1
|
Lin A, Jiang A, Huang L, Li Y, Zhang C, Zhu L, Mou W, Liu Z, Zhang J, Cheng Q, Wei T, Luo P. From chaos to order: optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes 2025; 17:2452277. [PMID: 39826104 DOI: 10.1080/19490976.2025.2452277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The integration of fecal microbiota transplantation (FMT) with immune checkpoint inhibitors (ICIs) presents a promising approach for enhancing cancer treatment efficacy and overcoming therapeutic resistance. This review critically examines the controversial effects of FMT on ICIs outcomes and elucidates the underlying mechanisms. We investigate how FMT modulates gut microbiota composition, microbial metabolite profiles, and the tumor microenvironment, thereby influencing ICIs effectiveness. Key factors influencing FMT efficacy, including donor selection criteria, recipient characteristics, and administration protocols, are comprehensively discussed. The review delineates strategies for optimizing FMT formulations and systematically monitoring post-transplant microbiome dynamics. Through a comprehensive synthesis of evidence from clinical trials and preclinical studies, we elucidate the potential benefits and challenges of combining FMT with ICIs across diverse cancer types. While some studies report improved outcomes, others indicate no benefit or potential adverse effects, emphasizing the complexity of host-microbiome interactions in cancer immunotherapy. We outline critical research directions, encompassing the need for large-scale, multi-center randomized controlled trials, in-depth microbial ecology studies, and the integration of multi-omics approaches with artificial intelligence. Regulatory and ethical challenges are critically addressed, underscoring the imperative for standardized protocols and rigorous long-term safety assessments. This comprehensive review seeks to guide future research endeavors and clinical applications of FMT-ICIs combination therapy, with the potential to improve cancer patient outcomes while ensuring both safety and efficacy. As this rapidly evolving field advances, maintaining a judicious balance between openness to innovation and cautious scrutiny is crucial for realizing the full potential of microbiome modulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Aimin Jiang
- Department of Urology, Changhai hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lihaoyun Huang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Yu Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Chunyanx Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, Guangdong, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
2
|
Yu Y, Yin W, Feng J, Qian S. Development and validation of a risk model for effective immune and stromal related signature predicting prognosis of patients with ovarian cancer. Sci Rep 2025; 15:16556. [PMID: 40360577 PMCID: PMC12075501 DOI: 10.1038/s41598-025-01212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
The tumor microenvironment (TME) plays a critical role in ovarian cancer (OC) progression, yet the relationship between immune and stromal scores within the TME and prognostic outcomes remains poorly understood. Immune and stromal cell scores were computed using the "estimate" R package, which enabled the assessment of immune and stromal components in OC samples. We then performed univariate and multivariate Cox regression analyses to identify prognostic factors associated with these scores using data from The Cancer Genome Atlas (TCGA). Additionally, LASSO Cox regression were employed to identify key prognostic genes linked to immune infiltration. Our analysis of OC expression data identified 1,667 differentially expressed genes (DEGs) associated with immune and stromal scores. From these, we developed a 6-gene risk model, consisting of ALOX5AP, FCGR1C, GBP2, IL21R, KLRB1, and PIK3CG, which effectively stratified OC patients into high-risk and low-risk groups. Survival analysis and area under the curve (AUC) assessment confirmed the model's strong predictive accuracy. Furthermore, drug sensitivity predictions indicated that sorafenib was particularly effective in high-risk patients, with this finding validated through in vitro experiments. The 6-gene TME-related risk model offers robust prognostic capabilities for OC and could serve as a valuable tool for clinical stratification and personalized treatment approaches.
Collapse
Affiliation(s)
- Yiping Yu
- Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei Province, China
| | - Wen Yin
- Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei Province, China
| | - Jing Feng
- Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei Province, China
| | - Sumin Qian
- Gynecology Department 2, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei Province, China.
| |
Collapse
|
3
|
Gou YK, Zhou J, Liu P, Wang MY. Research progress on monocyte/macrophage in the development of gastric cancer. Future Oncol 2025:1-11. [PMID: 40351251 DOI: 10.1080/14796694.2025.2504334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
Gastric cancer (GC) is diagnosed more than one million times each year and represents a major cause of cancer-related death worldwide. Although GC presents as a group of different types of disease, chronic inflammation has been strongly associated with tumorigenesis. Monocyte/macrophage play important roles in the development of inflammation and are vital components of the tumor microenvironment (TME). Monocyte/macrophage exert protumor and/or antitumor effects through the release of angiogenic and lymphangiogenic factors. Furthermore, tumor associated macrophages (TAMs) are emerging as key players in GC development. It is necessary to review and elucidate the roles of TAM subsets in GC and their molecular features. In this study, we focused on GC-related subsets of monocytes/macrophages and analyzed signaling related to TAMs in GC as well as the potential roles of these cells as therapeutic targets.
