1
|
Wu J, Xu S, Li Z, Cong B, Yang Z, Yang Z, Gao W, Liu S, Yu Z, Xu S, Li N, Hou J, Wang G, Cao X, Liu S. SARS-CoV-2 enhances complement-mediated endothelial injury via the suppression of membrane complement regulatory proteins. Emerg Microbes Infect 2025; 14:2467781. [PMID: 39945674 PMCID: PMC11873982 DOI: 10.1080/22221751.2025.2467781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Complement hyperactivation and thrombotic microangiopathy are closely associated with severe COVID-19. Endothelial dysfunction is a key mechanism underlying thrombotic microangiopathy. To address the relationship between endothelial injury, complement activation and thrombotic microangiopathy of severe COVID-19, we wonder whether, and if so, what and how SARS-CoV-2 factors make endothelial cells (ECs) sensitive to complement-mediated cytotoxicity. We revealed that multiple SARS-CoV-2 proteins enhanced complement-mediated cytotoxicity to ECs by inhibiting membrane complement regulatory proteins (CRPs) and enhancing the deposition of complement-recognizing component FCN1. By screening with CRISPR/Cas9-gRNA libraries, we identified that ADAMTS9, SYAP1, and HIGD1A as intrinsic regulators of CD59 on ECs, which were inhibited by the SARS-CoV-2 M, NSP16, and ORF9b proteins. IFN-γ, GM-CSF, and IFN-α upregulated CD55 and CD59, while IFN-γ antagonized the inhibition of CD59 by the three SARS-CoV-2 proteins. So, the deficiency of IFN-γ weakened the protection of ECs by CRPs against complement-mediated injury which may be enhanced during infection. Our findings illustrated the regulation of protection against complement-mediated attack on self-cells by SARS-CoV-2 infection and immune responses, providing insights into endothelial injury, thrombotic microangiopathy, and potential targets for treating severe COVID-19.
Collapse
Affiliation(s)
- Jian Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Boyi Cong
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhichao Yang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Wanfeng Gao
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhou Yu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shuxun Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Ivan V, Tatiana U, Alexandra P, Mikhail N, Artem I, Valeriia P, Elena G, Irina S, Valentina M, Maria S, Yurii P, Sofya P, Petr S. Transcriptomic analysis of differential expression between surviving and nonsurviving patients infected by the SARS-CoV-2 Delta variant. Sci Rep 2025; 15:16844. [PMID: 40374692 DOI: 10.1038/s41598-025-00280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/28/2025] [Indexed: 05/17/2025] Open
Abstract
For a more precise understanding of the course of the pathological process in patients with severe COVID-19, it is necessary to continue the search for factors that affect the course of the pathological process and the possibility of a favorable outcome in critically ill patients. Comparative RNA-seq analysis of the transcriptome of peripheral blood mononuclear cell (PBMCs) in patients with a severe clinical course of COVID-19 caused by the SARS-CoV-2 Delta strain revealed a number of differentially expressed genes that distinguish patients with different clinical outcomes (survivors vs. nonsurvivors) in the period of 30 days after admission to the hospital. Most of them are associated with the "negative regulation of viral process" and "negative regulation of immune response" clusters. Moreover, in surviving patients, there is increased expression of the key genes C1QB, C1QA, ISG15, SERPING1, VSIG4, KLRD1, TRPM4, and HFE incorporated in these clusters. Among these key genes, the ISG15 gene, which links several clusters of gene ontology enrichments and encodes an interferon-induced ubiquitin-like protein, deserves special attention. Its product, ISG15, is known to be a primary substrate for SARS-CoV-2 protease PLpro, which plays a role in counteracting hosts' antiviral mechanisms.
Collapse
Affiliation(s)
- Vlasov Ivan
- National Research Center «Kurchatov Institute», Moscow, Russian Federation.
| | - Usenko Tatiana
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Panteleeva Alexandra
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Nikolaev Mikhail
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Izumchenko Artem
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Panafidina Valeriia
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Gavrilova Elena
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Shlyk Irina
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Miroshnikova Valentina
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
| | - Shadrina Maria
- National Research Center «Kurchatov Institute», Moscow, Russian Federation
| | - Polushin Yurii
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
| | - Pchelina Sofya
- Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg, Russian Federation
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center «Kurchatov Institute», Saint-Petersburg, Russian Federation
- Kurchatov Genome Center-PNPI, Saint-Petersburg, Russian Federation
| | - Slominsky Petr
- National Research Center «Kurchatov Institute», Moscow, Russian Federation
| |
Collapse
|
3
|
Szachowicz PJ, Wohlford-Lenane C, Donelson CJ, Ghimire S, Thurman A, Xue B, Boly TJ, Verma A, MašinoviĆ L, Bermick JR, Rehman T, Perlman S, Meyerholz DK, Pezzulo AA, Zhang Y, Smith RJ, McCray PB. Complement is primarily activated in the lung in a mouse model of severe COVID-19. iScience 2025; 28:111930. [PMID: 40034849 PMCID: PMC11875145 DOI: 10.1016/j.isci.2025.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
In vitro studies and observational human disease data suggest the complement system contributes to SARS-CoV-2 pathogenesis, although how complement dysregulation develops in severe COVID-19 is unknown. Here, using a mouse-adapted SARS-CoV-2 virus (SARS2-N501YMA30) and a mouse model of COVID-19, we identify significant serologic and pulmonary complement activation post-infection. We observed C3 activation in airway and alveolar epithelia, and pulmonary vascular endothelia. Our evidence suggests the alternative pathway is the primary route of complement activation, however, components of both the alternative and classical pathways are produced locally by respiratory epithelial cells following infection, and increased in primary cultures of human airway epithelia following cytokine and SARS-CoV-2 exposure. This tissue-specific complement response appears to precede lung injury and inflammation. Our results suggest that complement activation is a defining feature of severe COVID-19 in mice, agreeing with previous publications, and provide the basis for further investigation into the role of complement in COVID-19.
Collapse
Affiliation(s)
- Peter J. Szachowicz
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | | | - Cobey J. Donelson
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shreya Ghimire
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | - Andrew Thurman
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | - Biyun Xue
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Timothy J. Boly
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Abhishek Verma
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Leila MašinoviĆ
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | - Jennifer R. Bermick
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
| | - Tayyab Rehman
- Department of Inernal Medicine, University of Michigan, Division of Pulmonary and Critical Care Medicine, Ann Arbor, MI 48109, USA
| | - Stanley Perlman
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - David K. Meyerholz
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA 52242, USA
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Azoulay E, Zuber J, Bousfiha AA, Long Y, Tan Y, Luo S, Essafti M, Annane D. Complement system activation: bridging physiology, pathophysiology, and therapy. Intensive Care Med 2024; 50:1791-1803. [PMID: 39254734 DOI: 10.1007/s00134-024-07611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024]
Abstract
The complement system is a set of over 50 proteins that constitutes an essential part of the innate immune system. Complement system activation involves an organized proteolytic cascade. Overactivation of complement system activation is the main pathogenic mechanism of several diseases and contributes to the manifestations of many other conditions. This review describes the normal complement system and the role for complement dysregulation in critical illnesses, notably sepsis and acute respiratory distress syndrome. Complement activation is involved in the immune system response to pathogens but, when excessive, can contribute to tissue damage, runaway inflammation, and capillary leakage syndrome. Complement overactivation may play a key role in severe forms of coronavirus disease 2019 (COVID-19). Two diseases whose manifestations are mainly caused by complement overactivation, namely, atypical hemolytic and uremic syndrome (aHUS) and myasthenia gravis, are discussed. A diagnostic algorithm for aHUS is provided. Early complement-inhibiting therapy has been proven effective. When renal transplantation is required, complement-inhibiting drugs can be used prophylactically to prevent aHUS recurrence. Similarly, acetylcholine-receptor autoantibody-positive generalized myasthenia gravis involves complement system overactivation and responds to complement inhibition. The two main complement inhibitors used in to date routine are eculizumab and ravulizumab. The main adverse event is Neisseria infection, which is rare and preventable, but can be fatal. The complement system is crucial to health but, when overactivated, can cause or contribute to disease. Effective complement inhibitors are now available, although additional data are required to determine optimal regimens. Further research is also needed to better understand the complement system, develop advanced diagnostic tools, and identify markers that allow the personalization of treatment strategies.
