aged at our institution, indicating mouse source and substrain should be considered in geriatric radiation studies. This work highlights the importance of sex, vendor, and other considerations in studies relating to hematopoiesis and aging, identifies novel sex-specific functional and molecular changes in aging hematopoietic cells at steady state and after irradiation, and presents well-characterized aging mouse models poised for MCM efficacy testing for treatment of acute radiation effects in the elderly.
Collapse
Affiliation(s)
- Andrea M. Patterson
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Sasidhar Vemula
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - P. Artur Plett
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Carol H. Sampson
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Hui Lin Chua
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Alexa Fisher
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Tong Wu
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Rajendran Sellamuthu
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Hailin Feng
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| | - Barry P. Katz
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Colleen M. DesRosiers
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Louis M. Pelus
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Christie M. Orschell
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| |
Collapse
|
27
|
Wu R, Liu J, Wang N, Zeng L, Yu C, Chen F, Wang H, Billiar TR, Jiang J, Tang D, Kang R. Aconitate decarboxylase 1 is a mediator of polymicrobial sepsis. Sci Transl Med 2022; 14:eabo2028. [PMID: 36001682 DOI: 10.1126/scitranslmed.abo2028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sepsis is a challenging clinical syndrome caused by a dysregulated host response to infection. Here, we identified an unexpected proseptic activity of aconitate decarboxylase 1 (ACOD1) in monocytes and macrophages. Previous studies have suggested that ACOD1, also known as immune-responsive gene 1, is an immunometabolic regulator that favors itaconate production to inhibit bacterial lipopolysaccharide-induced innate immunity. We used next-generation sequencing of lipopolysaccharide-activated THP1 cells to demonstrate that ACOD1 accumulation confers a robust proinflammation response by activating a cytokine storm, predominantly through the tumor necrosis factor signaling pathway. We further revealed that the phosphorylation of cyclin-dependent kinase 2 (CDK2) on threonine-160 mediates the activation of mitogen-activated protein kinase 8 through receptor for activated C kinase 1, leading to JUN-dependent transcription of ACOD1 in human and mouse macrophages or monocytes. Genetic deletion of CDK2 or ACOD1 in myeloid cells, or the administration of the CDK inhibitor dinaciclib, protected mice against polymicrobial sepsis and was associated with improved survival and decreased cytokine storm. The expression of the CDK2-ACOD1 axis also correlated with severity of illness in a cohort of 40 patients with bacterial sepsis. Thus, our findings provide evidence for a previously unrecognized function of ACOD1 in innate immunity and suggest it as a potential therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Zeng
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinsteins Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jianxin Jiang
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
28
|
Yao Y, Du Jiang P, Chao BN, Cagdas D, Kubo S, Balasubramaniyam A, Zhang Y, Shadur B, NaserEddin A, Folio LR, Schwarz B, Bohrnsen E, Zheng L, Lynberg M, Gottlieb S, Leney-Greene MA, Park AY, Tezcan I, Akdogan A, Gocmen R, Onder S, Rosenberg A, Soilleux EJ, Johnson E, Jackson PK, Demeter J, Chauvin SD, Paul F, Selbach M, Bulut H, Clatworthy MR, Tuong ZK, Zhang H, Stewart BJ, Bosio CM, Stepensky P, Clare S, Ganesan S, Pascall JC, Daumke O, Butcher GW, McMichael AJ, Simon AK, Lenardo MJ. GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. J Exp Med 2022; 219:213217. [PMID: 35551368 PMCID: PMC9111091 DOI: 10.1084/jem.20201405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6−/− mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)–containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6−/− mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.
Collapse
Affiliation(s)
- Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ping Du Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Brittany N Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD.,Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Arasu Balasubramaniyam
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Bella Shadur
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel.,The Garvan Institute of Medical Research, Immunology Division, Darlinghurst, Sydney, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, Australia
| | - Adeeb NaserEddin
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Les R Folio
- Clinical Center, National Institutes of Health, Bethesda, MD
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Simone Gottlieb
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Michael A Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Akdogan
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevgen Onder
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Avi Rosenberg
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Errin Johnson
- The Dunn School of Pathology, South Parks Road, Oxford, UK
| | - Peter K Jackson
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Janos Demeter
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Florian Paul
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias Selbach
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Haydar Bulut
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Polina Stepensky
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - John C Pascall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Oliver Daumke
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| |
Collapse
|
29
|
Chan JCY, Gorski SM. Unlocking the gate to GABARAPL2. Biol Futur 2022; 73:157-169. [PMID: 35486231 DOI: 10.1007/s42977-022-00119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
GABARAPL2 was initially characterized for its involvement in protein transport and membrane fusion events, but has since gained notoriety for its role in autophagy. GABARAPL2 is frequently studied alongside its GABARAP subfamily members, GABARAP and GABARAPL1. Although functional redundancy exists among the subfamily members, a complex network of molecular interactions, physiological processes and pathologies can be primarily related to GABARAPL2. GABARAPL2 has a multifaceted role, ranging from cellular differentiation to intracellular degradation. Much of what we know about GABARAPL2 is gained through identifying its interacting partners-a list that is constantly growing. In this article, we review both the autophagy-dependent and autophagy-independent roles of GABARAPL2, and emphasize their implications for both health and disease.
