1
|
Borden LK, Nader MG, Burni FA, Grasso SM, Orueta‐Ortega I, Srivastava M, Montero‐Atienza P, Erdi M, Wright SL, Sarkar R, Sandler AD, Raghavan SR. Switchable Adhesion of Hydrogels to Plant and Animal Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411942. [PMID: 39644503 PMCID: PMC11792046 DOI: 10.1002/advs.202411942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/27/2024] [Indexed: 12/09/2024]
Abstract
The ability to "switch on" adhesion between a thin hydrogel and a biological tissue can be useful in biomedical applications such as surgery. One way to accomplish this is with an electric field, a phenomenon termed electroadhesion (EA). Here, it is shown that cationic gels can be adhered by EA to tissues across all of biology. This includes tissues from animals, including humans and other mammals; birds; fish; reptiles (e.g., lizards); amphibians (e.g., frogs), and invertebrates (e.g., shrimp, worms). Gels can also be adhered to soft tissues from plants, including fruit (e.g., plums) and vegetables (e.g; carrot). In all cases, EA is induced by a low electric field (DC, 10 V) applied for a short time (20 s). After the field is removed, the adhesion persists. The adhesion can also be reversed by applying the field with opposite polarity. In mammals, EA is strong for many tissues (e.g., arteries, muscles, and cornea), but not others (e.g., adipose, brain). Tissues with anisotropic structure show anisotropic adhesion strength by EA. The higher the concentration of anionic polymers in a tissue, the stronger its adhesion to cationic gels. This underscores that EA is mediated by the electrophoresis of chain segments across the gel-tissue interface.
Collapse
Affiliation(s)
- Leah K. Borden
- Department of Chemical & Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Morine G. Nader
- Department of Chemical & Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Faraz A. Burni
- Department of Chemical & Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Samantha M. Grasso
- Department of Chemical & Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Irene Orueta‐Ortega
- Department of Chemical & Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Mahima Srivastava
- Department of Chemical & Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
| | | | - Metecan Erdi
- Department of Chemical & Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
| | - Sarah L. Wright
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren's National Medical CenterWashington DC20010USA
| | - Rajabrata Sarkar
- Division of Vascular SurgeryUniversity of MarylandBaltimoreMD21201USA
| | - Anthony D. Sandler
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren's National Medical CenterWashington DC20010USA
| | - Srinivasa R. Raghavan
- Department of Chemical & Biomolecular EngineeringUniversity of MarylandCollege ParkMD20742USA
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| |
Collapse
|
2
|
Troisi M, Del Prete S, Troisi S, Del Prete A, Bellucci C, Marasco D, Costagliola C. The Role of Scanning Electron Microscopy in the Evaluation of Conjunctival Microvilli as an Early Biomarker of Ocular Surface Health: A Literature Review. J Clin Med 2024; 13:7569. [PMID: 39768491 PMCID: PMC11727919 DOI: 10.3390/jcm13247569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Microvilli are bristle-like protuberances of the plasma membrane, which express the vitality of mucous and epithelial cells; their alteration indicates a condition of cellular suffering in a predictive sense, making it possible to establish how much an inflammatory state or toxic conditions affect cellular functionality. In this article, the authors evaluate the applications of scanning electron microscopy (SEM) examination to impression cytology (IC) of the bulbar conjunctiva for the assessment of microvillar alteration as an early ultrastructural indicator of ocular surface health. This method offers several advantages, starting with its simplicity: it involves the non-invasive application of a strip of bibulous paper to the bulbar or tarsal conjunctiva. Unlike conjunctival or corneal biopsies, which are surgical procedures, this technique is far less invasive and more comfortable for the patient. It also provides a more clinically relevant in vivo assessment compared to studies on cultured cell lines, which are mostly limited to scientific research and may not accurately reflect real-world conditions. This makes it an effective, repeatable, and patient-friendly option for detecting early pathological alterations of the ocular surface. It also represents a useful tool for evaluating the efficacy of topical drugs and the toxic effects of external factors and ophthalmic or systemic diseases. Finally, it allows for obtaining accessory information relating to goblet cells, the presence of inflammatory infiltrate, or any pathogens.
