1
|
Heeralall C, Ibrahim UH, Jenneker M, Singh S, Lazarus L, Mackraj I. Effect of COVID-19 Infection During Pregnancy on the Plasma/Extracellular Vesicles Pro-Inflammatory Cytokine Profile. Am J Reprod Immunol 2025; 93:e70071. [PMID: 40198239 PMCID: PMC11977858 DOI: 10.1111/aji.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/19/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
PURPOSE The Coronavirus disease (COVID-19) has impacted pregnant women significantly, with increased mortality and morbidity. The implications of this virus are linked to extracellular vesicles (EVs) and maternal inflammation due to the cytokine storm. Hence, this study aims to investigate the impact of COVID-19 on the pro-inflammatory cytokine profile in both plasma and EVs of South African pregnant women. METHODS Plasma samples were obtained from pregnant women in the third trimester, from which EVs were extracted using the Invitrogen Total Exosome Isolation Kit. These plasma-derived EVs were characterised using transmission electron microscopy and nanoparticle tracking analysis (NTA). RESULTS COVID-19 infection in pregnancy did not significantly affect the average particle size and concentration of isolated EVs. The levels of IFN gamma, IL-6, MIP-1 alpha and TNF alpha were analysed in the plasma and circulating EVs through a multiplex assay. Compared to the control group, a significant increase in IL-6, IFN-γ, TNF-α and MIP-1α levels were observed in both plasma and EVs content of COVID-19 pregnancies. CONCLUSION These findings suggest that COVID-19 infection impacts the pro-inflammatory cytokine profile in the plasma and EVs of South African pregnant women.
Collapse
Affiliation(s)
- C. Heeralall
- Discipline of Clinical AnatomySchool of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Usri H. Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - M. Jenneker
- Discipline of Obstetrics and Gynaecology, School of Clinical MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - S. Singh
- Optics & Imaging Centre, Doris Duke Medical Research InstituteCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - L. Lazarus
- Discipline of Clinical AnatomySchool of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical SciencesCollege of Health SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
2
|
Juárez E, Vázquez-Pérez JA, Carreto-Binaghi LE, Martínez-Sanabria CA, Salgado-Cantú MG, Sarabia C, Herrera MT, Guzmán-Beltrán S, Gutiérrez-González LH, González Y. COVID-19 extracellular vesicles display heterogeneity based on viral and host RNA expression: implications for host immune response. J Leukoc Biol 2025; 117:qiae212. [PMID: 39327799 DOI: 10.1093/jleuko/qiae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Viral RNA and miRNAs released by immune cells contribute to inflammation in COVID-19 patients. Here, we investigated the role of SARS-CoV2 RNA and host miRNAs carried within extracellular vesicles (EVs) in modulating inflammation. EVs were classified as positive or negative depending on their viral RNA cargo. To assess the function of viral RNA, EVs, and lipopolysaccharide (LPS) were used to stimulate whole blood samples from healthy subjects, and the secretion of 27 serum analytes was measured. EVs alone did not induce cytokines, chemokines, or growth factors. However, under LPS stimulation, (SARS-CoV2+) EVs increased IL-12 and decreased IL-13 secretion, while (SARS-CoV2-) EVs increased MIP-1α and IL-1β secretion. Host miR-19a-3p, -192-5p, -let-7c-5p, and -92b-3a were differentially expressed in association with viral RNA. EVs from COVID-19 patients exhibited differences in viral RNA and miRNA expression profiles that modulate LPS responses. This knowledge sheds light on the immunopathology of COVID-19.
Collapse
Affiliation(s)
- Esmeralda Juárez
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| | - Joel A Vázquez-Pérez
- Laboratory of Molecular Biology of Emergent Diseases and COPD, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| | - Laura E Carreto-Binaghi
- Laboratory of Immunobiology of Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| | - Claudia A Martínez-Sanabria
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
- School of Medicine, Benemérita Universidad Autónoma de Puebla, 4 Sur 104, 72000 Puebla, Mexico
| | - Manuel G Salgado-Cantú
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| | - Carmen Sarabia
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| | - María Teresa Herrera
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| | - Luis H Gutiérrez-González
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| | - Yolanda González
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080 Mexico City, Mexico
| |
Collapse
|
3
|
Li L, Yang Z, Li J. Exosomes and SARS-CoV-2 infection. Front Immunol 2024; 15:1467109. [PMID: 39660145 PMCID: PMC11628517 DOI: 10.3389/fimmu.2024.1467109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Exosomes, which are small extracellular vesicles, are of particular interest in studies on SARS-CoV-2 infection because of their crucial role in intercellular communication. These vesicles are released by several cell types and are rich in "cargo" such as proteins, lipids, and nucleic acids, which are vital for regulating immune response and viral pathogenesis. Exosomes have been reported to be involved in viral transmission, immune escape mechanisms, and illness development in SARS-CoV-2 infection. This review examines the current research on the contribution of exosomes to the interplay between the virus and host cells, highlighting their potential as diagnostic biomarkers and therapeutic targets in combating COVID-19.
Collapse
Affiliation(s)
- Liuying Li
- Department of Traditional Chinese Medicine, Zigong First People’s Hospital, Zigong, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixuan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
5
|
Rahmani A, Soleymani A, Almukhtar M, Behzad Moghadam K, Vaziri Z, Hosein Tabar Kashi A, Adabi Firoozjah R, Jafari Tadi M, Zolfaghari Dehkharghani M, Valadi H, Moghadamnia AA, Gasser RB, Rostami A. Exosomes, and the potential for exosome-based interventions against COVID-19. Rev Med Virol 2024; 34:e2562. [PMID: 38924213 DOI: 10.1002/rmv.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Soleymani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Kimia Behzad Moghadam
- Independent Researcher, Former University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Zahra Vaziri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hosein Tabar Kashi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Adabi Firoozjah
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maryam Zolfaghari Dehkharghani
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Granholm ACE, Englund E, Gilmore A, Head E, Yong WH, Perez SE, Guzman SJ, Hamlett ED, Mufson EJ. Neuropathological findings in Down syndrome, Alzheimer's disease and control patients with and without SARS-COV-2: preliminary findings. Acta Neuropathol 2024; 147:92. [PMID: 38801558 PMCID: PMC11130011 DOI: 10.1007/s00401-024-02743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024]
Abstract
The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aβ), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aβ deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.
Collapse
Affiliation(s)
- Ann-Charlotte E Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Research Complex II, Aurora, CO, USA.
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Research Complex II, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Sylvia E Perez
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Samuel J Guzman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
7
|
Lu RXZ, Rafatian N, Zhao Y, Wagner KT, Beroncal EL, Li B, Lee C, Chen J, Churcher E, Vosoughi D, Liu C, Wang Y, Baker A, Trahtemberg U, Li B, Pierro A, Andreazza AC, dos Santos CC, Radisic M. Cardiac tissue model of immune-induced dysfunction reveals the role of free mitochondrial DNA and the therapeutic effects of exosomes. SCIENCE ADVANCES 2024; 10:eadk0164. [PMID: 38536913 PMCID: PMC10971762 DOI: 10.1126/sciadv.adk0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous progress in the development of mature heart-on-a-chip models, human cell-based models of myocardial inflammation are lacking. Here, we bioengineered a vascularized heart-on-a-chip with circulating immune cells to model severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced acute myocarditis. We observed hallmarks of coronavirus disease (COVID-19)-induced myocardial inflammation, as the presence of immune cells augmented the secretion of proinflammatory cytokines, triggered progressive impairment of contractile function, and altered intracellular calcium transients. An elevation of circulating cell-free mitochondrial DNA (ccf-mtDNA) was measured first in the heart-on-a-chip and then validated in COVID-19 patients with low left ventricular ejection fraction, demonstrating that mitochondrial damage is an important pathophysiological hallmark of inflammation-induced cardiac dysfunction. Leveraging this platform in the context of SARS-CoV-2-induced myocardial inflammation, we established that administration of endothelial cell-derived exosomes effectively rescued the contractile deficit, normalized calcium handling, elevated the contraction force, and reduced the ccf-mtDNA and cytokine release via Toll-like receptor-nuclear factor κB signaling axis.
