1
|
Kruglikov IL, Scherer PE. Regulation of the terminal complement cascade in adipose tissue for control of its volume, cellularity, and fibrosis. Obesity (Silver Spring) 2025; 33:839-850. [PMID: 40134146 PMCID: PMC12015659 DOI: 10.1002/oby.24270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/28/2024] [Accepted: 01/26/2025] [Indexed: 03/27/2025]
Abstract
White adipose tissue (WAT) is a reservoir for various pathogens and their products, such as lipopolysaccharides. Therefore, it must be equipped with a defense mechanism connected with the activation of innate immunity. This explains the phenomenon that adipocytes express components of the classical and alternative complement pathways, which can be activated even in the absence of opportunistic pathogens. Terminal stages of the complement pathway are related to the production of membrane attack complexes and, thus, can cause lysis of pathogens, as well as autolysis of host adipocytes, contributing to the regulation of the cellularity in WAT. Complement-induced autolysis of adipocytes is counteracted by a number of cellular defense mechanisms. This versatility of activation and suppression processes enables a broad range of adaptability to physiological contexts, ranging from the development of hypertrophic WAT to lipodystrophy. Pathogen-induced activation of the complement pathway in WAT also induces a profibrotic phenotype. These processes may also be involved in the regulation of insulin resistance in adipocytes. This explains the dual immune/metabolic role of the complement pathway in WAT: the pathway is an integral part of the immune response but also potently involved in the control of volume and cellularity of WAT under both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Philipp E. Scherer
- Touchstone Diabetes CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
2
|
Chen Y, Chen S, Liu Z, Wang Y, An N, Chen Y, Peng Y, Liu Z, Liu Q, Hu X. Red blood cells undergo lytic programmed cell death involving NLRP3. Cell 2025:S0092-8674(25)00389-7. [PMID: 40252640 DOI: 10.1016/j.cell.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/27/2024] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
The canonical complement-mediated lysis of mature red blood cells (RBCs) leads to severe pathogenesis. However, inhibition strategies targeting complement are not always as efficient as expected, indicating that unknown mechanisms are awaiting elucidation. In this study, we investigate the intracellular events in mature RBCs following complement activation. The collected evidence demonstrates that complement-induced hemolysis is a caspase-8-dependent programmed RBC death. Furthermore, short NLRP3 (miniNLRP3) fragments in RBCs are identified to engage in the assembly of NLRP3-apoptosis-associated speck-like protein containing a CARD (ASC)-caspase-8 complex. Activated caspase-8 directly induces the proteolysis of β-spectrin, thereby disrupting the skeletal network of the RBC membrane, a process we refer to as spectosis. Spectosis signaling is also activated in autoimmune hemolytic anemia or paroxysmal nocturnal hemoglobinuria, and the inhibition of spectosis significantly reduced complement-induced hemolysis. These findings reveal a programmed death cascade in mature RBCs, which may have important implications for the treatment of hemolytic disorders.
Collapse
Affiliation(s)
- Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhixin Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yafen Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yutong Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yihao Peng
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518115, Guangdong, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518115, Guangdong, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China.