Collapse
Affiliation(s)
- Mario Troisi
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| | | | - Salvatore Troisi
- Ophthalmologic Unit, Salerno Hospital University, 84100 Salerno, Italy
| | - Antonio Del Prete
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| | - Carlo Bellucci
- Ophthalmology Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy;
| | - Daniela Marasco
- Service Biotech s.r.l., 80121 Naples, Italy; (S.D.P.); (D.M.)
| | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, 80131 Naples, Italy; (A.D.P.); (C.C.)
| |
Collapse
|
3
|
Dai Y, Zhang J, Zhang S, Li L, Qu C, Chen J, Lu L. Ag/Cu nanoparticles-loaded glycocalyx biomimetic corneal bandage lenses for combatting bacterial keratitis. J Control Release 2024; 376:382-394. [PMID: 39419448 DOI: 10.1016/j.jconrel.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Bacterial keratitis is a major cause of blindness, hindered by the rising threat of antibiotic resistance. Although corneal bandage lenses (CBLs) are widely utilized in ophthalmic treatment, their effectiveness in treating bacterial keratitis remains limited due to risks of secondary infections, patient discomfort, and complications. In this study, we developed a novel biomimetic coating on CBLs by grafting Ag/Cu bimetallic nanoparticles (Ag/Cu-NPs) and thiol-functionalized heparin (Hep-SH) using a rapid polydopamine (PDA) deposition technique, effectively mimicking the ocular surface glycocalyx structure. The resulting Ag/Cu-NPs/Hep-SH coated CBLs (PNH-CBLs) exhibited significant antibacterial activity, with over 80 % reduction in Staphylococcus aureus (S. aureus) and 70 % in Escherichia coli (E. coli) due to the sustained release of Ag+ and Cu2+, along with displaying favorable in vitro biocompatibility. Animal experiments conducted on New Zealand white rabbits with bacterial keratitis demonstrated successful treatment therapeutic outcomes, with PNH-CBLs leading to a significant decrease in clinical score. These biomimetic lenses also exhibited selective anti-protein adsorption properties, minimizing inflammation and promoting surface lubrication. Overall, this innovative approach addresses critical challenges in antibiotic resistance and offers a promising therapeutic strategy for managing ophthalmic infectious diseases.
Collapse
Affiliation(s)
- Yan Dai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Jiali Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Shimeng Zhang
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Linhua Li
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chao Qu
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Jiang Chen
- The Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study, the Department of Medical Genetics, the Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
4
|
Dancy C, Heintzelman KE, Katt ME. The Glycocalyx: The Importance of Sugar Coating the Blood-Brain Barrier. Int J Mol Sci 2024; 25:8404. [PMID: 39125975 PMCID: PMC11312458 DOI: 10.3390/ijms25158404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The endothelial glycocalyx (GCX), located on the luminal surface of vascular endothelial cells, is composed of glycoproteins, proteoglycans, and glycosaminoglycans. It plays a pivotal role in maintaining blood-brain barrier (BBB) integrity and vascular health within the central nervous system (CNS), influencing critical processes such as blood flow regulation, inflammation modulation, and vascular permeability. While the GCX is ubiquitously expressed on the surface of every cell in the body, the GCX at the BBB is highly specialized, with a distinct composition of glycans, physical structure, and surface charge when compared to GCX elsewhere in the body. There is evidence that the GCX at the BBB is disrupted and partially shed in many diseases that impact the CNS. Despite this, the GCX has yet to be a major focus of therapeutic targeting for CNS diseases. This review examines diverse model systems used in cerebrovascular GCX-related research, emphasizing the importance of selecting appropriate models to ensure clinical relevance and translational potential. This review aims to highlight the importance of the GCX in disease and how targeting the GCX at the BBB specifically may be an effective approach for brain specific targeting for therapeutics.
Collapse
Affiliation(s)
- Candis Dancy
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
| | - Kaitlyn E. Heintzelman
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
- School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Moriah E. Katt
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (C.D.); (K.E.H.)