Collapse
Affiliation(s)
- Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Karl T. Wagner
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Erika L. Beroncal
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bo Li
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carol Lee
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jingan Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Eryn Churcher
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Daniel Vosoughi
- Latner Thoracic Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrew Baker
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Uriel Trahtemberg
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Galilee Medical Center, Nahariya, Israel
| | - Bowen Li
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Agostino Pierro
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Ana C. Andreazza
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Claudia C. dos Santos
- Interdepartmental Division of Critical Care, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, ON M5S 1A8, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3D5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1
| |
Collapse
|
8
|
Teymouri S, Pourhajibagher M, Bahador A. Exosomes: Friends or Foes in Microbial Infections? Infect Disord Drug Targets 2024; 24:e170124225730. [PMID: 38317472 DOI: 10.2174/0118715265264388231128045954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The use of new approaches is necessary to address the global issue of infections caused by drug-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) is a promising approach that reduces the emergence of drug resistance, and no resistance has been reported thus far. APDT involves using a photosensitizer (PS), a light source, and oxygen. The mechanism of aPDT is that a specific wavelength of light is directed at the PS in the presence of oxygen, which activates the PS and generates reactive oxygen species (ROS), consequently causing damage to microbial cells. However, due to the PS's poor stability, low solubility in water, and limited bioavailability, it is necessary to employ drug delivery platforms to enhance the effectiveness of PS in photodynamic therapy (PDT). Exosomes are considered a desirable carrier for PS due to their specific characteristics, such as low immunogenicity, innate stability, and high ability to penetrate cells, making them a promising platform for drug delivery. Additionally, exosomes also possess antimicrobial properties, although in some cases, they may enhance microbial pathogenicity. As there are limited studies on the use of exosomes for drug delivery in microbial infections, this review aims to present significant points that can provide accurate insights.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
9
|
Halabi R, Dakroub F, Haider MZ, Patel S, Amhaz NA, Reslan MA, Eid AH, Mechref Y, Darwiche N, Kobeissy F, Omeis I, Shaito AA. Unveiling a Biomarker Signature of Meningioma: The Need for a Panel of Genomic, Epigenetic, Proteomic, and RNA Biomarkers to Advance Diagnosis and Prognosis. Cancers (Basel) 2023; 15:5339. [PMID: 38001599 PMCID: PMC10670806 DOI: 10.3390/cancers15225339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Meningiomas are the most prevalent primary intracranial tumors. The majority are benign but can undergo dedifferentiation into advanced grades classified by World Health Organization (WHO) into Grades 1 to 3. Meningiomas' tremendous variability in tumor behavior and slow growth rates complicate their diagnosis and treatment. A deeper comprehension of the molecular pathways and cellular microenvironment factors implicated in meningioma survival and pathology is needed. This review summarizes the known genetic and epigenetic aberrations involved in meningiomas, with a focus on neurofibromatosis type 2 (NF2) and non-NF2 mutations. Novel potential biomarkers for meningioma diagnosis and prognosis are also discussed, including epigenetic-, RNA-, metabolomics-, and protein-based markers. Finally, the landscape of available meningioma-specific animal models is overviewed. Use of these animal models can enable planning of adjuvant treatment, potentially assisting in pre-operative and post-operative decision making. Discovery of novel biomarkers will allow, in combination with WHO grading, more precise meningioma grading, including meningioma identification, subtype determination, and prediction of metastasis, recurrence, and response to therapy. Moreover, these biomarkers may be exploited in the development of personalized targeted therapies that can distinguish between the 15 diverse meningioma subtypes.
Collapse
Affiliation(s)
- Reem Halabi
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut 1105, Lebanon;
| | - Fatima Dakroub
- Department of Experimental Pathology, Microbiology and Immunology and Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.Z.H.); (A.H.E.)
| | - Stuti Patel
- Department of Biology, University of Florida, Gainesville, FL 32601, USA; (S.P.); (N.A.A.)
| | - Nayef A. Amhaz
- Department of Biology, University of Florida, Gainesville, FL 32601, USA; (S.P.); (N.A.A.)
| | - Mohammad A. Reslan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (M.Z.H.); (A.H.E.)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107, Lebanon; (M.A.R.); (N.D.); (F.K.)
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Ibrahim Omeis
- Hammoud Hospital University Medical Center, Saida 652, Lebanon
- Division of Neurosurgery, Penn Medicine, Lancaster General Health, Lancaster, PA 17601, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, College of Medicine, and Department of Biomedical Sciences at College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
10
|
Serretiello E, Ballini A, Smimmo A, Acunzo M, Raimo M, Cantore S, Di Domenico M. Extracellular Vesicles as a Translational Approach for the Treatment of COVID-19 Disease: An Updated Overview. Viruses 2023; 15:1976. [PMID: 37896755 PMCID: PMC10611252 DOI: 10.3390/v15101976] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic in the years 2020-2022. With a high prevalence, an easy route of transmission, and a long incubation time, SARS-CoV-2 spread quickly and affected public health and socioeconomic conditions. Several points need to be elucidated about its mechanisms of infection, in particular, its capability to evade the immune system and escape from neutralizing antibodies. Extracellular vesicles (EVs) are phospholipid bilayer-delimited particles that are involved in cell-to-cell communication; they contain biological information such as miRNAs, proteins, nucleic acids, and viral components. Abundantly released from biological fluids, their dimensions are highly variable, which are used to divide them into exosomes (40 to 150 nm), microvesicles (40 to 10,000 nm), and apoptotic bodies (100-5000 nm). EVs are involved in many physiological and pathological processes. In this article, we report the latest evidence about EVs' roles in viral infections, focusing on the dual role of exosomes in promoting and inhibiting SARS-CoV-2 infection. The involvement of mesenchymal stromal/stem cells (MSCs) and MSC-derived EVs in COVID-19 treatment, such as the use of translational exosomes as a diagnostical/therapeutic approach, is also investigated. These elucidations could be useful to better direct the discovery of future diagnostical tools and new exosome-derived COVID-19 biomarkers, which can help achieve optimal therapeutic interventions and implement future vaccine strategies.
Collapse
Affiliation(s)
- Enrica Serretiello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Annafrancesca Smimmo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Marina Acunzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Mariarosaria Raimo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Stefania Cantore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (E.S.); (A.S.); (M.A.); (M.R.); (S.C.); (M.D.D.)
| |
Collapse
|
11
|
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother 2023; 165:115087. [PMID: 37392659 DOI: 10.1016/j.biopha.2023.115087] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Pollachi Road, Eachanari, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
12
|
Dangot A, Zavaro M, Bar-Lev TH, Bannon L, Zilberman A, Pickholz E, Avivi I, Aharon A. Characterization of extracellular vesicles in COVID-19 infection during pregnancy. Front Cell Dev Biol 2023; 11:1135821. [PMID: 37560162 PMCID: PMC10407400 DOI: 10.3389/fcell.2023.1135821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction: SARS-CoV-2 infection may cause a severe inflammatory response, inflicting severe morbidity and mortality. This risk is modestly increased in pregnant patients. Despite the hypercoagulability and immunosuppression associated with pregnancy, most pregnant women experience a mild COVID-19 infection. Maternal extracellular vesicles (EVs) may interact with endothelial and immune components to facilitate a favorable disease course. This pilot study aimed to explore the characteristics of EVs released during COVID-19 infection occurring during the third trimester of pregnancy. Methods: In this prospective study, blood samples were obtained from 16 healthy non-pregnant (NP), 18 healthy-pregnant (HP), and 22 COVID-19 positive pregnant subjects (CoV-P). Disease course and pregnancy outcomes were assessed and EVs were characterized. Of note, limited volumes of sample acquired from the subjects made it necessary to use smaller and different subsets of samples for each analysis. Results: The majority (91%) of the COVID-19-pregnant subjects (18 mild and 2 moderate disease) experienced good pregnancy-related outcomes. EV concentrations were higher in healthy-pregnant subjects compared to non-pregnant subjects (p = 0.0041) and lower in COVID-19-pregnant subjects compared to healthy-pregnant subjects (p = 0.0150). CD63 exosome marker expression was higher in EVs of healthy-pregnant subjects and COVID-19-pregnant subjects compared to EVs of non-pregnant subjects (p = 0.0149, p = 0.0028, respectively). Similar levels of SARS-CoV-2 entry proteins (ACE-2 and TMPRSS2) were found in all three groups. Cytokine content increased in healthy-pregnant subject-EVs compared to non-pregnant EVs, while IL-2 and IL-6 levels were decreased in COVID-19-pregnant subject-EVs compared to healthy-pregnant subject-EVs (p = 0.043, p = 0.0390, respectively). CD8+, cytotoxic T-cell marker, was lower in non-pregnant EVs compared to healthy-pregnant subject-EVs and to COVID-19-pregnant subjects (p = 0.0108, p < 0.0001, respectively). COVID-19- pregnant subject-EVs demonstrated higher levels of platelet activation marker (CD62P) than non-pregnant (p = 0.0327) and healthy-pregnant subjects (p = 0.0365). Endothelial marker EV-CD144+ was lower in healthy-pregnant subjects versus non-pregnant subjects (p = 0.0093), but similar in COVID-19-pregnant and non-pregnant subjects. Other EVs' coagulation markers/activity, D-Dimer and fibrinogen levels were similar in healthy-pregnant subjects and COVID-19 positive pregnant subjects. Conclusion: COVID-19 positive pregnant subjects' EVs demonstrated an attenuated inflammatory response, with no additional activation of the coagulation system.