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
3
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Kruglikov IL, Scherer PE. Is the endotoxin-complement cascade the major driver in lipedema? Trends Endocrinol Metab 2024; 35:769-780. [PMID: 38688780 PMCID: PMC11387139 DOI: 10.1016/j.tem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Lipedema is a poorly understood disorder of adipose tissue characterized by abnormal but symmetrical deposition of subcutaneous white adipose tissue (WAT) in proximal extremities. Here, we propose that the underlying cause for lipedema could be triggered by a selective accumulation of bacterial lipopolysaccharides (LPS; also known as endotoxin) in gluteofemoral WAT. Together with a malfunctioning complement system, this induces low-grade inflammation in the depot and raises its uncontrollable expansion. Correspondingly, more attention should be paid in future research to the endotoxemia prevalent in patients with lipedema. We would like to propose that proper management of endotoxemia can reduce the progression and even improve the state of disease in patients with lipedema.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|
5
|
Bai S, Martin-Sanchez F, Brough D, Lopez-Castejon G. Pyroptosis leads to loss of centrosomal integrity in macrophages. Cell Death Discov 2024; 10:354. [PMID: 39117604 PMCID: PMC11310477 DOI: 10.1038/s41420-024-02093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
NLRP3 forms a multiprotein inflammasome complex to initiate the inflammatory response when macrophages sense infection or tissue damage, which leads to caspase-1 activation, maturation and release of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and Gasdermin-D (GSDMD) mediated pyroptosis. NLRP3 inflammasome activity must be controlled as unregulated and chronic inflammation underlies inflammatory and autoimmune diseases. Several findings uncovered that NLRP3 inflammasome activity is under the regulation of centrosome localized proteins such as NEK7 and HDAC6, however, whether the centrosome composition or structure is altered during the inflammasome activation is not known. Our data show that levels of the centrosomal scaffold protein pericentrin (PCNT) are reduced upon NLRP3 inflammasome activation via different activators in human and murine macrophages. PCNT loss occurs in the presence of membrane stabilizer punicalagin, suggesting this is not a consequence of membrane rupture. We found that PCNT loss is dependent on NLRP3 and active caspases as MCC950 and pan caspase inhibitor ZVAD prevent its degradation. Moreover, caspase-1 and GSDMD are both required for this NLRP3-mediated PCNT loss because absence of caspase-1 or GSDMD triggers an alternative regulation of PCNT via its cleavage by caspase-3 in response to nigericin stimulation. PCNT degradation occurs in response to nigericin, but also other NLRP3 activators including lysomotropic agent L-Leucyl-L-Leucine methyl ester (LLOMe) and hypotonicity but not AIM2 activation. Our work reveals that the NLRP3 inflammasome activation alters centrosome composition highlighting the need to further understand the role of this organelle during inflammatory responses.
Collapse
Affiliation(s)
- Siyi Bai
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
| | - Fatima Martin-Sanchez
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Faculty of Medicine, University of Murcia, 30120, Murcia, Spain
| | - David Brough
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
| | - Gloria Lopez-Castejon
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
- The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
6
|
Shi Z, Li H, Cheng J, Zhang W, Ruan J, Zhang Q, Dang Z, Zhang Y, Wang T. Constituents from Dolichos lablab L. Flowers and Their Anti-Inflammatory Effects via Inhibition of IL-1β Release. Molecules 2024; 29:3751. [PMID: 39202831 PMCID: PMC11357617 DOI: 10.3390/molecules29163751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The occurrence of inflammation is closely related to the activation of the NLRP3 inflammasome. IL-1β produced during the activation of the NLRP3 inflammasome has strong pro-inflammatory activity and can also promote the release of inflammatory factors by other immune cells, exacerbating inflammatory damage to tissues. Utilizing IL-1β as the detection index to find small-molecule inhibitors targeting NLRP3 from natural products will benefit the search for drugs for inflammation-related diseases. During the exploration of anti-inflammatory active components derived from the flowers of Dolichos lablab L., an ingredient in traditional Chinese medicine with dual applications in both medicinal treatment and dietary consumption, fourteen compounds (1-14), including seven previously unreported ones, named flosdolilabnitrogenousols A-D (1-4) and flosdolilabsaponins A-C (5-7), were found. Their structures were established through extensive NMR spectra determination, HR-ESI-MS analysis, ECD calculations, and chemical reactions. Flosdolilabsaponin A (5) stands out as an exceptionally rare tetracyclic lactone oleane-type saponin. Additionally, the inhibitory activity on IL-1β release of all compounds, without cytotoxicity, was evaluated using BMDMs stimulated with LPS/Nigericin. An Elisa assay revealed that compounds 1, 8, 9, and 11-14 exhibited significant inhibition of IL-1β release at a concentration of 30 μM. Structure-activity relationships were also discussed. This study indicates that D. lablab flowers possess anti-inflammatory activity, which might exert its effect by suppressing the activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Zhongwei Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (H.L.)
| | - Huimin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (H.L.)
| | - Jiaming Cheng
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.C.); (W.Z.); (J.R.); (Q.Z.); (Z.D.)
| | - Wei Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.C.); (W.Z.); (J.R.); (Q.Z.); (Z.D.)
| | - Jingya Ruan
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.C.); (W.Z.); (J.R.); (Q.Z.); (Z.D.)
| | - Qianqian Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.C.); (W.Z.); (J.R.); (Q.Z.); (Z.D.)
| | - Zhunan Dang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.C.); (W.Z.); (J.R.); (Q.Z.); (Z.D.)