Collapse
Affiliation(s)
- Elie Azoulay
- Intensive Care Unit, Saint-Louis University Hospital, AP-HP, Paris Cité University, Paris, France.
| | - Julien Zuber
- Department of Kidney and Metabolic Diseases, Transplantation and Clinical Immunology, Necker University Hospital, AP-HP, Paris, France
| | - Ahmed Aziz Bousfiha
- Department of Pediatric Infectious and Immunological Diseases, IbnRochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology, Inflammation and Allergy (LICIA), Casablanca, Morocco
- School of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
- Institute of Nephrology, Peking University, Beijing, PR China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, PR China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China
- Huashan Rare Diseases Center, Huashan Hospital, Fudan University, Shanghai, PR China
- National Center for Neurological Diseases, Shanghai, PR China
| | - Meriem Essafti
- Intensive Care Department, Mother-Children Center, Mohamed VI University Hospital, Marrakech, Morocco
| | - Djillali Annane
- Department of Intensive Care, Raymond Poincaré Hospital, AP-HP, Garches, France
- Simone Veil School of Medicine, Versailles-Saint Quentin University, Paris-Saclay University, Versaillles, France
- Institut Hospitalo-Universitaire PROMETHEUS & Fédération Hospitalo-Universitaire SEPSIS, Paris-Saclay University, Saclay, France
- INSERM, Garches, France
| |
Collapse
|
5
|
Seki K, Sueyoshi K, Miyoshi Y, Nakamura Y, Ishihara T, Kondo Y, Kuroda Y, Yonekura A, Iwabuchi K, Okamoto K, Tanaka H. Complement activation and lung injury in Japanese patients with COVID-19: a prospective observational study. Sci Rep 2024; 14:24895. [PMID: 39438600 PMCID: PMC11496683 DOI: 10.1038/s41598-024-76365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Background The production of inflammatory cytokines is reportedly increased in patients with coronavirus disease 2019 (COVID-19), causing the migration of neutrophils and monocytes to lung tissues. This disrupts the air-blood barrier by damaging the bronchial epithelial and vascular endothelial cells. As multiorgan dysfunction in sepsis is considered to be partly caused by complement activation, which can cause lung injury in patients with COVID-19. There are limited studies examining the link between complement activation in patients with COVID-19. This study aimed to AQinvestigate the association of complement activation with the pathophysiology of COVID-19. Twenty-seven patients with COVID-19 were enrolled in this study and classified into two groups depending on the indication for mechanical ventilation. Plasma complement factors (C3a, C5a, Ba, and sC5b-9), complement regulators (sCD59 and factor H), interleukin-6 (IL-6), and syndecan-1 levels were measured using Enzyme-linked immunosorbent assay (ELISA). Results: All complement factors and regulators, IL-6, and syndecan-1 levels were significantly elevated in patients with COVID-19 compared with those in healthy controls. C5a and sC5b-9 levels were decreased significantly in the invasive mechanical ventilation (IMV) group compared with those in the non-IMV group. Syndecan-1 levels were significantly increased in the IMV group compared with those in the non-IMV group. Conclusions: Complement activation is an exacerbating factor for lung injury in patients with COVID-19. Complement factors are nonessential predictors of mechanical ventilation; however, syndecan-1 could be a biomarker of COVID-19 severity in patients.
Collapse
Affiliation(s)
- Kentaro Seki
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Koichiro Sueyoshi
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan.
| | - Yukari Miyoshi
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Yuki Nakamura
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Yoko Kuroda
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Ayumi Yonekura
- Institute for Environmental and Gender Specific Medicine, Juntendo University, Urayasu, Chiba, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine, Juntendo University, Urayasu, Chiba, Japan
| | - Ken Okamoto
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
| |
Collapse
|
6
|
Yu Q, Zhou X, Kapini R, Arsecularatne A, Song W, Li C, Liu Y, Ren J, Münch G, Liu J, Chang D. Cytokine Storm in COVID-19: Insight into Pathological Mechanisms and Therapeutic Benefits of Chinese Herbal Medicines. MEDICINES (BASEL, SWITZERLAND) 2024; 11:14. [PMID: 39051370 PMCID: PMC11270433 DOI: 10.3390/medicines11070014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and life-threatening concern. At present, vaccines are strongly recommended as safe and effective treatments for preventing serious illness or death from COVID-19. However, effective treatment options are still lacking for people who are at the most risk or hospitalized with severe disease. Chinese herbal medicines have been shown to improve the clinical outcomes of mild to severe COVID-19 as an adjunct therapy, particular preventing the development of mild to severe ARDS. This review illustrates in detail the pathogenesis of CS-involved ARDS and its associated key molecular targets, cytokines and signalling pathways. The therapeutic targets were identified particularly in relation to the turning points of the development of COVID-19, from mild symptoms to severe ARDS. Preclinical and clinical studies were reviewed for the effects of Chinese herbal medicines together with conventional therapies in reducing ARDS symptoms and addressing critical therapeutic targets associated with CS. Multiple herbal formulations, herbal extracts and single bioactive phytochemicals with or without conventional therapies demonstrated strong anti-CS effects through multiple mechanisms. However, evidence from larger, well-designed clinical trials is lacking and their detailed mechanisms of action are yet to be well elucidated. More research is warranted to further evaluate the therapeutic value of Chinese herbal medicine for CS in COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wenting Song
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| |
Collapse
|
7
|
Kocsis A, Bartus D, Hirsch E, Józsi M, Hajdú I, Dobó J, Balczer J, Pál G, Gál P. SARS-CoV-2 Nucleocapsid Protein Is Not Responsible for Over-Activation of Complement Lectin Pathway. Int J Mol Sci 2024; 25:7343. [PMID: 39000451 PMCID: PMC11242754 DOI: 10.3390/ijms25137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral structural protein that is abundant in the circulation of infected individuals. Previous published studies reported controversial data about the role of the N protein in the activation of the complement system. It was suggested that the N protein directly interacts with mannose-binding lectin-associated serine protease-2 (MASP-2) and stimulates lectin pathway overactivation/activity. In order to check these data and to reveal the mechanism of activation, we examined the effect of the N protein on lectin pathway activation. We found that the N protein does not bind to MASP-2 and MASP-1 and it does not stimulate lectin pathway activity in normal human serum. Furthermore, the N protein does not facilitate the activation of zymogen MASP-2, which is MASP-1 dependent. Moreover, the N protein does not boost the enzymatic activity of MASP-2 either on synthetic or on protein substrates. In some of our experiments, we observed that MASP-2 digests the N protein. However, it is questionable, whether this activity is biologically relevant. Although surface-bound N protein did not activate the lectin pathway, it did trigger the alternative pathway in 10% human serum. Additionally, we detected some classical pathway activation by the N protein. Nevertheless, we demonstrated that this activation was induced by the bound nucleic acid, rather than by the N protein itself.
Collapse
Affiliation(s)
- Andrea Kocsis
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Dalma Bartus
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, H-1117 Budapest, Hungary
| | - István Hajdú
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - József Dobó
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Júlia Balczer
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Péter Gál
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Hungarian Research Network, H-1117 Budapest, Hungary
| |
Collapse
|
8
|
Kang YH, Varghese PM, Aiyan AA, Pondman K, Kishore U, Sim RB. Complement-Coagulation Cross-talk: Factor H-mediated regulation of the Complement Classical Pathway activation by fibrin clots. Front Immunol 2024; 15:1368852. [PMID: 38933264 PMCID: PMC11199686 DOI: 10.3389/fimmu.2024.1368852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024] Open
Abstract
The classical pathway of the complement system is activated by the binding of C1q in the C1 complex to the target activator, including immune complexes. Factor H is regarded as the key downregulatory protein of the complement alternative pathway. However, both C1q and factor H bind to target surfaces via charge distribution patterns. For a few targets, C1q and factor H compete for binding to common or overlapping sites. Factor H, therefore, can effectively regulate the classical pathway activation through such targets, in addition to its previously characterized role in the alternative pathway. Both C1q and factor H are known to recognize foreign or altered-self materials, e.g., bacteria, viruses, and apoptotic/necrotic cells. Clots, formed by the coagulation system, are an example of altered self. Factor H is present abundantly in platelets and is a well-known substrate for FXIIIa. Here, we investigated whether clots activate the complement classical pathway and whether this is regulated by factor H. We show here that both C1q and factor H bind to the fibrin formed in microtiter plates and the fibrin clots formed under in vitro physiological conditions. Both C1q and factor H become covalently bound to fibrin clots, and this is mediated via FXIIIa. We also show that fibrin clots activate the classical pathway of complement, as demonstrated by C4 consumption and membrane attack complex detection assays. Thus, factor H downregulates the activation of the classical pathway induced by fibrin clots. These results elucidate the intricate molecular mechanisms through which the complement and coagulation pathways intersect and have regulatory consequences.
Collapse
Affiliation(s)
- Yu-Hoi Kang
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- MediMabBio Inc., Pangyo Business Growth Centre, Gyeonggi-do, Republic of Korea
| | - Praveen M. Varghese
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kirsten Pondman
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, Netherlands
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Robert B. Sim
- Medical Research Council Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Bally I, Drumont G, Rossi V, Guseva S, Botova M, Reiser JB, Thépaut M, Dergan Dylon S, Dumestre-Pérard C, Gaboriaud C, Fieschi F, Blackledge M, Poignard P, Thielens NM. Revisiting the interaction between complement lectin pathway protease MASP-2 and SARS-CoV-2 nucleoprotein. Front Immunol 2024; 15:1419165. [PMID: 38911852 PMCID: PMC11190312 DOI: 10.3389/fimmu.2024.1419165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Complement activation is considered to contribute to the pathogenesis of severe SARS-CoV-2 infection, mainly by generating potent immune effector mechanisms including a strong inflammatory response. Involvement of the lectin complement pathway, a major actor of the innate immune anti-viral defense, has been reported previously. It is initiated by recognition of the viral surface Spike glycoprotein by mannose-binding lectin (MBL), which induces activation of the MBL-associated protease MASP-2 and triggers the proteolytic complement cascade. A role for the viral nucleoprotein (N) has also been reported, through binding to MASP-2, leading to protease overactivation and potentiation of the lectin pathway. In the present study, we reinvestigated the interactions of the SARS-CoV-2 N protein, produced either in bacteria or secreted by mammalian cells, with full-length MASP-2 or its catalytic domain, in either active or proenzyme form. We could not confirm the interaction of the N protein with the catalytic domain of MASP-2 but observed N protein binding to proenzyme MASP-2. We did not find a role of the N protein in MBL-mediated activation of the lectin pathway. Finally, we showed that incubation of the N protein with MASP-2 results in proteolysis of the viral protein, an observation that requires further investigation to understand a potential functional significance in infected patients.
