1
|
Colombatti Olivieri MA, Cuerda MX, Moyano RD, Gravisaco MJ, Pinedo MFA, Delgado FO, Calamante G, Mundo S, de la Paz Santangelo M, Romano MI, Alonso MN, Del Medico Zajac MP. Superior protection against paratuberculosis by a heterologous prime-boost immunization in a murine model. Vaccine 2024; 42:126055. [PMID: 38880691 DOI: 10.1016/j.vaccine.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.
Collapse
MESH Headings
- Animals
- Mycobacterium avium subsp. paratuberculosis/immunology
- Immunization, Secondary/methods
- Mice
- Paratuberculosis/prevention & control
- Paratuberculosis/immunology
- Immunoglobulin G/blood
- Cytokines/metabolism
- Female
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Adjuvants, Immunologic/administration & dosage
- Disease Models, Animal
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Mice, Inbred BALB C
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Immunity, Cellular/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
Collapse
Affiliation(s)
| | - María Ximena Cuerda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Roberto Damián Moyano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Fiorella Alvarado Pinedo
- Centro de Diagnóstico e Investigaciones Veterinarias (CEDIVE) de la Facultad de Ciencias Veterinarias - Universidad de La Plata, Chascomús, Buenos Aires 7130, Argentina
| | - Fernando Oscar Delgado
- Instituto de Patobiologia Veterinaria (IPV), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Gabriela Calamante
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - Silvia Mundo
- Cátedra de Inmunología de la Facultad de Ciencias Veterinarias - Universidad de Buenos Aires, Ciudad de Buenos Aires 1427, Argentina
| | - María de la Paz Santangelo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Isabel Romano
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| | - María Natalia Alonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina.
| | - María Paula Del Medico Zajac
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA-CONICET, Hurlingham, Buenos Aires 1686, Argentina
| |
Collapse
|
2
|
Spatola M, Nziza N, Irvine EB, Cizmeci D, Jung W, Van LH, Nhat LTH, Ha VTN, Phu NH, Ho DTN, Thwaites GE, Lauffenburger DA, Fortune S, Thuong NTT, Alter G. Distinctive antibody responses to Mycobacterium tuberculosis in pulmonary and brain infection. Brain 2024; 147:3247-3260. [PMID: 38442687 PMCID: PMC11370789 DOI: 10.1093/brain/awae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), remains a global health burden. While M. tuberculosis is primarily a respiratory pathogen, it can spread to other organs, including the brain and meninges, causing TB meningitis (TBM). However, little is known about the immunological mechanisms that lead to differential disease across organs. Attention has focused on differences in T cell responses in the control of M. tuberculosis in the lungs, but emerging data point to a role for antibodies, as both biomarkers of disease control and as antimicrobial molecules. Given an increasing appreciation for compartmentalized antibody responses across the blood-brain barrier, here we characterized the antibody profiles across the blood and brain compartments in TBM and determined whether M. tuberculosis-specific humoral immune responses differed between M. tuberculosis infection of the lung (pulmonary TB) and TBM. Using a high throughput systems serology approach, we deeply profiled the antibody responses against 10 different M. tuberculosis antigens, including lipoarabinomannan (LAM) and purified protein derivative (PPD), in HIV-negative adults with pulmonary TB (n = 10) versus TBM (n = 60). Antibody studies included analysis of immunoglobulin isotypes (IgG, IgM, IgA) and subclass levels (IgG1-4) and the capacity of M. tuberculosis-specific antibodies to bind to Fc receptors or C1q and to activate innate immune effector functions (complement and natural killer cell activation; monocyte or neutrophil phagocytosis). Machine learning methods were applied to characterize serum and CSF responses in TBM, identify prognostic factors associated with disease severity, and define the key antibody features that distinguish TBM from pulmonary TB. In individuals with TBM, we identified CSF-specific antibody profiles that marked a unique and compartmentalized humoral response against M. tuberculosis, characterized by an enrichment of M. tuberculosis-specific antibodies able to robustly activate complement and drive phagocytosis by monocytes and neutrophils, all of which were associated with milder TBM severity at presentation. Moreover, individuals with TBM exhibited M. tuberculosis-specific antibodies in the serum with an increased capacity to activate phagocytosis by monocytes, compared with individuals with pulmonary TB, despite having lower IgG titres and Fcγ receptor-binding capacity. Collectively, these data point to functionally divergent humoral responses depending on the site of infection (i.e. lungs versus brain) and demonstrate a highly compartmentalized M. tuberculosis-specific antibody response within the CSF in TBM. Moreover, our results suggest that phagocytosis- and complement-mediating antibodies may promote attenuated neuropathology and milder TBM disease.
