1
|
Sun Y, Gao Y, Zhang J, Zhang L, Sun H, Ma Z, Bai J, Jiang P. Role of Glycoprotein 3 in neutralizing antibody recognition of porcine reproductive and respiratory syndrome virus. Int J Biol Macromol 2025; 311:143714. [PMID: 40319969 DOI: 10.1016/j.ijbiomac.2025.143714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been causing significant economic losses in the global swine industry since its emergence. Insufficient knowledge of the structural glycoprotein characteristics of NADC30-like strains has hindered the development of effective control strategies. In this study, we found that the neutralizing antibodies (NAbs) in pig sera against NADC30-like PRRSV strain FJ1402 (lineage 1) and highly pathogenic PRRSV (HP-PRRSV) strain BB0907 (lineage 8) exhibited low cross-neutralizing activity against each other. Subsequently, six chimeric recombinant viruses were generated based on the infectious cDNA clone of HP-PRRSV strain BB0907, in which specific structural protein genes were replaced by those from the NADC30-like strain. Cross-neutralization assays revealed that the NAbs against NADC30-like strain primarily target glycoprotein 3 (GP3), glycoprotein 4 (GP4), and glycoprotein 5 (GP5). Furthermore, we constructed six additional infectious cDNA clones with point mutations in GP3, and found that the residues 66I and 85S in GP3 play critical roles during NAbs recognition. These findings provide molecular insights into the host neutralizing antibody recognition against PRRSV, highlighting the role of GP3 in the recognition process. This study offers a foundation for rational antigen selection strategies in developing PRRSV NADC30-like strain vaccines.
Collapse
Affiliation(s)
- Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zicheng Ma
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Huang J, Krishna VD, Paploski IAD, VanderWaal K, Schroeder DC, Cheeran MCJ. Characterization of Glycoprotein 5-Specific Response in Pigs Vaccinated with Modified Live Porcine Reproductive and Respiratory Syndrome Virus Vaccine Derived from Two Different Lineages. Vaccines (Basel) 2025; 13:247. [PMID: 40266122 PMCID: PMC11946071 DOI: 10.3390/vaccines13030247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Porcine reproductive and respiratory syndrome virus (PRRSV) is classified into various lineages based on the phylogenetic variation of orf5, which encodes a major surface glycoprotein GP5 containing both neutralizing and non-neutralizing linear epitopes. Several positively selected sites have been identified on the GP5 ectodomain, indicating host immune pressure on these sites. This present study aimed to investigate the kinetics of antibody responses to GP5 and to map the epitope-specific response to the GP5 ectodomain from different PRRSV lineages after vaccination with commercially available modified live virus (MLV) vaccines. METHODS Post-weaning pigs were vaccinated with MLV vaccines derived from either lineage 1D (Prevacent PRRS®) or lineage 5 (Ingelvac PRRS®). Animals were challenged with a heterologous (lineage 1A) strain at 64 days post-vaccination (dpv). Blood samples were collected at various times post-vaccination and challenge. Kinetics of antibody response to different PRRSV antigens were monitored and virus neutralization against archetypal and contemporary strains belonging to lineage 5 and 1A were evaluated. In addition, antibody responses to peptides derived from the GP5 ectodomain of different viral lineages were assessed. RESULTS Our results showed that the GP5-specific antibody response observed between 18 and 35 dpv was delayed compared to responses to the viral nucleocapsid protein. The polyclonal antibody response in both vaccinated groups showed similar levels of binding to variant GP5 peptides from different sub-lineages. Notably, in both vaccinated groups, the antibody directed to a peptide representing the GP5 ectodomain of a lineage 1C strain (variant 1C.5) displayed a rise in titer at 64 dpv, which was further increased by the challenge with the lineage 1A strain. Less than 50% of animals developed heterologous neutralizing antibodies post-vaccination with both MLV vaccines. However, higher neutralization titers were observed in all vaccinated animal post-challenge. CONCLUSIONS Together, these data provide insights into the antibody responses to the GP5 ectodomain in MLV-vaccinated swine herds.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxim C.-J. Cheeran
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (J.H.); (V.D.K.); (I.A.D.P.); (K.V.); (D.C.S.)