Collapse
Affiliation(s)
- Yuan-Kun Gou
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, PR China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, PR China
| | - Jie Zhou
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, PR China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, PR China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, PR China
| | - Ming-Yi Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, PR China
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, PR China
| |
Collapse
|
4
|
Qiu Z, Li Z, Zhang C, Zhao Q, Liu Z, Cheng Q, Zhang J, Lin A, Luo P. NK Cell Senescence in Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Aging Dis 2025:AD.2025.0053. [PMID: 40249925 DOI: 10.14336/ad.2025.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2025] [Accepted: 03/13/2025] [Indexed: 04/20/2025] Open
Abstract
P Natural killer (NK) cells function as crucial effectors in the innate immune response against tumors. Nevertheless, NK cell senescence, characterized by phenotypic and functional changes, substantially compromises their antitumor immune response. This review provides a comprehensive summary of the molecular mechanisms governing NK cell senescence and its implications for cancer immunotherapy. We propose a refined definition of NK cell senescence based on distinct biomarkers, including elevated CD57 expression, reduced cytotoxicity, and altered cytokine secretion. Moreover, we investigate the complex interactions between the tumor microenvironment (TME) and NK cell senescence, highlighting the influence of chronic inflammation, immunosuppressive cytokines, and persistent tumor antigenic stimulation. Additionally, this review underscores the potential utility of senescent NK cells as biomarkers for assessing antitumor efficacy and examines the adverse effects of NK cell senescence on cancer immunotherapy. Lastly, we summarize current approaches to mitigate NK cell senescence, such as gene editing techniques and cytokine modulation, which may enhance the efficacy of NK cell-based immunotherapies. By establishing a comprehensive framework for understanding NK cell senescence within the TME, this review aims to guide future research and the development of innovative therapeutic strategies targeting senescent NK cells to improve cancer immunotherapy outcomes.
Collapse
Affiliation(s)
- Zilin Qiu
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Zhengrui Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang 050011, China
- Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang 050011, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Cheng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| |
Collapse
|
5
|
Zhu Y, Song Y, Jiang W, Zhang J, Yin L, Lin X, Lu Y, Tao D, Ma Y. A novel tumor-associated macrophage risk signature predicts prognosis and immunotherapy response in lung adenocarcinoma. Am J Cancer Res 2025; 15:876-893. [PMID: 40226479 PMCID: PMC11982730 DOI: 10.62347/squf6988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/28/2025] [Indexed: 04/15/2025] Open
Abstract
OBJECTIVE To systematically characterize tumor-associated macrophage (TAM) subsets in lung adenocarcinoma (LUAD) and establish a TAM-based prognostic risk signature for LUAD patients. METHODS Single-cell RNA sequencing (scRNA-seq) and bulk transcriptomic data were integrated to identify TAM subsets linked to LUAD prognosis. Prognostic genes were screened using univariate Cox regression, refined via Least Absolute Shrinkage and Selection Operator (LASSO) regression, and used to construct a 10-gene risk signature. The signature's performance was validated in independent cohorts through receiver operating characteristic curves, Kaplan-Meier survival analysis, and a nomogram. Its predictive ability for immune checkpoint inhibitor (ICI) therapy response was assessed in the IMvigor210 and GSE78220 datasets. RESULTS Six distinct TAM subpopulations were identified, with two subsets significantly correlated with poor prognosis. The 10-gene risk signature, derived from TAM-related genes, demonstrated strong prognostic performance in both training and validation cohorts. High-risk patients exhibited markedly worse overall survival compared to low-risk patients. Additionally, the signature effectively stratified patients based on their response to anti-PD-L1 therapy, with high-risk patients exhibiting reduced clinical benefit. A nomogram combining the risk signature with clinicopathological parameters further enhanced survival prediction accuracy, supporting its clinical applicability. CONCLUSION This study established a novel TAM-based prognostic risk signature with robust predictive power for both survival outcomes and immunotherapy response in LUAD. These findings enhance our understanding of TAMs' clinical significance and provide a foundation for personalized immunotherapy strategies in LUAD.