Collapse
Affiliation(s)
| | | | | | | | - Maiia Botova
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | | | | | | | - Chantal Dumestre-Pérard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratory of Immunology, Grenoble Alpes University Hospital, Grenoble, France
| | | | | | | | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
- Laboratory of Virology, Grenoble Alpes University Hospital, Grenoble, France
| | | |
Collapse
|
10
|
Violi F, Harenberg J, Pignatelli P, Cammisotto V. COVID-19 and Long-COVID Thrombosis: From Clinical and Basic Science to Therapeutics. Thromb Haemost 2024; 124:286-296. [PMID: 37967846 DOI: 10.1055/s-0043-1776713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Coronavirus infectious disease-19 (COVID-19) is a pandemic characterized by serious lung disease and thrombotic events in the venous and circulation trees, which represent a harmful clinical sign of poor outcome. Thrombotic events are more frequent in patients with severe disease requiring intensive care units and are associated with platelet and clotting activation. However, after resolution of acute infection, patients may still have clinical sequelae, the so-called long-COVID-19, including thrombotic events again in the venous and arterial circulation. The mechanisms accounting for thrombosis in acute and long COVID-19 have not been fully clarified; interactions of COVID-19 with angiotensin converting enzyme 2 or toll-like receptor family or infection-induced cytokine storm have been suggested to be implicated in endothelial cells, leucocytes, and platelets to elicit clotting activation in acute as well in chronic phase of the disease. In acute COVID-19, prophylactic or full doses of anticoagulants exert beneficial effects even if the dosage choice is still under investigation; however, a residual risk still remains suggesting a need for a more appropriate therapeutic approach. In long COVID-19 preliminary data provided useful information in terms of antiplatelet treatment but definition of candidates for thrombotic prophylaxis is still undefined.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Job Harenberg
- Medical Faculty Mannheim, Ruprecht-karls University Heidelberg, Heidelberg, Germany
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Via Orazio, Naples, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Tomo S, Kiran Kumar PVSN, Yadav D, Sankanagoudar S, Charan J, Purohit A, Nag VL, Bhatia PK, Singh K, Dutt N, Garg MK, Misra S, Sharma P, Purohit P. Association of Serum Complement C3 Levels with Severity and Mortality in COVID 19. Indian J Clin Biochem 2023; 38:447-456. [PMID: 37746543 PMCID: PMC10516839 DOI: 10.1007/s12291-023-01148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023]
Abstract
The severe acute respiratory distress syndrome-associated coronavirus-2 infection can activate innate and adaptive immune responses which may lead to harmful tissue damage, both locally and systemically. C3, a member of complement system of serum proteins, is a major component of innate immune and inflammatory responses. This study is aimed to assess serum C3 as a marker of COVID-19 severity and a predictor of disease progression. A total of 150 COVID-19 patients, confirmed by RT-PCR, and 50 healthy controls were recruited. Serum C3 levels were determined by using direct colorimetric method. Median levels of serum C3 in total cases and controls were 157.8 and 165.7 mg/dL respectively. Serum C3 although not significantly decreased, they were lower in cases when compared to controls. Similarly, significant differences were found between the groups, with severe group (140.6 mg/dL) having low levels of serum C3 protein when compared to mild (161.0 mg/dL) and moderate group (167.1 mg/dL). Interestingly, during hospitalization, significant difference between baseline (admission) and follow-up (discharge) was observed only in patients with moderate disease. Based on our results, lower levels of C3, with an increase in IL-6 and d-dimer levels, are associated with higher odds of mortality. Therefore, we would like to emphasize that measuring serum C3 levels along with other inflammatory markers might give an added advantage in early identification of patients who are prone to having a severe disease course and can help in a more effective follow-up of disease progression. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-023-01148-x.
Collapse
Affiliation(s)
- Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - PVSN Kiran Kumar
- Department of Biochemistry, Andhra Medical College, Visakhapatnam, India
| | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Shrimanjunath Sankanagoudar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Jayakaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhishek Purohit
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Vijaya Lakshmi Nag
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pradeep Kumar Bhatia
- Department of Anaesthesiology and Critical Care, All India Institute of Medical Sciences, Jodhpur, India
| | - Kuldeep Singh
- Department of Paediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Naveen Dutt
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Mahendra Kumar Garg
- Department of General Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Jodhpur, Basni Phase 2, Jodhpur, Rajasthan 342005 India
| |
Collapse
|
12
|
Reis BCSD, Soares Faccion R, de Carvalho FAA, Moore DCBC, Zuma MCC, Plaça DR, Salerno Filgueiras I, Leandro Mathias Fonseca D, Cabral-Marques O, Bonomo AC, Savino W, Freitas FCDP, Faoro H, Passetti F, Robaina JR, de Oliveira FRC, Novaes Bellinat AP, Zeitel RDS, Salú MDS, de Oliveira MBG, Rodrigues-Santos G, Prata-Barbosa A, de Vasconcelos ZFM. Rare genetic variants involved in multisystem inflammatory syndrome in children: a multicenter Brazilian cohort study. Front Cell Infect Microbiol 2023; 13:1182257. [PMID: 37588055 PMCID: PMC10426286 DOI: 10.3389/fcimb.2023.1182257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction Despite the existing data on the Multisystem Inflammatory Syndrome in Children (MIS-C), the factors that determine these patients evolution remain elusive. Answers may lie, at least in part, in genetics. It is currently under investigation that MIS-C patients may have an underlying innate error of immunity (IEI), whether of monogenic, digenic, or even oligogenic origin. Methods To further investigate this hypothesis, 30 patients with MIS-C were submitted to whole exome sequencing. Results Analyses of genes associated with MIS-C, MIS-A, severe covid-19, and Kawasaki disease identified twenty-nine patients with rare potentially damaging variants (50 variants were identified in 38 different genes), including those previously described in IFNA21 and IFIH1 genes, new variants in genes previously described in MIS-C patients (KMT2D, CFB, and PRF1), and variants in genes newly associated to MIS-C such as APOL1, TNFRSF13B, and G6PD. In addition, gene ontology enrichment pointed to the involvement of thirteen major pathways, including complement system, hematopoiesis, immune system development, and type II interferon signaling, that were not yet reported in MIS-C. Discussion These data strongly indicate that different gene families may favor MIS- C development. Larger cohort studies with healthy controls and other omics approaches, such as proteomics and RNAseq, will be precious to better understanding the disease dynamics.
Collapse
Affiliation(s)
- Bárbara Carvalho Santos Dos Reis
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Departamento de Imunologia, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Roberta Soares Faccion
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Flavia Amendola Anisio de Carvalho
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Departamento de Imunologia, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Daniella Campelo Batalha Cox Moore
- Unidade de Pacientes Graves, Departamento de Pediatria, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, RJ, Brazil
| | - Maria Celia Chaves Zuma
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Desirée Rodrigues Plaça
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas (FCF), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Programa de Pós-Graduação em Farmácia (Fisiopatologia e Toxicologia), FCF, USP, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), USP, São Paulo, SP, Brazil
| | - Dennyson Leandro Mathias Fonseca
- Programa Interunidades de Pós-graduação em Bioinformática, Instituto de Matemática e Estatística (IME), USP, São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas (FCF), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), USP, São Paulo, SP, Brazil
- Programa Interunidades de Pós-graduação em Bioinformática, Instituto de Matemática e Estatística (IME), USP, São Paulo, SP, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, SP, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Adriana Cesar Bonomo
- Laboratoírio de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede FAPERJ de Pesquisa em Neuroinflamação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede INOVA-IOC em Neuroimunomodulação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Wilson Savino
- Laboratoírio de Pesquisas Sobre o Timo, Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Instituto National de Ciencia e Tecnologia em Neuroimunomodulação (INCT/NIM), IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede FAPERJ de Pesquisa em Neuroinflamação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Rede INOVA-IOC em Neuroimunomodulação, IOC, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Helisson Faoro
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas (ICC), FIOCRUZ, Curitiba, PR, Brazil
| | - Fabio Passetti
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas (ICC), FIOCRUZ, Curitiba, PR, Brazil
| | | | | | | | - Raquel de Seixas Zeitel
- Pediatric Intensive Care Unit, Hospital Universitário Pedro Ernesto (HUPE), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Margarida dos Santos Salú
- Programa de Pós Graduação em Pesquisa Aplicada à Saúde da Criança e da Mulher, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira (IFF), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- Laboratório de Alta Complexidade (LACIFF), Unidade de Pesquisa Clínica, IFF, FIOCRUZ, Rio de Janeiro, RJ, Brazil
- Pediatric Intensive Care Unit, Hospital Martagão Gesteira, Salvador, BA, Brazil
| | | | | | - Arnaldo Prata-Barbosa
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
- Pediatric Intensive Care Unit, Instituto de Puericultura e Pediatria Martagão Gesteira (IPPMG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
13
|
Zelek WM, Harrison RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology 2023; 228:152393. [PMID: 37187043 PMCID: PMC10174470 DOI: 10.1016/j.imbio.2023.152393] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus was identified in China in 2019 as the causative agent of COVID-19, and quickly spread throughout the world, causing over 7 million deaths, of which 2 million occurred prior to the introduction of the first vaccine. In the following discussion, while recognising that complement is just one of many players in COVID-19, we focus on the relationship between complement and COVID-19 disease, with limited digression into directly-related areas such as the relationship between complement, kinin release, and coagulation. Prior to the 2019 COVID-19 outbreak, an important role for complement in coronavirus diseases had been established. Subsequently, multiple investigations of patients with COVID-19 confirmed that complement dysregulation is likely to be a major driver of disease pathology, in some, if not all, patients. These data fuelled evaluation of many complement-directed therapeutic agents in small patient cohorts, with claims of significant beneficial effect. As yet, these early results have not been reflected in larger clinical trials, posing questions such as who to treat, appropriate time to treat, duration of treatment, and optimal target for treatment. While significant control of the pandemic has been achieved through a global scientific and medical effort to comprehend the etiology of the disease, through extensive SARS-CoV-2 testing and quarantine measures, through vaccine development, and through improved therapy, possibly aided by attenuation of the dominant strains, it is not yet over. In this review, we summarise complement-relevant literature, emphasise its main conclusions, and formulate a hypothesis for complement involvement in COVID-19. Based on this we make suggestions as to how any future outbreak might be better managed in order to minimise impact on patients.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Dementia Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
14
|
Goff LM, Davies K, Zelek WM, Kodosaki E, Hakim O, Lockhart S, O’Rahilly S, Morgan BP. Ethnic differences in complement system biomarkers and their association with metabolic health in men of Black African and White European ethnicity. Clin Exp Immunol 2023; 212:52-60. [PMID: 36722378 PMCID: PMC10081104 DOI: 10.1093/cei/uxad011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/18/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023] Open
Abstract
Inflammation plays a fundamental role in the development of several metabolic diseases, including obesity and type 2 diabetes (T2D); the complement system has been implicated in their development. People of Black African (BA) ethnicity are disproportionately affected by T2D and other metabolic diseases but the impact of ethnicity on the complement system has not been explored. We investigated ethnic differences in complement biomarkers and activation status between men of BA and White European (WE) ethnicity and explored their association with parameters of metabolic health. We measured a panel of 15 complement components, regulators, and activation products in fasting plasma from 89 BA and 96 WE men. Ethnic differences were statistically validated. Association of complement biomarkers with metabolic health indices (BMI, waist circumference, insulin resistance, and HbA1c) were assessed in the groups. Plasma levels of the key complement components C3 and C4, the regulators clusterin and properdin and the activation marker iC3b were significantly higher in BA compared to WE men after age adjustment, while FD levels were significantly lower. C3 and C4 levels positively correlated with some or all markers of metabolic dysfunction in both ethnic groups while FD was inversely associated with HbA1c in both groups, and clusterin and properdin were inversely associated with some markers of metabolic dysfunction only in the WE group. Our findings of increased levels of complement components and activation products in BA compared to WE men suggest differences in complement regulation that may impact susceptibility to poor metabolic health.