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (H.L.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.C.); (W.Z.); (J.R.); (Q.Z.); (Z.D.)
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (Z.S.); (H.L.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (J.C.); (W.Z.); (J.R.); (Q.Z.); (Z.D.)
| |
Collapse
|
7
|
Ding P, Song Y, Yang Y, Zeng C. NLRP3 inflammasome and pyroptosis in cardiovascular diseases and exercise intervention. Front Pharmacol 2024; 15:1368835. [PMID: 38681198 PMCID: PMC11045953 DOI: 10.3389/fphar.2024.1368835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that possesses NACHT, leucine-rich repeat, and pyrin domain, playing a crucial role in innate immunity. Activation of the NLRP3 inflammasome leads to the production of pro-inflammatory cellular contents, such as interleukin (IL)-1β and IL-18, and induction of inflammatory cell death known as pyroptosis, thereby amplifying or sustaining inflammation. While a balanced inflammatory response is beneficial for resolving damage and promoting tissue healing, excessive activation of the NLRP3 inflammasome and pyroptosis can have harmful effects. The involvement of the NLRP3 inflammasome has been observed in various cardiovascular diseases (CVD). Indeed, the NLRP3 inflammasome and its associated pyroptosis are closely linked to key cardiovascular risk factors including hyperlipidemia, diabetes, hypertension, obesity, and hyperhomocysteinemia. Exercise compared with medicine is a highly effective measure for both preventing and treating CVD. Interestingly, emerging evidence suggests that exercise improves CVD and inhibits the activity of NLRP3 inflammasome and pyroptosis. In this review, the activation mechanisms of the NLRP3 inflammasome and its pathogenic role in CVD are critically discussed. Importantly, the purpose is to emphasize the crucial role of exercise in managing CVD by suppressing NLRP3 inflammasome activity and proposes it as the foundation for developing novel treatment strategies.
Collapse
Affiliation(s)
- Ping Ding
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanming Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yang
- Zhuhai People’s Hospital, Zhuhai Clinical Medical College of Jinan University, Zhuhai, China
| | - Cheng Zeng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Hu Y, Dai S, Zhao L, Zhao L. Research progress on the improvement of cardiovascular diseases through the autonomic nervous system regulation of the NLRP3 inflammasome pathway. Front Cardiovasc Med 2024; 11:1369343. [PMID: 38650918 PMCID: PMC11034522 DOI: 10.3389/fcvm.2024.1369343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Cardiovascular disease stands as a leading global cause of mortality. Nucleotide-binding Oligomerization Domain-like Receptor Protein 3 (NLRP3) inflammasome is widely acknowledged as pivotal factor in specific cardiovascular disease progression, such as myocardial infarction, heart failure. Recent investigations underscore a close interconnection between autonomic nervous system (ANS) dysfunction and cardiac inflammation. It has been substantiated that sympathetic nervous system activation and vagus nerve stimulation (VNS) assumes critical roles withinNLRP3 inflammasome pathway regulation, thereby contributing to the amelioration of cardiac injury and enhancement of prognosis in heart diseases. This article reviews the nexus between NLRP3 inflammasome and cardiovascular disorders, elucidating the modulatory functions of the sympathetic and vagus nerves within the ANS with regard to NLRP3 inflammasome. Furthermore, it delves into the potential therapeutic utility of NLRP3 inflammasome to be targeted by VNS. This review serves as a valuable reference for further exploration into the potential mechanisms underlying VNS in the modulation of NLRP3 inflammasome.