- Department of Neuroscience, School of Medicine, West Virginia University Health Science Center, Morgantown, WV 26506, USA
| |
Collapse
|
5
|
Troisi M, Caruso C, D’Andrea L, Rinaldi M, Piscopo R, Troisi S, Costagliola C. Compatibility of a New Ocular Surface Dye with Disposable and Bi-Weekly Soft Contact Lenses: An Experimental Study. Life (Basel) 2024; 14:653. [PMID: 38929636 PMCID: PMC11204805 DOI: 10.3390/life14060653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Ocular surface staining for assessing corneal and conjunctival epithelium integrity is typically conducted using fluorescein, lissamine green, or rose Bengal dyes. Recently, a novel vital dye, REmark®, based on riboflavin, has been proposed for ocular surface examination. In the management of corneal and ocular surface diseases (OSD), the use of contact lenses is integral to therapeutic strategies. This study explores the compatibility of REmark® with four different types of disposable or bi-weekly soft contact lenses. Morphological variations observed under stereomicroscopy and ultraviolet (UV) ray transmittance in the visible spectrum (VIS) were evaluated at 2 and 4 h post-immersion of the contact lenses in both the original fluid and the new dye. The findings indicate no significant differences between the group treated with the original liquid and those immersed in REmark®, except for a yellow hue observed in the latter group, which dissipates after 8 h in physiological solution. This study highlights the potential of utilizing the new vital dye for ophthalmologic examinations even in the presence of applied soft contact lenses, offering a promising avenue for improved diagnostic practices and patient comfort.
Collapse
Affiliation(s)
- Mario Troisi
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
| | - Ciro Caruso
- Corneal Transplant Center, Pellegrini Hospital, Via Portamedina alla Pignasecca, 41, 80127 Napoli, Italy;
| | - Luca D’Andrea
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
- Public Health Department, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy
| | - Michele Rinaldi
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
| | - Raffaele Piscopo
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
| | - Salvatore Troisi
- Ophthalmologic Unit, Salerno Hospital University, 84100 Salerno, Italy;
| | - Ciro Costagliola
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Via Pansini n. 5, 80131 Naples, Italy; (M.T.); (M.R.); (R.P.); (C.C.)
| |
Collapse
|
6
|
Chen L, Li J, Xiao B. The role of sialidases in the pathogenesis of bacterial vaginosis and their use as a promising pharmacological target in bacterial vaginosis. Front Cell Infect Microbiol 2024; 14:1367233. [PMID: 38495652 PMCID: PMC10940449 DOI: 10.3389/fcimb.2024.1367233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Bacterial vaginosis (BV) is an infection of the genital tract characterized by disturbance of the normally Lactobacilli-dominated vaginal flora due to the overgrowth of Gardnerella and other anaerobic bacteria. Gardnerella vaginalis, an anaerobic pathogen and the major pathogen of BV, produces sialidases that cleave terminal sialic acid residues off of human glycans. By desialylation, sialidases not only alter the function of sialic acid-containing glycoconjugates but also play a vital role in the attachment, colonization and spread of many other vaginal pathogens. With known pathogenic effects, excellent performance of sialidase-based diagnostic tests, and promising therapeutic potentials of sialidase inhibitors, sialidases could be used as a biomarker of BV. This review explores the sources of sialidases and their role in vaginal dysbiosis, in aims to better understand their participation in the pathogenesis of BV and their value in the diagnosis and treatment of BV.
Collapse
Affiliation(s)
- Liuyan Chen
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jiayue Li
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Kolesov D, Astakhova A, Galdobina M, Moskovtsev A, Kubatiev A, Sokolovskaya A, Ukrainskiy L, Morozov S. Scanning Probe Microscopy Techniques for Studying the Cell Glycocalyx. Cells 2023; 12:2778. [PMID: 38132098 PMCID: PMC10741541 DOI: 10.3390/cells12242778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
The glycocalyx is a brush-like layer that covers the surfaces of the membranes of most cell types. It consists of a mixture of carbohydrates, mainly glycoproteins and proteoglycans. Due to its structure and sensitivity to environmental conditions, it represents a complicated object to investigate. Here, we review studies of the glycocalyx conducted using scanning probe microscopy approaches. This includes imaging techniques as well as the measurement of nanomechanical properties. The nanomechanics of the glycocalyx is particularly important since it is widely present on the surfaces of mechanosensitive cells such as endothelial cells. An overview of problems with the interpretation of indirect data via the use of analytical models is presented. Special insight is given into changes in glycocalyx properties during pathological processes. The biological background and alternative research methods are briefly covered.