Collapse
Affiliation(s)
- L M Goff
- Department of Nutritional Sciences, School of Population & Life Course Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - K Davies
- Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - W M Zelek
- Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - E Kodosaki
- Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - O Hakim
- Department of Nutritional Sciences, School of Population & Life Course Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
- School of Life & Health Sciences, University of Roehampton, London, UK
| | - S Lockhart
- MRC Metabolic Diseases Unit & Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - S O’Rahilly
- MRC Metabolic Diseases Unit & Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - B P Morgan
- Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Hurler L, Szilágyi Á, Mescia F, Bergamaschi L, Mező B, Sinkovits G, Réti M, Müller V, Iványi Z, Gál J, Gopcsa L, Reményi P, Szathmáry B, Lakatos B, Szlávik J, Bobek I, Prohászka ZZ, Förhécz Z, Csuka D, Kajdácsi E, Cervenak L, Kiszel P, Masszi T, Vályi-Nagy I, Würzner R, Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID BioResource Collaboration BakerStephenBradleyJohn R.ChinneryPatrick F.CooperDaniel J.DouganGordonGoodfellowIan G.GuptaRavindra K.KingstonNathalieLehnerPaul J.LyonsPaul A.MathesonNicholas J.SaundersCarolineSmithKenneth G. C.SummersCharlotteThaventhiranJamesTorokM. EsteeToshnerMark R.WeekesMichael P.AlvioGiseleBakerSharonBermperiAretiBrookesKarenBuckeAshleaCalderJoCannaLauraCrucusioCherryCruzIsabelde JesusRnalieDempseyKatieDi StephanoGiovanniDomingoJasonElmerAnneHarrisJulieHewittSarahJonesHeatherJoseSherlyKennetJaneKingYvonneKourampaJennyLiEmilyMcMahonCarolineMeadowsAnneMendozaVivienO’BrienCrionaOcayaCharmainPascualeCiroPeralesMarlynPriceJaneRastallRebeccaRibeiroCarlaRowlandsJaneRuffoloValentinaTordesillasHugoVargasPhoebeVergeseBensiWatsonLauraWorsleyJienieanZerrudoJulie-AnnBergamaschiLauraBetancourtArianaBowerGeorgieBullmanBenCossettiChiaraDe SaAlokaDunoreBenjamin J.EppingMaddieFawkeStuartGräfStefanGrenfellRichardHinchAndrewHodgsonJoshHuangChristopherHuhnOisinHunterKelvinJarvisIsobelJonesEmmaJosipovićMašaLegchenkoEkaterinaLewisDanielMarsdenJoeMartinJenniferMesciaFedericaNiceFrancescaO’DonnellCiaraOmarjeeOmmarPereraMariannePointonLindaPondNicoleRichozNathanRomashovaNikaSavoinykhNataliaSharmaRahulShihJoyStrezleckiMateuszSutcliffeRachelTillyTobiasTongZhenTreacyCarmenTurnerLoriWoodJenniferWylotMartaAllisonJohnBiggsHeatherButcherHelenCaputoDanielaClapham-RileyDebbieDewhurstEleanorFernandezChristianFurlongAnitaGravesBarbaraGrayJenniferIversTasminLe GresleyEmmaLingerRachelKasanickiMaryMeloySarahMuldoonFrancescaOvingtonNigelPapadiaSofiaPenkettChristopher J.PhelanIsabelRanganathVenkateshSambrookJenniferSchonKatherineStarkHannahStirrupsKathleen E.TownsendPaulvon ZiegenweidtJulieWebsterJenniferAsaripourAliMwauraLucyPattersonCarolinePolwarthGaryBunclarkKatherineMackayMichaelMichaelAliceRossiSabrinaSelvanMayurunSpencerSarahYongCissyPolgarovaPetra, Lyons PA, Toonen EJM, Prohászka Z. Complement lectin pathway activation is associated with COVID-19 disease severity, independent of MBL2 genotype subgroups. Front Immunol 2023; 14:1162171. [PMID: 37051252 PMCID: PMC10084477 DOI: 10.3389/fimmu.2023.1162171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionWhile complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood.MethodsWe therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome.ResultsWe show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID.ConclusionIn conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted.
Collapse
Affiliation(s)
- Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Blanka Mező
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Marienn Réti
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zsolt Iványi
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - János Gál
- Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - László Gopcsa
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Péter Reményi
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Beáta Szathmáry
- Department of Infectology, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Botond Lakatos
- Department of Infectology, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - János Szlávik
- Department of Infectology, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Ilona Bobek
- Department of Anaesthesiology and Intensive Therapy, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Zita Z. Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zsolt Förhécz
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Petra Kiszel
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Tamás Masszi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - István Vályi-Nagy
- Department of Haematology and Stem Cell Transplantation, Central Hospital of Southern Pest - Institute of Haematology and Infectious Diseases, Budapest, Hungary
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Erik J. M. Toonen
- Research and Development Department, Hycult Biotech, Uden, Netherlands
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
- *Correspondence: Zoltán Prohászka,
| |
Collapse
|
16
|
Tsiftsoglou SA, Gavriilaki E, Touloumenidou T, Koravou EE, Koutra M, Papayanni PG, Karali V, Papalexandri A, Varelas C, Chatzopoulou F, Chatzidimitriou M, Chatzidimitriou D, Veleni A, Rapti E, Kioumis I, Kaimakamis E, Bitzani M, Boumpas DT, Tsantes A, Sotiropoulos D, Papadopoulou A, Sakellari I, Kokoris S, Anagnostopoulos A. Targeted genotyping of COVID-19 patients reveals a signature of complement C3 and factor B coding SNPs associated with severe infection. Immunobiology 2023; 228:152351. [PMID: 36805858 PMCID: PMC9928680 DOI: 10.1016/j.imbio.2023.152351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/19/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
We have attempted to explore further the involvement of complement components in the host COVID-19 (Coronavirus disease-19) immune responses by targeted genotyping of COVID-19 adult patients and analysis for missense coding Single Nucleotide Polymorphisms (coding SNPs) of genes encoding Alternative pathway (AP) components. We have identified a small group of common coding SNPs in Survivors and Deceased individuals, present in either relatively similar frequencies (CFH and CFI SNPs) or with stark differences in their relative abundance (C3 and CFB SNPs). In addition, we have identified several sporadic, potentially protective, coding SNPs of C3, CFB, CFD, CFH, CFHR1 and CFI in Survivors. No coding SNPs were detected for CD46 and CD55. Our demographic analysis indicated that the C3 rs1047286 or rs2230199 coding SNPs were present in 60 % of all the Deceased patients (n = 25) (the rs2230199 in 67 % of all Deceased Males) and in 31 % of all the Survivors (n = 105, p = 0.012) (the rs2230199 in 25 % of all Survivor Males). When we analysed these two major study groups using the presence of the C3 rs1047286 or rs2230199 SNPs as potential biomarkers, we noticed the complete absence of the protective CFB rs12614 and rs641153 coding SNPs from Deceased Males compared to Females (p = 0.0023). We propose that in these individuals, C3 carrying the R102G and CFB lacking the R32W or the R32Q amino acid substitutions, may contribute to enhanced association dynamics of the C3bBb AP pre-convertase complex assembly, thus enabling the exploitation of the activation of the Complement Alternative pathway (AP) by SARS-CoV-2.
