1
|
Chen YH, Zaldana K, Yeung F, Vujkovic-Cvijin I, Downie AE, Lin JD, Yang Y, Herrmann C, Oyesola O, Rozenberg F, Schwartz RE, Kim D, Tio K, Belkaid Y, Loke P, Graham AL, Koralov SB, Cadwell K. Rewilding catalyzes maturation of the humoral immune system. SCIENCE ADVANCES 2025; 11:eads2364. [PMID: 40053586 PMCID: PMC11887799 DOI: 10.1126/sciadv.ads2364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Inbred mice used for biomedical research display an underdeveloped immune system compared with adult humans, which is attributed in part to the artificial laboratory environment. Despite representing a central component of adaptive immunity, the impact of the laboratory environment on the B cell compartment has not been investigated in detail. Here, we performed an in-depth examination of B cells following rewilding, the controlled release of inbred laboratory mice into an outdoor enclosure. In rewilded mice, we observed B cells in circulation with increased signs of maturation, alongside heightened germinal center responses within secondary lymphoid organs. Rewilding also expanded B cells in the gut, which was accompanied by elevated systemic levels of immunoglobulin G (IgG) and IgM antibodies reactive to the microbiota. Our findings indicate that exposing laboratory mice to a more natural environment enhances B cell development to better reflect the immune system of free-living mammals.
Collapse
Affiliation(s)
- Ying-Han Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kimberly Zaldana
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Frank Yeung
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ivan Vujkovic-Cvijin
- Department of Biomedical Sciences & F. Widjaja Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander E. Downie
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Yi Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christin Herrmann
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Oyebola Oyesola
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felix Rozenberg
- SUNY Downstate Health Sciences University, New York, NY 11203, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Kim
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kurt Tio
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yasmine Belkaid
- Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Metaorganism Laboratory, Department of Immunology, Pasteur Institute, Paris, France
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Miranda S, Lassnig C, Schmidhofer K, Kjartansdottir H, Vogl C, Tangermann S, Tsymala I, Babl V, Müller M, Kuchler K, Strobl B. Lack of TYK2 signaling enhances host resistance to Candida albicans skin infection. Nat Commun 2024; 15:10493. [PMID: 39622833 PMCID: PMC11612186 DOI: 10.1038/s41467-024-54888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Candida albicans is the most common human fungal pathogen, causing diseases ranging from local to life-threating systemic infections. Tyrosine kinase 2 (TYK2), a crucial mediator in several cytokine signaling pathways, has been associated with protective functions in various microbial infections. However, its specific contribution in the immune response to fungal infections has remained elusive. In this study, we show that mice lacking TYK2 or its enzymatic activity exhibit enhanced resistance to C. albicans skin infections, limiting fungal spread and accelerating wound healing. Impaired TYK2-signaling prompted the formation of a distinctive layer of necrotic neutrophils around the fungal pathogens. Transcriptomic analysis revealed TYK2's pivotal role in regulating interferon-inducible genes in neutrophils, thereby impacting their antifungal capacity during infection. Furthermore, we show that TYK2-dependent interferon-gamma (IFNγ) production contributes to fungal dissemination from the skin to the kidneys. Our study uncovers a hitherto unrecognized detrimental role of TYK2 in cutaneous C. albicans infections.
Collapse
Affiliation(s)
- Sara Miranda
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kristina Schmidhofer
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hrönn Kjartansdottir
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simone Tangermann
- Centre of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Irina Tsymala
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Verena Babl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- Vetbiomodels, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Centre of Biological Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Tsai PJ, Chen MY, Hsu WC, Lin SF, Chan PC, Chen HH, Kao CY, Lin WJ, Chuang TH, Yu GY, Su YW. PTEN acts as a crucial inflammatory checkpoint controlling TLR9/IL-6 axis in B cells. iScience 2024; 27:110388. [PMID: 39092178 PMCID: PMC11292540 DOI: 10.1016/j.isci.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is vital for B cell development, acting as a key negative regulator in the PI3K signaling pathway. We used CD23-cre to generate PTEN-conditional knockout mice (CD23-cKO) to examine the impact of PTEN mutation on peripheral B cells. Unlike mb1-cre-mediated PTEN deletion in early B cells, CD23-cKO mutants exhibited systemic inflammation with increased IL-6 production in mature B cells upon CpG stimulation. Inflammatory B cells in CD23-cKO mice showed elevated phosphatidylinositol 3-phosphate [PI(3)P] levels and increased TLR9 endosomal localization. Pharmacological inhibition of PI(3)P synthesis markedly reduced TLR9-mediated IL-6. Single-cell RNA-sequencing (RNA-seq) revealed altered endocytosis, BANK1, and NF-κB1 expression in PTEN-deficient B cells. Ectopic B cell receptor (BCR) expression on non-inflammatory mb1-cKO B cells restored BANK1 and NF-κB1 expression, enhancing TLR9-mediated IL-6 production. Our study highlights PTEN as a crucial inflammatory checkpoint, regulating TLR9/IL-6 axis by fine-tuning PI(3)P homeostasis. Additionally, BCR downregulation prevents the differentiation of inflammatory B cells in PTEN deficiency.