Collapse
Affiliation(s)
- Jennifer C Y Chan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Sharon M Gorski
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, V5Z 1L3, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
30
|
Qin Y, Liu H, Huang X, Huang L, Liao L, Li J, Zhang L, Li W, Yang J. GIMAP7 as a Potential Predictive Marker for Pan-Cancer Prognosis and Immunotherapy Efficacy. J Inflamm Res 2022; 15:1047-1061. [PMID: 35210811 PMCID: PMC8858002 DOI: 10.2147/jir.s342503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, 530021, People’s Republic of China
| | - He Liu
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaoliang Huang
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lihaoyun Huang
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lixian Liao
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jiasheng Li
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lihua Zhang
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jianrong Yang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, 530021, People’s Republic of China
- Correspondence: Jianrong Yang; Wei Li, Health Examination Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Email ;
| |
Collapse
|
31
|
Coelho JC, Calhoun ED, Calhoun GN, Poole AZ. Patchy Distribution of GTPases of Immunity Associated Proteins (GIMAP) within Cnidarians and Dinoflagellates Suggests a Complex Evolutionary History. Genome Biol Evol 2022; 14:6500283. [PMID: 35015849 PMCID: PMC8857920 DOI: 10.1093/gbe/evac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
GTPases of Immunity-Associated Proteins (GIMAP) are a group of small GTP-binding proteins found in a variety of organisms, including vertebrates, invertebrates, and plants. These proteins are characterized by the highly conserved AIG1 domain, and in vertebrates, have been implicated in regulation of the immune system as well as apoptosis and autophagy, though their exact mechanism of action remains unclear. Recent work on cnidarian GIMAPs suggests a conserved role in immunity, apoptosis, and autophagy—three processes involved in coral bleaching, or the breakdown of cnidarian-dinoflagellate symbiosis. Therefore, to further understand the evolution of GIMAPs in this group of organisms, the purpose of this study was to characterize GIMAP or GIMAP-like sequences utilizing publicly available genomic and transcriptomic data in species across the cnidarian phylogeny. The results revealed a patchy distribution of GIMAPs in cnidarians, with three distinct types referred to as L-GIMAP, S-GIMAP, and GIMAP-like. Additionally, GIMAPs were present in most dinoflagellate species and formed seven well-supported clades. Overall, these results elucidate the distribution of GIMAPs within two distantly related eukaryotic groups and represent the first in-depth investigation on the evolution of these proteins within both protists and basal metazoans.
Collapse
Affiliation(s)
- Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA.,Department of Biology, University of North Carolina at Chapel Hill, 120 South Rd, Chapel Hill, NC 27599, USA
| | - Ethan D Calhoun
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| | - Grant N Calhoun
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| |
Collapse
|
32
|
Linking Pedigree Information to the Gene Expression Phenotype to Understand Differential Family Survival Mechanisms in Highly Fecund Fish: A Case Study in the Larviculture of Pacific Bluefin Tuna. Curr Issues Mol Biol 2021; 43:2098-2110. [PMID: 34940119 PMCID: PMC8929136 DOI: 10.3390/cimb43030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Mass spawning in fish culture often brings about a marked variance in family size, which can cause a reduction in effective population sizes in seed production for stock enhancement. This study reports an example of combined pedigree information and gene expression phenotypes to understand differential family survival mechanisms in early stages of Pacific bluefin tuna, Thunnus orientalis, in a mass culture tank. Initially, parentage was determined using the partial mitochondrial DNA control region sequence and 11 microsatellite loci at 1, 10, 15, and 40 days post-hatch (DPH). A dramatic proportional change in the families was observed at around 15 DPH; therefore, transcriptome analysis was conducted for the 15 DPH larvae using a previously developed oligonucleotide microarray. This analysis successfully addressed the family-specific gene expression phenotypes with 5739 differentially expressed genes and highlighted the importance of expression levels of gastric-function-related genes at the developmental stage for subsequent survival. This strategy demonstrated herein can be broadly applicable to species of interest in aquaculture to comprehend the molecular mechanism of parental effects on offspring survival, which will contribute to the optimization of breeding technologies.
Collapse
|