Collapse
Affiliation(s)
- Stefanos A Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece.
| | - Tasoula Touloumenidou
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | | | - Maria Koutra
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | | | - Vassiliki Karali
- Rheumatology and Clinical Immunology Unit, University General Hospital "Attikon", Αthens, Greece
| | - Apostolia Papalexandri
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Christos Varelas
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Fani Chatzopoulou
- Microbiology Department, Aristotle University of Thessaloniki, Greece
| | - Maria Chatzidimitriou
- Biomedical Sciences Alexander Campus International Hellenic University, Thessaloniki, Greece
| | | | - Anastasia Veleni
- Infectious Disease Committee, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Evdoxia Rapti
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | - Ioannis Kioumis
- Respiratory Failure Department, G Papanicolaou Hospital-Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Milly Bitzani
- 1st Intensive Care Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Dimitrios T Boumpas
- Rheumatology and Clinical Immunology Unit, University General Hospital "Attikon", Αthens, Greece
| | - Argyris Tsantes
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | - Damianos Sotiropoulos
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Anastasia Papadopoulou
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Ioanna Sakellari
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, Exochi, Thessaloniki 57010, Greece
| | - Styliani Kokoris
- Laboratory of Hematology and Hospital Blood Transfusion Department, University General Hospital "Attikon", NKUA, Medical School, Athens, Greece
| | | |
Collapse
|
17
|
Lim EHT, van Amstel RBE, de Boer VV, van Vught LA, de Bruin S, Brouwer MC, Vlaar APJ, van de Beek D. Complement activation in COVID-19 and targeted therapeutic options: A scoping review. Blood Rev 2023; 57:100995. [PMID: 35934552 PMCID: PMC9338830 DOI: 10.1016/j.blre.2022.100995] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Increasing evidence suggests that activation of the complement system plays a key role in the pathogenesis and disease severity of Coronavirus disease 2019 (COVID-19). We used a systematic approach to create an overview of complement activation in COVID-19 based on histopathological, preclinical, multiomics, observational and clinical interventional studies. A total of 1801 articles from PubMed, EMBASE and Cochrane was screened of which 157 articles were included in this scoping review. Histopathological, preclinical, multiomics and observational studies showed apparent complement activation through all three complement pathways and a correlation with disease severity and mortality. The complement system was targeted at different levels in COVID-19, of which C5 and C5a inhibition seem most promising. Adequately powered, double blind RCTs are necessary in order to further investigate the effect of targeting the complement system in COVID-19.
Collapse
Affiliation(s)
- Endry Hartono Taslim Lim
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rombout Benjamin Ezra van Amstel
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Vieve Victoria de Boer
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands
| | - Lonneke Alette van Vught
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands
| | - Sanne de Bruin
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands
| | - Matthijs Christian Brouwer
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alexander Petrus Johannes Vlaar
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Amsterdam, the Netherlands.
| | - Diederik van de Beek
- Amsterdam UMC location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Bouwmeester RN, Bormans EM, Duineveld C, van Zuilen AD, van de Logt AE, Wetzels JF, van de Kar NC. COVID-19 vaccination and Atypical hemolytic uremic syndrome. Front Immunol 2022; 13:1056153. [PMID: 36531998 PMCID: PMC9755835 DOI: 10.3389/fimmu.2022.1056153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction COVID-19 vaccination has been associated with rare but severe complications characterized by thrombosis and thrombocytopenia. Methods and Results Here we present three patients who developed de novo or relapse atypical hemolytic uremic syndrome (aHUS) in native kidneys, a median of 3 days (range 2-15) after mRNA-based (Pfizer/BioNTech's, BNT162b2) or adenoviral (AstraZeneca, ChAdOx1 nCoV-19) COVID-19 vaccination. All three patients presented with evident hematological signs of TMA and AKI, and other aHUS triggering or explanatory events were absent. After eculizumab treatment, kidney function fully recovered in 2/3 patients. In addition, we describe two patients with dubious aHUS relapse after COVID-19 vaccination. To assess the risks of vaccination, we retrospectively evaluated 29 aHUS patients (n=8 with native kidneys) without complement-inhibitory treatment, who received a total of 73 COVID-19 vaccinations. None developed aHUS relapse after vaccination. Conclusion In conclusion, aHUS should be included in the differential diagnosis of patients with vaccine-induced thrombocytopenia, especially if co-occuring with mechanical hemolytic anemia (MAHA) and acute kidney injury (AKI). Still, the overall risk is limited and we clearly advise continuation of COVID-19 vaccination in patients with a previous episode of aHUS, yet conditional upon clear patient instruction on how to recognize symptoms of recurrence. At last, we suggest monitoring serum creatinine (sCr), proteinuria, MAHA parameters, and blood pressure days after vaccination.
Collapse
Affiliation(s)
- Romy N. Bouwmeester
- Radboud University Medical Center, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Nijmegen, Netherlands
| | - Esther M.G. Bormans
- Radboud University Medical Center, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Nijmegen, Netherlands
| | - Caroline Duineveld
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Nephrology, Nijmegen, Netherlands
| | - Arjan D. van Zuilen
- University Medical Center Utrecht, Department of Nephrology and Hypertension, Utrecht, Netherlands
| | - Anne-Els van de Logt
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Nephrology, Nijmegen, Netherlands
| | - Jack F.M. Wetzels
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Nephrology, Nijmegen, Netherlands
| | - Nicole C.A.J. van de Kar
- Radboud University Medical Center, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Nijmegen, Netherlands
| |
Collapse
|
19
|
MASP-2 and MASP-3 inhibitors block complement activation, inflammation, and microvascular stasis in a murine model of vaso-occlusion in sickle cell disease. Transl Res 2022; 249:1-12. [PMID: 35878790 PMCID: PMC9996688 DOI: 10.1016/j.trsl.2022.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
Patients with sickle cell disease (SCD) have ongoing hemolysis that promotes endothelial injury, complement activation, inflammation, vaso-occlusion, ischemia-reperfusion pathophysiology, and pain. Complement activation markers are increased in SCD in steady-state and further increased during vaso-occlusive crisis (VOC). However, the mechanisms driving complement activation in SCD have not been completely elucidated. Ischemia-reperfusion and heme released from hemoglobin during hemolysis, events that characterize SCD pathophysiology, can activate the lectin pathway (LP) and alternative pathway (AP), respectively. Here we evaluated the role of LP and AP in Townes sickle (SS) mice using inhibitory monoclonal antibodies (mAb) to mannose binding lectin (MBL)-associated serine protease (MASP)-2 or MASP-3, respectively. Townes SS mice were pretreated with MASP-2 mAb, MASP-3 mAb, isotype control mAb, or PBS before they were challenged with hypoxia-reoxygenation or hemoglobin. Pretreatment of SS mice with MASP-2 or MASP-3 mAb, markedly reduced Bb fragments, C4d and C5a in plasma and complement deposition in the liver, kidneys, and lungs collected 4 hours after challenge compared to control mAb-treated mice. Consistent with complement inhibition, hepatic inflammation markers NF-ĸB phospho-p65, VCAM-1, ICAM-1, and E-selectin were significantly reduced in SS mice pretreated with MASP-2 or MASP-3 mAb. Importantly, MASP-2 or MASP-3 mAb pretreatment significantly inhibited microvascular stasis (vaso-occlusion) induced by hypoxia-reoxygenation or hemoglobin. These studies suggest that the LP and the AP are both playing a role in promoting inflammation and vaso-occlusion in SCD. Inhibiting complement activation via the LP or the AP might inhibit inflammation and prevent VOC in SCD patients.