Collapse
Affiliation(s)
| | | | - Lulu Zhao
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Zhao
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
9
|
Zhao J, Zhang X, Li Y, Yu J, Chen Z, Niu Y, Ran S, Wang S, Ye W, Luo Z, Li X, Hao Y, Zong J, Xia C, Xia J, Wu J. Interorgan communication with the liver: novel mechanisms and therapeutic targets. Front Immunol 2023; 14:1314123. [PMID: 38155961 PMCID: PMC10754533 DOI: 10.3389/fimmu.2023.1314123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The liver is a multifunctional organ that plays crucial roles in numerous physiological processes, such as production of bile and proteins for blood plasma, regulation of blood levels of amino acids, processing of hemoglobin, clearance of metabolic waste, maintenance of glucose, etc. Therefore, the liver is essential for the homeostasis of organisms. With the development of research on the liver, there is growing concern about its effect on immune cells of innate and adaptive immunity. For example, the liver regulates the proliferation, differentiation, and effector functions of immune cells through various secreted proteins (also known as "hepatokines"). As a result, the liver is identified as an important regulator of the immune system. Furthermore, many diseases resulting from immune disorders are thought to be related to the dysfunction of the liver, including systemic lupus erythematosus, multiple sclerosis, and heart failure. Thus, the liver plays a role in remote immune regulation and is intricately linked with systemic immunity. This review provides a comprehensive overview of the liver remote regulation of the body's innate and adaptive immunity regarding to main areas: immune-related molecules secreted by the liver and the liver-resident cells. Additionally, we assessed the influence of the liver on various facets of systemic immune-related diseases, offering insights into the clinical application of target therapies for liver immune regulation, as well as future developmental trends.
Collapse
Affiliation(s)
- Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengkun Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
10
|
Wang W, He Z. Gasdermins in sepsis. Front Immunol 2023; 14:1203687. [PMID: 38022612 PMCID: PMC10655013 DOI: 10.3389/fimmu.2023.1203687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a hyper-heterogeneous syndrome in which the systemic inflammatory response persists throughout the course of the disease and the inflammatory and immune responses are dynamically altered at different pathogenic stages. Gasdermins (GSDMs) proteins are pore-forming executors in the membrane, subsequently mediating the release of pro-inflammatory mediators and inflammatory cell death. With the increasing research on GSDMs proteins and sepsis, it is believed that GSDMs protein are one of the most promising therapeutic targets in sepsis in the future. A more comprehensive and in-depth understanding of the functions of GSDMs proteins in sepsis is important to alleviate the multi-organ dysfunction and reduce sepsis-induced mortality. In this review, we focus on the function of GSDMs proteins, the molecular mechanism of GSDMs involved in sepsis, and the regulatory mechanism of GSDMs-mediated signaling pathways, aiming to provide novel ideas and therapeutic strategies for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Zelinger L, Martin TM, Advani J, Campello L, English MA, Kwong A, Weber C, Maykoski J, Sergeev YV, Fariss R, Chew EY, Klein ML, Swaroop A. Ultra-rare complement factor 8 coding variants in families with age-related macular degeneration. iScience 2023; 26:106417. [PMID: 37153444 PMCID: PMC10156737 DOI: 10.1016/j.isci.2023.106417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
Genome-wide association studies have uncovered 52 independent common and rare variants across 34 genetic loci, which influence susceptibility to age related macular degeneration (AMD). Of the 5 AMD-associated complement genes, complement factor H (CFH) and CFI exhibit a significant rare variant burden implicating a major contribution of the complement pathway to disease pathology. However, the efforts for developing AMD therapy have been challenging as of yet. Here, we report the identification of ultra-rare variants in complement factors 8A and 8B, two components of the terminal complement membrane attack complex (MAC), by whole exome sequencing of a cohort of AMD families. The identified C8 variants impact local interactions among proteins of C8 triplex in vitro, indicating their effect on MAC stability. Our results suggest that MAC, and not the early steps of the complement pathway, might be a more effective target for designing treatments for AMD.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tammy M. Martin
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura Campello
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Milton A. English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan Kwong
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- 23andMe, Inc, Sunnyvale, CA, USA
| | - Claire Weber
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Maykoski
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Yuri V. Sergeev
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, Clinical Trials Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael L. Klein
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University, Portland, OR, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Lee B, Hoyle C, Wellens R, Green JP, Martin-Sanchez F, Williams DM, Matchett BJ, Seoane PI, Bennett H, Adamson A, Lopez-Castejon G, Lowe M, Brough D. Disruptions in endocytic traffic contribute to the activation of the NLRP3 inflammasome. Sci Signal 2023; 16:eabm7134. [PMID: 36809026 DOI: 10.1126/scisignal.abm7134] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Inflammation driven by the NLRP3 inflammasome is coordinated through multiple signaling pathways and is regulated by subcellular organelles. Here, we tested the hypothesis that NLRP3 senses disrupted endosome trafficking to trigger inflammasome formation and inflammatory cytokine secretion. NLRP3-activating stimuli disrupted endosome trafficking and triggered localization of NLRP3 to vesicles positive for endolysosomal markers and for the inositol lipid PI4P. Chemical disruption of endosome trafficking sensitized macrophages to the NLRP3 activator imiquimod, driving enhanced inflammasome activation and cytokine secretion. Together, these data suggest that NLRP3 can sense disruptions in the trafficking of endosomal cargoes, which may explain in part the spatial activation of the NLRP3 inflammasome. These data highlight mechanisms that could be exploited in the therapeutic targeting of NLRP3.
