1
|
Finney J, Kuraoka M, Song S, Watanabe A, Liang X, Liao D, Moody MA, Walter EB, Harrison SC, Kelsoe G. Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases. Vaccine 2025; 56:127157. [PMID: 40262372 DOI: 10.1016/j.vaccine.2025.127157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
The discovery of broadly protective antibodies to the influenza virus neuraminidase (NA) has raised interest in NA as a vaccine target. However, recombinant, solubilized tetrameric NA ectodomains are often challenging to express and isolate, hindering the study of anti-NA humoral responses. To address this obstacle, we established a panel of 22 non-adherent cell lines stably expressing native, historical N1, N2, N3, N9, and NB NAs anchored on the cell surface. The cell lines are barcoded with fluorescent proteins, enabling high-throughput, 16-plex analyses of antibody binding with commonly available flow cytometers. The cell lines were at least as efficient as a Luminex multiplex binding assay at identifying NA antibodies from a library of unselected clonal IgGs derived from human memory B cells. The cell lines were also useful for measuring the magnitude and breadth of the serum antibody response elicited by experimental infection of rhesus macaques with influenza virus. The membrane-anchored NAs are catalytically active and are compatible with established sialidase activity assays. NA-expressing K530 cell lines therefore represent a useful tool for studying NA immunity and evaluating influenza vaccine efficacy.
Collapse
Affiliation(s)
- Joel Finney
- Laboratory of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Shengli Song
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Akiko Watanabe
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Xiaoe Liang
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Dongmei Liao
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - M Anthony Moody
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Emmanuel B Walter
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Garnett Kelsoe
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA; Department of Surgery, Duke University, Durham, NC 27710, USA; Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2
|
Finney J, Kuraoka M, Song S, Watanabe A, Liang X, Liao D, Moody MA, Walter EB, Harrison SC, Kelsoe G. Fluorescence-barcoded cell lines stably expressing membrane-anchored influenza neuraminidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.01.631020. [PMID: 39803488 PMCID: PMC11722430 DOI: 10.1101/2025.01.01.631020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The discovery of broadly protective antibodies to the influenza virus neuraminidase (NA) has raised interest in NA as a vaccine target. However, recombinant, solubilized tetrameric NA ectodomains are often challenging to express and isolate, hindering the study of anti-NA humoral responses. To address this obstacle, we established a panel of 22 non-adherent cell lines stably expressing native, historical N1, N2, N3, N9, and NB NAs anchored on the cell surface. The cell lines are barcoded with fluorescent proteins, enabling high-throughput, 16-plex analyses of antibody binding with commonly available flow cytometers. The cell lines were at least as efficient as a Luminex multiplex binding assay at identifying NA antibodies from a library of unselected clonal IgGs derived from human memory B cells. The membrane-anchored NAs are catalytically active and are compatible with established small-molecule catalytic activity assays. NA-expressing K530 cell lines therefore represent a useful tool for studying NA immunity and evaluating influenza vaccine efficacy.
Collapse
Affiliation(s)
- Joel Finney
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Shengli Song
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Akiko Watanabe
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Xiaoe Liang
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Dongmei Liao
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - M. Anthony Moody
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Emmanuel B. Walter
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Garnett Kelsoe
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Tran JQ, Muench MO, Gaillard B, Darst O, Tomayko MM, Jackman RP. Polyinosinic: polycytidylic acid induced inflammation enhances while lipopolysaccharide diminishes alloimmunity to platelet transfusion in mice. Front Immunol 2023; 14:1281130. [PMID: 38146372 PMCID: PMC10749330 DOI: 10.3389/fimmu.2023.1281130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction Alloimmune responses against platelet antigens, which dominantly target the major histocompatibility complex (MHC), can cause adverse reactions to subsequent platelet transfusions, platelet refractoriness, or rejection of future transplants. Platelet transfusion recipients include individuals experiencing severe bacterial or viral infections, and how their underlying health modulates platelet alloimmunity is not well understood. Methods This study investigated the effect of underlying inflammation on platelet alloimmunization by modelling viral-like inflammation with polyinosinic-polycytidylic acid (poly(I:C)) or gram-negative bacterial infection with lipopolysaccharide (LPS), hypothesizing that underlying inflammation enhances alloimmunization. Mice were pretreated with poly(I:C), LPS, or nothing, then transfused with non-leukoreduced or leukoreduced platelets. Alloantibodies and allogeneic MHC-specific B cell (allo-B cell) responses were evaluated two weeks later. Rare populations of allo-B cells were identified using MHC tetramers. Results Relative to platelet transfusion alone, prior exposure to poly(I:C) increased the alloantibody response to allogeneic platelet transfusion whereas prior exposure to LPS diminished responses. Prior exposure to poly(I:C) had equivalent, if not moderately diminished, allo-B cell responses relative to platelet transfusion alone and exhibited more robust allo-B cell memory development. Conversely, prior exposure to LPS resulted in diminished allo-B cell frequency, activation, antigen experience, and germinal center formation and altered memory B cell responses. Discussion In conclusion, not all inflammatory environments enhance bystander responses and prior inflammation mediated by LPS on gram-negative bacteria may in fact curtail platelet alloimmunization.