Collapse
Affiliation(s)
- Ayelet Dangot
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Obstetrics and Gynecology Department, Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Zavaro
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Hana Bar-Lev
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Lian Bannon
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ayala Zilberman
- Obstetrics and Gynecology Department, Lis Hospital for Women, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eliana Pickholz
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irit Avivi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Anat Aharon
- Hematology Research Laboratory, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
El-Maradny YA, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: I. Prevalence of the extracellular vesicles. J Cell Biochem 2023; 124:656-673. [PMID: 37126363 DOI: 10.1002/jcb.30415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán, Jalisco, Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Granholm AC. Long-Term Effects of SARS-CoV-2 in the Brain: Clinical Consequences and Molecular Mechanisms. J Clin Med 2023; 12:3190. [PMID: 37176630 PMCID: PMC10179128 DOI: 10.3390/jcm12093190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Numerous investigations have demonstrated significant and long-lasting neurological manifestations of COVID-19. It has been suggested that as many as four out of five patients who sustained COVID-19 will show one or several neurological symptoms that can last months after the infection has run its course. Neurological symptoms are most common in people who are less than 60 years of age, while encephalopathy is more common in those over 60. Biological mechanisms for these neurological symptoms need to be investigated and may include both direct and indirect effects of the virus on the brain and spinal cord. Individuals with Alzheimer's disease (AD) and related dementia, as well as persons with Down syndrome (DS), are especially vulnerable to COVID-19, but the biological reasons for this are not clear. Investigating the neurological consequences of COVID-19 is an urgent emerging medical need, since close to 700 million people worldwide have now had COVID-19 at least once. It is likely that there will be a new burden on healthcare and the economy dealing with the long-term neurological consequences of severe SARS-CoV-2 infections and long COVID, even in younger generations. Interestingly, neurological symptoms after an acute infection are strikingly similar to the symptoms observed after a mild traumatic brain injury (mTBI) or concussion, including dizziness, balance issues, anosmia, and headaches. The possible convergence of biological pathways involved in both will be discussed. The current review is focused on the most commonly described neurological symptoms, as well as the possible molecular mechanisms involved.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Denver, CO 80045-0511, USA
| |
Collapse
|
15
|
Aharon A, Dangot A, Kinaani F, Zavaro M, Bannon L, Bar-Lev T, Keren-Politansky A, Avivi I, Jacob G. Extracellular Vesicles of COVID-19 Patients Reflect Inflammation, Thrombogenicity, and Disease Severity. Int J Mol Sci 2023; 24:ijms24065918. [PMID: 36982991 PMCID: PMC10054500 DOI: 10.3390/ijms24065918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Severe COVID-19 infections present with cytokine storms, hypercoagulation, and acute respiratory distress syndrome, with extracellular vesicles (EVs) being involved in coagulation and inflammation. This study aimed to determine whether coagulation profiles and EVs reflect COVID-19 disease severity. Thirty-six patients with symptomatic COVID-19 infection with mild/moderate/severe disease (12 in each group) were analyzed. Sixteen healthy individuals served as controls. Coagulation profiles and EV characteristics were tested by nanoparticle tracking analysis (NTA), flow cytometry, and Western blot. While coagulation factors VII, V, VIII, and vWF were comparable, significant differences were found in patients' D-Dimer/fibrinogen/free protein S levels compared to controls. Severe patients' EVs displayed higher percentages of small EVs (<150 nm) with increased expression of exosome marker CD63. Severe patients' EVs displayed high levels of platelet markers (CD41) and coagulation factors (tissue factor activity, endothelial protein C receptor). EVs of patients with moderate/severe disease expressed significantly higher levels of immune cell markers (CD4/CD8/CD14) and contained higher levels of IL-6. We demonstrated that EVs, but not the coagulation profile, may serve as biomarkers for COVID-19 severity. EVs demonstrated elevated levels of immune- and vascular-related markers in patients with moderate/severe disease, and may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Anat Aharon
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Ayelet Dangot
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Fadi Kinaani
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Mor Zavaro
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Lian Bannon
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tali Bar-Lev
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| | | | - Irit Avivi
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| | - Giris Jacob
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Recanati Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| |
Collapse
|
16
|
Thakur A. Shedding Lights on the Extracellular Vesicles as Functional Mediator and Therapeutic Decoy for COVID-19. Life (Basel) 2023; 13:life13030840. [PMID: 36983995 PMCID: PMC10052528 DOI: 10.3390/life13030840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
COVID-19 is an infectious disease caused by the novel coronavirus (SARS-CoV-2) that first appeared in late 2019 and has since spread across the world. It is characterized by symptoms such as fever, cough, and shortness of breath and can lead to death in severe cases. To help contain the virus, measures such as social distancing, handwashing, and other public health measures have been implemented. Vaccine and drug candidates, such as those developed by Pfizer/BioNTech, AstraZeneca, Moderna, Novavax, and Johnson & Johnson, have been developed and are being distributed worldwide. Clinical trials for drug treatments such as remdesivir, dexamethasone, and monoclonal antibodies are underway and have shown promising results. Recently, exosomes have gained attention as a possible mediator of the COVID-19 infection. Exosomes, small vesicles with a size of around 30-200 nm, released from cells, contain viral particles and other molecules that can activate the immune system and/or facilitate viral entry into target cells. Apparently, the role of exosomes in eliciting various immune responses and causing tissue injury in COVID-19 pathogenesis has been discussed. In addition, the potential of exosomes as theranostic and therapeutic agents for the treatment of COVID-19 has been elaborated.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Aafreen S, Feng J, Wang W, Liu G. Theranostic extracellular vesicles: a concise review of current imaging technologies and labeling strategies. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:107-132. [PMID: 37829171 PMCID: PMC10568980 DOI: 10.20517/evcna.2023.01] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Extracellular vesicles (EVs), or exosomes, are naturally occurring nano- and micro-sized membrane vesicles playing an essential role in cell-to-cell communication. There is a recent increasing interest in harnessing the therapeutic potential of these natural nanoparticles to develop cell-free regenerative medicine and manufacture highly biocompatible and targeted drug and gene delivery vectors, amongst other applications. In the context of developing novel and effective EV-based therapy, imaging tools are of paramount importance as they can be used to not only elucidate the underlying mechanisms but also provide the basis for optimization and clinical translation. In this review, recent efforts and knowledge advances on EV-based therapies have been briefly introduced, followed by an outline of currently available labeling strategies by which EVs can be conjugated with various imaging agents and/or therapeutic drugs and genes. A comprehensive review of prevailing EV imaging technologies is then presented along with examples and applications, with emphasis on imaging probes and agents, corresponding labeling methods, and the pros and cons of each imaging modality. Finally, the potential of theranostic EVs as a powerful new weapon in the arsenal of regenerative medicine and nanomedicine is summarized and envisioned.