Collapse
Affiliation(s)
- Pei-Ju Tsai
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Ming-Yu Chen
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Wei-Chan Hsu
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Po-Chiang Chan
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Hsin-Hsin Chen
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Cheng-Yuan Kao
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Zhunan Town, Miaoli County 350401, Taiwan
| |
Collapse
|
4
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Yang F, Yang Y, Lin M, He X, Yang Y. Pathogenesis and preventions of denture stomatitis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1411-1418. [PMID: 38044653 PMCID: PMC10929865 DOI: 10.11817/j.issn.1672-7347.2023.230092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 12/05/2023]
Abstract
Denture stomatitis (DS) is one of the frequent oral diseases caused by multiple factors among denture wearers and is an erythematous lesion of the mucosa in the denture-bearing area, which is a limited and non-specific damage that seriously endangers the oral health of denture wearers. Traditional drug treatment for DS is effective, but it is prone to the development of drug-resistant strains. Therefore, it is important to find new treating options. For the prevention and treatment of DS, there are various methods such as direct administration of azole and polyene antibiotics to the mucosal lesions, extra-oral cleaning of the denture by cleansers and physical disinfection, and modification of denture materials. Natural ingredient preparations that have emerged in recent years are safe, convenient, inexpensive, and less likely to produce drug-resistant strains, and are seen as new sources of drugs for DS treatment. Photodynamic therapy has shown superior antibacterial properties and is also considered promising due to the convenience and safety of the treatment process and the ease of developing drug resistance. Antibacterial agents endow dentures with new characteristics, and denture modification will be a new way to treat DS. In addition, combining different prevention and control methods has shown better antibacterial activity against Candida albicans, which also provides new ideas for prevention and treatment of DS in the future.
Collapse
Affiliation(s)
- Fenghui Yang
- Xiangya School of Stomatology, Central South University; Hunan Key Laboratory of Oral Health Research, Changsha 410078.
- Department of Restoration, Xiangya Stomatological Hospital, Central South University, Changsha 410078.
- School of Life Sciences, Central South University, Changsha 410078, China.
| | - Yuanchao Yang
- Xiangya School of Stomatology, Central South University; Hunan Key Laboratory of Oral Health Research, Changsha 410078
- Department of Restoration, Xiangya Stomatological Hospital, Central South University, Changsha 410078
| | - Mengwei Lin
- Xiangya School of Stomatology, Central South University; Hunan Key Laboratory of Oral Health Research, Changsha 410078
- Department of Restoration, Xiangya Stomatological Hospital, Central South University, Changsha 410078
| | - Xinyi He
- Xiangya School of Stomatology, Central South University; Hunan Key Laboratory of Oral Health Research, Changsha 410078
- Department of Restoration, Xiangya Stomatological Hospital, Central South University, Changsha 410078
| | - Yan Yang
- Xiangya School of Stomatology, Central South University; Hunan Key Laboratory of Oral Health Research, Changsha 410078.