| |
Collapse
|
3
|
Wu J, Lu Q, Hou J, Qiu Y, Tian M, Wang L, Gao K, Yang X, Jiang Z. Baicalein inhibits PRRSV through direct binding, targeting EGFR, and enhancing immune response. Vet Res 2025; 56:16. [PMID: 39833939 PMCID: PMC11748510 DOI: 10.1186/s13567-024-01440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/27/2024] [Indexed: 01/22/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents significant economic challenges to the global pork industry due to its ability to mutate rapidly. The current commercial vaccines have limited effectiveness, and there are strict restrictions on the use of antiviral chemical drugs. Therefore, it is urgent to identify new strategies for preventing and controlling PRRSV infections. Baicalein, a flavonoid derived from Scutellaria baicalensis, has gained attention for its potential antiviral properties. However, there is little information about the effects and mechanisms of baicalein in relation to PRRSV. In this study, a network pharmacology analysis identified seven potential targets of baicalein against PRRSV, with the epidermal growth factor receptor (EGFR) emerging as the core target. The results of molecular docking and dynamics (MD) simulations confirmed that baicalein has a high binding affinity for EGFR, with a measured value of - 7.935 kcal/mol. Additionally, both in vitro (EC50 = 10.20 μg/mL) and in vivo (2.41 mg/kg) experiments were conducted to assess the effectiveness of baicalein against PRRSV. Notably, baicalein was found to inhibit various stages of the PRRSV replication cycle and could directly bind to PRRSV in vitro. Baicalein inhibited the entry of PRRSV by blocking EGFR phosphorylation and the downstream PI3K-AKT signaling pathway. This was confirmed by a decrease in the expression of p-EGFR/EGFR, p-AKT/AKT, PI3K, and SRC following treatment with baicalein. Additionally, baicalein significantly enhanced the immune response in piglets infected with PRRSV. In conclusion, this study suggests that baicalein may be a promising pharmaceutical candidate for preventing and controlling PRRS, offering new insights into the antiviral potential of Chinese herbal medicine.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Qi Lu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Jing Hou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Min Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China.
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, China
| |
Collapse
|
4
|
Lee YB, Kim JW, Jo W, Kang TK, Sung M, Kim K, Park NH, Lee GH. Assessment of PRRSV and PCV2 seroprevalence and antigen prevalence in minipigs at laboratory-animal production facilities. J Adv Vet Anim Res 2024; 11:1017-1022. [PMID: 40013282 PMCID: PMC11855414 DOI: 10.5455/javar.2024.k852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/23/2024] [Accepted: 07/20/2024] [Indexed: 02/28/2025] Open
Abstract
Objective Pigs are used in various biomedical research fields because of their anatomical and physiological similarities to humans. While farm pigs are raised outdoors for several months, minipigs are typically raised in indoor barrier facilities for several years. Although numerous studies have investigated the prevalence of major pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), in farm pigs, similar studies targeting minipigs are lacking. Materials and Methods We imported 57 minipigs to our institution from three experimental animal production facilities and immediately assessed the serological and antigenic prevalence of PRRSV and PCV2. Results PRRSV and PCV2 had seroprevalences of 80.7% and 94.7%, respectively, with 0% antigen positivity rates for PRRSV types 1 and 2 and high-pathogenic PRRSV and PCV2.Two factors could account for the high seroprevalence rates: the majority of individuals may have been vaccinated despite official claims from the origin facilities or exposed to PRRSV and PCV2. Preventing microbial infections is crucial for obtaining accurate and reproducible results. Conclusion As the first investigation of microbial prevalence in minipigs, our findings indicate that minipigs raised in barrier facilities are not necessarily free from vaccines or infections. These results will significantly enhance the credibility of future biomedical research.