Collapse
Affiliation(s)
- Safiya Aafreen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jonathan Feng
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Wenshen Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Porcine Hemagglutinating Encephalomyelitis Virus Co-Opts Multivesicular-Derived Exosomes for Transmission. mBio 2023; 14:e0305422. [PMID: 36541757 PMCID: PMC9973304 DOI: 10.1128/mbio.03054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a member of the family Coronaviridae, genus Betacoronavirus, and subgenus Embecovirus that causes neurological disorders, vomiting and wasting disease (VWD), or influenza-like illness (ILI) in pigs. Exosomes regulate nearby or distant cells as a means of intercellular communication; however, whether they are involved in the transmission of viral reference materials during PHEV infection is unknown. Here, we collected exosomes derived from PHEV-infected neural cells (PHEV-exos) and validated their morphological, structural, and content characteristics. High-resolution mass spectrometry indicated that PHEV-exos carry a variety of cargoes, including host innate immunity sensors and viral ingredients. Furthermore, transwell analysis revealed that viral ingredients, such as proteins and RNA fragments, could be encapsulated in the exosomes of multivesicular bodies (MVBs) to nonpermissive microglia. Inhibition of exosome secretion could suppress PHEV infection. Therefore, we concluded that the mode of infectious transmission of PHEV is likely through a mixture of virus-modified exosomes and virions and that exosomal export acts as a host strategy to induce an innate response in replicating nonpermissive bystander cells free of immune system recognition. IMPORTANCE The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a large number of deaths worldwide. Clinical neurological complications have occurred in some cases; however, knowledge of the natural history of coronavirus in the central nervous system (CNS) is thus far limited. PHEV is a typical neurotropic betacoronavirus (β-CoV) that propagates via neural circuits in the host CNS after peripheral incubation rather than through the bloodstream. It is therefore a good prototype pathogen to investigate the neuropathological pathogenesis of acute human coronavirus infection. In this study, we demonstrate a new association between host vesicle-based secretion and PHEV infection, showing that multivesicular-derived exosomes are one of the modes of infectious transmission and that they mediate the transfer of immunostimulatory cargo to uninfected neuroimmune cells. These findings provide novel insights into the treatment and monitoring of neurological consequences associated with β-CoV, similar to those associated with SARS-CoV-2.
Collapse
|
19
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sci 2023; 13:brainsci13030415. [PMID: 36979225 PMCID: PMC10046222 DOI: 10.3390/brainsci13030415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus’s life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: ; Tel./Fax: +98-11-32190557
| |
Collapse
|
20
|
Pordanjani PM, Bolhassani A, Milani A, Pouriayevali MH. Extracellular vesicles in vaccine development and therapeutic approaches for viral diseases. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
21
|
Mardi N, Haiaty S, Rahbarghazi R, Mobarak H, Milani M, Zarebkohan A, Nouri M. Exosomal transmission of viruses, a two-edged biological sword. Cell Commun Signal 2023; 21:19. [PMID: 36691072 PMCID: PMC9868521 DOI: 10.1186/s12964-022-01037-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.
Collapse
Affiliation(s)
- Narges Mardi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Morteza Milani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Extracellular Vesicles and Viruses: Two Intertwined Entities. Int J Mol Sci 2023; 24:ijms24021036. [PMID: 36674550 PMCID: PMC9861478 DOI: 10.3390/ijms24021036] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.
Collapse
|
23
|
Motallebnezhad M, Omraninava M, Esmaeili Gouvarchin Ghaleh H, Jonaidi-Jafari N, Hazrati A, Malekpour K, Bagheri Y, Izadi M, Ahmadi M. Potential therapeutic applications of extracellular vesicles in the immunopathogenesis of COVID-19. Pathol Res Pract 2023; 241:154280. [PMID: 36580795 PMCID: PMC9759301 DOI: 10.1016/j.prp.2022.154280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19) which has emerged as a global health crisis. Recently, more than 50 different types of potential COVID-19 vaccines have been developed to elicit a strong immune response against SARS-CoV-2. However, genetic mutations give rise to the new variants of SARS-CoV-2 which is highly associated with the reduced effectiveness of COVID-19 vaccines. There is still no efficient antiviral agent to specifically target the SARS-CoV-2 infection and treatment of COVID-19. Therefore, understanding the molecular mechanisms underlying the pathogenesis of SARS-CoV-2 may contribute to discovering a novel potential therapeutic approach to the management of COVID-19. Recently, extracellular vesicle (EV)-based therapeutic strategies have received great attention on account of their potential benefits in the administration of viral diseases. EVs are extracellular vesicles containing specific biomolecules which play an important role in cell-to-cell communications. It has been revealed that EVs are involved in the pathogenesis of different inflammatory diseases such as cancer and viral infections. EVs are released from virus-infected cells which could mediate the interaction of infected and uninfected host cells. Hence, these extracellular nanoparticles have been considered a novel approach for drug delivery to mediate the treatment of a wide range of diseases including, COVID-19. EVs are considered a cell-free therapeutic strategy that could ameliorate the cytokine storm and its complications in COVID-19 patients. Furthermore, EV-based cargo delivery such as immunomodulatory agents in combination with antiviral drugs may have therapeutic benefits in patients with SARS-CoV-2 infection. In this review, we will highlight the potential of EVs as a therapeutic candidate in the diagnosis and treatment of COVID-19. Also, we will discuss the future perspectives regarding the beneficial effects of Evs in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Morteza Motallebnezhad
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Melodi Omraninava
- Department of Infectious Disease, Faculty of Medical Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | | | - Nematollah Jonaidi-Jafari
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yasser Bagheri
- Immunology Department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Izadi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
HEIDARI FATEMEH, SEYEDEBRAHIMI REIHANEH, YANG PIAO, FARSANI MOHSENESLAMI, ABABZADEH SHIMA, KALHOR NASER, MANOOCHEHRI HAMED, SHEYKHHASAN MOHSEN, AZIMZADEH MARYAM. Exosomes in viral infection: Effects for pathogenesis and treatment strategies. BIOCELL 2023; 47:2597-2608. [DOI: 10.32604/biocell.2023.043351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
25
|
Forte D, Pellegrino RM, Trabanelli S, Tonetti T, Ricci F, Cenerenti M, Comai G, Tazzari P, Lazzarotto T, Buratta S, Urbanelli L, Narimanfar G, Alabed HBR, Mecucci C, La Manna G, Emiliani C, Jandus C, Ranieri VM, Cavo M, Catani L, Palandri F. Circulating extracellular particles from severe COVID-19 patients show altered profiling and innate lymphoid cell-modulating ability. Front Immunol 2023; 14:1085610. [PMID: 37207201 PMCID: PMC10189636 DOI: 10.3389/fimmu.2023.1085610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) and particles (EPs) represent reliable biomarkers for disease detection. Their role in the inflammatory microenvironment of severe COVID-19 patients is not well determined. Here, we characterized the immunophenotype, the lipidomic cargo and the functional activity of circulating EPs from severe COVID-19 patients (Co-19-EPs) and healthy controls (HC-EPs) correlating the data with the clinical parameters including the partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) and the sequential organ failure assessment (SOFA) score. Methods Peripheral blood (PB) was collected from COVID-19 patients (n=10) and HC (n=10). EPs were purified from platelet-poor plasma by size exclusion chromatography (SEC) and ultrafiltration. Plasma cytokines and EPs were characterized by multiplex bead-based assay. Quantitative lipidomic profiling of EPs was performed by liquid chromatography/mass spectrometry combined with quadrupole time-of-flight (LC/MS Q-TOF). Innate lymphoid cells (ILC) were characterized by flow cytometry after co-cultures with HC-EPs or Co-19-EPs. Results We observed that EPs from severe COVID-19 patients: 1) display an altered surface signature as assessed by multiplex protein analysis; 2) are characterized by distinct lipidomic profiling; 3) show correlations between lipidomic profiling and disease aggressiveness scores; 4) fail to dampen type 2 innate lymphoid cells (ILC2) cytokine secretion. As a consequence, ILC2 from severe COVID-19 patients show a more activated phenotype due to the presence of Co-19-EPs. Discussion In summary, these data highlight that abnormal circulating EPs promote ILC2-driven inflammatory signals in severe COVID-19 patients and support further exploration to unravel the role of EPs (and EVs) in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Dorian Forte
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology ‘Seràgnoli’, University of Bologna, Bologna, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Tommaso Tonetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospealiero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Ricci
- Immunohematology and blood bank, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Giorgia Comai
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Tazzari
- Immunohematology and blood bank, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Ghazal Narimanfar
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology ‘Seràgnoli’, University of Bologna, Bologna, Italy
| | - Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Cristina Mecucci
- Department of Medicine and Surgery, Center for Hemato-Oncology Research (C.R.E.O.), University of Perugia, Perugia, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, Biochemistry and Molecular Biology Section, University of Perugia, Perugia, Italy
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Vito Marco Ranieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Anesthesia and Intensive Care Medicine, IRCCS Azienda Ospealiero-Universitaria di Bologna, Bologna, Italy
| | - Michele Cavo
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology ‘Seràgnoli’, University of Bologna, Bologna, Italy
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lucia Catani
- Department of Medical and Surgical Sciences (DIMEC), Institute of Hematology ‘Seràgnoli’, University of Bologna, Bologna, Italy
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- *Correspondence: Lucia Catani,
