1
|
Kumar M, Yan Y, Jiang L, Sze CH, Kodithuwakku SP, Yeung WSB, Lee KF. Microbiome-Maternal Tract Interactions in Women with Recurrent Implantation Failure. Microorganisms 2025; 13:844. [PMID: 40284680 PMCID: PMC12029794 DOI: 10.3390/microorganisms13040844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Microorganisms play an important role in regulating various biological processes in our bodies. In women, abnormal changes in the reproductive tract microbiome are associated with various gynecological diseases and infertility. Recent studies suggest that patients with recurrent implantation failure (RIF) have a reduced genus Lactobacillus population, a predominant bacterial species in the vagina and uterus that protects the reproductive tract from pathogenic bacterial growth via the production of various metabolites (e.g., lactic acid, bacteriocin, and H2O2). Moreover, a higher percentage of pathogenic bacteria genera, including Atopobium, Gardnerella, Prevotella, Pseudomonas, and Streptococcus, was found in the uterus of RIF patients. This review aimed to examine the role of pathogenic bacteria in RIF, determine the factors altering the endometrial microbiome, and assess the impact of the microbiome on embryo implantation in RIF. Several factors can influence microbial balance, including the impact of extrinsic elements such as semen and antibiotics, which can lead to dysbiosis in the female reproductive tract and affect implantation. Additionally, probiotics such as Lacticaseibacillus rhamnosus were reported to have clinical potential in RIF patients. Future studies are needed to develop targeted probiotic therapies to restore microbial balance and enhance fertility outcomes. Research should also focus on understanding the mechanisms by which microorganisms generate metabolites to suppress pathogenic bacteria for embryo implantation. Identifying these interactions may contribute to innovative microbiome-based interventions for reproductive health.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Yang Yan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynaecology Hospital, Fudan University, Shanghai 200032, China;
| | - Luhan Jiang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Ching-Ho Sze
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
| | - Suranga P. Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, The University of Peradeniya, Peradeniya 20400, Sri Lanka;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Science, 51014 Tartu, Estonia
| | - William S. B. Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; (M.K.); (L.J.); (C.-H.S.); (W.S.B.Y.)
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong, Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
2
|
Xiong J, Yang L, Nan X, Zhu S, Yan M, Xiang S, Zhang L, Li Q, Yang C, Wang X, Wei N, Chen H, Si Y, Cao S, Ye J. Extracellular vesicles promote the infection and pathogenicity of Japanese encephalitis virus. J Extracell Vesicles 2025; 14:e70033. [PMID: 39783853 PMCID: PMC11714208 DOI: 10.1002/jev2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Japanese encephalitis virus (JEV) is a neurotropic zoonotic pathogen that poses a serious threat to public health. Currently, there is no specific therapeutic agent available for JEV infection, primarily due to the complexity of its infection mechanism and pathogenesis. Extracellular vesicles (EVs) have been known to play an important role in viral infection, but their specific functions in JEV infection remain unknown. Here, ultracentrifugation in combination with density gradient centrifugation was conducted to purify EVs from JEV-infected cells. The purified EVs were found to be infectious, with virions observed inside the EVs. Furthermore, our study showed the formation process of virion-containing EVs both in vitro and in vivo, which involved the fusion of multivesicular bodies with the cell membrane, leading to the release of virion-containing intraluminal vesicles into the extracellular space. Further studies revealed that EVs played a crucial role in JEV propagation by facilitating viral entry and assembly-release. Furthermore, EVs assisted JEV in evading the neutralizing antibodies and promoted viral capability to cross the blood-brain and placental barriers. Moreover, in vivo experiments demonstrated that EVs were beneficial for JEV infection and pathogenicity. Taken together, our findings highlight the significant contribution of EVs in JEV infection and provide valuable insights into JEV pathogenesis.