Collapse
Affiliation(s)
- Yoon Beom Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Ji Woon Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Woori Jo
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Tae-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - MinKyoung Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - KilSoo Kim
- Department of Veterinary Toxicology, College of Veterinary Medicine, Jyungpook National University, Daegu, Republic of Korea
| | - Na-Hye Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Gwang-Hoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
5
|
Castillo-Pérez J, Martínez-Lobo FJ, Frómeta R, Castro JM, Simarro I, Prieto C. Linear epitopes of PRRSV-1 envelope proteins ectodomains are not correlated with broad neutralization. Porcine Health Manag 2024; 10:44. [PMID: 39434120 PMCID: PMC11492654 DOI: 10.1186/s40813-024-00393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Neutralizing antibodies against PRRSV are capable of conferring protection against viral reinfection, but they tend to be strain specific and usually have poor cross-reactivity. Nonetheless, it has been described that there are individuals capable of efficiently neutralizing viruses of different origin, so it is expected that there are conserved neutralizing epitopes relevant for broad neutralization. However, although immunodominant regions and neutralizing epitopes have been described in different envelope proteins, their role in broad neutralization is unknown. The main objective of this study was to determine whether the linear epitopes existing in the ectodomains of PRRSV envelope proteins play a role in cross-neutralization. RESULTS A pepscan analysis was carried out using synthetic peptides against the ectodomains of PRRSV envelope proteins and PRRSV-hyperimmune sera of different cross-reactivity. The results obtained confirm the existence of antigenic regions in the ectodomains of the GP2, GP3, GP4 and GP5 that tend to be relatively conserved among different PRRSV isolates. Nonetheless, these antigenic regions have poor immunogenicity since they are only recognized by a limited number of sera. Furthermore, no differences were found between the reactivity of sera with broad cross-neutralization capacity and sera with poor heterologous neutralization activity, which indicate that linear epitopes existing in the ectodomains of PRRSV envelope proteins are not relevant for the development of broadly reactive neutralizing antibodies. Subsequently, some selected peptides were used in competition assays with the virus for binding to the cell receptors and in seroneutralization inhibition assays by incubation with hyperimmune sera. Firstly, some peptides that interfere with virus infectivity were identified in competition assays, but only in the case of one viral isolate, which points to the possible existence of a strain-dependent inhibition. However, the results of the seroneutralization inhibition assay indicate that, under the conditions of our study, none of the peptides used was capable of inhibiting virus neutralization by the hyperimmune sera. CONCLUSIONS The results obtained indicate that the linear peptides analyzed in this study do not play a major role in the induction of broadly reactive neutralizing antibodies, which could probably depend on conformational neutralizing.
Collapse
Affiliation(s)
- Jaime Castillo-Pérez
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Engineering and Veterinary Medicine, University of Lleida, Lleida, Spain.
| | - Raquel Frómeta
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Castro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Simarro
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
7
|
Chuaychu SB, Sirisereewan C, Techakriengkrai N, Tummaruk P, Thanawongnuwech R, Nedumpun T. Enhancement of systemic virus-specific T lymphocyte responses in pigs supplemented with algae-derived β-glucan. Vet J 2024; 306:106182. [PMID: 38897378 DOI: 10.1016/j.tvjl.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Algae-derived β-glucan has been widely used as a feed additive in the swine industry. The supplementation of β-glucan aims to improve growth performance and modulate the immunity of pigs. However, the potential effects of supplementing β-glucan from algae on immune responses in pigs-specifically antigen-specific immunity-must be determined. In this study, the effects of algae-derived β-glucan supplementation on growth performance, virus neutralising antibody and virus-specific T lymphocytes responses were investigated in pigs. Piglets (n=112 per treatment) were assigned to three treatments including non-supplemented group (control), β-glucan 100 g/ton supplemented group (BG100), and β-glucan 200 g/ton supplemented group (BG200). In this study, production performance of pigs was not found to be different between the experimental groups. Pigs supplemented with β-glucan exhibited high levels of classical swine fever virus (CSFV)-specific producing T lymphocytes and neutralising antibody titer, compared to the control group. Interestingly, supplementation of β-glucan significantly enhanced porcine reproductive and respiratory syndrome virus (PRRSV)-specific interferon-gamma (IFN-γ) producing T lymphocytes, including CD4+, CD8+, and CD4+CD8+ T lymphocyte subpopulations. Moreover, PRRS modified live vaccine (MLV) viremia was reduced in earlier for β-glucan-supplemented pigs compared to the control group. The findings indicate that the algae-derived β-glucan possesses biological potential as an immunomodulatory substance to enhance antiviral immunity, which may contribute to disease resistance in pigs.