- Department of Restoration, Xiangya Stomatological Hospital, Central South University, Changsha 410078.
| |
Collapse
|
6
|
Li S, Liu Y, Weng L, Zhao Y, Zhang Y, Zhang Z, Yang Y, Chen Q, Liu X, Zhang H. The F 1F o-ATP synthase α subunit of Candida albicans induces inflammatory responses by controlling amino acid catabolism. Virulence 2023; 14:2190645. [PMID: 36914568 PMCID: PMC10072111 DOI: 10.1080/21505594.2023.2190645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Sepsis is a leading cause of fatality in invasive candidiasis. The magnitude of the inflammatory response is a determinant of sepsis outcomes, and inflammatory cytokine imbalances are central to the pathophysiological processes. We previously demonstrated that a Candida albicans F1Fo-ATP synthase α subunit deletion mutant was nonlethal to mice. Here, the potential effects of the F1Fo-ATP synthase α subunit on host inflammatory responses and the mechanism were studied. Compared with wild-type strain, the F1Fo-ATP synthase α subunit deletion mutant failed to induce inflammatory responses in Galleria mellonella and murine systemic candidiasis models and significantly decreased the mRNA levels of the proinflammatory cytokines IL-1β, IL-6 and increased those of the anti-inflammatory cytokine IL-4 in the kidney. During C. albicans-macrophage co-culture, the F1Fo-ATP synthase α subunit deletion mutant was trapped inside macrophages in yeast form, and its filamentation, a key factor in inducing inflammatory responses, was inhibited. In the macrophage-mimicking microenvironment, the F1Fo-ATP synthase α subunit deletion mutant blocked the cAMP/PKA pathway, the core filamentation-regulating pathway, because it failed to alkalinize environment by catabolizing amino acids, an important alternative carbon source inside macrophages. The mutant downregulated Put1 and Put2, two essential amino acid catabolic enzymes, possibly due to severely impaired oxidative phosphorylation. Our findings reveal that the C. albicans F1Fo-ATP synthase α subunit induces host inflammatory responses by controlling its own amino acid catabolism and it is significant to find drugs that inhibit F1Fo-ATP synthase α subunit activity to control the induction of host inflammatory responses.
Collapse
Affiliation(s)
- Shuixiu Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yuting Liu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Luobei Weng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yajing Zhao
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yishan Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Zhanpeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Yang Yang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Qiaoxin Chen
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaocong Liu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Institute of Mycology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Rapala-Kozik M, Surowiec M, Juszczak M, Wronowska E, Kulig K, Bednarek A, Gonzalez-Gonzalez M, Karkowska-Kuleta J, Zawrotniak M, Satała D, Kozik A. Living together: The role of Candida albicans in the formation of polymicrobial biofilms in the oral cavity. Yeast 2023; 40:303-317. [PMID: 37190878 DOI: 10.1002/yea.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The oral cavity of humans is colonized by diversity of microbial community, although dominated by bacteria, it is also constituted by a low number of fungi, often represented by Candida albicans. Although in the vast minority, this usually commensal fungus under certain conditions of the host (e.g., immunosuppression or antibiotic therapy), can transform into an invasive pathogen that adheres to mucous membranes and also to medical or dental devices, causing mucosal infections. This transformation is correlated with changes in cell morphology from yeast-like cells to hyphae and is supported by numerous virulence factors exposed by C. albicans cells at the site of infection, such as multifunctional adhesins, degradative enzymes, or toxin. All of them affect the surrounding host cells or proteins, leading to their destruction. However, at the site of infection, C. albicans can interact with different bacterial species and in its filamentous form may produce biofilms-the elaborated consortia of microorganisms, that present increased ability to host colonization and resistance to antimicrobial agents. In this review, we highlight the modification of the infectious potential of C. albicans in contact with different bacterial species, and also consider the mutual bacterial-fungal relationships, involving cooperation, competition, or antagonism, that lead to an increase in the propagation of oral infection. The mycofilm of C. albicans is an excellent hiding place for bacteria, especially those that prefer low oxygen availability, where microbial cells during mutual co-existence can avoid host recognition or elimination by antimicrobial action. However, these microbial relationships, identified mainly in in vitro studies, are modified depending on the complexity of host conditions and microbial dominance in vivo.
Collapse
Affiliation(s)
- Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Magdalena Surowiec
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Miriam Gonzalez-Gonzalez
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Dorota Satała
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
8
|
Abstract
The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.