Collapse
Affiliation(s)
- Dmitry Kolesov
- Moscow Polytechnic University, 107023 Moscow, Russia
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Anna Astakhova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Maria Galdobina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Alexey Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Alisa Sokolovskaya
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Leonid Ukrainskiy
- Mechanical Engineering Research Institute of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
8
|
Agarwal K, Choudhury B, Robinson LS, Morrill SR, Bouchibiti Y, Chilin-Fuentes D, Rosenthal SB, Fisch KM, Peipert JF, Lebrilla CB, Allsworth JE, Lewis AL, Lewis WG. Resident microbes shape the vaginal epithelial glycan landscape. Sci Transl Med 2023; 15:eabp9599. [PMID: 38019934 PMCID: PMC11419735 DOI: 10.1126/scitranslmed.abp9599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Epithelial cells are covered in carbohydrates (glycans). This glycan coat or "glycocalyx" interfaces directly with microbes, providing a protective barrier against potential pathogens. Bacterial vaginosis (BV) is a condition associated with adverse health outcomes in which bacteria reside in direct proximity to the vaginal epithelium. Some of these bacteria, including Gardnerella, produce glycosyl hydrolase enzymes. However, glycans of the human vaginal epithelial surface have not been studied in detail. Here, we elucidate key characteristics of the "normal" vaginal epithelial glycan landscape and analyze the impact of resident microbes on the surface glycocalyx. In human BV, glycocalyx staining was visibly diminished in electron micrographs compared to controls. Biochemical and mass spectrometric analysis showed that, compared to normal vaginal epithelial cells, BV cells were depleted of sialylated N- and O-glycans, with underlying galactose residues exposed on the surface. Treatment of primary epithelial cells from BV-negative women with recombinant Gardnerella sialidases generated BV-like glycan phenotypes. Exposure of cultured VK2 vaginal epithelial cells to recombinant Gardnerella sialidase led to desialylation of glycans and induction of pathways regulating cell death, differentiation, and inflammatory responses. These data provide evidence that vaginal epithelial cells exhibit an altered glycan landscape in BV and suggest that BV-associated glycosidic enzymes may lead to changes in epithelial gene transcription that promote cell turnover and regulate responses toward the resident microbiome.
Collapse
Affiliation(s)
- Kavita Agarwal
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Biswa Choudhury
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Lloyd S. Robinson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Sydney R. Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Yasmine Bouchibiti
- Department of Chemistry, University of California, Davis, Davis, CA 95616, United States of America
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, United States of America
| | - Daisy Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Sara B. Rosenthal
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Center for Computational Biology & Bioinformatics, UCSD, La Jolla, CA 92093, United States of America
| | - Jeffrey F. Peipert
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA 95616, United States of America
- Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, United States of America
| | - Jenifer E. Allsworth
- Department of Biomedical and Health Informatics, University of Missouri, Kansas City School of Medicine, Kansas City, MO 64110, United States of America
| | - Amanda L. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| | - Warren G. Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, United States of America
- Glycobiology Research and Training Center, UCSD, La Jolla, CA 92093, United States of America
| |
Collapse
|
9
|
Kaur S, Sohnen P, Swamynathan S, Du Y, Espana EM, Swamynathan SK. Molecular nature of ocular surface barrier function, diseases that affect it, and its relevance for ocular drug delivery. Ocul Surf 2023; 30:3-13. [PMID: 37543173 PMCID: PMC10837323 DOI: 10.1016/j.jtos.2023.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The structural and functional integrity of the ocular surface, a continuous epithelial structure comprised of the cornea, the conjunctiva, and the ductal surface of the lacrimal as well as meibomian glands, is crucial for proper vision. The ocular surface barrier function (OSBF), sum of the different types of protective mechanisms that exist at the ocular surface, is essential to protect the rest of the eye from vision-threatening physical, chemical, and biological insults. OSBF helps maintain the immune privileged nature of the cornea and the aqueous humor by preventing entry of infectious agents, allergens, and noxious chemicals. Disruption of OSBF exposes the dense nerve endings of the cornea to these stimuli, resulting in discomfort and pain. This review summarizes the status of our knowledge related to the molecular nature of OSBF, describes the effect of different ocular surface disorders on OSBF, and examines the relevance of this knowledge for ocular drug delivery.