Collapse
|
20
|
Adhikari A, Abayasingam A, Rodrigo C, Agapiou D, Pandzic E, Brasher NA, Fernando BSM, Keoshkerian E, Li H, Kim HN, Lord M, Popovic G, Rawlinson W, Mina M, Post JJ, Hudson B, Gilroy N, Dwyer D, Sasson SC, Grubor-Bauk B, Lloyd AR, Martinello M, Bull RA, Tedla N. Longitudinal Characterization of Phagocytic and Neutralization Functions of Anti-Spike Antibodies in Plasma of Patients after Severe Acute Respiratory Syndrome Coronavirus 2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1499-1512. [PMID: 36165172 DOI: 10.4049/jimmunol.2200272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/01/2022] [Indexed: 12/06/2024]
Abstract
Phagocytic responses by effector cells to opsonized viruses have been recognized to play a key role in antiviral immunity. Limited data on coronavirus disease 2019 suggest that the role of Ab-dependent and -independent phagocytosis may contribute to the observed immunological and inflammatory responses; however, their development, duration, and role remain to be fully elucidated. In this study of 62 acute and convalescent patients, we found that patients with acute coronavirus disease 2019 can mount a phagocytic response to autologous plasma-opsonized Spike protein-coated microbeads as early as 10 d after symptom onset, while heat inactivation of this plasma caused 77-95% abrogation of the phagocytic response and preblocking of Fc receptors showed variable 18-60% inhibition. In convalescent patients, phagocytic response significantly correlated with anti-Spike IgG titers and older patients, while patients with severe disease had significantly higher phagocytosis and neutralization functions compared with patients with asymptomatic, mild, or moderate disease. A longitudinal subset of the convalescent patients over 12 mo showed an increase in plasma Ab affinity toward Spike Ag and preservation of phagocytic and neutralization functions, despite a decline in the anti-Spike IgG titers by >90%. Our data suggest that early phagocytosis is primarily driven by heat-liable components of the plasma, such as activated complements, while anti-Spike IgG titers account for the majority of observed phagocytosis at convalescence. Longitudinally, a significant increase in the affinity of the anti-Spike Abs was observed that correlated with the maintenance of both the phagocytic and neutralization functions, suggesting an improvement in the quality of the Abs.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Arunasingam Abayasingam
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Chaturaka Rodrigo
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - David Agapiou
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas A Brasher
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | | | | | - Hui Li
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Ha Na Kim
- School of Biomedical Engineering, Faculty of Engineering, UNSW Australia, Sydney, New South Wales, Australia
| | - Megan Lord
- School of Biomedical Engineering, Faculty of Engineering, UNSW Australia, Sydney, New South Wales, Australia
| | - Gordona Popovic
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - William Rawlinson
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- Serology and Virology Division, Department of Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Michael Mina
- Northern Beaches Hospital, Sydney, New South Wales, Australia
| | - Jeffrey J Post
- Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales, Australia
| | - Bernard Hudson
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Nicky Gilroy
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Dominic Dwyer
- Blacktown Mt Druitt Hospital, Blacktown, New South Wales, Australia; and
| | - Sarah C Sasson
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia, Australia
| | - Andrew R Lloyd
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Marianne Martinello
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Blacktown Mt Druitt Hospital, Blacktown, New South Wales, Australia; and
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | | |
Collapse
|
21
|
Lo MW, Amarilla AA, Lee JD, Albornoz EA, Modhiran N, Clark RJ, Ferro V, Chhabra M, Khromykh AA, Watterson D, Woodruff TM. SARS-CoV-2 triggers complement activation through interactions with heparan sulfate. Clin Transl Immunology 2022; 11:e1413. [PMID: 35999893 PMCID: PMC9387400 DOI: 10.1002/cti2.1413] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives To determine whether SARS‐CoV‐2 can trigger complement activation, the pathways that are involved and the functional significance of the resultant effect. Methods SARS‐CoV‐2 was inoculated into a human lepirudin‐anticoagulated whole blood model, which contains a full repertoire of complement factors and leukocytes that express complement receptors. Complement activation was determined by measuring C5a production with an ELISA, and pretreatment with specific inhibitors was used to identify the pathways involved. The functional significance of this was then assessed by measuring markers of C5a signalling including leukocyte C5aR1 internalisation and CD11b upregulation with flow cytometry. Results SARS‐CoV‐2 inoculation in this whole blood model caused progressive C5a production over 24 h, which was significantly reduced by inhibitors for factor B, C3, C5 and heparan sulfate. However, this phenomenon could not be replicated in cell‐free plasma, highlighting the requirement for cell surface interactions with heparan sulfate. Functional analysis of this phenomenon revealed that C5aR1 signalling and CD11b upregulation in granulocytes and monocytes was delayed and only occurred after 24 h. Conclusion SARS‐CoV‐2 is a noncanonical alternative pathway activator that progressively triggers complement activation through interactions with heparan sulfate.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia
| | - Eduardo A Albornoz
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia
| | - Richard J Clark
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia.,Australian Infectious Diseases Research Centre Global Virus Network Centre of Excellence Brisbane QLD Australia
| | - Mohit Chhabra
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia.,Australian Infectious Diseases Research Centre Global Virus Network Centre of Excellence Brisbane QLD Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences University of Queensland Brisbane QLD Australia.,Australian Infectious Diseases Research Centre Global Virus Network Centre of Excellence Brisbane QLD Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine University of Queensland Brisbane QLD Australia.,Australian Infectious Diseases Research Centre Global Virus Network Centre of Excellence Brisbane QLD Australia
| |
Collapse
|
22
|
Gianni P, Goldin M, Ngu S, Zafeiropoulos S, Geropoulos G, Giannis D. Complement-mediated microvascular injury and thrombosis in the pathogenesis of severe COVID-19: A review. World J Exp Med 2022; 12:53-67. [PMID: 36157337 PMCID: PMC9350720 DOI: 10.5493/wjem.v12.i4.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) causes acute microvascular thrombosis in both venous and arterial structures which is highly associated with increased mortality. The mechanisms leading to thromboembolism are still under investigation. Current evidence suggests that excessive complement activation with severe amplification of the inflammatory response (cytokine storm) hastens disease progression and initiates complement-dependent cytotoxic tissue damage with resultant prothrombotic complications. The concept of thromboinflammation, involving overt inflammation and activation of the coagulation cascade causing thrombotic microangiopathy and end-organ damage, has emerged as one of the core components of COVID-19 pathogenesis. The complement system is a major mediator of the innate immune response and inflammation and thus an appealing treatment target. In this review, we discuss the role of complement in the development of thrombotic microangiopathy and summarize the current data on complement inhibitors as COVID-19 therapeutics.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Ulm 89070, Germany
| | - Mark Goldin
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
- Feinstein Institutes for Medical Research at Northwell Health, Feinstein Institutes , New York, NY 11030, United States
| | - Sam Ngu
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
| | - Stefanos Zafeiropoulos
- Elmezzi Graduate School of Molecular Medicine, Northwell Health, New York, NY 11030, United States
| | - Georgios Geropoulos
- Department of General Surgery, University College London Hospitals, London NW12BU, United Kingdom
| | - Dimitrios Giannis
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New York, NY 11549, United States
- North Shore/Long Island Jewish General Surgery, Northwell Health, New York, NY 11021, United States
| |
Collapse
|
23
|
Gavriilaki E, Tsiftsoglou SA, Touloumenidou T, Farmaki E, Panagopoulou P, Michailidou E, Koravou EE, Mavrikou I, Iosifidis E, Tsiatsiou O, Papadimitriou E, Papadopoulou-Alataki E, Papayanni PG, Varelas C, Kokkoris S, Papalexandri A, Fotoulaki M, Galli-Tsinopoulou A, Zafeiriou D, Roilides E, Sakellari I, Anagnostopoulos A, Tragiannidis A. Targeted Genotyping of MIS-C Patients Reveals a Potential Alternative Pathway Mediated Complement Dysregulation during COVID-19 Infection. Curr Issues Mol Biol 2022; 44:2811-2824. [PMID: 35877417 PMCID: PMC9325260 DOI: 10.3390/cimb44070193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Complement dysregulation has been documented in adults with COVID-19 and implicated in relevant pediatric inflammatory responses against SARS-CoV-2. We propose that signatures of complement missense coding SNPs associated with dysregulation could also be identified in children with multisystem inflammatory syndrome (MIS-C). We investigated 71 pediatric patients with RT-PCR validated SARS-CoV-2 hospitalized in pediatric COVID-19 care units (November 2020-March 2021) in three major groups. Seven (7) patients suffered from MIS-C (MIS-C group), 32 suffered from COVID-19 and were hospitalized (admitted group), whereas 32 suffered from COVID-19, but were sent home. All patients survived and were genotyped for variations in the C3, C5, CFB, CFD, CFH, CFHR1, CFI, CD46, CD55, MASP1, MASP2, MBL2, COLEC11, FCN1, and FCN3 genes. Upon evaluation of the missense coding SNP distribution patterns along the three study groups, we noticed similarities, but also considerably increased frequencies of the alternative pathway (AP) associated with SNPs rs12614 CFB, rs1061170, and rs1065489 CFH in the MIS-C patients. Our analysis suggests that the corresponding substitutions potentially reduce the C3b-inactivation efficiency and promote slower and weaker AP C3bBb pre-convertase assembly on virions. Under these circumstances, the complement AP opsonization capacity may be impaired, leading to compromised immune clearance and systemic inflammation in the MIS-C syndrome.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Stefanos A. Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Tasoula Touloumenidou
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Evangelia Farmaki
- 1st Pediatric Department, Aristotle University of Thessaloniki, Hipporkation Hospital, 54642 Thessaloniki, Greece; (E.F.); (E.P.); (D.Z.)
| | - Paraskevi Panagopoulou
- 4th Pediatric Department, Aristotle University of Thessaloniki, Papageorgiou Hospital, 56429 Thessaloniki, Greece; (P.P.); (E.P.-A.); (M.F.)
| | - Elissavet Michailidou
- 3rd Pediatric Department, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece; (E.M.); (E.I.); (O.T.); (E.R.)
| | - Evaggelia-Evdoxia Koravou
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Ioulia Mavrikou
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Elias Iosifidis
- 3rd Pediatric Department, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece; (E.M.); (E.I.); (O.T.); (E.R.)
| | - Olga Tsiatsiou
- 3rd Pediatric Department, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece; (E.M.); (E.I.); (O.T.); (E.R.)
| | - Eleni Papadimitriou
- 1st Pediatric Department, Aristotle University of Thessaloniki, Hipporkation Hospital, 54642 Thessaloniki, Greece; (E.F.); (E.P.); (D.Z.)
| | - Efimia Papadopoulou-Alataki
- 4th Pediatric Department, Aristotle University of Thessaloniki, Papageorgiou Hospital, 56429 Thessaloniki, Greece; (P.P.); (E.P.-A.); (M.F.)
| | - Penelope Georgia Papayanni
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Christos Varelas
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Styliani Kokkoris
- Laboratory of Hematology and Hospital—Blood Transfusion Unit, Medical School, University General Hospital “Attikon”, NKUA, 12462 Athens, Greece;
| | - Apostolia Papalexandri
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Maria Fotoulaki
- 4th Pediatric Department, Aristotle University of Thessaloniki, Papageorgiou Hospital, 56429 Thessaloniki, Greece; (P.P.); (E.P.-A.); (M.F.)