Collapse
Affiliation(s)
- Sh B Chuaychu
- International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - C Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - N Techakriengkrai
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - P Tummaruk
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - R Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - T Nedumpun
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Davis SK, Jia F, Wright QG, Islam MT, Bean A, Layton D, Williams DT, Lynch SE. Defining correlates of protection for mammalian livestock vaccines against high-priority viral diseases. Front Immunol 2024; 15:1397780. [PMID: 39100679 PMCID: PMC11294087 DOI: 10.3389/fimmu.2024.1397780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/06/2024] Open
Abstract
Enhancing livestock biosecurity is critical to safeguard the livelihoods of farmers, global and local economies, and food security. Vaccination is fundamental to the control and prevention of exotic and endemic high-priority infectious livestock diseases. Successful implementation of vaccination in a biosecurity plan is underpinned by a strong understanding of correlates of protection-those elements of the immune response that can reliably predict the level of protection from viral challenge. While correlates of protection have been successfully characterized for many human viral vaccines, for many high-priority livestock viral diseases, including African swine fever and foot and mouth disease, they remain largely uncharacterized. Current literature provides insights into potential correlates of protection that should be assessed during vaccine development for these high-priority mammalian livestock viral diseases. Establishment of correlates of protection for biosecurity purposes enables immune surveillance, rationale for vaccine development, and successful implementation of livestock vaccines as part of a biosecurity strategy.
Collapse
Affiliation(s)
- Samantha K. Davis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Plaza-Soriano Á, Martínez-Lobo FJ, Garza-Moreno L, Castillo-Pérez J, Caballero E, Castro JM, Simarro I, Prieto C. Determination of the frequency of individuals with broadly cross-reactive neutralizing antibodies against PRRSV in the sow population under field conditions. Porcine Health Manag 2024; 10:26. [PMID: 38978128 PMCID: PMC11229297 DOI: 10.1186/s40813-024-00372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a significant swine pathogen, yet the immune response components contributing to protection remain incompletely understood. Broadly reactive neutralizing antibodies (bNAs) may play a crucial role in preventing reinfections by heterologous viruses, although their occurrence is considered low under both field and experimental conditions. This study aimed to assess the frequency of sows exhibiting bNAs against PRRSV under field conditions and to analyze the epidemiological factors influencing the occurrence of these elite neutralizers. Blood samples were collected from breeding sows across eleven unrelated pig farms, with samples categorized by parity. Serum obtained was utilized in virus neutralization assays (VNs) against six PRRSV field isolates and two MLV strains. RESULTS Approximately 7% of the sows exhibited neutralization activity against all viruses in the panel, with a geometric mean of the titer (GMT) of NAs at or exceeding 4 log2. Exclusion of the PRRSV-2 isolate from the panel increased the proportion of elite neutralizers to around 15%. Farm-specific analysis revealed significant variations in both GMT of NAs and proportion of elite neutralizers. PRRSV unstable farms and those with a PRRS outbreak in the last 12 months displayed higher GMT of NAs compared to stable farms without recent outbreaks. The GMT of NAs showed a gradual, albeit moderate, increase with the parity of the sows. Parity's impact on bNA response was consistently observed in stable farms but not necessarily in unstable farms or those with recent outbreaks. Finally, the results indicated that vaccinated animals had higher NA titers against the vaccine virus used in the farm than against field viruses. CONCLUSION bNAs against heterologous isolates induced by PRRSV infection under field conditions are generally low, often falling below titers necessary for protection against reproductive failure. However, a subset of sows (approximately 15%) can be considered elite neutralizers, efficiently recognizing various PRRSV strains. Repeated exposures to PRRSV play a crucial role in eliciting these bNAs, with a higher frequency observed in unstable farms and those with recent outbreaks. In stable farms, parity only marginally influences bNA titers, highlighting its limited role compared to the impact of PRRSV exposure history.
Collapse
Affiliation(s)
- Ángeles Plaza-Soriano
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Javier Martínez-Lobo
- Animal Science Department, School of Agrifood and Forestry Engineering and Veterinary Medicine, University of Lleida, Lleida, Spain.