Collapse
Affiliation(s)
- Bali Lee
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Christopher Hoyle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Rose Wellens
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Fatima Martin-Sanchez
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Daniel M Williams
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | - Billie J Matchett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Paula I Seoane
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| | - Hayley Bennett
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK.,Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Martin Lowe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester M13 9PT, UK.,Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
13
|
The neoepitope of the complement C5b-9 Membrane Attack Complex is formed by proximity of adjacent ancillary regions of C9. Commun Biol 2023; 6:42. [PMID: 36639734 PMCID: PMC9838529 DOI: 10.1038/s42003-023-04431-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The Membrane Attack Complex (MAC) is responsible for forming large β-barrel channels in the membranes of pathogens, such as gram-negative bacteria. Off-target MAC assembly on endogenous tissue is associated with inflammatory diseases and cancer. Accordingly, a human C5b-9 specific antibody, aE11, has been developed that detects a neoepitope exposed in C9 when it is incorporated into the C5b-9 complex, but not present in the plasma native C9. For nearly four decades aE11 has been routinely used to study complement, MAC-related inflammation, and pathophysiology. However, the identity of C9 neoepitope remains unknown. Here, we determined the cryo-EM structure of aE11 in complex with polyC9 at 3.2 Å resolution. The aE11 binding site is formed by two separate surfaces of the oligomeric C9 periphery and is therefore a discontinuous quaternary epitope. These surfaces are contributed by portions of the adjacent TSP1, LDLRA, and MACPF domains of two neighbouring C9 protomers. By substituting key antibody interacting residues to the murine orthologue, we validated the unusual binding modality of aE11. Furthermore, aE11 can recognise a partial epitope in purified monomeric C9 in vitro, albeit weakly. Taken together, our results reveal the structural basis for MAC recognition by aE11.
Collapse
|
14
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
15
|
Jimenez-Duran G, Kozole J, Peltier-Heap R, Dickinson ER, Kwiatkowski CR, Zappacosta F, Annan RS, Galwey NW, Nichols EM, Modis LK, Triantafilou M, Triantafilou K, Booty LM. Complement membrane attack complex is an immunometabolic regulator of NLRP3 activation and IL-18 secretion in human macrophages. Front Immunol 2022; 13:918551. [PMID: 36248901 PMCID: PMC9554752 DOI: 10.3389/fimmu.2022.918551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
The complement system is an ancient and critical part of innate immunity. Recent studies have highlighted novel roles of complement beyond lysis of invading pathogens with implications in regulating the innate immune response, as well as contributing to metabolic reprogramming of T-cells, synoviocytes as well as cells in the CNS. These findings hint that complement can be an immunometabolic regulator, but whether this is also the case for the terminal step of the complement pathway, the membrane attack complex (MAC) is not clear. In this study we focused on determining whether MAC is an immunometabolic regulator of the innate immune response in human monocyte-derived macrophages. Here, we uncover previously uncharacterized metabolic changes and mitochondrial dysfunction occurring downstream of MAC deposition. These alterations in glycolytic flux and mitochondrial morphology and function mediate NLRP3 inflammasome activation, pro-inflammatory cytokine release and gasdermin D formation. Together, these data elucidate a novel signalling cascade, with metabolic alterations at its center, in MAC-stimulated human macrophages that drives an inflammatory consequence in an immunologically relevant cell type.