Collapse
|
3
|
Zhang S, Yang Y, Wang D, Yang X, Cai Y, Shui C, Yang R, Tian W, Li C. Exploring exosomes: novel diagnostic and therapeutic frontiers in thyroid cancer. Front Pharmacol 2024; 15:1431581. [PMID: 39584141 PMCID: PMC11581896 DOI: 10.3389/fphar.2024.1431581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
In recent years, the incidence of thyroid cancer has surged globally, posing significant challenges in its diagnosis, treatment, and prognosis. Exosomes, as a class of extracellular vesicles, are secreted by nearly all cell types and encapsulate a variety of nucleic acids and proteins reflective of their cell of origin, thereby facilitating critical intercellular communication. Recent advancements in understanding these exosomes have catalyzed their application in oncology, particularly through uncovering their roles in the pathogenesis, diagnosis, and therapy of cancers. Notably, the latest literature highlights the integral role of exosomes in refining diagnostic techniques, enhancing targeted therapies, optimizing radiotherapy outcomes, and advancing immunotherapeutic approaches in thyroid cancer management. This review provides a current synthesis of the implications of exosomes in thyroid cancer tumorigenesis and progression, as well as their emerging applications in diagnosis and treatment strategies. Furthermore, we discuss the profound clinical potential of exosome-based interventions in managing thyroid cancer, serving as a foundational reference for future therapeutic developments.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dianri Wang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xueting Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongcong Cai
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Shui
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ruoyi Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Guizhou Medical University, Guiyang, China
| | - Wen Tian
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Chao Li
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Martínez-Díaz P, Parra A, Montesdeoca M, Barranco I, Roca J. Updating Research on Extracellular Vesicles of the Male Reproductive Tract in Farm Animals: A Systematic Review. Animals (Basel) 2024; 14:3135. [PMID: 39518859 PMCID: PMC11545059 DOI: 10.3390/ani14213135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
This systematic review examined research studies on extracellular vesicles (EVs) of the male reproductive tract in livestock species to summarize the research topics and methodologies used, key findings, and future directions. PubMed and Scopus were searched for time ranges up to 1 September 2024, and 1383 articles were identified. The application of screening and eligibility criteria resulted in the selection of 79 articles focusing on male reproductive EVs in livestock. Porcine and bovine male reproductive EVs were the most studied. A variety of EV isolation techniques were used, with ultracentrifugation being the most common. Characterization of male reproductive EVs in livestock was a weak point, with only 24.05% of the articles characterizing EVs according to MISEV guidelines. Inadequate characterization of EVs compromises the reliability of results. The results of 19 articles that provided a good characterization of EVs showed that male reproductive EVs from livestock species are phenotypically and compositionally heterogeneous. These papers also showed that these EVs would be involved in the regulation of sperm functionality. Research on male reproductive EVs in livestock species remains scarce, and further research is needed, which should include appropriate characterization of EVs and aim to find efficient methods to isolate them and assess their involvement in the functionality of spermatozoa and the cells of the female genital tract.
Collapse
Affiliation(s)
| | | | | | | | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain; (P.M.-D.); (A.P.); (M.M.); (I.B.)
| |
Collapse
|
5
|
Maes D, Pavani KC, Nauwynck H, Van Soom A. Immunological defense mechanisms of ejaculates and the spread of viral infectious diseases through pig semen. Anim Reprod Sci 2024; 269:107535. [PMID: 38880667 DOI: 10.1016/j.anireprosci.2024.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
This review focuses on the mechanisms of immune tolerance and antimicrobial defense in the male genital tract of the pig. Sperm cells are foreign to the immune system and, therefore, they must be protected from the immune system. The blood-testis-barrier is mediated by a physical barrier between adjacent Sertoli cells, several cell types within the testis, and interactions between immunomodulatory molecules. The blood-epididymal-barrier is composed of a physical barrier that is lined with principal cells having a network of junctional complexes in their apical lateral membrane and completed by specific transporters. The seminal plasma (SP) contains many signaling agents involved in establishing a state of immune tolerance in the female genital tract, which is essential for successful fertilization. Specific SP-proteins, however, also have pro-inflammatory capacities contributing to transient uterine inflammation, supporting the removal of foreign cells, possible pathogens, and excessive spermatozoa. While many different proteins and other substances present in semen can damage sperm cells, they may also protect them against viral infections. A delicate balance of these substances, therefore, needs to be maintained. Related to this, recent studies have shown the importance of extracellular vesicles (EVs), as they contain these substances and convey immune signals. Yet, viruses may use EVs to interact with the male genital tract and circumvent immune responses. For this reason, further research needs to explore the role of EVs in the male reproductive tract, as it might contribute to elucidating the pathogenesis of viral infections that might be transmitted via semen and to developing better vaccines.