| | - Laura Garza-Moreno
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Jaime Castillo-Pérez
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Elki Caballero
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Castro
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Simarro
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cinta Prieto
- SALUVET group, Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
Li J, Miller LC, Sang Y. Current Status of Vaccines for Porcine Reproductive and Respiratory Syndrome: Interferon Response, Immunological Overview, and Future Prospects. Vaccines (Basel) 2024; 12:606. [PMID: 38932335 PMCID: PMC11209547 DOI: 10.3390/vaccines12060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) remains a formidable challenge for the global pig industry. Caused by PRRS virus (PRRSV), this disease primarily affects porcine reproductive and respiratory systems, undermining effective host interferon and other immune responses, resulting in vaccine ineffectiveness. In the absence of specific antiviral treatments for PRRSV, vaccines play a crucial role in managing the disease. The current market features a range of vaccine technologies, including live, inactivated, subunit, DNA, and vector vaccines, but only modified live virus (MLV) and killed virus (KV) vaccines are commercially available for PRRS control. Live vaccines are promoted for their enhanced protective effectiveness, although their ability to provide cross-protection is modest. On the other hand, inactivated vaccines are emphasized for their safety profile but are limited in their protective efficacy. This review updates the current knowledge on PRRS vaccines' interactions with the host interferon system, and other immunological aspects, to assess their current status and evaluate advents in PRRSV vaccine development. It presents the strengths and weaknesses of both live attenuated and inactivated vaccines in the prevention and management of PRRS, aiming to inspire the development of innovative strategies and technologies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| | - Laura C. Miller
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA;
| | - Yongming Sang
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA;
| |
Collapse
|
11
|
Stepanova K, Toman M, Sinkorova J, Sinkora S, Pfeiferova S, Kupcova Skalnikova H, Abuhajiar S, Moutelikova R, Salat J, Stepanova H, Nechvatalova K, Leva L, Hermanova P, Kratochvilova M, Dusankova B, Sinkora M, Horak V, Hudcovic T, Butler JE, Sinkora M. Modified live vaccine strains of porcine reproductive and respiratory syndrome virus cause immune system dysregulation similar to wild strains. Front Immunol 2024; 14:1292381. [PMID: 38283357 PMCID: PMC10811158 DOI: 10.3389/fimmu.2023.1292381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. Background and objective We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. Methods We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. Results Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. Discussion and conclusion The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Salim Abuhajiar
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czechia
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - Vratislav Horak
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD (Pig Models of Diseases), Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| | - John E. Butler
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czechia
| |
Collapse
|
12
|
Martin-Valls GE, Li Y, Clilverd H, Soto J, Cortey M, Mateu E. Levels of neutralizing antibodies against resident farm strain or vaccine strain are not indicators of protection against PRRSV-1 vertical transmission under farm conditions. BMC Vet Res 2023; 19:217. [PMID: 37858141 PMCID: PMC10588270 DOI: 10.1186/s12917-023-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Vertical transmission is key for the maintenance of porcine reproductive and respiratory syndrome virus (PRRSV) infection. In vaccinated farms, vertical transmission can still occur despite sows having some level of immunity because of repeated vaccination or contact with the wild-type virus. The present study aimed to correlate the age of sows and the amplitude of neutralizing antibodies (Nab) (heterologous neutralization) with PRRSV-1 vertical transmission (VT). For this purpose, umbilical cords of 1,554 newborns (corresponding to 250 litters) were tested for PRRSV by RT-PCR in two PRRSV-unstable vaccinated farms. In parallel, the sows were bled after farrowing and the levels of antibodies were determined by ELISA and by the viral neutralization test against the vaccine virus, the virus circulating in the farm, and other unrelated contemporary PRRSV-1 strains. The relationship between the parity and the probability of delivering infected piglets and the presence of broadly Nabs examined. RESULTS The proportion of VT events in the two examined farms ranged from 18.9% to 23.0%. Young sows (parity 1-2) were 1.7 times more likely to have VT than older sows (p < 0.05). Despite higher ELISA S/P antibody ratios in younger sows (p < 0.05), NAb against the resident farm strain were at a similar level between sows delivering infected and healthy piglets regardless of age, mostly with low titers (2-3 log2). The titers of NAb against the vaccine virus were also low, and no correlations with VT were observed. When a panel of another 4 strains (1 isolated in the 1990s, and 3 contemporary strains) were used for the neutralization test, most sow sera were not capable of neutralizing the contemporary strains. CONCLUSIONS Titers of NAb could not be correlated with the occurrence of PRRSV VT. The amplitude of NAb present in most vaccinated sows is limited with a considerable proportion unresponsive regarding NAb production.