Collapse
Affiliation(s)
- Gisela Jimenez-Duran
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Joseph Kozole
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Rachel Peltier-Heap
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Stevenage, United Kingdom
| | - Eleanor R. Dickinson
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Stevenage, United Kingdom
| | | | - Francesca Zappacosta
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Roland S. Annan
- Discovery Analytical, Medicinal Science and Technology (MST), GSK, Philadelphia, PA, United States
| | - Nicholas W. Galwey
- Research Statistics, Development Biostatistics, GSK, Stevenage, United Kingdom
| | | | | | - Martha Triantafilou
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Kathy Triantafilou
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- Institute ofInfection and Immunity, Cardiff University, School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- *Correspondence: Kathy Triantafilou, TriantafilouK@cardiff. ac. uk; Lee M. Booty,
| | - Lee M. Booty
- Immunology Network, Immunology Research Unit, GSK, Stevenage, United Kingdom
- *Correspondence: Kathy Triantafilou, TriantafilouK@cardiff. ac. uk; Lee M. Booty,
| |
Collapse
|
16
|
Gritsenko A, Díaz-Pino R, López-Castejón G. NLRP3 inflammasome triggers interleukin-37 release from human monocytes. Eur J Immunol 2022; 52:1141-1157. [PMID: 35429346 PMCID: PMC9540663 DOI: 10.1002/eji.202149724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023]
Abstract
IL-37 is an anti-inflammatory member of the IL-1 family that dampens inflammation associated with many noncommunicable diseases. However, mechanisms of IL-37 regulation remain understudied. We aimed to investigate the enzymatic cleavage of IL-37 that potentiates extracellular signalling, as well as pathways of IL-37 secretion. In human monocytes, mature IL-37 (mIL-37) was released following canonical NLRP3 inflammasome activation. The release of IL-37 was blocked by inhibiting plasma membrane permeability and in gasdermin-D-deficient THP-1 cells. While the cleavage of IL-37 was found to be constitutive, the release of mIL-37 was blocked in NLRP3-deficient THP-1 cells and by NLRP3 inhibitor MCC950 in THP-1s and primary human monocytes. IL-37 secretion also occurred after 18-h exposure to LPS, independently of the alternative NLRP3 inflammasome. This LPS-dependent IL-37 secretion required plasma membrane permeability, but not conventional protein secretion apparatus. Mutagenesis of the suggested caspase-1 cleavage site (D20) or the proposed alternative cleavage site (V46) did not completely block IL-37 processing. Therefore, we propose a novel pathway in which IL-37 is cleaved by caspase-1-independent mechanisms and released following canonical and alternative NLRP3 inflammasome triggers by differential pathways.
Collapse
Affiliation(s)
- Anna Gritsenko
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rodrigo Díaz-Pino
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gloria López-Castejón
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
17
|
Wang F, Huang M, Wang Y, Hong Y, Zang D, Yang C, Wu C, Zhu Q. Membrane Attack Complex C5b-9 Promotes Renal Tubular Epithelial Cell Pyroptosis in Trichloroethylene-Sensitized Mice. Front Pharmacol 2022; 13:877988. [PMID: 35656289 PMCID: PMC9152256 DOI: 10.3389/fphar.2022.877988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Trichloroethylene (TCE), a commonly used organic solvent, is known to cause trichloroethylene hypersensitivity syndrome (THS), also called occupational medicamentosa-like dermatitis due to TCE (OMDT) in China. OMDT patients presented with severe inflammatory kidney damage, and we have previously shown that the renal damage is related to the terminal complement complex C5b-9. Here, we sought to determine whether C5b-9 participated in TCE-induced immune kidney injury by promoting pyroptosis, a new form of programed cell death linked to inflammatory response, with underlying molecular mechanisms involving the NLRP3 inflammasome. A BALB/c mouse-based model of OMDT was established by dermal TCE sensitization in the presence or absence of C5b-9 inhibitor (sCD59-Cys, 25μg/mouse) and NLRP3 antagonist (MCC950, 10 mg/kg). Kidney histopathology, renal function, expression of inflammatory mediators and the pyroptosis executive protein gasdermin D (GSDMD), and the activation of pyroptosis canonical NLRP3/caspase-1 pathway were examined in the mouse model. Renal tubular damage was observed in TCE-sensitized mice. GSDMD was mainly expressed on renal tubular epithelial cells (RTECs). The caspase-1-dependent canonical pathway of pyroptosis was activated in TCE-induced renal damage. Pharmacological inhibition of C5b-9 could restrain the caspase-1-dependent canonical pathway and rescued the renal tubular damage. Taken together, our results demonstrated that complement C5b-9 plays a central role in TCE-induced immune kidney damage, and the underlying mechanisms involve NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yican Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yiting Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Dandan Zang
- Center for Scientific Research and Experiment, Anhui Medical University, Hefei, China
| | - Chunjun Yang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Qixing Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
18
|