Collapse
Affiliation(s)
- Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Takato Kusakabe
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
9
|
Chen L, Ruan G, Cheng Y, Yi A, Chen D, Wei Y. The role of Th17 cells in inflammatory bowel disease and the research progress. Front Immunol 2023; 13:1055914. [PMID: 36700221 PMCID: PMC9870314 DOI: 10.3389/fimmu.2022.1055914] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Th17 cells play an important role in the abnormal immune response in inflammatory bowel disease (IBD) and are involved in the development and progression of inflammation and fibrosis. An increasing amount of data has shown that gut microbes are important parts of intestinal immunity and regulators of Th17 cellular immunity. Th17 cell differentiation is regulated by intestinal bacteria and cytokines, and Th17 cells regulate the intestinal mucosal immune microenvironment by secreting cytokines, such as IL-17, IL-21, and IL-26. Solid evidence showed that, regarding the treatment of IBD by targeting Th17 cells, the therapeutic effect of different biological agents varies greatly. Fecal bacteria transplantation (FMT) in the treatment of IBD has been a popular research topic in recent years and is safe and effective with few side effects. To further understand the role of Th17 cells in the progression of IBD and associated therapeutic prospects, this review will discuss the progress of related research on Th17 cells in IBD by focusing on the interaction and immune regulation between Th17 cells and gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanling Wei
- *Correspondence: Yanling Wei, ; Dongfeng Chen,
| |
Collapse
|
10
|
Das D, HogenEsch H, Thangamani S. Intestinal colonization with Candida auris and mucosal immune response in mice treated with cefoperazone oral antibiotic. Front Immunol 2023; 14:1123200. [PMID: 37114044 PMCID: PMC10126271 DOI: 10.3389/fimmu.2023.1123200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Candida auris, an emerging multi-drug resistant fungal pathogen, causes invasive infections in humans. The factors regulating the colonization of C. auris in host niches are not well understood. In this study, we examined the effect of antibiotic-induced gut dysbiosis on C. auris intestinal colonization, dissemination, microbiome composition and the mucosal immune response. Our results indicate that mice treated with cefoperazone alone had a significant increase in C. auris intestinal colonization compared to untreated control groups. A significant increase in the dissemination of C. auris from the intestine to internal organs was observed in antibiotic-treated immunosuppressed mice. Intestinal colonization of C. auris alters the microbiome composition of antibiotic-treated mice. Relative abundance of firmicutes members mainly Clostridiales and Paenibacillus were considerably increased in the cefoperazone-treated mice infected with C. auris compared to cefoperazone-treated uninfected mice. Next, we examined the mucosal immune response of C. auris infected mice and compared the results with Candida albicans infection. The number of CD11b+ CX3CR1+ macrophages was significantly decreased in the intestine of C. auris infected mice when compared to C. albicans infection. On the other hand, both C. auris and C. albicans infected mice had a comparable increase of the number of Th17 and Th22 cells in the intestine. A significant increase in Candida-specific IgA was observed in the serum of C. auris but not in the C. albicans infected mice. Taken together, treatment with broad-spectrum antibiotic increased the colonization and dissemination of C. auris from the intestine. Furthermore, findings from this study for the first time revealed the microbiome composition, innate and adaptive cellular immune response to intestinal infection with C. auris.
Collapse
Affiliation(s)
- Diprasom Das
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN, United States
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, IN, United States
- *Correspondence: Shankar Thangamani,
| |
Collapse
|
11
|
Generalov EA, Simonenko EY, Kulchenko NG, Yakovenko LV. [Molecular basis of biological activity of polysaccharides in COVID-19 associated conditions]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:403-418. [PMID: 36573407 DOI: 10.18097/pbmc20226806403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The review considers the main molecular biological features of the COVID-19 causative agent, the SARS-CoV-2 virus: life cycle, viral cell penetration strategies, interactions of viral proteins with human proteins, cytopathic effects. We also analyze pathological conditions that occur both during the course of the COVID-19 disease and after virus elimination. A brief review of the biological activities of polysaccharides isolated from various sources is given, and possible molecular biological mechanisms of these activities are considered. Data analysis shows that polysaccharides are a class of biological molecules with wide potential for use in the treatment of both acute conditions in COVID-19 and post-COVID syndrome.