| | - Francesca Palandri
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
26
|
Talebi Jouybari M, Fani N, Jahangir S, Bagheri F, Golru R, Taghiyar L. Validation of Tissue-Engineered Constructs: Preclinical and Clinical Studies. CARTILAGE: FROM BIOLOGY TO BIOFABRICATION 2023:491-527. [DOI: 10.1007/978-981-99-2452-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Kongsomros S, Pongsakul N, Panachan J, Khowawisetsut L, Somkird J, Sangma C, Kanjanapruthipong T, Wongtrakoongate P, Chairoungdua A, Pattanapanyasat K, Newburg DS, Morrow AL, Hongeng S, Thitithanyanont A, Chutipongtanate S. Comparison of viral inactivation methods on the characteristics of extracellular vesicles from SARS-CoV-2 infected human lung epithelial cells. J Extracell Vesicles 2022; 11:e12291. [PMID: 36468940 PMCID: PMC9721205 DOI: 10.1002/jev2.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The interaction of SARS-CoV-2 infection with extracellular vesicles (EVs) is of particular interest at the moment. Studying SARS-CoV-2 contaminated-EV isolates in instruments located outside of the biosafety level-3 (BSL-3) environment requires knowing how viral inactivation methods affect the structure and function of extracellular vesicles (EVs). Therefore, three common viral inactivation methods, ultraviolet-C (UVC; 1350 mJ/cm2 ), β-propiolactone (BPL; 0.005%), heat (56°C, 45 min) were performed on defined EV particles and their proteins, RNAs, and function. Small EVs were isolated from the supernatant of SARS-CoV-2-infected human lung epithelial Calu-3 cells by stepwise centrifugation, ultrafiltration and qEV size-exclusion chromatography. The EV isolates contained SARS-CoV-2. UVC, BPL and heat completely abolished SARS-CoV-2 infectivity of the contaminated EVs. Particle detection by electron microscopy and nanoparticle tracking was less affected by UVC and BPL than heat treatment. Western blot analysis of EV markers was not affected by any of these three methods. UVC reduced SARS-CoV-2 spike detectability by quantitative RT-PCR and slightly altered EV-derived β-actin detection. Fibroblast migration-wound healing activity of the SARS-CoV-2 contaminated-EV isolate was only retained after UVC treatment. In conclusion, specific viral inactivation methods are compatible with specific measures in SARS-CoV-2 contaminated-EV isolates. UVC treatment seems preferable for studying functions of EVs released from SARS-CoV-2 infected cells.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi HospitalMahidol UniversitySamut PrakanThailand
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Department of Microbiology, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Nutkridta Pongsakul
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
| | - Jirawan Panachan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jinjuta Somkird
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Chak Sangma
- Department of Chemistry, Faculty of ScienceKasetsart UniversityBangkokThailand
| | | | | | - Arthit Chairoungdua
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Kovit Pattanapanyasat
- Center of Excellence for Microparticle and Exosome in Diseases, Research DepartmentFaculty of Medicine Siriraj Hospital, Mahidol UniversityBangkokThailand
| | - David S. Newburg
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| | - Ardythe L. Morrow
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Infectious Diseases, Department of PediatricsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | | | - Somchai Chutipongtanate
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi HospitalMahidol UniversitySamut PrakanThailand
- Pediatric Translational Research Unit, Department of PediatricsFaculty of Medicine Ramathibodi Hospital, Mahidol UniversityBangkokThailand
- Division of Epidemiology, Department of Environmental and Public Health SciencesUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
| |
Collapse
|
28
|
Single-Cell Gene Expression Analysis Revealed Immune Cell Signatures of Delta COVID-19. Cells 2022; 11:cells11192950. [PMID: 36230912 PMCID: PMC9563974 DOI: 10.3390/cells11192950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) is accompanied by a cytokine storm with the release of many proinflammatory factors and development of respiratory syndrome. Several SARS-CoV-2 lineages have been identified, and the Delta variant (B.1.617), linked with high mortality risk, has become dominant in many countries. Understanding the immune responses associated with COVID-19 lineages may therefore aid the development of therapeutic and diagnostic strategies. Multiple single-cell gene expression studies revealed innate and adaptive immunological factors and pathways correlated with COVID-19 severity. Additional investigations covering host–pathogen response characteristics for infection caused by different lineages are required. Here, we performed single-cell transcriptome profiling of blood mononuclear cells from the individuals with different severity of the COVID-19 and virus lineages to uncover variant specific molecular factors associated with immunity. We identified significant changes in lymphoid and myeloid cells. Our study highlights that an abundant population of monocytes with specific gene expression signatures accompanies Delta lineage of SARS-CoV-2 and contributes to COVID-19 pathogenesis inferring immune components for targeted therapy.
Collapse
|
29
|
Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson's Disease Pathogenesis: The Exosomal Cargo Hypothesis. Int J Mol Sci 2022; 23:9739. [PMID: 36077138 PMCID: PMC9456372 DOI: 10.3390/ijms23179739] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer's disease, globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19), caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological sequalae appear insidious and potentially long-lasting. Exosomes are extracellular nanovesicles bearing a complex cargo of active biomolecules and playing crucial roles in intercellular communication under pathophysiological conditions. Exosomes constitute a reliable route for misfolded protein transmission, contributing to PD pathogenesis and diagnosis. Herein, we summarize recent evidence suggesting that SARS-CoV-2 infection shares numerous clinical manifestations and inflammatory and molecular pathways with PD. We carry on hypothesizing that these similarities may be reflected in exosomal cargo modulated by the virus in correlation with disease severity. Travelling from the periphery to the brain, SARS-CoV-2-related exosomal cargo contains SARS-CoV-2 RNA, viral proteins, inflammatory mediators, and modified host proteins that could operate as promoters of neurodegenerative and neuroinflammatory cascades, potentially leading to a future parkinsonism and PD development.
Collapse
Affiliation(s)
| | - George D. Vavougios
- Department of Neurology, Faculty of Medicine, University of Cyprus, Lefkosia 1678, Cyprus
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Life Sciences, University of Thessaly, Mezourlo, 41500 Larissa, Greece
| | - Vasileios T. Stavrou
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Eirini Papayianni
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Stylianos Boutlas
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Mavridis
- 1st Neurology Department, Eginition Hospital, Medical School, National & Kapodistrian University of Athens, 11528 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantinos Gourgoulianis
- Laboratory of Pulmonary Testing and Rehabilitation, Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
30
|
Krishnan A, Muthusamy S, Fernandez FB, Kasoju N. Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Management of COVID19-Associated Lung Injury: A Review on Publications, Clinical Trials and Patent Landscape. Tissue Eng Regen Med 2022; 19:659-673. [PMID: 35384633 PMCID: PMC8985390 DOI: 10.1007/s13770-022-00441-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
The unprecedented COVID-19 pandemic situation forced the scientific community to explore all the possibilities from various fields, and so far we have seen a lot of surprises, eureka moments and disappointments. One of the approaches from the cellular therapists was exploiting the immunomodulatory and regenerative potential of mesenchymal stromal cells (MSCs), more so of MSC-derived extracellular vesicles (EVs)-particularly exosomes, in order to alleviate the cytokine storm and regenerate the damaged lung tissues. Unlike MSCs, the EVs are easier to store, deliver, and are previously shown to be as effective as MSCs, yet less immunogenic. These features attracted the attention of many and thus led to a tremendous increase in publications, clinical trials and patent applications. This review presents the current landscape of the field and highlights some interesting findings on MSC-derived EVs in the context of COVID-19, including in silico, in vitro, in vivo and case reports. The data strongly suggests the potential of MSC-derived EVs as a therapeutic regime for the management of acute lung injury and associated complications in COVID-19 and beyond.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Senthilkumar Muthusamy
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Francis B Fernandez
- Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Naresh Kasoju
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India.
| |
Collapse
|
31
|
Alahdal M, Elkord E. Promising use of immune cell-derived exosomes in the treatment of SARS-CoV-2 infections. Clin Transl Med 2022; 12:e1026. [PMID: 35988156 PMCID: PMC9393056 DOI: 10.1002/ctm2.1026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is persistently threatening the lives of thousands of individuals globally. It triggers pulmonary oedema, driving to dyspnoea and lung failure. Viral infectivity of coronavirus disease 2019 (COVID-19) is a genuine challenge due to the mutagenic genome and mysterious immune-pathophysiology. Early reports highlighted that extracellular vesicles (exosomes, Exos) work to enhance COVID-19 progression by mediating viral transmission, replication and mutations. Furthermore, recent studies revealed that Exos derived from immune cells play an essential role in the promotion of immune cell exhaustion by transferring regulatory lncRNAs and miRNAs from exhausted cells to the active cells. Fortunately, there are great chances to modulate the immune functions of Exos towards a sustained repression of COVID-19. Engineered Exos hold promising immunotherapeutic opportunities for remodelling cytotoxic T cells' function. Immune cell-derived Exos may trigger a stable epigenetic repression of viral infectivity, restore functional cytokine-producing T cells and rebalance immune response in severe infections by inducing functional T regulatory cells (Tregs). This review introduces a view on the current outcomes of immunopathology, and immunotherapeutic applications of immune cell-derived Exos in COVID-19, besides new perspectives to develop novel patterns of engineered Exos triggering novel anti-SARS-CoV-2 immune responses.