Collapse
Affiliation(s)
- Yingchuan Zhu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Yue Song
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Wenhao Jiang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Jingfei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Lan Yin
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Xinyu Lin
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Yilu Lu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Dachang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| | - Yongxin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
8
|
Liu Y, Liu H, Xiong Y. Metabolic pathway activation and immune microenvironment features in non-small cell lung cancer: insights from single-cell transcriptomics. Front Immunol 2025; 16:1546764. [PMID: 40092988 PMCID: PMC11906459 DOI: 10.3389/fimmu.2025.1546764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction In this study, we aim to provide a deep understanding of the tumor microenvironment (TME) and its metabolic characteristics in non-small cell lung cancer (NSCLC) through single-cell RNA sequencing (scRNAseq) data obtained from public databases. Given that lung cancer is a leading cause of cancer-related deaths globally and NSCLC accounts for the majority of lung cancer cases, understanding the relationship between TME and metabolic pathways in NSCLC is crucial for developing new treatment strategies. Methods Finally, machine learning algorithms were employed to construct a risk signature with strong predictive power across multiple independent cohorts. After quality control, 29,053 cells were retained, and PCA along with UMAP techniques were used to distinguish 13 primary cell subpopulations. Four highly activated metabolic pathways were identified within malignant cell subpopulations, which were further divided into seven distinct subgroups showing significant differences in differentiation potential and metabolic activity. WGCNA was utilized to identify gene modules and hub genes closely associated with these four metabolic pathways. Results Our analysis showed that DEGs between tumor and normal tissues were predominantly enriched in immune response and cell adhesion pathways. The comprehensive examination of our model revealed substantial variations in clinical and pathological characteristics, enriched pathways, cancer hallmarks, and immune infiltration scores between high-risk and low-risk groups. Wet lab experiments validated the role of KRT6B in NSCLC, demonstrating that KRT6B expression is elevated and it stimulates the proliferation of cancer cells. Discussion These observations not only enhance our understanding of metabolic reprogramming and its biological functions in NSCLC but also provide new perspectives for early detection, prognostic evaluation, and targeted therapy. However, future research should further explore the specific mechanisms of these metabolic pathways and their application potentials in clinical practice.
Collapse
Affiliation(s)
- Yanru Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Pediatric Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ying Xiong
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
Yuan Q, Jia L, Yang J, Li W. The role of macrophages in liver metastasis: mechanisms and therapeutic prospects. Front Immunol 2025; 16:1542197. [PMID: 40034694 PMCID: PMC11872939 DOI: 10.3389/fimmu.2025.1542197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Metastasis is a hallmark of advanced cancer, and the liver is a common site for secondary metastasis of many tumor cells, including colorectal, pancreatic, gastric, and prostate cancers. Macrophages in the tumor microenvironment (TME) promote tumor cell metastasis through various mechanisms, including angiogenesis and immunosuppression, and play a unique role in the development of liver metastasis. Macrophages are affected by a variety of factors. Under conditions of hypoxia and increased acidity in the TME, more factors are now found to promote the polarization of macrophages to the M2 type, including exosomes and amino acids. M2-type macrophages promote tumor cell angiogenesis through a variety of mechanisms, including the secretion of factors such as VEGF, IL-1β, and TGF-β1. M2-type macrophages are subjected to multiple regulatory mechanisms. They also interact with various cells within the tumor microenvironment to co-regulate certain conditions, including the creation of an immunosuppressive microenvironment. This interaction promotes tumor cell metastasis, drug resistance, and immune escape. Based on the advent of single-cell sequencing technology, further insights into macrophage subpopulations in the tumor microenvironment may help in exploring new therapeutic targets in the future. In this paper, we will focus on how macrophages affect the TME, how tumor cells and macrophages as well as other immune cells interact with each other, and further investigate the mechanisms involved in liver metastasis of tumor cells and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Wei Li