Collapse
Affiliation(s)
- Marianna Spatola
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nadège Nziza
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Edward B Irvine
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Deniz Cizmeci
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wonyeong Jung
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Le Hong Van
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Le Thanh Hoang Nhat
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Vu Thi Ngoc Ha
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Vietnam National University, School of Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Dang Trung Nghia Ho
- Hospital for Tropical Diseases, 700000 Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, 700000 Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7LG, UK
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, 700000 Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7LG, UK
| | - Galit Alter
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Koyuncu D, Tavolara T, Gatti DM, Gower AC, Ginese ML, Kramnik I, Yener B, Sajjad U, Niazi MKK, Gurcan M, Alsharaydeh A, Beamer G. B cells in perivascular and peribronchiolar granuloma-associated lymphoid tissue and B-cell signatures identify asymptomatic Mycobacterium tuberculosis lung infection in Diversity Outbred mice. Infect Immun 2024; 92:e0026323. [PMID: 38899881 PMCID: PMC11238564 DOI: 10.1128/iai.00263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024] Open
Abstract
Because most humans resist Mycobacterium tuberculosis infection, there is a paucity of lung samples to study. To address this gap, we infected Diversity Outbred mice with M. tuberculosis and studied the lungs of mice in different disease states. After a low-dose aerosol infection, progressors succumbed to acute, inflammatory lung disease within 60 days, while controllers maintained asymptomatic infection for at least 60 days, and then developed chronic pulmonary tuberculosis (TB) lasting months to more than 1 year. Here, we identified features of asymptomatic M. tuberculosis infection by applying computational and statistical approaches to multimodal data sets. Cytokines and anti-M. tuberculosis cell wall antibodies discriminated progressors vs controllers with chronic pulmonary TB but could not classify mice with asymptomatic infection. However, a novel deep-learning neural network trained on lung granuloma images was able to accurately classify asymptomatically infected lungs vs acute pulmonary TB in progressors vs chronic pulmonary TB in controllers, and discrimination was based on perivascular and peribronchiolar lymphocytes. Because the discriminatory lesion was rich in lymphocytes and CD4 T cell-mediated immunity is required for resistance, we expected CD4 T-cell genes would be elevated in asymptomatic infection. However, the significantly different, highly expressed genes were from B-cell pathways (e.g., Bank1, Cd19, Cd79, Fcmr, Ms4a1, Pax5, and H2-Ob), and CD20+ B cells were enriched in the perivascular and peribronchiolar regions of mice with asymptomatic M. tuberculosis infection. Together, these results indicate that genetically controlled B-cell responses are important for establishing asymptomatic M. tuberculosis lung infection.
Collapse
Affiliation(s)
- Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Thomas Tavolara
- Wake Forest University, School of Medicine, Winston Salem, North Carolina, USA
| | | | - Adam C. Gower
- Boston University Clinical and Translational Science Institute, Boston, Massachusetts, USA
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Igor Kramnik
- NIEDL, Boston University, Boston, Massachusetts, USA
| | - Bülent Yener
- Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Usama Sajjad
- Wake Forest University, School of Medicine, Winston Salem, North Carolina, USA
| | | | - Metin Gurcan
- Wake Forest University, School of Medicine, Winston Salem, North Carolina, USA
| | | | - Gillian Beamer
- Aiforia Inc., Cambridge, Massachusetts, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
4
|
Miles JR, Lu P, Bai S, Aguillón-Durán GP, Rodríguez-Herrera JE, Gunn BM, Restrepo BI, Lu LL. Antigen specificity shapes antibody functions in tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597169. [PMID: 38895452 PMCID: PMC11185737 DOI: 10.1101/2024.06.03.597169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberculosis (TB) is the number one infectious disease cause of death worldwide due to an incomplete understanding of immunity. Emerging data highlight antibody functions mediated by the Fc domain as immune correlates. However, the mechanisms by which antibody functions impact the causative agent Mycobacterium tuberculosis (Mtb) are unclear. Here, we examine how antigen specificity determined by the Fab domain shapes Fc effector functions against Mtb. Using the critical structural and secreted virulence proteins Mtb cell wall and ESAT-6 & CFP-10, we observe that antigen specificity alters subclass, antibody post-translational glycosylation, and Fc effector functions in TB patients. Moreover, Mtb cell wall IgG3 enhances disease through opsonophagocytosis of extracellular Mtb . In contrast, polyclonal and a human monoclonal IgG1 we generated targeting ESAT-6 & CFP-10 inhibit intracellular Mtb . These data show that antibodies have multiple roles in TB and antigen specificity is a critical determinant of the protective and pathogenic capacity.