Collapse
Affiliation(s)
- Murad Alahdal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.,Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| |
Collapse
|
32
|
Rezabakhsh A, Mahdipour M, Nourazarian A, Habibollahi P, Sokullu E, Avci ÇB, Rahbarghazi R. Application of exosomes for the alleviation of COVID-19-related pathologies. Cell Biochem Funct 2022; 40:430-438. [PMID: 35647674 PMCID: PMC9348296 DOI: 10.1002/cbf.3720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022]
Abstract
The pandemic of COVID-19 caused worldwide concern. Due to the lack of appropriate medications and the inefficiency of commercially available vaccines, lots of efforts are being made to develop de novo therapeutic modalities. Besides this, the possibility of several genetic mutations in the viral genome has led to the generation of resistant strains such as Omicron against neutralizing antibodies and vaccines, leading to worsening public health status. Exosomes (Exo), nanosized vesicles, possess several therapeutic properties that participate in intercellular communication. The discovery and application of Exo in regenerative medicine have paved the way for the alleviation of several pathologies. These nanosized particles act as natural bioshuttles and transfer several biomolecules and anti-inflammatory cytokines. To date, several approaches are available for the administration of Exo into the targeted site inside the body, although the establishment of standard administration routes remains unclear. As severe acute respiratory syndrome coronavirus 2 primarily affects the respiratory system, we here tried to highlight the transplantation of Exo in the alleviation of COVID-19 pathologies.
Collapse
Affiliation(s)
- Aysa Rezabakhsh
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mahdi Mahdipour
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Alireza Nourazarian
- Department of Basic Medical SciencesKhoy University of Medical SciencesKhoyIran
| | - Paria Habibollahi
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM)IstanbulSariyerTurkey
| | - Çigir Biray Avci
- Department of Medical Biology, Faculty of MedicineEge UniversityIzmirTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
33
|
Kuklina EM. T Lymphocytes as Targets for SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:566-576. [PMID: 35790412 PMCID: PMC9201263 DOI: 10.1134/s0006297922060086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
Despite numerous data on the absence or weak expression of the main functional receptor of SARS-CoV-2 angiotensin-converting enzyme 2 (ACE2) by T cells, it was recently demonstrated that the new coronavirus can efficiently infect T lymphocytes. Here, we analyze the data on the alternative (ACE2-independent) pathways of cell infection, identified T cell subpopulations that serve as the most plausible targets of SARS-CoV-2, discuss the mechanisms of virus-cell interaction, including both infectious and non-infectious pathways of T lymphocyte regulation, and estimate the role of the virus-dependent damage of T lymphocytes in COVID-19 pathogenesis. Particular attention is paid to regulatory T cells as potential targets of SARS-CoV-2, as well as to the possible involvement of exosomes in the sensitivity of peripheral T cells to the virus.
Collapse
Affiliation(s)
- Elena M Kuklina
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
34
|
Bortot B, Romani A, Ricci G, Biffi S. Exploiting Extracellular Vesicles Strategies to Modulate Cell Death and Inflammation in COVID-19. Front Pharmacol 2022; 13:877422. [PMID: 35668941 PMCID: PMC9164251 DOI: 10.3389/fphar.2022.877422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
The coronavirus disease (COVID-19) is responsible for more than 5 million deaths worldwide, with respiratory failure being the most common clinical presentation. COVID-19 complications still present a considerable burden on healthcare systems, and signs of the post-COVID syndrome are concerns for potential long-term damages. An increasing body of evidence highlights extracellular vesicles’ (EVs) relevance in modulating inflammation and cell death in the diseases related to these processes. Several types of EVs-based investigational new drugs against COVID-19 have been approved by the US Food and Drug Administration to initiate a Phase I/II trial under an Investigational New Drug protocol. EVs can be employed as natural drug delivery nanoparticle-based systems due to their inherent potential in transferring material between cells, their natural origin, and their capability to encapsulate various biological molecules, offering an exciting alternative for administering drugs acting on the cell cycle control. In this context, small-molecule inhibitors of Mouse Double Minute 2 (MDM2) such as Nutlin-3 and Idasanutlin by promoting p53 survival and its antiviral activity might be helpful to modulate the IFN signalling pathway and reduce the overall pro-inflammatory burden.
Collapse
Affiliation(s)
- Barbara Bortot
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Arianna Romani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- *Correspondence: Stefania Biffi,
| |
Collapse
|
35
|
Pivoting Novel Exosome-Based Technologies for the Detection of SARS-CoV-2. Viruses 2022; 14:v14051083. [PMID: 35632824 PMCID: PMC9148162 DOI: 10.3390/v14051083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The National Institutes of Health (NIH) launched the Rapid Acceleration of Diagnostics (RADx) initiative to meet the needs for COVID-19 diagnostic and surveillance testing, and to speed its innovation in the development, commercialization, and implementation of new technologies and approaches. The RADx Radical (RADx-Rad) initiative is one component of the NIH RADx program which focuses on the development of new or non-traditional applications of existing approaches, to enhance their usability, accessibility, and/or accuracy for the detection of SARS-CoV-2. Exosomes are a subpopulation of extracellular vesicles (EVs) 30–140 nm in size, that are critical in cell-to-cell communication. The SARS-CoV-2 virus has similar physical and molecular properties as exosomes. Therefore, the novel tools and technologies that are currently in development for the isolation and detection of exosomes, may prove to be invaluable in screening for SARS-CoV-2 viral infection. Here, we describe how novel exosome-based technologies are being pivoted for the detection of SARS-CoV-2 and/or the diagnosis of COVID-19. Considerations for these technologies as they move toward clinical validation and commercially viable diagnostics is discussed along with their future potential. Ultimately, the technologies in development under the NIH RADx-Rad exosome-based non-traditional technologies toward multi-parametric and integrated approaches for SARS-CoV-2 program represent a significant advancement in diagnostic technology, and, due to a broad focus on the biophysical and biochemical properties of nanoparticles, the technologies have the potential to be further pivoted as tools for future infectious agents.
Collapse
|
36
|
Cao H, Abd Aziz NH, Xavier JR, Shafiee MN, Kalok A, Jee B, Salker MS, Singh Y. Dysregulated Exosomes Result in Suppression of the Immune Response of Pregnant COVID-19 Convalescent Women. Front Mol Biosci 2022; 9:869192. [PMID: 35647028 PMCID: PMC9136085 DOI: 10.3389/fmolb.2022.869192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
A successful pregnancy outcome is dependent on a delicate balance between inflammatory and anti-inflammatory processes throughout the different trimesters. Interruption in this balance can lead to an adverse outcome resulting in pregnancy loss. Since late 2019, the emergence of the new SARS-CoV-2 virus has affected lives worldwide, including pregnant women; therefore, there is an urgent need to address different approaches in relation to prevention, diagnostics, and therapeutics. Early pregnancy is affected by SARS-CoV-2 infection leading to fetal demise. Available evidence also suggests that 90% of pregnant women infected with the SARS-CoV-2 virus seem to be asymptomatic. Nonetheless, it is still unclear how COVID-19 affects exosome production in pregnant women recovered from COVID-19 and how these exosomes regulate the adaptive immune response. In this study, we found several exosomes including CD9, CD31, CD40, CD45, CD41b, CD42a, CD62P, CD69, CD81, CD105, and HLA-DRDPDQ in the plasma of COVID-19-recovered pregnant women were significantly less abundant than the control group. Furthermore, to understand how these exosomes affect the adaptive immune response, we co-cultured the peripheral blood mononuclear cells (PBMCs) from healthy control (HC) pregnant women with exosomes of either Preg-HC or Preg-recovered COVID-19 women. We identified that Preg-recovered COVID-19 women have reduced capacity for the inflammatory cytokine TNF-α from cytotoxic CD8+ T cells. In summary, our study highlights that pregnant recovered COVID-19 women have reduced production of several exosomes and possess fewer immunogenic properties. Our study implicates that exosomes can control inflammation and antigen presentation capacity of immune cells, thus limiting the infection in pregnant women.