- *Correspondence: Jiahua Yang, ; Wei Li,
| |
Collapse
|
10
|
Li P, Gao X, Huang D, Gu X. Identification and Characterization of Prognostic Macrophage Subpopulations for Human Esophageal Carcinoma. Curr Med Chem 2025; 32:123-135. [PMID: 38362682 DOI: 10.2174/0109298673284207240108105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
AIMS The aim of the present study was to investigate the relationship between the cellular ecosystem and the progression of esophageal carcinoma (ESCA) based on the evolution of macrophages and to analyze the potential of using macrophages as a new therapeutic approach in ESCA treatment. BACKGROUND Macrophage-based immunotherapy could be used for treating ESCA patients, but its clinical application is limited by the intra-tumor heterogeneity of macrophages. OBJECTIVE The objective of this study was to analyze the diversity, differentiation trajectory, and intercellular communication of macrophages in ESCA and its prognostic significance. METHODS Single-cell RNA sequencing (scRNA-seq) data in the GSE154763 dataset were downloaded from Gene Expression Omnibus (GEO) to identify cell clusters and annotate cell types using the Seurat R package. The scRNA-seq profiles of macrophages were extracted, and cluster analysis was performed to identify macrophage subsets. The differentiation trajectories of macrophage subgroups were visualized employing Monocle2. Finally, ligand-receptor pairs and communication intensity among the classified subgroups were analyzed using Cell Chat. RESULTS A total of 8 cell types were identified between ESCA tissues and paracancer tissues. The most abundant macrophages in ESCA tissues were further divided into 5 cell clusters. Compared with the normal tissues, the proportion of HSPA6+ macrophages in ESCA tissues increased the most, and the number of ligand-receptor pairs that mediated the communication of HSPA6+ macrophages with mast cells and monocytes also increased significantly. More importantly, a high proportion of HSPA6+ macrophages was inversely correlated with the survival outcomes for ESCA patients. CONCLUSIONS This study analyzed the diversity, distribution and differentiation trajectory of macrophages in ESCA tissues at single-cell level and classified a prognostic macrophage subtype (HSPA6+ macrophages) of ESCA, providing a theoretical basis for macrophage-targeted therapy in ESCA.
Collapse
Affiliation(s)
- Penghui Li
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Xiaohui Gao
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, 471000, China
| |
Collapse
|
11
|
Yoffe L, Bhinder B, Kang SW, Zhang H, Singh A, Ravichandran H, Markowitz G, Martin M, Kim J, Zhang C, Elemento O, Tansey W, Bates S, McGraw TE, Borczuk A, Lee HS, Altorki NK, Mittal V. Acquisition of discrete immune suppressive barriers contributes to the initiation and progression of preinvasive to invasive human lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630523. [PMID: 39803458 PMCID: PMC11722343 DOI: 10.1101/2024.12.31.630523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Computerized chest tomography (CT)-guided screening in populations at risk for lung cancer has increased the detection of preinvasive subsolid nodules, which progress to solid invasive adenocarcinoma. Despite the clinical significance, there is a lack of effective therapies for intercepting the progression of preinvasive to invasive adenocarcinoma. To uncover determinants of early disease emergence and progression, we used integrated single-cell approaches, including scRNA-seq, multiplexed imaging mass cytometry and spatial transcriptomics, to construct the first high-resolution map of the composition, lineage/functional states, developmental trajectories and multicellular crosstalk networks from microdissected non-solid (preinvasive) and solid compartments (invasive) of individual part-solid nodules. We found that early disease initiation and subsequent progression are associated with the evolution of immune-suppressive cellular phenotypes characterized by decreased cytotoxic CD8 T and NK cells, increased T cell exhaustion and accumulation of immunosuppressive regulatory T cells (Tregs) and M2-like macrophages expressing TREM2. Within Tregs, we identified a unique population of 4-1BB+ Treg subset enriched for the IL2-STAT5 suppressive pathway with transcription profiles supporting discrete metabolic alterations. Spatial analysis showed increased density of suppressive immune cells around tumor cells, increased exhaustion phenotype of both CD4 and CD8 T cells expressing chemokine CXCL13, and spatial microcomplex of endothelial and lymphocyte interactions within tertiary lymphoid structures. The single-cell architecture identifies determinants of early disease emergence and progression, which may be developed not only as diagnostic/prognostic biomarkers but also as targets for disease interception. Additionally, our dataset constitutes a valuable resource for the preinvasive lung cancer research community.