Collapse
|
5
|
Davies LRL, Wang C, Steigler P, Bowman KA, Fischinger S, Hatherill M, Fisher M, Mbandi SK, Rodo M, Ottenhoff THM, Dockrell HM, Sutherland JS, Mayanja-Kizza H, Boom WH, Walzl G, Kaufmann SHE, Nemes E, Scriba TJ, Lauffenburger D, Alter G, Fortune SM. Age and sex influence antibody profiles associated with tuberculosis progression. Nat Microbiol 2024; 9:1513-1525. [PMID: 38658786 PMCID: PMC11153143 DOI: 10.1038/s41564-024-01678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Antibody features vary with tuberculosis (TB) disease state. Whether clinical variables, such as age or sex, influence associations between Mycobacterium tuberculosis-specific antibody responses and disease state is not well explored. Here we profiled Mycobacterium tuberculosis-specific antibody responses in 140 TB-exposed South African individuals from the Adolescent Cohort Study. We identified distinct response features in individuals progressing to active TB from non-progressing, matched controls. A multivariate antibody score differentially associated with progression (SeroScore) identified progressors up to 2 years before TB diagnosis, earlier than that achieved with the RISK6 transcriptional signature of progression. We validated these antibody response features in the Grand Challenges 6-74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB progression in adolescents compared with adults, and in males compared with females. This suggests that age and sex are important, underappreciated modifiers of antibody responses associated with TB progression.
Collapse
Affiliation(s)
- Leela R L Davies
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Chuangqi Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pia Steigler
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kathryn A Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Stanley Kimbung Mbandi
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Miguel Rodo
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Hazel M Dockrell
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Harriet Mayanja-Kizza
- Department of Medicine and Department of Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Tuberculosis Research Unit, Case Western Reserve University, Cleveland, OH, USA
| | - Gerhard Walzl
- Department of Science and Technology National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative and Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
- Moderna Therapeutics, Cambridge, MA, USA.
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
Ishida E, Corrigan DT, Chen T, Liu Y, Kim RS, Song L, Rutledge TM, Magee DM, LaBaer J, Lowary TL, Lin PL, Achkar JM. Mucosal and systemic antigen-specific antibody responses correlate with protection against active tuberculosis in nonhuman primates. EBioMedicine 2024; 99:104897. [PMID: 38096687 PMCID: PMC10758715 DOI: 10.1016/j.ebiom.2023.104897] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Increasing evidence supports that antibodies can protect against active tuberculosis (TB) but knowledge of potentially protective antigens, especially in the airways, is limited. The main objective of this study was to identify antigen-specific airway and systemic immunoglobulin isotype responses associated with the outcome of controlled latent Mycobacterium tuberculosis (Mtb) infection (LTBI) versus uncontrolled infection (TB) in nonhuman primates. METHODS In a case-control design, using non-parametric group comparisons with false discovery rate adjustments, we assessed antibodies in 57 cynomolgus macaques which, following low-dose airway Mtb infection, developed either LTBI or TB. We investigated airway and systemic IgG, IgA, and IgM responses in paired bronchoalveolar lavage and plasma samples prior to, two-, and 5-6-months post Mtb infection using an antigen-unbiased approach with Mtb glycan and proteome-wide microarrays. FINDINGS Macaques that developed LTBI (n = 36) had significantly increased airway and plasma IgA reactivities to specific arabinomannan (AM) motifs prior to Mtb infection compared to those that developed TB (n = 21; p < 0.01, q < 0.05). Furthermore, LTBI macaques had higher plasma IgG reactivity to protein MTB32A (Rv0125) early post Mtb infection (p < 0.05) and increasing airway IgG responses to some proteins over time. INTERPRETATION Our results support a protective role of pre-existing mucosal (lung) and systemic IgA to specific Mtb glycan motifs, suggesting that prior exposure to nontuberculous mycobacteria could be protective against TB. They further suggest that IgG to Mtb proteins early post infection could provide an additional protective mechanism. These findings could inform TB vaccine development strategies. FUNDING NIH/NIAID AI117927, AI146329, and AI127173 to JMA.