Collapse
Affiliation(s)
- Satinder Kaur
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Peri Sohnen
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Sudha Swamynathan
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Yiqin Du
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Edgar M Espana
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Room 2114, Tampa, FL 33612. USA.
| |
Collapse
|
10
|
Ledbetter EC, Dong L. Susceptibility of the Intact and Traumatized Feline Cornea to In Vitro Binding and Invasion by Acanthamoeba castellanii. Cornea 2023; 42:624-629. [PMID: 36518074 PMCID: PMC10060048 DOI: 10.1097/ico.0000000000003220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Acanthamoeba castellanii ( A. castellanii ) displays host specificity at the level of the ocular surface. This study determined the susceptibility of the intact and traumatized feline cornea to A. castellanii binding and invasion relative to other host species with established susceptibility and resistance to Acanthamoeba binding. METHODS Full-thickness buttons of fresh feline, porcine, and canine corneas were prepared. The corneal epithelium was confirmed intact by fluorescein staining or lightly scarified with a 25-G needle to simulate corneal trauma. Acanthamoeba castellanii was axenically cultivated. Corneal buttons were incubated with the parasite suspension or parasite-free medium for 18 hours at 35°C. Corneal buttons were rinsed, fixed, and processed for histopathology and immunohistochemistry using immunoperoxidase and immunofluorescence methods of amoeba detection. RESULTS Numerous amoebae were bound to feline and porcine corneas incubated with parasites. In both intact and traumatized corneas, amoebae were detected at all levels in the corneal epithelium and within the anterior stroma. In traumatized corneal sections, amoebae were frequently present in regions of epithelial damage. Corneal architecture was well-preserved in sections incubated with parasite-free medium; however, epithelial cell sloughing, separation of epithelial layers, and epithelial detachment from the stroma were observed in corneas incubated with amoebae. Intact and traumatized canine corneas were relatively free of adherent amoebae, and corneal architecture was indistinguishable between sections incubated with the parasite suspension and parasite-free medium. CONCLUSIONS The feline cornea is highly susceptible to in vitro binding and invasion by A. castellanii . Acanthamoeba binding to the feline cornea does not require a previous epithelial defect.
Collapse
Affiliation(s)
- Eric C. Ledbetter
- Departments of Clinical Sciences; and Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Longying Dong
- Departments of Clinical Sciences; and Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
11
|
Liu BS, Liao M, Wagner WL, Khalil HA, Chen Z, Ackermann M, Mentzer SJ. Biomechanics of a Plant-Derived Sealant for Corneal Injuries. Transl Vis Sci Technol 2023; 12:20. [PMID: 37204800 PMCID: PMC10204774 DOI: 10.1167/tvst.12.5.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose The corneal epithelium has a glycocalyx composed of membrane-associated glycoproteins, mucins, and galactin-3. Similar to the glycocalyx in visceral tissues, the corneal glycocalyx functions to limit fluid loss and minimize frictional forces. Recently, the plant-derived heteropolysaccharide pectin has been shown to physically entangle with the visceral organ glycocalyx. The ability of pectin to entangle with the corneal epithelium is unknown. Methods To explore the potential role of pectin as a corneal bioadhesive, we assessed the adhesive characteristics of pectin films in a bovine globe model. Results Pectin film was flexible, translucent, and low profile (80 µm thick). Molded in tape form, pectin films were significantly more adherent to the bovine cornea than control biopolymers of nanocellulose fibers, sodium hyaluronate, and carboxymethyl cellulose (P < 0.05). Adhesion strength was near maximal within seconds of contact. Compatible with wound closure under tension, the relative adhesion strength was greatest at a peel angle less than 45 degrees. The corneal incisions sealed with pectin film were resistant to anterior chamber pressure fluctuations ranging from negative 51.3 ± 8.9 mm Hg to positive 214 ± 68.6 mm Hg. Consistent with these findings, scanning electron microscopy demonstrated a low-profile film densely adherent to the bovine cornea. Finally, the adhesion of the pectin films facilitated the en face harvest of the corneal epithelium without physical dissection or enzymatic digestion. Conclusions We conclude that pectin films strongly adhere to the corneal glycocalyx. Translational Relevance The plant-derived pectin biopolymer provides potential utility for corneal wound healing as well as targeted drug delivery.