Collapse
Affiliation(s)
- Liron Yoffe
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Sung Wook Kang
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haoran Zhang
- Department of Computer Science, University of Texas at Austin, TX 78712, USA
| | - Arshdeep Singh
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Geoffrey Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Mitchell Martin
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Junbum Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Chen Zhang
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Wesley Tansey
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stewart Bates
- Interventional Oncology, Johnson and Johnson, 50-100 Holmers Farm Way, High Wycombe, UK, HP12 4DP
| | - Timothy E. McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Alain Borczuk
- Department of Pathology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Hyun-Sung Lee
- David Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 525 East 68th Street, New York, New York 10065, USA
| |
Collapse
|
12
|
Wang D, Han X, Liu HL. The role and research progress of tumor-associated macrophages in cervical cancer. Am J Cancer Res 2024; 14:5999-6011. [PMID: 39803646 PMCID: PMC11711540 DOI: 10.62347/ffxl7288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are important immune cells in the tumor micro-environment (TME) and play a key role in the occurrence and development of cervical cancer. Besides, targeting TAMs can significantly inhibit cervical cancer tumor growth, invasion, metastasis, and angiogenesis as well as affect immune regulation. This review summarizes the correlation between TAM and tumors, the mechanism of action of TAM in cervical cancer, and the potential application of TAM in the treatment of cervical cancer. Therefore, this study may provide new ideas and targets for the development of further treatment strategies for cervical cancer patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of First Clinical Medical College, Gansu University of Chinese MedicineLanzhou, Gansu, China
| | - Xue Han
- Department of Gynecology, Gansu Provincial People’s HospitalLanzhou, Gansu, China
| | - Hui-Ling Liu
- Department of Gynecology, Gansu Provincial People’s HospitalLanzhou, Gansu, China
| |
Collapse
|
13
|
Jin H, Kim W, Yuan M, Li X, Yang H, Li M, Shi M, Turkez H, Uhlen M, Zhang C, Mardinoglu A. Identification of SPP1 + macrophages as an immune suppressor in hepatocellular carcinoma using single-cell and bulk transcriptomics. Front Immunol 2024; 15:1446453. [PMID: 39691723 PMCID: PMC11649653 DOI: 10.3389/fimmu.2024.1446453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Macrophages and T cells play crucial roles in liver physiology, but their functional diversity in hepatocellular carcinoma (HCC) remains largely unknown. Methods Two bulk RNA-sequencing (RNA-seq) cohorts for HCC were analyzed using gene co-expression network analysis. Key gene modules and networks were mapped to single-cell RNA-sequencing (scRNA-seq) data of HCC. Cell type fraction of bulk RNA-seq data was estimated by deconvolution approach using single-cell RNA-sequencing data as a reference. Survival analysis was carried out to estimate the prognosis of different immune cell types in bulk RNA-seq cohorts. Cell-cell interaction analysis was performed to identify potential links between immune cell types in HCC. Results In this study, we analyzed RNA-seq data from two large-scale HCC cohorts, revealing a major and consensus gene co-expression cluster with significant implications for immunosuppression. Notably, these genes exhibited higher enrichment in liver macrophages than T cells, as confirmed by scRNA-seq data from HCC patients. Integrative analysis of bulk and single-cell RNA-seq data pinpointed SPP1 + macrophages as an unfavorable cell type, while VCAN + macrophages, C1QA + macrophages, and CD8 + T cells were associated with a more favorable prognosis for HCC patients. Subsequent scRNA-seq investigations and in vitro experiments elucidated that SPP1, predominantly secreted by SPP1 + macrophages, inhibits CD8 + T cell proliferation. Finally, targeting SPP1 in tumor-associated macrophages through inhibition led to a shift towards a favorable phenotype. Discussion This study underpins the potential of SPP1 as a translational target in immunotherapy for HCC.