Romano A, Parrinello NL, Barchitta M, Manuele R, Puglisi F, Maugeri A, Barbato A, Triolo AM, Giallongo C, Tibullo D, La Ferla L, Botta C, Siragusa S, Iacobello C, Montineri A, Volti GL, Agodi A, Palumbo GA, Di Raimondo F. In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection. Sci Rep 2022; 12:7237. [PMID: 35508575 PMCID: PMC9065667 DOI: 10.1038/s41598-022-11157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Since neutrophil extracellular traps formation (NET-osis) can be assessed indirectly by treating healthy neutrophils with blood-derived fluids from patients and then measuring the NETs response, we designed a pilot study to convey high-dimensional cytometry of peripheral blood immune cells and cytokines, combined with clinical features, to understand if NET-osis assessment could be included in the immune risk profiling to early prediction of clinical patterns, disease severity, and viral clearance at 28 days in COVID-19 patients. Immune cells composition of peripheral blood, cytokines concentration and in-vitro NETosis were detected in peripheral blood of 41 consecutive COVID-19 inpatients, including 21 mild breakthrough infections compared to 20 healthy donors, matched for sex and age. Major immune dysregulation in peripheral blood in not-vaccinated COVID-19 patients compared to healthy subjects included: a significant reduction of percentage of unswitched memory B-cells and transitional B-cells; loss of naïve CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+ cells, increase of IL-1β, IL-17A and IFN-γ. Myeloid compartment was affected as well, due to the increase of classical (CD14++CD16−) and intermediate (CD14++CD16+) monocytes, overexpressing the activation marker CD64, negatively associated to the absolute counts of CD8+ CD45R0+ cells, IFN-γ and IL-6, and expansion of monocytic-like myeloid derived suppressor cells. In not-vaccinated patients who achieved viral clearance by 28 days we found at hospital admission lower absolute counts of effector cells, namely CD8+T cells, CD4+ T-cells and CD4+CD45RO+ T cells. Percentage of in-vitro NET-osis induced by patients’ sera and NET-osis density were progressively higher in moderate and severe COVID-19 patients than in mild disease and controls. The percentage of in-vitro induced NET-osis was positively associated to circulating cytokines IL-1β, IFN-γ and IL-6. In breakthrough COVID-19 infections, characterized by mild clinical course, we observed increased percentage of in-vitro NET-osis, higher CD4+ CD45RO+ and CD8+ CD45RO+ T cells healthy or mild-COVID-19 not-vaccinated patients, reduced by 24 h of treatment with ACE inhibitor ramipril. Taken together our data highlight the role of NETs in orchestrating the complex immune response to SARS-COV-2, that should be considered in a multi-target approach for COVID-19 treatment.
Collapse
Affiliation(s)
- Alessandra Romano
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy. .,Dipartimento di Chirurgia Generale e Specialità Medico Chirurgiche, University of Catania, Catania, Italy.
| | | | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Rosy Manuele
- U.O.C. di Malattie Infettive, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Fabrizio Puglisi
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Alessandro Barbato
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Anna Maria Triolo
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, Catania, Italy
| | - Lucia La Ferla
- U.O.C. di Malattie Infettive, Azienda Cannizzaro, Catania, Italy
| | - Ciro Botta
- Division of Hematology, Università degli Studi di Palermo, Palermo, Italy
| | - Sergio Siragusa
- Division of Hematology, Università degli Studi di Palermo, Palermo, Italy
| | | | - Arturo Montineri
- U.O.C. di Malattie Infettive, Azienda Policlinico-Rodolico San Marco, Catania, Italy
| | - Giovanni Li Volti
- Dipartimento di Scienze Biomediche e Biotecnologiche, University of Catania, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy.,Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, 95123, Catania, Italy
| | - Francesco Di Raimondo
- Division of Hematology, Azienda Policlinico-Rodolico San Marco, Catania, Italy.,Dipartimento di Chirurgia Generale e Specialità Medico Chirurgiche, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Natural antibodies and CRP drive anaphylatoxin production by urate crystals. Sci Rep 2022; 12:4483. [PMID: 35296708 PMCID: PMC8924570 DOI: 10.1038/s41598-022-08311-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
In gout, crystallization of uric acid in the form of monosodium urate (MSU) leads to a painful inflammatory response. MSU crystals induce inflammation by activating the complement system and various immune cell types, and by inducing necrotic cell death. We previously found that the soluble pattern recognition molecule C-reactive protein (CRP) recognizes MSU crystals, while enhancing complement activation. In the absence of CRP, MSU crystals still induced complement activation, suggesting additional CRP-independent mechanisms of complement activation. In the present study, we searched for additional MSU crystal-binding complement activators. We found that all healthy individuals, even unborn children, have MSU crystal-specific immunoglobulin M (IgM) in their blood. This indicates that innate IgM, also known as natural IgM, recognizes these crystals. In serum lacking IgM and CRP, MSU crystals showed negligible complement activation as assessed by the production of the anaphylatoxins C4a, C3a, and C5a (listed in order of production via the classical complement pathway). We show that IgM and CRP both activate the classical complement pathway on MSU crystals. CRP was more efficient at fixating active C1 on the crystals and inducing release of the most inflammatory anaphylatoxin C5a, indicating non-redundant functions of CRP. Notably, while CRP recognizes MSU crystals but not the related calcium pyrophosphate dihydrate (CPPD) crystals, natural IgM bound to both, suggesting common and distinct mechanisms of recognition of individual crystal types by complement activators.