Collapse
Affiliation(s)
- Betty S. Liu
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew Liao
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Willi L. Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Diagnostic and Interventional Radiology, Translational Lung Research Center, University of Heidelberg, Heidelberg, Germany
| | - Hassan A. Khalil
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zi Chen
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Tan J, Foster LJR, Lovicu FJ, Watson SL. Laser-Activated Chitosan Adhesive for Replacing Corneal Sutures. Curr Eye Res 2023; 48:573-575. [PMID: 36708312 DOI: 10.1080/02713683.2023.2174556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jackie Tan
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Leslie John Ray Foster
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Chemistry, Bio/polymers Research Group, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Frank James Lovicu
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Stephanie Louise Watson
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Arteaga-Resendiz NK, Rodea GE, Ribas-Aparicio RM, Olivares-Cervantes AL, Castelán-Vega JA, Olivares-Trejo JDJ, Mendoza-Elizalde S, López-Villegas EO, Colín C, Aguilar-Rodea P, Reyes-López A, Salazar García M, Velázquez-Guadarrama N. HP0953 - hypothetical virulence factor overexpresion and localization during Helicobacter pylori infection of gastric epithelium. World J Gastroenterol 2022; 28:3886-3902. [PMID: 36157534 PMCID: PMC9367236 DOI: 10.3748/wjg.v28.i29.3886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The high prevalence and persistence of Helicobacter pylori (H. pylori) infection, as well as the diversity of pathologies related to it, suggest that the virulence factors used by this microorganism are varied. Moreover, as its proteome contains 340 hypothetical proteins, it is important to investigate them to completely understand the mechanisms of its virulence and survival. We have previously reported that the hypothetical protein HP0953 is overexpressed during the first hours of adhesion to inert surfaces, under stress conditions, suggesting its role in the environmental survival of this bacterium and perhaps as a virulence factor.
AIM To investigate the expression and localization of HP0953 during adhesion to an inert surface and against gastric (AGS) cells.
METHODS Expression analysis was performed for HP0953 during H. pylori adhesion. HP0953 expression at 0, 3, 12, 24, and 48 h was evaluated and compared using the Kruskal-Wallis equality-of-populations rank test. Recombinant protein was produced and used to obtain polyclonal antibodies for immunolocalization. Immunogold technique was performed on bacterial sections during adherence to inert surfaces and AGS cells, which was analyzed by transmission electron microscopy. HP0953 protein sequence was analyzed to predict the presence of a signal peptide and transmembrane helices, both provided by the ExPASy platform, and using the GLYCOPP platform for glycosylation sites. Different programs, via, I-TASSER, RaptorX, and HHalign-Kbest, were used to perform three-dimensional modeling.