Collapse
Affiliation(s)
- Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yanyan Liu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryung S Kim
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lusheng Song
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Tara M Rutledge
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - D Mitchell Magee
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada; Institute of Biological Chemistry, Academia Sinica, Nangang Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Philana Ling Lin
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Haycroft ER, Damelang T, Lopez E, Rodgers MA, Wines BD, Hogarth M, Ameel CL, Kent SJ, Scanga CA, O'Connor SL, Chung AW. Antibody glycosylation correlates with disease progression in SIV- Mycobacterium tuberculosis coinfected cynomolgus macaques. Clin Transl Immunology 2023; 12:e1474. [PMID: 38020728 PMCID: PMC10660403 DOI: 10.1002/cti2.1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Tuberculosis (TB) remains a substantial cause of morbidity and mortality among people living with human immunodeficiency virus (HIV) worldwide. However, the immunological mechanisms associated with the enhanced susceptibility among HIV-positive individuals remain largely unknown. Methods Here, we used a simian immunodeficiency virus (SIV)/TB-coinfection Mauritian cynomolgus macaque (MCM) model to examine humoral responses from the plasma of SIV-negative (n = 8) and SIV-positive (n = 7) MCM 8-week postinfection with Mycobacterium tuberculosis (Mtb). Results Antibody responses to Mtb were impaired during SIV coinfection. Elevated inflammatory bulk IgG antibody glycosylation patterns were observed in coinfected macaques early at 8-week post-Mtb infection, including increased agalactosylation (G0) and reduced di-galactosylation (G2), which correlated with endpoint Mtb bacterial burden and gross pathology scores, as well as the time-to-necropsy. Conclusion These studies suggest that humoral immunity may contribute to control of TB disease and support growing literature that highlights antibody Fc glycosylation as a biomarker of TB disease progression.
Collapse
Affiliation(s)
- Ebene R Haycroft
- Department of Microbiology and ImmunologyDoherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| | - Timon Damelang
- Department of Microbiology and ImmunologyDoherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| | - Ester Lopez
- Department of Microbiology and ImmunologyDoherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| | - Mark A Rodgers
- Department of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Bruce D Wines
- Immune Therapies GroupBurnet InstituteMelbourneVICAustralia
- Department of Clinical PathologyUniversity of MelbourneMelbourneVICAustralia
- Department of Immunology and PathologyMonash UniversityMelbourneVICAustralia
| | - Mark Hogarth
- Immune Therapies GroupBurnet InstituteMelbourneVICAustralia
- Department of Clinical PathologyUniversity of MelbourneMelbourneVICAustralia
- Department of Immunology and PathologyMonash UniversityMelbourneVICAustralia
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Stephen J Kent
- Department of Microbiology and ImmunologyDoherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Charles A Scanga
- Department of Microbiology and Molecular GeneticsUniversity of Pittsburgh School of MedicinePittsburghPAUSA
- Center for Vaccine ResearchUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- Wisconsin National Primate Research CentreUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Amy W Chung
- Department of Microbiology and ImmunologyDoherty Institute for Infection and ImmunityThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
8
|
Larson EC, Ellis-Connell AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Ameel CL, Jauro S, Tomko JA, Kracinovsky KB, Maiello P, Borish HJ, White AG, Klein E, Bucsan AN, Darrah PA, Seder RA, Roederer M, Lin PL, Flynn JL, O'Connor SL, Scanga CA. Intravenous Bacille Calmette-Guérin vaccination protects simian immunodeficiency virus-infected macaques from tuberculosis. Nat Microbiol 2023; 8:2080-2092. [PMID: 37814073 PMCID: PMC10627825 DOI: 10.1038/s41564-023-01503-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the most common cause of death in people living with human immunodeficiency virus (HIV). Intra-dermal Bacille Calmette-Guérin (BCG) delivery is the only licensed vaccine against tuberculosis; however, it offers little protection from pulmonary tuberculosis in adults and is contraindicated in people living with HIV. Intravenous BCG confers protection against Mtb infection in rhesus macaques; we hypothesized that it might prevent tuberculosis in simian immunodeficiency virus (SIV)-infected macaques, a model for HIV infection. Here intravenous BCG-elicited robust airway T cell influx and elevated plasma and airway antibody titres in both SIV-infected and naive animals. Following Mtb challenge, all 7 vaccinated SIV-naive and 9 out of 12 vaccinated SIV-infected animals were protected, without any culturable bacteria detected from tissues. Peripheral blood mononuclear cell responses post-challenge indicated early clearance of Mtb in vaccinated animals, regardless of SIV infection. These data support that intravenous BCG is immunogenic and efficacious in SIV-infected animals.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abigail K Gubernat
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janelle L Gleim