Collapse
|
20
|
Lund Berven L, Selvakumar J, Havdal L, Stiansen-Sonerud T, Einvik G, Leegaard TM, Tjade T, Michelsen AE, Mollnes TE, Wyller VBB. Inflammatory Markers, Pulmonary Function, and Clinical Symptoms in Acute COVID-19 Among Non-Hospitalized Adolescents and Young Adults. Front Immunol 2022; 13:837288. [PMID: 35222429 PMCID: PMC8864121 DOI: 10.3389/fimmu.2022.837288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Summary Mild, subacute COVID-19 in young people show inflammatory enhancement, but normal pulmonary function. Inflammatory markers are associated with age and male sex, whereas clinical symptoms are associated with age and female sex, but not with objective disease markers. Background Coronavirus Disease 2019 (COVID-19) is widespread among adolescents and young adults across the globe. The present study aimed to compare inflammatory markers, pulmonary function and clinical symptoms across non-hospitalized, 12 – 25 years old COVID-19 cases and non-COVID-19 controls, and to investigate associations between inflammatory markers, clinical symptoms, pulmonary function and background variables in the COVID-19 group. Methods The present paper presents baseline data from an ongoing longitudinal observational cohort study (Long-Term Effects of COVID-19 in Adolescents, LoTECA, ClinicalTrials ID: NCT04686734). A total of 31 plasma cytokines and complement activation products were assayed by multiplex and ELISA methodologies. Pulmonary function and clinical symptoms were investigated by spirometry and questionnaires, respectively. Results A total of 405 COVID-19 cases and 111 non-COVID-19 controls were included. The COVID-19 group had significantly higher plasma levels of IL-1β, IL-4, IL-7, IL-8, IL-12, TNF, IP-10, eotaxin, GM-CSF, bFGF, complement TCC and C3bc, and significantly lower levels of IL-13 and MIP-1α, as compared to controls. Spirometry did not detect any significant differences across the groups. IL-4, IL-7, TNF and eotaxin were negatively associated with female sex; eotaxin and IL-4 were positively associated with age. Clinical symptoms were positively associated with female sex and age, but not with objective disease markers. Conclusions Among non-hospitalized adolescents and young adults with COVID-19 there was significant alterations of plasma inflammatory markers in the subacute stage of the infection. Still, pulmonary function was normal. Clinical symptoms were independent of inflammatory and pulmonary function markers, but positively associated with age and female sex.
Collapse
Affiliation(s)
- Lise Lund Berven
- Department of Paediatrics, Akershus University Hospital, Lørenskog, Norway
| | - Joel Selvakumar
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lise Havdal
- Department of Paediatrics, Akershus University Hospital, Lørenskog, Norway
| | - Tonje Stiansen-Sonerud
- Department of Paediatrics, Akershus University Hospital, Lørenskog, Norway.,Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Gunnar Einvik
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pulmonary Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Truls Michael Leegaard
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | | | - Annika E Michelsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, University of Oslo, Oslo, Norway.,Oslo University Hospital, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vegard Bruun Bratholm Wyller
- Department of Paediatrics, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|