Collapse
Affiliation(s)
- Hang Cao
- Department of Women’s Health, Research Institute for Women’s Health, University of Tübingen, Tübingen, Germany
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Janet Raja Xavier
- Department of Women’s Health, Research Institute for Women’s Health, University of Tübingen, Tübingen, Germany
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aida Kalok
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Madhuri S. Salker
- Department of Women’s Health, Research Institute for Women’s Health, University of Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Department of Women’s Health, Research Institute for Women’s Health, University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- *Correspondence: Yogesh Singh,
| |
Collapse
|
37
|
Chen J, Liu R, Huang T, Sun H, Jiang H. Adipose stem cells-released extracellular vesicles as a next-generation cargo delivery vehicles: a survey of minimal information implementation, mass production and functional modification. Stem Cell Res Ther 2022; 13:182. [PMID: 35505389 PMCID: PMC9062865 DOI: 10.1186/s13287-022-02849-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To investigate current situation of minimal information implementation highlighted by minimal information for studies of extracellular vesicles 2018 (MISEV2018) guidelines, and explore technological advances towards mass production and functional modification in aesthetic, plastic and reconstructive surgery. METHODS Original articles on extracellular vesicles (EVs) of adipose stem cells (ASCs) were identified. Statistics upon minimal information for EVs research, such as species, cell types, culture conditions, conditioned media harvesting parameters, EVs isolation/storage/identification/quantification, functional uptake and working concentration, were analyzed. RESULTS The items of cell culture conditions such as passage number, seeding density, conditioned media harvesting time, functional uptake and working concentration were poorly documented, with a reporting percentage of 47.13%, 54.02%, 29.89%, 62.07% and 36.21%, respectively. However, there were some studies not reporting information of ASCs origin, culture medium, serum, EVs isolation methods, quantification and identification of EVs, accounting for 3.45%, 10.34%, 6.90%, 3.45%, 18.39% and 4.02%, respectively. Serum deprivation and trophic factors stimuli were attempted for EVs mass production. Several technological advances towards functional modification included hypoxia pre-condition, engineering EVs and controlled release. Presently, ASCs EVs have been applied in multiple fields, including diabetic/non-diabetic wound healing, angiogenesis, inflammation modulation, fat grafting, hair regeneration, antiaging, and healing and regeneration of cartilage/bone/peripheral nerve/tendon. CONCLUSION Our results highlight normative reporting of ASCs EVs in functional studies to increase reliability and reproducibility of scientific publications. The advances towards mass production and functional modification of ASCs EVs are also recommended to enhance therapeutic effects.
Collapse
Affiliation(s)
- Jianguo Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Ruiquan Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Tianyu Huang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Hengyun Sun
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
38
|
Migrasomes: From Biogenesis, Release, Uptake, Rupture to Homeostasis and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4525778. [PMID: 35464764 PMCID: PMC9023195 DOI: 10.1155/2022/4525778] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/27/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Migrasomes are migration-dependent membrane-bound vesicular structures that contain cellular contents and small vesicles. Migrasomes grow on the tips or intersections of the retraction fibers after cells migrate away. The process of releasing migrasomes into the extracellular space is named as “migracytosis”. After releasing, they can be taken up by the surrounding cells, or rupture and further release their contents into the extracellular environment. Physiologically, migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation and discard the damaged mitochondria in response to mild mitochondrial stresses. Pathologically, migrasomes are released from podocyte during early podocyte stress and/or damage, from platelets after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from microglia/macrophages of the ischemic brain, and from tumor necrosis factor α (TNFα)-activated endothelial cells (ECs); thus, this newly discovered extracellular vesicle is involved in all these pathological processes. Moreover, migrasomes can modulate the proliferation of cancer cell via lateral transferring mRNA and protein. In this review, we will summarize the biogenesis, release, uptake, and rupture of migrasomes and discuss its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology, all of these highlight the importance of migrasomes in modulating body homeostasis and diseases.
Collapse
|
39
|
Sayad B, Mohseni Afshar Z, Mansouri F, Salimi M, Miladi R, Rahimi S, Rahimi Z, Shirvani M. Pregnancy, Preeclampsia, and COVID-19: Susceptibility and Mechanisms: A Review Study. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:64-69. [PMID: 35639648 PMCID: PMC9108291 DOI: 10.22074/ijfs.2022.539768.1194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through angiotensin converting enzyme 2 (ACE2), which expression of its gene increases during pregnancy that is resulted in an enhanced level of the ACE2 enzyme. It might enhance the risk of SARS-CoV-2 infection and its complications in the pregnant women. Although, pregnancy hypertensive disorders and severe infection with SARS-CoV-2 are correlated with high comorbidity, these two entities should be discriminated from each other. Also, there is a concern about the risk of preeclampsia and consequently severe coronavirus disease 2019 (COVID-19) development in the pregnant women. So, to answer these questions, in the present review the literature was surveyed. It seems there is higher severity of COVID-19 among pregnant women than non-pregnant women and more adverse pregnancy outcomes among pregnant women infected with SARS-CoV-2. In addition, an association between COVID-19 with preeclampsia and the role of preeclampsia and gestational hypertension as risk factors for SARS-CoV-2 infection and its complications is suggested. However, infection of the placenta and the SARS-CoV-2 vertical transmission is rare. Various mechanisms could explain the role of COVID-19 in the risk of preeclampsia and association between preeclampsia and COVID-19. Suggested mechanisms are included decreased ACE2 activity and imbalance between Ang II and Ang-(1-7) in preeclampsia, association of both of severe forms of COVID-19 and pregnancy hypertensive disorders with comorbidity, and interaction between immune system, inflammatory cytokines and the renin angiotensin aldosterone system and its contribution to the hypertension pathogenesis. It is concluded that preeclampsia and gestational hypertension might be risk factors for SARS-CoV-2 infection and its complications.
Collapse
Affiliation(s)
- Babak Sayad
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Mohseni Afshar
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Feizollah Mansouri
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Salimi
- Department of Internal Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Miladi
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Behavioral Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maria Shirvani
- Infectious Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
40
|
Abstract
A favorable outcome of the COVID-19 crisis might be achieved with massive vaccination. The proposed vaccines contain several different vaccine active principles (VAP), such as inactivated virus, antigen, mRNA, and DNA, which are associated with either standard adjuvants or nanomaterials (NM) such as liposomes in Moderna's and BioNTech/Pfizer's vaccines. COVID-19 vaccine adjuvants may be chosen among liposomes or other types of NM composed for example of graphene oxide, carbon nanotubes, micelles, exosomes, membrane vesicles, polymers, or metallic NM, taking inspiration from cancer nano-vaccines, whose adjuvants may share some of their properties with those of viral vaccines. The mechanisms of action of nano-adjuvants are based on the facilitation by NM of targeting certain regions of immune interest such as the mucus, lymph nodes, and zones of infection or blood irrigation, the possible modulation of the type of attachment of the VAP to NM, in particular VAP positioning on the NM external surface to favor VAP presentation to antigen presenting cells (APC) or VAP encapsulation within NM to prevent VAP degradation, and the possibility to adjust the nature of the immune response by tuning the physico-chemical properties of NM such as their size, surface charge, or composition. The use of NM as adjuvants or the presence of nano-dimensions in COVID-19 vaccines does not only have the potential to improve the vaccine benefit/risk ratio, but also to reduce the dose of vaccine necessary to reach full efficacy. It could therefore ease the overall spread of COVID-19 vaccines within a sufficiently large portion of the world population to exit the current crisis.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France. .,Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France.,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
41
|
Phua VJX, Yang CT, Xia B, Yan SX, Liu J, Aw SE, He T, Ng DCE. Nanomaterial Probes for Nuclear Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:582. [PMID: 35214911 PMCID: PMC8875160 DOI: 10.3390/nano12040582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Nuclear imaging is a powerful non-invasive imaging technique that is rapidly developing in medical theranostics. Nuclear imaging requires radiolabeling isotopes for non-invasive imaging through the radioactive decay emission of the radionuclide. Nuclear imaging probes, commonly known as radiotracers, are radioisotope-labeled small molecules. Nanomaterials have shown potential as nuclear imaging probes for theranostic applications. By modifying the surface of nanomaterials, multifunctional radio-labeled nanomaterials can be obtained for in vivo biodistribution and targeting in initial animal imaging studies. Various surface modification strategies have been developed, and targeting moieties have been attached to the nanomaterials to render biocompatibility and enable specific targeting. Through integration of complementary imaging probes to a single nanoparticulate, multimodal molecular imaging can be performed as images with high sensitivity, resolution, and specificity. In this review, nanomaterial nuclear imaging probes including inorganic nanomaterials such as quantum dots (QDs), organic nanomaterials such as liposomes, and exosomes are summarized. These new developments in nanomaterials are expected to introduce a paradigm shift in nuclear imaging, thereby creating new opportunities for theranostic medical imaging tools.