Collapse
Affiliation(s)
- Johnson Q. Tran
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Betty Gaillard
- Vitalant Research Institute, San Francisco, CA, United States
| | - Orsolya Darst
- Vitalant Research Institute, San Francisco, CA, United States
| | - Mary M. Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Knechtle S, Kwun J, Song S, Jackson A, Williams K, Sanoff S. Translation of therapeutic strategies to modulate B cell reponses from non-human primate models to human kidney transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1176796. [PMID: 38993890 PMCID: PMC11235383 DOI: 10.3389/frtra.2023.1176796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 07/13/2024]
Abstract
Using novel drugs targeting lymphocyte costimulation, cytokines, antibody, complement, and plasma cells, we have developed strategies in a non-human primate model to modulate the B cell response to incompatible kidney transplants. After more than two decades of research supported by mechanistic studies, this has resulted in clinically relevant approaches that are currently enrolling in clinical trials or preparing for such. In this manner, we aim to address the problems of HLA sensitization for very highly sensitized patients awaiting transplantation and the unmet need of effective treatment for antibody-mediated rejection.
Collapse
Affiliation(s)
- Stuart Knechtle
- Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Shengli Song
- Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Annette Jackson
- Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Kitza Williams
- Department of Surgery, Duke University, Durham, NC, United States
| | - Scott Sanoff
- Department of Medicine, Duke University Hospital, Durham NC, United States
| |
Collapse
|
6
|
DeLaura I, Schroder PM, Yoon J, Ladowski J, Anwar IJ, Ezekian B, Schmitz R, Fitch ZW, Kwun J, Knechtle SJ. A novel method for in vitro culture and expansion of nonhuman primate B cells. J Immunol Methods 2022; 511:113363. [PMID: 36174734 PMCID: PMC10486248 DOI: 10.1016/j.jim.2022.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Given the role of B cells in sensitization and antibody-mediated rejection pathogenesis, the ability to identify, isolate, and study B cells in vitro is critical for understanding these processes and developing novel therapeutics. While in vivo nonhuman primate models have been used to this end, an in vitro nonhuman primate model of B cell activation and proliferation has not been developed. METHODS CD20+ B cells and CD3+ T cells were isolated using magnetic bead separation from the peripheral blood of naive and skin allograft sensitized nonhuman primates. Allogeneic B and T cells were co-cultured in plates pre-coated with murine stromal cells engineered to express human CD40L and stimulated with cytokines. Cells and supernatants were harvested every 2 days for immune phenotyping and donor specific antibody quantification by flow cytometry. RESULTS The optimized culture system consisted of MS40L cells co-cultured with B and allogenic T cells and stimulated with cytokines. This culture system resulted in increased memory cells and plasmablasts over time compared to other culture systems. Comparison of culture of naïve and sensitized nonhuman primate samples revealed faster B cell exhaustion and marginally increased plasmablast differentiation in sensitized culture. Donor-specific antibody production was not observed in either culture group. CONCLUSIONS This study describes the first in vitro nonhuman primate model of B cell activation and proliferation using both naïve and allosensitized samples. This model provides an opportunity for exploration of B cell mechanisms and novel therapeutics and is a preliminary step in the development of an in vitro germinal center model.
Collapse
Affiliation(s)
- Isabel DeLaura
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Paul M Schroder
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Joseph Ladowski
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Imran J Anwar
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Robin Schmitz
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Zachary W Fitch
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| | - Stuart J Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|