| | - Assimina Galli-Tsinopoulou
- 2nd Pediatric Department, Aristotle University of Thessaloniki, AHEPA Hospital, 54621 Thessaloniki, Greece; (A.G.-T.); (A.T.)
| | - Dimitrios Zafeiriou
- 1st Pediatric Department, Aristotle University of Thessaloniki, Hipporkation Hospital, 54642 Thessaloniki, Greece; (E.F.); (E.P.); (D.Z.)
| | - Emmanuel Roilides
- 3rd Pediatric Department, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece; (E.M.); (E.I.); (O.T.); (E.R.)
| | - Ioanna Sakellari
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Achilles Anagnostopoulos
- Hematology Department & BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (T.T.); (E.-E.K.); (I.M.); (P.G.P.); (C.V.); (A.P.); (I.S.); (A.A.)
| | - Athanasios Tragiannidis
- 2nd Pediatric Department, Aristotle University of Thessaloniki, AHEPA Hospital, 54621 Thessaloniki, Greece; (A.G.-T.); (A.T.)
| |
Collapse
|
24
|
Ali YM, Lynch NJ, Khatri P, Bamigbola IE, Chan ACY, Yabuki M, Demopulos GA, Heeney JL, Pai S, Baxendale H, Schwaeble WJ. Secondary Complement Deficiency Impairs Anti-Microbial Immunity to Klebsiella pneumoniae and Staphylococcus aureus During Severe Acute COVID-19. Front Immunol 2022; 13:841759. [PMID: 35572551 PMCID: PMC9094484 DOI: 10.3389/fimmu.2022.841759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
A high incidence of secondary Klebsiella pneumoniae and Staphylococcus aureus infection were observed in patients with severe COVID-19. The cause of this predisposition to infection is unclear. Our data demonstrate consumption of complement in acute COVID-19 patients reflected by low levels of C3, C4, and loss of haemolytic activity. Given that the elimination of Gram-negative bacteria depends in part on complement-mediated lysis, we hypothesised that secondary hypocomplementaemia is rendering the antibody-dependent classical pathway activation inactive and compromises serum bactericidal activity (SBA). 217 patients with severe COVID-19 were studied. 142 patients suffered secondary bacterial infections. Klebsiella species were the most common Gram-negative organism, found in 58 patients, while S. aureus was the dominant Gram-positive organism found in 22 patients. Hypocomplementaemia was observed in patients with acute severe COVID-19 but not in convalescent survivors three months after discharge. Sera from patients with acute COVID-19 were unable to opsonise either K. pneumoniae or S. aureus and had impaired complement-mediated killing of Klebsiella. We conclude that hyperactivation of complement during acute COVID-19 leads to secondary hypocomplementaemia and predisposes to opportunistic infections.
Collapse
Affiliation(s)
- Youssif M. Ali
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nicholas J. Lynch
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Priyanka Khatri
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ifeoluwa E. Bamigbola
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew C. Y. Chan
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Jonathan L. Heeney
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sumita Pai
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Helen Baxendale
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Wilhelm J. Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Fassan M, Collesei A, Angerilli V, Sbaraglia M, Fortarezza F, Pezzuto F, De Gaspari M, Businello G, Moni M, Rizzo S, Traverso G, Colosso V, Taschin E, Lunardi F, Valls AF, Schiavi F, Basso C, Calabrese F, Dei Tos AP. Multi-Design Differential Expression Profiling of COVID-19 Lung Autopsy Specimens Reveals Significantly Deregulated Inflammatory Pathways and SFTPC Impaired Transcription. Cells 2022; 11:1011. [PMID: 35326463 PMCID: PMC8947344 DOI: 10.3390/cells11061011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
The transcriptomic profiling of lung damage associated with SARS-CoV-2 infection may lead to the development of effective therapies to prevent COVID-19-related deaths. We selected a series of 21 autoptic lung samples, 14 of which had positive nasopharyngeal swabs for SARS-CoV-2 and a clinical diagnosis of COVID-19-related death; their pulmonary viral load was quantified with a specific probe for SARS-CoV-2. The remaining seven cases had no documented respiratory disease and were used as controls. RNA from formalin-fixed paraffin-embedded (FFPE) tissue samples was extracted to perform gene expression profiling by means of targeted (Nanostring) and comprehensive RNA-Seq. Two differential expression designs were carried out leading to relevant results in terms of deregulation. SARS-CoV-2 positive specimens presented a significant overexpression in genes of the type I interferon signaling pathway (IFIT1, OAS1, ISG15 and RSAD2), complement activation (C2 and CFB), macrophage polarization (PKM, SIGLEC1, CD163 and MS4A4A) and Cathepsin C (CTSC). CD163, Siglec-1 and Cathepsin C overexpression was validated by immunohistochemistry. SFTPC, the encoding gene for pulmonary-associated surfactant protein C, emerged as a key identifier of COVID-19 patients with high viral load. This study successfully recognized SARS-CoV-2 specific immune signatures in lung samples and highlighted new potential therapeutic targets. A better understanding of the immunopathogenic mechanisms of SARS-CoV-2 induced lung damage is required to develop effective individualized pharmacological strategies.
Collapse
Affiliation(s)
- Matteo Fassan
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (V.A.); (M.S.); (G.B.); (M.M.); (G.T.); (F.L.); (A.P.D.T.)
- Surgical Pathology Unit, Padua University Hospital, 35121 Padua, Italy; (F.F.); (F.P.); (F.C.)
- Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Antonio Collesei
- Familial Cancer Clinics, Veneto Institute of Oncology, IOV-IRCCS, 35127 Padua, Italy; (A.C.); (V.C.); (E.T.); (F.S.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35121 Padua, Italy
| | - Valentina Angerilli
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (V.A.); (M.S.); (G.B.); (M.M.); (G.T.); (F.L.); (A.P.D.T.)
| | - Marta Sbaraglia
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (V.A.); (M.S.); (G.B.); (M.M.); (G.T.); (F.L.); (A.P.D.T.)
- Surgical Pathology Unit, Padua University Hospital, 35121 Padua, Italy; (F.F.); (F.P.); (F.C.)
| | - Francesco Fortarezza
- Surgical Pathology Unit, Padua University Hospital, 35121 Padua, Italy; (F.F.); (F.P.); (F.C.)
| | - Federica Pezzuto
- Surgical Pathology Unit, Padua University Hospital, 35121 Padua, Italy; (F.F.); (F.P.); (F.C.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.D.G.); (S.R.); (C.B.)
| | - Monica De Gaspari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.D.G.); (S.R.); (C.B.)
| | - Gianluca Businello
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (V.A.); (M.S.); (G.B.); (M.M.); (G.T.); (F.L.); (A.P.D.T.)
| | - Margherita Moni
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (V.A.); (M.S.); (G.B.); (M.M.); (G.T.); (F.L.); (A.P.D.T.)
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.D.G.); (S.R.); (C.B.)
- Cardiovascular Pathology Unit, Padua University Hospital, 35121 Padua, Italy
| | - Giulia Traverso
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (V.A.); (M.S.); (G.B.); (M.M.); (G.T.); (F.L.); (A.P.D.T.)
| | - Veronica Colosso
- Familial Cancer Clinics, Veneto Institute of Oncology, IOV-IRCCS, 35127 Padua, Italy; (A.C.); (V.C.); (E.T.); (F.S.)
| | - Elisa Taschin
- Familial Cancer Clinics, Veneto Institute of Oncology, IOV-IRCCS, 35127 Padua, Italy; (A.C.); (V.C.); (E.T.); (F.S.)
| | - Francesca Lunardi
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (V.A.); (M.S.); (G.B.); (M.M.); (G.T.); (F.L.); (A.P.D.T.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.D.G.); (S.R.); (C.B.)
| | - Aida Freire Valls
- NanoString Technologies, Inc., 530 Fairview Avenue N, Seattle, WA 98109, USA;
| | - Francesca Schiavi
- Familial Cancer Clinics, Veneto Institute of Oncology, IOV-IRCCS, 35127 Padua, Italy; (A.C.); (V.C.); (E.T.); (F.S.)
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.D.G.); (S.R.); (C.B.)
- Cardiovascular Pathology Unit, Padua University Hospital, 35121 Padua, Italy
| | - Fiorella Calabrese
- Surgical Pathology Unit, Padua University Hospital, 35121 Padua, Italy; (F.F.); (F.P.); (F.C.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy; (M.D.G.); (S.R.); (C.B.)
| | - Angelo Paolo Dei Tos
- Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (V.A.); (M.S.); (G.B.); (M.M.); (G.T.); (F.L.); (A.P.D.T.)
- Surgical Pathology Unit, Padua University Hospital, 35121 Padua, Italy; (F.F.); (F.P.); (F.C.)
| |
Collapse
|
26
|
Georg P, Astaburuaga-García R, Bonaguro L, Brumhard S, Michalick L, Lippert LJ, Kostevc T, Gäbel C, Schneider M, Streitz M, Demichev V, Gemünd I, Barone M, Tober-Lau P, Helbig ET, Hillus D, Petrov L, Stein J, Dey HP, Paclik D, Iwert C, Mülleder M, Aulakh SK, Djudjaj S, Bülow RD, Mei HE, Schulz AR, Thiel A, Hippenstiel S, Saliba AE, Eils R, Lehmann I, Mall MA, Stricker S, Röhmel J, Corman VM, Beule D, Wyler E, Landthaler M, Obermayer B, von Stillfried S, Boor P, Demir M, Wesselmann H, Suttorp N, Uhrig A, Müller-Redetzky H, Nattermann J, Kuebler WM, Meisel C, Ralser M, Schultze JL, Aschenbrenner AC, Thibeault C, Kurth F, Sander LE, Blüthgen N, Sawitzki B. Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell 2022; 185:493-512.e25. [PMID: 35032429 PMCID: PMC8712270 DOI: 10.1016/j.cell.2021.12.040] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.