Collapse
Affiliation(s)
- Gerard Eduard Martin-Valls
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Yanli Li
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Hepzibar Clilverd
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Jordi Soto
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Martí Cortey
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Travessera dels Turons S/N, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
13
|
Sinkora M, Toman M, Stepanova K, Stepanova H, Leva L, Sinkorova J, Moutelikova R, Salat J, Srutkova D, Schwarzer M, Sinkora S, Skalnikova HK, Nechvatalova K, Hudcovic T, Hermanova P, Pfeiferova S, Kratochvilova M, Kavanova L, Dusankova B, Sinkora MJ. The mechanism of immune dysregulation caused by porcine reproductive and respiratory syndrome virus (PRRSV). Microbes Infect 2023; 25:105146. [PMID: 37142116 DOI: 10.1016/j.micinf.2023.105146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
PRRSV is capable of evading the effective immune response, thus persisting in piglets and throughout the swine herd. We show here that PRRSV invades the thymus and causes depletion of T-cell precursors and alteration of the TCR repertoire. Developing thymocytes are affected during negative selection when they transit from the triple-negative to triple-positive stages at the corticomedullary junction just before entering the medulla. The restriction of repertoire diversification occurs in both helper and cytotoxic αβ-T cells. As a result, critical viral epitopes are tolerated, and infection becomes chronic. However, not all viral epitopes are tolerated. Infected piglets develop antibodies capable of recognizing PRRSV, but these are not virus neutralizing. Further analysis showed that the lack of an effective immune response against the critical viral structures results in the absence of a germinal center response, overactivation of T and B cells in the periphery, robust production of useless antibodies of all isotypes, and the inability to eliminate the virus. Overall, the results show how a respiratory virus that primarily infects and destroys myelomonocytic cells has evolved strategies to disrupt the immune system. These mechanisms may be a prototype for how other viruses can similarly modulate the host immune system.
Collapse
Affiliation(s)
- Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Miroslav Toman
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Hana Stepanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Lenka Leva
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Romana Moutelikova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Salat
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Helena Kupcova Skalnikova
- Laboratory of Applied Proteome Analyses and Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Katerina Nechvatalova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Sarka Pfeiferova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Mirka Kratochvilova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Lenka Kavanova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Blanka Dusankova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Jr Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Novy Hradek, Czech Republic
| |
Collapse
|
14
|
Kick AR, Grete AF, Crisci E, Almond GW, Käser T. Testable Candidate Immune Correlates of Protection for Porcine Reproductive and Respiratory Syndrome Virus Vaccination. Vaccines (Basel) 2023; 11:vaccines11030594. [PMID: 36992179 DOI: 10.3390/vaccines11030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an on-going problem for the worldwide pig industry. Commercial and experimental vaccinations often demonstrate reduced pathology and improved growth performance; however, specific immune correlates of protection (CoP) for PRRSV vaccination have not been quantified or even definitively postulated: proposing CoP for evaluation during vaccination and challenge studies will benefit our collective efforts towards achieving protective immunity. Applying the breadth of work on human diseases and CoP to PRRSV research, we advocate four hypotheses for peer review and evaluation as appropriate testable CoP: (i) effective class-switching to systemic IgG and mucosal IgA neutralizing antibodies is required for protective immunity; (ii) vaccination should induce virus-specific peripheral blood CD4+ T-cell proliferation and IFN-γ production with central memory and effector memory phenotypes; cytotoxic T-lymphocytes (CTL) proliferation and IFN-γ production with a CCR7- phenotype that should migrate to the lung; (iii) nursery, finishing, and adult pigs will have different CoP; (iv) neutralizing antibodies provide protection and are rather strain specific; T cells confer disease prevention/reduction and possess greater heterologous recognition. We believe proposing these four CoP for PRRSV can direct future vaccine design and improve vaccine candidate evaluation.