RESULTS HP0953 exhibited its maximum expression at 12 h of infection in gastric epithelium cells. Immunogold technique revealed HP0953 localization in the cytoplasm and accumulation in some peripheral areas of the bacterial body, with greater expression when it is close to AGS cells. Bioinformatics analysis revealed the presence of a signal peptide that interacts with the transmembrane region and then allows the release of the protein to the external environment. The programs also showed a similarity with the Tip-alpha protein of H. pylori. Tip-alpha is an exotoxin that penetrates cells and induces tumor necrosis factor alpha production, and HP0953 could have a similar function as posttranslational modification sites were found; modifications in turn require enzymes located in eukaryotic cells. Thus, to be functional, HP0953 may necessarily need to be translocated inside the cell where it can trigger different mechanisms producing cellular damage.
CONCLUSION The location of HP0953 around infected cells, the probable posttranslational modifications, and its similarity to an exotoxin suggest that this protein is a virulence factor.
Collapse
Affiliation(s)
- Nancy K Arteaga-Resendiz
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Gerardo E Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Rosa María Ribas-Aparicio
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alma L Olivares-Cervantes
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Juan Arturo Castelán-Vega
- Posgrado en Biomedicina y Biotecnología Molecular, Laboratorio de Producción y Control de Biológicos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - José de Jesús Olivares-Trejo
- Laboratorio de Adquisición de Hierro, Universidad Autónoma de la Ciudad México, Posgrado Ciencias Genómica, Mexico City 03100, Mexico
| | - Sandra Mendoza-Elizalde
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Edgar O López-Villegas
- Laboratorio Central de Microscopía, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Christian Colín
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Pamela Aguilar-Rodea
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Alfonso Reyes-López
- Centro de estudios económicos y sociales en salud, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Marcela Salazar García
- Laboratorio de Investigación en Biología del Desarrollo y Teratogénesis Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
14
|
Blakeley M, Sharma PK, Kaper HJ, Bostanci N, Crouzier T. Lectin-Functionalized Polyethylene Glycol for Relief of Mucosal Dryness. Adv Healthc Mater 2022; 11:e2101719. [PMID: 34710279 DOI: 10.1002/adhm.202101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Indexed: 11/08/2022]
Abstract
The importance of lubrication between oral surfaces provided by the salivary film is most acutely apparent when it is disrupted, a prevalent consequence of salivary gland hypofunction experienced with aging, a symptom of certain diseases, or a side effect of some medical interventions. Sufferers report difficulty with speech and oral food processing and collectively is detrimental to quality of life. Polyethylene glycol (PEG) is widely employed as a successful biocompatible boundary lubricant in engineering and biomedical applications. It is hypothesized that the immobilization of PEG to biological materials such as oral epithelial cells and tissue can mimic the salivary film and provide durable relief from the symptoms of mucosal dryness. To do so, PEG is functionalized with a sugar binding lectin (wheat germ agglutinin) to enhance epithelial adhesion through lectin-sugar interactions. Retention and lubricity are characterized on an ex vivo oral tissue tribology rig. WGA-PEG coats and retains on mucin films, oral epithelial cells, and porcine tongue tissue, and offers sustained reduction in coefficient of friction (COF). WGA-PEG could be developed into a useful topical treatment for reducing oral friction and the perception of dry mouth.
Collapse
Affiliation(s)
- Matthew Blakeley
- Division of Glycoscience Department of Chemistry School of Engineering Sciences in Chemistry Biotechnology and Health KTH – Royal Institute of Technology AlbaNova University Centre Stockholm 106 91 Sweden
| | - Prashant K. Sharma
- Department of Biomedical Engineering University of Groningen and University Medical Centre Groningen Groningen 9713 AV The Netherlands
| | - Hans J. Kaper
- Department of Biomedical Engineering University of Groningen and University Medical Centre Groningen Groningen 9713 AV The Netherlands
| | - Nagihan Bostanci
- Division of Oral Diseases Department of Dental Medicine Karolinska Institutet Huddinge 141 52 Sweden
| | - Thomas Crouzier
- Division of Glycoscience Department of Chemistry School of Engineering Sciences in Chemistry Biotechnology and Health KTH – Royal Institute of Technology AlbaNova University Centre Stockholm 106 91 Sweden
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH – Royal Institute of Technology Stockholm 114 28 Sweden
- Department of Neuroscience Karolinska Institutet Stockholm 171 77 Sweden
| |
Collapse
|