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara B Kracinovsky
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Jake Borish
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison N Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, Patarroyo MA, Izquierdo MA, Lutz JR, Ocampo M. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol 2023; 39:206. [PMID: 37221438 DOI: 10.1007/s11274-023-03636-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Tuberculosis is a far-reaching, high-impact disease. It is among the top ten causes of death worldwide caused by a single infectious agent; 1.6 million tuberculosis-related deaths were reported in 2021 and it has been estimated that a third of the world's population are carriers of the tuberculosis bacillus but do not develop active disease. Several authors have attributed this to hosts' differential immune response in which cellular and humoral components are involved, along with cytokines and chemokines. Ascertaining the relationship between TB development's clinical manifestations and an immune response should increase understanding of tuberculosis pathophysiological and immunological mechanisms and correlating such material with protection against Mycobacterium tuberculosis. Tuberculosis continues to be a major public health problem globally. Mortality rates have not decreased significantly; rather, they are increasing. This review has thus been aimed at deepening knowledge regarding tuberculosis by examining published material related to an immune response against Mycobacterium tuberculosis, mycobacterial evasion mechanisms regarding such response and the relationship between pulmonary and extrapulmonary clinical manifestations induced by this bacterium which are related to inflammation associated with tuberculosis dissemination through different routes.
Collapse
Grants
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- b PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá 111221, Colombia
- c Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Calle 222#55-37, Bogotá 111166, Colombia
- d Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- f Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, Bogotá 110311, Colombia
Collapse
Affiliation(s)
- Mary Lilián Carabalí-Isajar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Biomedical and Biological Sciences Programme, Universidad del Rosario, Carrera 24#63C-69, 111221, Bogotá, Colombia
| | | | - Tatiana Amado
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, 111321, Bogotá, Colombia
| | - María Alejandra Izquierdo
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia
| | - Juan Ricardo Lutz
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia.
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia.
- Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, 110311, Bogotá, Colombia.
| |
Collapse
|
11
|
Larson EC, Ellis-Connell AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Ameel CL, Jauro S, Tomko JA, Kracinovsky KB, Maiello P, Borish HJ, White AG, Klein E, Bucsan AN, Darrah PA, Seder RA, Roederer M, Lin PL, Flynn JL, O'Connor SL, Scanga CA. Vaccination with intravenous BCG protects macaques with pre-existing SIV infection from tuberculosis. RESEARCH SQUARE 2023:rs.3.rs-2802306. [PMID: 37090620 PMCID: PMC10120779 DOI: 10.21203/rs.3.rs-2802306/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Tuberculosis (TB) is the most common cause of death in people living with HIV. BCG delivered intradermally (ID) is the only licensed vaccine to prevent TB. However, it offers little protection from pulmonary TB in adults. Intravenous (IV) BCG, but not ID BCG, confers striking protection against Mycobacterium tuberculosis (Mtb) infection and disease in rhesus macaques. We investigated whether IV BCG could protect against TB in macaques with a pre-existing SIV infection. There was a robust influx of airway T cells following IV BCG in both SIV-infected and SIV-naïve animals, with elevated antibody titers in plasma and airways. Following Mtb challenge, all 7 SIV-naïve and 9 out of 12 SIV-infected vaccinated animals were completely protected, without any culturable bacilli in their tissues. PBMC responses post-challenge indicated early clearance of Mtb in vaccinated animals regardless of SIV infection. These data support that IV BCG is immunogenic and efficacious in SIV-infected animals.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Abigail K Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Janelle L Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Kara B Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - H Jake Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, PA, USA
| | - Allison N Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Nziza N, Cizmeci D, Davies L, Irvine EB, Jung W, Fenderson BA, de Kock M, Hanekom WA, Franken KLMC, Day CL, Ottenhoff THM, Alter G. Defining Discriminatory Antibody Fingerprints in Active and Latent Tuberculosis. Front Immunol 2022; 13:856906. [PMID: 35514994 PMCID: PMC9066635 DOI: 10.3389/fimmu.2022.856906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Leela Davies
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward B. Irvine
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Wonyeong Jung
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Brooke A. Fenderson
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| |
Collapse
|
13
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|