Collapse
Affiliation(s)
- Andrew R Kick
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Alicyn F Grete
- Department of Chemistry & Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Glen W Almond
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
15
|
Makau DN, Prieto C, Martínez-Lobo FJ, Paploski IAD, VanderWaal K. Predicting Antigenic Distance from Genetic Data for PRRSV-Type 1: Applications of Machine Learning. Microbiol Spectr 2023; 11:e0408522. [PMID: 36511691 PMCID: PMC9927307 DOI: 10.1128/spectrum.04085-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) remains a significant challenge due to the genetic and antigenic variability of the causative virus (PRRSV). Predominantly, PRRSV management includes using vaccines and live virus inoculations to confer immunity against PRRSV on farms. While understanding cross-protection among strains is crucial for the continued success of these interventions, understanding how genetic diversity translates to antigenic diversity remains elusive. We developed machine learning algorithms to estimate antigenic distance in silico, based on genetic sequence data, and identify differences in specific amino acid sites associated with antigenic differences between viruses. First, we obtained antigenic distance estimates derived from serum neutralization assays cross-reacting PRRSV monospecific antisera with virus isolates from 27 PRRSV1 viruses circulating in Europe. Antigenic distances were weakly to moderately associated with ectodomain amino acid distance for open reading frames (ORFs) 2 to 4 (ρ < 0.2) and ORF5 (ρ = 0.3), respectively. Dividing the antigenic distance values at the median, we then categorized the sera-virus pairs into two levels: low and high antigenic distance (dissimilarity). In the machine learning models, we used amino acid distances in the ectodomains of ORFs 2 to 5 and site-wise amino acid differences between the viruses as potential predictors of antigenic dissimilarity. Using mixed-effect gradient boosting models, we estimated the antigenic distance (high versus low) between serum-virus pairs with an accuracy of 81% (95% confidence interval, 76 to 85%); sensitivity and specificity were 86% and 75%, respectively. We demonstrate that using sequence data we can estimate antigenic distance and potential cross-protection between PRRSV1 strains. IMPORTANCE Understanding cross-protection between cocirculating PRRSV1 strains is crucial to reducing losses associated with PRRS outbreaks on farms. While experimental studies to determine cross-protection are instrumental, these in vivo studies are not always practical or timely for the many cocirculating and emerging PRRSV strains. In this study, we demonstrate the ability to rapidly estimate potential immunologic cross-reaction between different PRRSV1 strains in silico using sequence data routinely collected by production systems. These models can provide fast turn-around information crucial for improving PRRS management decisions such as selecting vaccines/live virus inoculation to be used on farms and assessing the risk of outbreaks by emerging strains on farms previously exposed to certain PRRSV strains and vaccine development among others.
Collapse
Affiliation(s)
- Dennis N. Makau
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Cinta Prieto
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - I. A. D. Paploski
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, USA
| |
Collapse
|
16
|
Jiang Y, Gao F, Li L, Zhou Y, Tong W, Yu L, Zhang Y, Zhao K, Zhu H, Liu C, Li G, Tong G. The rPRRSV-E2 strain exhibited a low level of potential risk for virulence reversion. Front Vet Sci 2023; 10:1128863. [PMID: 36960147 PMCID: PMC10027928 DOI: 10.3389/fvets.2023.1128863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Classical Swine Fever Virus (CSFV) are two important pathogens, which cause serious impact on swine industry worldwide. In our previous research, rPRRSV-E2, the recombinant PRRSV expressing CSFV E2 protein, could provide sufficient protection against the lethal challenge of highly pathogenic PRRSV and CSFV, and could maintained genetically stable in vitro. Here, to evaluate the virulence reversion potential risk, rPRRSV-E2 had been continuously passaged in vivo, the stability of E2 expression and virulence of the passage viruses were analyzed. The results showed that no clinical symptoms or pathological changes could be found in the inoculated groups, and there were no significant differences of viraemia among the test groups. Sequencing and IFA analysis showed that the coding gene of exogenous CSFV E2 protein existed in the passaged viruses without any sequence mutations, deletions or insertions, and could expressed steadily. It could be concluded that the foreign CSFV E2 gene in the genome of rPRRSV-E2 could be maintained genetically stable in vivo, and rPRRSV-E2 strain had relatively low level of potential risk for virulence reversion.