Collapse
Affiliation(s)
- Dominiek Maes
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Krishna C Pavani
- Reproductive Biology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | - Ann Van Soom
- Reproductive Biology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| |
Collapse
|
6
|
Borowiec BM, Dyszkiewicz-Konwińska M, Bukowska D, Nowicki M, Budna-Tukan J. Small Extracellular Vesicles and Oral Mucosa: The Power Couple in Regenerative Therapies? Cells 2024; 13:1514. [PMID: 39329698 PMCID: PMC11429515 DOI: 10.3390/cells13181514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Although ongoing debates persist over the scope of phenomena classified as regenerative processes, the most up-to-date definition of regeneration is the replacement or restoration of damaged or missing cells, tissues, organs, or body parts to full functionality. Despite extensive research on this topic, new methods in regenerative medicine are continually sought, and existing ones are being improved. Small extracellular vesicles (sEVs) have gained attention for their regenerative potential, as evidenced by existing studies conducted by independent research groups. Of particular interest are sEVs derived from the oral mucosa, a tissue renowned for its rapid regeneration and minimal scarring. While the individual regenerative potential of both sEVs and the oral mucosa is somewhat understood, the combined potential of sEVs derived from the oral mucosa has not been sufficiently explored and highlighted in the existing literature. Serving as a broad compendium, it aims to provide scientists with essential and detailed information on this subject, including the nature of the materials employed, isolation and analysis methodologies, and clinical applications. The content of this survey aims to facilitate the comparison of diverse methods for working with sEVs derived from the oral mucosa, aiding in the planning of research endeavors and identifying potential research gaps.
Collapse
Affiliation(s)
- Blanka Maria Borowiec
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | | | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland (M.N.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
7
|
Wang Z, Cui H, Zhang Y, Sun W, Yang W, Zhao P. DF-1-Derived exosomes mediate transmission of reticuloendotheliosis virus and resist REV-specific antibodies. Virol J 2024; 21:177. [PMID: 39107806 PMCID: PMC11304787 DOI: 10.1186/s12985-024-02445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Reticuloendotheliosis virus (REV), a member of the family Retroviridae, is a hot area of research, and a previous study showed that exosomes purified from REV-positive semen were not blocked by REV-specific neutralizing antibodies and established productive infections. METHODS To further verify the infectivity of exosomes from REV-infected cells, we isolated and purified exosomes from REV-infected DF-1 cells and identified them using Western blot and a transmission electron microscope. We then inoculated 7-day-old embryonated eggs, 1-day-old chicks and 23-week-old hens with and without antibody treatment. REV was administered simultaneously as a control. RESULTS In the absence of antibodies, the results indicated that REV-exosomes and REV could infect chicks, resulting in viremia and viral shedding, compared with the infection caused by REV, REV-exosomes reduced the hatching rate and increased mortality after hatching, causing severe growth inhibition and immune organ damage in 1-day-old chicks; both REV and REV-exosomes also could infect hens, however, lead to transient infection. In the presence of antibodies, REV-exosomes were not blocked by REV-specific neutralizing antibodies and infected 7-day-old embryonated eggs. However, REV could not infect 1-day-old chicks and 23-week-old hens. CONCLUSION In this study, we compared the infectious ability of REV-exosomes and REV, REV-exosomes could escape from REV-specific neutralizing antibodies in embryonated eggs, providing new insights into the immune escape mechanism of REV.
Collapse
Affiliation(s)
- Zhen Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China
| | - Huizhen Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China
| | - Wanli Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China
| | - Wenjie Yang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China.
| |
Collapse
|
8
|
Adcock KG, Berghaus RD, Goodwin CC, Ruder MG, Yabsley MJ, Mead DG, Nemeth NM. Lymphoproliferative Disease Virus and Reticuloendotheliosis Virus Detection and Disease in Wild Turkeys (Meleagris gallopavo). J Wildl Dis 2024; 60:139-150. [PMID: 37972643 DOI: 10.7589/jwd-d-23-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023]
Abstract
Lymphoproliferative disease virus (LPDV) and reticuloendotheliosis virus (REV) are oncogenic retroviruses that can cause disease in wild and domestic fowl. Lymphoproliferative disease virus infections are common and widespread in Wild Turkeys (Meleagris gallopavo) in the US and east-central Canada, while REV has been detected worldwide in numerous avian host species. We tested tissues (spleen, liver, and/or bone marrow, plus neoplastic tissue, if present) from 172 Wild Turkeys that underwent necropsy from December 2018 through October 2021 for both viruses using PCR. We evaluated demographic, geographic, temporal, and seasonal data by chi-square test of independence and logistic regression for turkeys infected with LPDV and/or REV. At least one of these retroviruses was detected in 80.8% (139/172) of Wild Turkeys from 15 US states, with significantly more turkeys being positive for LPDV (72.1%, 124/172) versus REV (43.6%, 75/172; P<0.001). Both viruses (coinfections) were detected in 34.9% (60/172) of turkeys. Among LPDV-infected turkeys (including coinfections), bone marrow had the highest detection rate (38/58, 65.5%), significantly higher than spleen (30/58, 51.7%) and liver (20/58, 34.5%; P<0.001). In REV-infected turkeys, bone marrow had the highest detection rate (24/58, 41.4%). All three tissues (spleen, liver, bone marrow) concurrently tested positive in most (15/25, 60%) REV-infected turkeys. These results suggest LPDV tissue tropism for bone marrow, whereas REV may have broader tissue tropism. Histopathology consistent with lymphoid proliferation and/or neoplasia characteristic of lymphoproliferative disease was evident in 29/172 (16.9%) turkeys assessed, including two REV-only-infected turkeys. Season was significantly associated with LPDV prevalence (highest in winter); year and season were both significantly associated with REV prevalence (highest in 2020 and winter). These data contribute to optimizing diagnostic strategies that may aid in pathogen monitoring and improve detections to increase our understanding of the potential impacts of these viruses on Wild Turkey populations.