Collapse
Affiliation(s)
- Philipp Georg
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rosario Astaburuaga-García
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lena J Lippert
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tomislav Kostevc
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Gäbel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Schneider
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mathias Streitz
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vadim Demichev
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Ioanna Gemünd
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Matthias Barone
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pinkus Tober-Lau
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisa T Helbig
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Hillus
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lev Petrov
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Stein
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hannah-Philine Dey
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Paclik
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Iwert
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Mülleder
- Core Facility, High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Sonja Djudjaj
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Roman D Bülow
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Henrik E Mei
- Mass Cytometry Laboratory, DRFZ Berlin, A Leibniz Institute, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry Laboratory, DRFZ Berlin, A Leibniz Institute, Berlin, Germany
| | - Andreas Thiel
- Si-M/"Der Simulierte Mensch" a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Irina Lehmann
- Center for Digital Health, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner, Berlin, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Stricker
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Markus Landthaler
- IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Boor
- Institute of Pathology, University Clinic Aachen, RWTH Aachen, Aachen, Germany; Department of Nephrology, University Clinic Aachen, RWTH Aachen, Aachen, Germany; Electron Microscopy Facility, University Clinic Aachen, RWTH Aachen, Aachen, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hans Wesselmann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Gießen, Germany
| | - Alexander Uhrig
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin, Charité Vivantes, Berlin, Germany
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; Systems Medicine, Deutsches Zentrum für Neurodegenerativen Erkrankungen (DZNE), Bonn, Germany; PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany; Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte Thibeault
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Department of Medicine I, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; IRI Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
27
|
Niederreiter J, Eck C, Ries T, Hartmann A, Märkl B, Büttner-Herold M, Amann K, Daniel C. Complement Activation via the Lectin and Alternative Pathway in Patients With Severe COVID-19. Front Immunol 2022; 13:835156. [PMID: 35237273 PMCID: PMC8884149 DOI: 10.3389/fimmu.2022.835156] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Complement plays an important role in the direct defense to pathogens, but can also activate immune cells and the release of pro-inflammatory cytokines. However, in critically ill patients with COVID-19 the immune system is inadequately activated leading to severe acute respiratory syndrome (SARS) and acute kidney injury, which is associated with higher mortality. Therefore, we characterized local complement deposition as a sign of activation in both lungs and kidneys from patients with severe COVID-19. Using immunohistochemistry we investigated deposition of complement factors C1q, MASP-2, factor D (CFD), C3c, C3d and C5b-9 as well as myeloperoxidase (MPO) positive neutrophils and SARS-CoV-2 virus particles in lungs and kidneys from 38 patients who died from COVID-19. In addition, tissue damage was analyzed using semi-quantitative scores followed by correlation with complement deposition. Autopsy material from non-COVID patients who died from cardiovascular causes, cerebral hemorrhage and pulmonary embolism served as control (n=8). Lung injury in samples from COVID-19 patients was significantly more pronounced compared to controls with formation of hyaline membranes, thrombi and edema. In addition, in the kidney tubular injury was higher in these patients and correlated with lung injury (r=0.361*). In autopsy samples SARS-CoV-2 spike protein was detected in 22% of the lungs of COVID-19 patients but was lacking in kidneys. Complement activation was significantly stronger in lung samples from patients with COVID-19 via the lectin and alternative pathway as indicated by deposition of MASP-2, CFD, C3d and C5b9. Deposits in the lung were predominantly detected along the alveolar septa, the hyaline membranes and in the alveolar lumina. In the kidney, complement was significantly more deposited in patients with COVID-19 in peritubular capillaries and tubular basement membranes. Renal COVID-19-induced complement activation occurred via the lectin pathway, while activation of the alternative pathway was similar in both groups. Furthermore, MPO-positive neutrophils were found in significantly higher numbers in lungs and kidneys of COVID-19 patients and correlated with local MASP-2 deposition. In conclusion, in patients who died from SARS-CoV-2 infection complement was activated in both lungs and kidneys indicating that complement might be involved in systemic worsening of the inflammatory response. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury in COVID-19.
Collapse
Affiliation(s)
- Janina Niederreiter
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christine Eck
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tajana Ries
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Bruno Märkl
- General Pathology and Molecular Diagnostics, Medical Faculty Augsburg, University Augsburg, Augsburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
Dwassy Y, Motiaa Y. Autoimmune hemolytic anemia complicating a non-severe SARS-COV2 pneumonia. ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2022. [DOI: 10.4103/amhs.amhs_199_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
29
|
Huber S, Massri M, Grasse M, Fleischer V, Kellnerová S, Harpf V, Knabl L, Knabl L, Heiner T, Kummann M, Neurauter M, Rambach G, Speth C, Würzner R. Systemic Inflammation and Complement Activation Parameters Predict Clinical Outcome of Severe SARS-CoV-2 Infections. Viruses 2021; 13:2376. [PMID: 34960645 PMCID: PMC8707937 DOI: 10.3390/v13122376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Overactivation of the complement system has been characterized in severe COVID-19 cases. Complement components are known to trigger NETosis via the coagulation cascade and have also been reported in human tracheobronchial epithelial cells. In this longitudinal study, we investigated systemic and local complement activation and NETosis in COVID-19 patients that underwent mechanical ventilation. Results confirmed significantly higher baseline levels of serum C5a (24.5 ± 39.0 ng/mL) and TCC (11.03 ± 8.52 µg/mL) in patients compared to healthy controls (p < 0.01 and p < 0.0001, respectively). Furthermore, systemic NETosis was significantly augmented in patients (5.87 (±3.71) × 106 neutrophils/mL) compared to healthy controls (0.82 (±0.74) × 106 neutrophils/mL) (p < 0.0001). In tracheal fluid, baseline TCC levels but not C5a and NETosis, were significantly higher in patients. Kinetic studies of systemic complement activation revealed markedly higher levels of TCC and CRP in nonsurvivors compared to survivors. In contrast, kinetic studies showed decreased local NETosis in tracheal fluid but comparable local complement activation in nonsurvivors compared to survivors. Systemic TCC and NETosis were significantly correlated with inflammation and coagulation markers. We propose that a ratio comprising systemic inflammation, complement activation, and chest X-ray score could be rendered as a predictive parameter of patient outcome in severe SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Silke Huber
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | - Mariam Massri
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | - Marco Grasse
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | - Verena Fleischer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | - Sára Kellnerová
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | - Verena Harpf
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | | | - Ludwig Knabl
- Department of Internal Medicine, Hospital St. Vinzenz, 6511 Zams, Austria;
| | - Tatjana Heiner
- Department of Anesthesia and Intensive Care Medicine, Hospital Reutte, 6600 Reutte, Austria;
| | - Moritz Kummann
- Department of Radiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Magdalena Neurauter
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.H.); (M.M.); (M.G.); (V.F.); (S.K.); (V.H.); (M.N.); (G.R.); (C.S.)
| |
Collapse
|
30
|
Fattizzo B, Pasquale R, Bellani V, Barcellini W, Kulasekararaj AG. Complement Mediated Hemolytic Anemias in the COVID-19 Era: Case Series and Review of the Literature. Front Immunol 2021; 12:791429. [PMID: 34899761 PMCID: PMC8655106 DOI: 10.3389/fimmu.2021.791429] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The complex pathophysiologic interplay between SARS-CoV-2 infection and complement activation is the subject of active investigation. It is clinically mirrored by the occurrence of exacerbations of complement mediated diseases during COVID-19 infection. These include complement-mediated hemolytic anemias such as paroxysmal nocturnal hemoglobinuria (PNH), autoimmune hemolytic anemia (AIHA), particularly cold agglutinin disease (CAD), and hemolytic uremic syndrome (HUS). All these conditions may benefit from complement inhibitors that are also under study for COVID-19 disease. Hemolytic exacerbations in these conditions may occur upon several triggers including infections and vaccines and may require transfusions, treatment with complement inhibitors and/or immunosuppressors (i.e., steroids and rituximab for AIHA), and result in thrombotic complications. In this manuscript we describe four patients (2 with PNH and 2 with CAD) who experienced hemolytic flares after either COVID-19 infection or SARS-Cov2 vaccine and provide a review of the most recent literature. We report that most episodes occurred within the first 10 days after COVID-19 infection/vaccination and suggest laboratory monitoring (Hb and LDH levels) in that period. Moreover, in our experience and in the literature, hemolytic exacerbations occurring during COVID-19 infection were more severe, required greater therapeutic intervention, and carried more complications including fatalities, as compared to those developing after SARS-CoV-2 vaccine, suggesting the importance of vaccinating this patient population. Patient education remains pivotal to promptly recognize signs/symptoms of hemolytic flares and to refer to medical attention. Treatment choice should be based on the severity of the hemolytic exacerbation as well as of that of COVID-19 infection. Therapies include transfusions, complement inhibitor initiation/additional dose in the case of PNH, steroids/rituximab in patients with CAD and warm type AIHA, plasma exchange, hemodialysis and complement inhibitor in the case of atypical HUS. Finally, anti-thrombotic prophylaxis should be always considered in these settings, provided safe platelet counts.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Raffaella Pasquale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Bellani
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | |
Collapse
|