Collapse
Affiliation(s)
- Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Kuan Zhao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haojie Zhu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Changlong Liu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Guoxin Li
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- Guangzhi Tong
| |
Collapse
|
17
|
Stas MR, Kreutzmann H, Stadler J, Sassu EL, Mair KH, Koch M, Knecht C, Stadler M, Dolezal M, Balka G, Zaruba M, Mötz M, Saalmüller A, Rümenapf T, Gerner W, Ladinig A. Influence of PRRSV-1 vaccination and infection on mononuclear immune cells at the maternal-fetal interface. Front Immunol 2022; 13:1055048. [PMID: 36426366 PMCID: PMC9679432 DOI: 10.3389/fimmu.2022.1055048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 10/21/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating viruses for the global swine industry. Infection during late gestation causes reproductive failure but the local immune response in utero remains poorly understood. In this study, an experimental PRRSV-infection model with two different PRRSV-1 field isolates was used to investigate the immune cell phenotypes at the maternal-fetal interface during late gestation. In addition, phenotypic changes induced by a modified live virus (MLV, ReproCyc® PRRS EU) vaccine were studied. Vaccinated (n = 12) and non-vaccinated pregnant gilts (n = 12) were challenged with either one of the PRRSV-1 field isolates (low vs. high virulent, LV or HV) or sham-inoculated at day 84 of gestation. Twenty-one days post infection all gilts were euthanized and the fetal preservation status for all fetuses per litter was assessed. Leukocytes from the maternal-fetal interface were isolated and PRRSV-induced changes were investigated using ex vivo phenotyping by flow cytometry. PRRSV load in tissue from the maternal endometrium (ME) and fetal placenta (FP) was determined by RT-qPCR. In the ME, a vast increase in CD8β T cells with CD8αposCD27dim early effector phenotype was found for fetuses from the non-vaccinated LV and HV-challenged gilts, compared to non-treated and vaccinated-only controls. HV-challenged fetuses also showed significant increases of lymphocytes with effector phenotypes in the FP, including NKp46pos NK cells, CD8αhigh γδ T cells, as well as CD8αposCD27pos/dim CD4 and CD8 T cells. In vaccinated animals, this common activation of effector phenotypes was more confined and the fetal preservation status significantly improved. Furthermore, a negative correlation between the viral load and CD163highCD169pos mononuclear phagocytic cells was observed in the FP of HV-infected animals. These results suggest that the strong expansion of effector lymphocytes in gilts that were only infected causes immune-pathogenesis rather than protection. In contrast, the attenuated MLV seems to dampen this effect, yet presumably induces memory cells that limit reproductive failure. This work provides valuable insights into changes of local immune cell phenotypes following PRRSV vaccination and infection.
Collapse
Affiliation(s)
- Melissa R. Stas
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia Stadler
- Clinic for Swine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Oberschleissheim, Germany
| | - Elena L. Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H. Mair
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Pathobiology, Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Koch
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Marianne Zaruba
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marlene Mötz
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Till Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
18
|
Li W, Sun Y, Zhao S, Cui Z, Chen Y, Xu P, Chen J, Zhang Y, Xia P. Differences in Humoral Immune Response against the Type 2 Porcine Reproductive and Respiratory Syndrome Virus via Different Immune Pathways. Viruses 2022; 14:v14071435. [PMID: 35891415 PMCID: PMC9316826 DOI: 10.3390/v14071435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The intramuscular vaccine is the principal strategy to protect pigs from porcine reproductive and respiratory syndrome virus (PRRSV), However, it is still difficult to control PRRSV effectively. This study infected piglets with PRRSV through intramuscular and intranasal inoculation. Subsequently, viral loads, anti-PRRSV antibody levels, and neutralizing antibodies (NAs) titers in both serum and saliva were monitored for 43 days. Meanwhile, tissues were obtained through necropsy at 43 days post-inoculation (dpi) to detect viral loads. The results indicated that viremia lasted from 3 to 31 dpi in both the inoculation groups, but the viruses survived in the lungs and lymph nodes after viremia clearance. The antibody response was detected from 11 dpi, but the response of NAs was delayed until 3–4 weeks. Furthermore, intranasal inoculation induced lower viral load levels than injection inoculation. In addition, positive SIgA and NAs levels were produced early, with higher levels through intranasal inoculation. Therefore, our data indicated that a more robust antibody response and lower virus loads could be induced by intranasal inoculation, and mucosal inoculation could be a suitable pathway for PRRSV vaccines.
Collapse
Affiliation(s)
- Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Yangyang Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Yu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Jinshui District, Zhengzhou 450002, China
- Correspondence: (J.C.); (Y.Z.)
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
- Correspondence: (J.C.); (Y.Z.)
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (W.L.); (Y.S.); (S.Z.); (Z.C.); (Y.C.); (P.X.); (P.X.)
| |
Collapse
|