Collapse
Affiliation(s)
- Kayla G Adcock
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, 589 D.W. Brooks Drive, Athens, Georgia 30602, USA
| | - Roy D Berghaus
- Department of Population Health, University of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USA
| | - Chloe C Goodwin
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, 589 D.W. Brooks Drive, Athens, Georgia 30602, USA
- Department of Pathology, University of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, 589 D.W. Brooks Drive, Athens, Georgia 30602, USA
| | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, 589 D.W. Brooks Drive, Athens, Georgia 30602, USA
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, 180 E. Green Street, Athens, Georgia 30602, USA
- Center for Emerging Infectious Diseases, University of Georgia, 140 E. Green Street, Athens, Georgia 30602, USA
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, 589 D.W. Brooks Drive, Athens, Georgia 30602, USA
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, 589 D.W. Brooks Drive, Athens, Georgia 30602, USA
- Department of Pathology, University of Georgia, 501 D.W. Brooks Drive, Athens, Georgia 30602, USA
| |
Collapse
|
9
|
Yin KL, Li M, Song PP, Duan YX, Ye WT, Tang W, Kokudo N, Gao Q, Liao R. Unraveling the Emerging Niche Role of Hepatic Stellate Cell-derived Exosomes in Liver Diseases. J Clin Transl Hepatol 2023; 11:441-451. [PMID: 36643031 PMCID: PMC9817040 DOI: 10.14218/jcth.2022.00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in various liver diseases, and exosomes are critical mediators of intercellular communication in local and distant microenvironments. Cellular crosstalk between HSCs and surrounding multiple tissue-resident cells promotes or inhibits the activation of HSCs. Substantial evidence has revealed that HSC-derived exosomes are involved in the occurrence and development of liver diseases through the regulation of retinoid metabolism, lipid metabolism, glucose metabolism, protein metabolism, and mitochondrial metabolism. HSC-derived exosomes are underpinned by vehicle molecules, such as mRNAs and microRNAs, that function in, and significantly affect, the processes of various liver diseases, such as acute liver injury, alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, fibrosis, and cancer. As such, numerous exosomes derived from HSCs or HSC-associated exosomes have attracted attention because of their biological roles and translational applications as potential targets for therapeutic targets. Herein, we review the pathophysiological and metabolic processes associated with HSC-derived exosomes, their roles in various liver diseases and their potential clinical application.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei-Pei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Li P, Liu S, Du L, Mohseni G, Zhang Y, Wang C. Liquid biopsies based on DNA methylation as biomarkers for the detection and prognosis of lung cancer. Clin Epigenetics 2022; 14:118. [PMID: 36153611 PMCID: PMC9509651 DOI: 10.1186/s13148-022-01337-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Lung cancer (LC) is the main cause of cancer-related mortality. Most LC patients are diagnosed in an advanced stage when the symptoms are obvious, and the prognosis is quite poor. Although low-dose computed tomography (LDCT) is a routine clinical examination for early detection of LC, the false-positive rate is over 90%. As one of the intensely studied epigenetic modifications, DNA methylation plays a key role in various diseases, including cancer and other diseases. Hypermethylation in tumor suppressor genes or hypomethylation in oncogenes is an important event in tumorigenesis. Remarkably, DNA methylation usually occurs in the very early stage of malignant tumors. Thus, DNA methylation analysis may provide some useful information about the early detection of LC. In recent years, liquid biopsy has developed rapidly. Liquid biopsy can detect and monitor both primary and metastatic malignant tumors and can reflect tumor heterogeneity. Moreover, it is a minimally invasive procedure, and it causes less pain for patients. This review summarized various liquid biopsies based on DNA methylation for LC. At first, we briefly discussed some emerging technologies for DNA methylation analysis. Subsequently, we outlined cell-free DNA (cfDNA), sputum, bronchoalveolar lavage fluid, bronchial aspirates, and bronchial washings DNA methylation-based liquid biopsy for the early detection of LC. Finally, the prognostic value of DNA methylation in cfDNA and sputum and the diagnostic value of other DNA methylation-based liquid biopsies for LC were also analyzed.