Collapse
Affiliation(s)
- Vanessa Jing Xin Phua
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China;
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China; (B.X.); (T.H.)
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608, Singapore; (V.J.X.P.); (S.X.Y.); (S.E.A.); (D.C.E.N.)
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
42
|
Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci 2022; 23:1716. [PMID: 35163638 PMCID: PMC8835786 DOI: 10.3390/ijms23031716] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The review aims to consolidate research findings on the molecular mechanisms and virulence and pathogenicity characteristics of coronavirus disease (COVID-19) causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and their relevance to four typical stages in the development of acute viral infection. These four stages are invasion; primary blockade of antiviral innate immunity; engagement of the virus's protection mechanisms against the factors of adaptive immunity; and acute, long-term complications of COVID-19. The invasion stage entails the recognition of the spike protein (S) of SARS-CoV-2 target cell receptors, namely, the main receptor (angiotensin-converting enzyme 2, ACE2), its coreceptors, and potential alternative receptors. The presence of a diverse repertoire of receptors allows SARS-CoV-2 to infect various types of cells, including those not expressing ACE2. During the second stage, the majority of the polyfunctional structural, non-structural, and extra proteins SARS-CoV-2 synthesizes in infected cells are involved in the primary blockage of antiviral innate immunity. A high degree of redundancy and systemic action characterizing these pathogenic factors allows SARS-CoV-2 to overcome antiviral mechanisms at the initial stages of invasion. The third stage includes passive and active protection of the virus from factors of adaptive immunity, overcoming of the barrier function at the focus of inflammation, and generalization of SARS-CoV-2 in the body. The fourth stage is associated with the deployment of variants of acute and long-term complications of COVID-19. SARS-CoV-2's ability to induce autoimmune and autoinflammatory pathways of tissue invasion and development of both immunosuppressive and hyperergic mechanisms of systemic inflammation is critical at this stage of infection.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Liliya Solomatina
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Valeriy Chereshnev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| |
Collapse
|
43
|
Chen C, Wang J, Sun M, Li J, Wang HMD. Toward the next-generation phyto-nanomedicines: cell-derived nanovesicles (CDNs) for natural product delivery. Biomed Pharmacother 2021; 145:112416. [PMID: 34781147 DOI: 10.1016/j.biopha.2021.112416] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Phytochemicals are plant-derived bioactive compounds, which have been widely used for therapeutic purposes. Due to the poor water-solubility, low bioavailability and non-specific targeting characteristic, diverse classes of nanocarriers are utilized for encapsulation and delivery of bio-effective agents. Cell-derived nanovesicles (CDNs), known for exosomes or extracellular vesicles (EVs), are biological nanoparticles with multiple functions. Compared to the artificial counterpart, CDNs hold great potential in drug delivery given the higher stability, superior biocompatibility and the lager capability of encapsulating bioactive molecules. Here, we provide a bench-to-bedside review of CDNs-based nanoplatform, including the bio-origin, preparation, characterization and functionalization. Beyond that, the focus is laid on the therapeutic effect of CDNs-mediated drug delivery for natural products. The state-of-art development as well as some pre-clinical applications of using CDNs for disease treatment is also summarized. It is highly expected that the continuing development of CDNs-based delivery systems will further promote the clinical utilization and translation of phyto-nanomedicines.
Collapse
Affiliation(s)
- Chaoxiang Chen
- College of Food and Biological Engineering, Jimei University, China
| | - Jialin Wang
- College of Food and Biological Engineering, Jimei University, China
| | - Mengdi Sun
- College of Food and Biological Engineering, Jimei University, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, China.
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
44
|
Kongsomros S, Suksatu A, Kanjanasirirat P, Manopwisedjaroen S, Prasongtanakij S, Jearawuttanakul K, Borwornpinyo S, Hongeng S, Thitithanyanont A, Chutipongtanate S. Anti-SARS-CoV-2 Activity of Extracellular Vesicle Inhibitors: Screening, Validation, and Combination with Remdesivir. Biomedicines 2021; 9:biomedicines9091230. [PMID: 34572416 PMCID: PMC8465755 DOI: 10.3390/biomedicines9091230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic severely impacts health, economy, and society worldwide. Antiviral drugs against SARS-CoV-2 are urgently needed to cope with this global crisis. It has been found that the biogenesis and release mechanisms of viruses share a common pathway with extracellular vesicles (EVs). We hypothesized that small molecule inhibitors of EV biogenesis/release could exert an anti-SARS-CoV-2 effect. Here, we screened 17 existing EV inhibitors and found that calpeptin, a cysteine proteinase inhibitor, exhibited the most potent anti-SARS-CoV-2 activity with no apparent cytotoxicity. Calpeptin demonstrated the dose-dependent inhibition against SARS-CoV-2 viral nucleoprotein expression in the infected cells with a half-maximal inhibitory concentration (IC50) of 1.44 µM in Vero-E6 and 26.92 µM in Calu-3 cells, respectively. Moreover, calpeptin inhibited the production of infectious virions with the lower IC50 of 0.6 µM in Vero E6 cells and 10.12 µM in Calu-3 cells. Interestingly, a combination of calpeptin and remdesivir, the FDA-approved antiviral drug against SARS-CoV-2 viral replication, significantly enhanced the anti-SARS-CoV-2 effects compared to monotherapy. This study discovered calpeptin as a promising candidate for anti-SARS-CoV-2 drug development. Further preclinical and clinical studies are warranted to elucidate the therapeutic efficacy of calpeptin and remdesivir combination in COVID-19.
Collapse
Affiliation(s)
- Supasek Kongsomros
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.H.)
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.S.); (S.M.)
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.S.); (S.M.)
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.K.); (K.J.); (S.B.)
| | - Suwimon Manopwisedjaroen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.S.); (S.M.)
| | - Somsak Prasongtanakij
- Office of Research, Academic Affairs and Innovation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Kedchin Jearawuttanakul
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.K.); (K.J.); (S.B.)
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.K.); (K.J.); (S.B.)
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.H.)
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.K.); (K.J.); (S.B.)
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (A.S.); (S.M.)
- Correspondence: (A.T.); (S.C.)
| | - Somchai Chutipongtanate
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.K.); (S.H.)
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli 10540, Thailand
- Correspondence: (A.T.); (S.C.)
| |
Collapse
|
45
|
Kato T, Vykoukal JV, Fahrmann JF, Hanash S. Extracellular Vesicles in Lung Cancer: Prospects for Diagnostic and Therapeutic Applications. Cancers (Basel) 2021; 13:cancers13184604. [PMID: 34572829 PMCID: PMC8469977 DOI: 10.3390/cancers13184604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized lipid-bound particles containing proteins, nucleic acids and metabolites released by cells. They have been identified in body fluids including blood, saliva, sputum and pleural effusions. In tumors, EVs derived from cancer and immune cells mediate intercellular communication and exchange, and can affect immunomodulatory functions. In the context of lung cancer, emerging evidence implicates EV involvement during various stages of tumor development and progression, including angiogenesis, epithelial to mesenchymal transformation, immune system suppression, metastasis and drug resistance. Additionally, tumor-derived EVs (TDEs) have potential as a liquid biopsy source and as a means of therapeutic targeting, and there is considerable interest in developing clinical applications for EVs in these contexts. In this review, we consider the biogenesis, components, biological functions and isolation methods of EVs, and the implications for their clinical utility for diagnostic and therapeutic applications in lung cancer.
Collapse
Affiliation(s)
- Taketo Kato
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (T.K.); (J.V.V.); (J.F.F.)
| | - Jody V. Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (T.K.); (J.V.V.); (J.F.F.)
- The McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (T.K.); (J.V.V.); (J.F.F.)
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; (T.K.); (J.V.V.); (J.F.F.)
- The McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|