Collapse
Affiliation(s)
- E A Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia; Faculty of Medicine, Moscow University for Industry and Finance "Synergy", Moscow, Russia
| | - E Yu Simonenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - N G Kulchenko
- Medical Institute of the Peoples' Friendship University of Russia, Moscow, Russia
| | - L V Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Ye T, Yuan S, Kong Y, Yang H, Wei H, Zhang Y, Jin H, Yu Q, Liu J, Chen S, Sun J. Effect of Probiotic Fungi against Cognitive Impairment in Mice via Regulation of the Fungal Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9026-9038. [PMID: 35833673 DOI: 10.1021/acs.jafc.2c03142] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fungal microbiota may be involved in the regulation of cognition and behavior, while the role of probiotic fungi against cognitive impairment is unclear. Here, we explored the idea that probiotic Saccharomyces boulardii could participate in the regulation of microglia-induced neuroinflammation in Alzheimer's disease (AD) model mice. Cognitive deficits, deposits of amyloid-β (Aβ) and phosphorylation of tau, synaptic plasticity, microglia activation, and neuroinflammatory reactions were observed. The expression levels of Toll-like receptors (TLRs) pathway-related proteins were detected. Meanwhile, intestinal barrier integrity and fungal microbiota composition were evaluated. Our results showed fungal microbiota dysbiosis in APP/PS1 mice, which might result in the neuroinflammation of AD. The increased levels of interleukin (IL)-6, IL-1β, and cluster of differentiation 11b (CD11b) were observed in APP/PS1 mice, which were associated with activation of microglia, indicative of a broader recognition of neuroinflammation mediated by fungal microbiota compared to hitherto appreciated. Probiotic S. boulardii treatment improved dysbiosis, alleviated the neuroinflammation as well as synaptic injury, and ultimately improved cognitive impairment. Moreover, S. boulardii therapy could inhibit microglia activation and the TLRs pathway, which were reversed by antifungal treatment. These findings revealed that S. boulardii actively participated in regulating the TLRs pathway to inhibit the neuroinflammation via the gut-brain axis.
Collapse
Affiliation(s)
- Tao Ye
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiqun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongming Wei
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hangqi Jin
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingxia Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Songfang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
13
|
Swidergall M, LeibundGut-Landmann S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol 2022; 15:829-836. [PMID: 35778599 PMCID: PMC9385492 DOI: 10.1038/s41385-022-00536-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The fungal microbiota (mycobiota) is an integral part of the microbial community colonizing the body surfaces and is involved in many key aspects of human physiology, while an imbalance of the fungal communities, termed fungal dysbiosis, has been described in pathologies ranging from infections to inflammatory bowel disease. Commensal organisms, such as the fungus Candida albicans, induce antigen-specific immune responses that maintain immune homeostasis. Adaptive immune mechanisms are vital in this process, while deficiencies in adaptive immunity are linked to fungal infections. We start to understand the mechanisms by which a shift in mycobiota composition, in particular in C. albicans abundance, is linked to immunopathological conditions. This review discusses the mechanisms that ensure continuous immunosurveillance of C. albicans during mucosal colonization, how these protective adaptive immune responses can also promote immunopathology, and highlight therapeutic advances against C. albicans-associated disease.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Wang Y, Xu H, Chen N, Yang J, Zhou H. LncRNA: A Potential Target for Host-Directed Therapy of Candida Infection. Pharmaceutics 2022; 14:pharmaceutics14030621. [PMID: 35335994 PMCID: PMC8954347 DOI: 10.3390/pharmaceutics14030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite various drugs work against Candida, candidiasis represents clinical management challenges worldwide due to the rising incidence and recurrence rate, as well as epidemics, of new drug-resistant pathogens. Recent insights into interactions between Candida and hosts contribute to exploring novel therapeutic strategies, termed host-directed therapies (HDTs). HDTs are viable adjuncts with good efficacy for the existing standard antifungal regimens. However, HDTs induce other response unintendedly, thus requiring molecular targets with highly specificity. Long noncoding RNAs (lncRNAs) with highly specific expression patterns could affect biological processes, including the immune response. Herein, this review will summarize recent advances of HDTs based on the Candida–host interaction. Especially, the findings and application strategies of lncRNAs related to the host response are emphasized. We propose it is feasible to target lncRNAs to modulate the host defense during Candida infection, which provides a new perspective in identifying options of HDTs for candidiasis.
Collapse
|