Collapse
|
11
|
Yi X, Huang D, Li Z, Wang X, Yang T, Zhao M, Wu J, Zhong T. The role and application of small extracellular vesicles in breast cancer. Front Oncol 2022; 12:980404. [PMID: 36185265 PMCID: PMC9515427 DOI: 10.3389/fonc.2022.980404] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy and the leading cause of cancer-related deaths in women worldwide. Currently, patients’ survival remains a challenge in BC due to the lack of effective targeted therapies and the difficult condition of patients with higher aggressiveness, metastasis and drug resistance. Small extracellular vesicles (sEVs), which are nanoscale vesicles with lipid bilayer envelopes released by various cell types in physiological and pathological conditions, play an important role in biological information transfer between cells. There is growing evidence that BC cell-derived sEVs may contribute to the establishment of a favorable microenvironment that supports cancer cells proliferation, invasion and metastasis. Moreover, sEVs provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. This review provides an overview of current new developments regarding the involvement of sEVs in BC pathogenesis, including tumor proliferation, invasion, metastasis, immune evasion, and drug resistance. In addition, sEVs act as messenger carriers carrying a variety of biomolecules such as proteins, nucleic acids, lipids and metabolites, making them as potential liquid biopsy biomarkers for BC diagnosis and prognosis. We also described the clinical applications of BC derived sEVs associated MiRs in the diagnosis and treatment of BC along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
12
|
Yi X, Chen J, Huang D, Feng S, Yang T, Li Z, Wang X, Zhao M, Wu J, Zhong T. Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis. Front Oncol 2022; 12:966981. [PMID: 36119470 PMCID: PMC9472136 DOI: 10.3389/fonc.2022.966981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/01/2022] [Indexed: 12/11/2022] Open
Abstract
Exosomes are a heterogeneous subset of extracellular vesicles (EVs) that biogenesis from endosomes. Besides, exosomes contain a variety of molecular cargoes including proteins, lipids and nucleic acids, which play a key role in the mechanism of exosome formation. Meanwhile, exosomes are involved with physiological and pathological conditions. The molecular profile of exosomes reflects the type and pathophysiological status of the originating cells so could potentially be exploited for diagnostic of cancer. This review aims to describe important molecular cargoes involved in exosome biogenesis. In addition, we highlight exogenous factors, especially autophagy, hypoxia and pharmacology, that regulate the release of exosomes and their corresponding cargoes. Particularly, we also emphasize exosome molecular cargoes as potential biomarkers in liquid biopsy for diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaomei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shuo Feng
- English Teaching and Research Section, Gannan Healthcare Vocational College, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiyang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
13
|
Wang H, Li W, Zheng SJ. Advances on Innate Immune Evasion by Avian Immunosuppressive Viruses. Front Immunol 2022; 13:901913. [PMID: 35634318 PMCID: PMC9133627 DOI: 10.3389/fimmu.2022.901913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
Innate immunity is not only the first line of host defense against pathogenic infection, but also the cornerstone of adaptive immune response. Upon pathogenic infection, pattern recognition receptors (PRRs) of host engage pathogen-associated molecular patterns (PAMPs) of pathogens, which initiates IFN production by activating interferon regulatory transcription factors (IRFs), nuclear factor-kappa B (NF-κB), and/or activating protein-1 (AP-1) signal transduction pathways in host cells. In order to replicate and survive, pathogens have evolved multiple strategies to evade host innate immune responses, including IFN-I signal transduction, autophagy, apoptosis, necrosis, inflammasome and/or metabolic pathways. Some avian viruses may not be highly pathogenic but they have evolved varied strategies to evade or suppress host immune response for survival, causing huge impacts on the poultry industry worldwide. In this review, we focus on the advances on innate immune evasion by several important avian immunosuppressive viruses (infectious bursal disease virus (IBDV), Marek’s disease virus (MDV), avian leukosis virus (ALV), etc.), especially their evasion of PRRs-mediated signal transduction pathways (IFN-I signal transduction pathway) and IFNAR-JAK-STAT signal pathways. A comprehensive understanding of the mechanism by which avian viruses evade or suppress host immune responses will be of help to the development of novel vaccines and therapeutic reagents for the prevention and control of infectious diseases in chickens.
Collapse
Affiliation(s)
- Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Shijun J. Zheng,
| |
Collapse
|