Collapse
Affiliation(s)
- Han Jin
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin, China
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Meng Yuan
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Hong Yang
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Mengzhen Li
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Mengnan Shi
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Mathias Uhlen
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
14
|
Ou Y, Xia C, Ye C, Liu M, Jiang H, Zhu Y, Yang D. Comprehensive scRNA-seq analysis to identify new markers of M2 macrophages for predicting the prognosis of prostate cancer. Ann Med 2024; 56:2398195. [PMID: 39221762 PMCID: PMC11370685 DOI: 10.1080/07853890.2024.2398195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) has become the highest incidence of malignant tumor among men in the world. Tumor microenvironment (TME) is necessary for tumor growth. M2 macrophages play an important role in many solid tumors. This research aimed at the role of M2 macrophages' prognosis value in PCa. METHODS Single-cell RNA-seq (scRNA-seq) data and mRNA expression data were obtained from the Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA). Quality control, normalization, reduction, clustering, and cell annotation of scRNA-seq data were preformed using the Seruat package. The sub-populations of the tumor-associated macrophages (TAMs) were analysis and the marker genes of M2 macrophage were selected. Differentially expressed genes (DEGs) in PCa were identified using limma and the immune infiltration was detected using CIBERSORTx. Then, a weighted correlation network analysis (WGCNA) was constructed to identify the M2 macrophage-related modules and genes. Integration of the marker genes of M2 macrophage from scRNA-seq data analysis and hub genes from WGCNA to select the prognostic gene signature based on Univariate and LASSO regression analysis. The risk score was calculated, and the DEGs, biological function, immune characteristics related to risk score were explored. And a predictive nomogram was constructed. CCK8, Transwell, and wound healing were used to verify cell phenotype changes after co-cultured. RESULTS A total of 2431 marker genes of M2 macrophage and 650 hub M2 macrophage-related genes were selected based on scRNA-seq data and WGCNA. Then, 113 M2 macrophage-related genes were obtained by overlapping the scRNA-seq data and WGCNA results. Nine M2 macrophage-related genes (SMOC2, PLPP1, HES1, STMN1, GPR160, ABCG1, MAZ, MYC, and EPCAM) were screened as prognostic gene signatures. M2 risk score was calculated, the DEGs, Immune score, stromal score, ESTIMATE score, tumor purity, and immune cell infiltration, immune checkpoint expression, and responses of immunotherapy and chemotherapy were identified. And a predictive nomogram was constructed. CCK8, Transwell invasion, and wound healing further verified that M2 macrophages promoted the proliferation, invasion, and migration of PCa (p < 0.05). CONCLUSIONS We uncovered that M2 macrophages and relevant genes played key roles in promoting the occurrence, development, and metastases of PCa and played as convincing predictors in PCa.
Collapse
Affiliation(s)
- Yitian Ou
- Urology Department, Kunming Medical University Second Affiliated Hospital, Kunming, Yunnan, China
| | - Chengxing Xia
- Urology Department, Kunming Medical University Second Affiliated Hospital, Kunming, Yunnan, China
| | - Chunwei Ye
- Urology Department, Kunming Medical University Second Affiliated Hospital, Kunming, Yunnan, China
| | - Mingming Liu
- Urology Department, Kunming Medical University Second Affiliated Hospital, Kunming, Yunnan, China
| | - Haiyang Jiang
- Urology Department, Kunming Medical University Second Affiliated Hospital, Kunming, Yunnan, China
| | - Yong Zhu
- Urology Department, Kunming Medical University Second Affiliated Hospital, Kunming, Yunnan, China
| | - Delin Yang
- Urology Department, Kunming Medical University Second Affiliated Hospital, Kunming, Yunnan, China
| |
Collapse
|
15
|
Yang W, Wang Y, Mo K, Chen W, Xie X. Single-cell RNA sequencing reveals multiple immune cell subpopulations promote the formation of abnormal bone microenvironment in osteoporosis. Sci Rep 2024; 14:29493. [PMID: 39604551 PMCID: PMC11603148 DOI: 10.1038/s41598-024-80993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
With the aging of the population, the incidence of osteoporosis (OP) is on the rise, but the ecology of immune cell subpopulations in OP is poorly understood. Therefore, identifying cell subpopulations involved in promoting the development of OP may facilitate the development of new treatments. Based on bioinformatics analysis, we constructed a single-cell landscape of the OP microenvironment and identified immune cell subpopulations in OP to further explore the role of different subpopulations in the abnormal bone microenvironment. Among macrophages (Mac), the Mac_OLR1 subpopulation has an M1-like phenotype and significantly activates cytokine and osteoclast differentiation pathways, interacting with osteoclasts via the HBEGF-CD9 axis. In neutrophils (Neut), the Neut_RSAD2 subpopulation significantly activated cytokine and osteoclast differentiation pathways and had a high neutrophil extracellular trap (NET) score, and H1FX was identified as its potential regulator. In effector memory T (Tem) cells, the Tem_CCL4 subpopulation significantly activated osteoclast differentiation and immune inflammation-related pathways and highly expressed proinflammatory molecules such as CCL4, CCL4L2, CCL5 and IFNG. In B cells, the abundance of the B_ACSM3 subpopulation was significantly increased in the OP group and the osteoclast differentiation pathway was significantly activated, and MYB was identified as its potential regulator. In summary, we identified several immune cell subpopulations that may be involved in promoting the formation of OP, further identified the transcription factors that regulate these subpopulations, and speculated that the development of OP may be accompanied by immune inflammatory responses mediated by these subpopulations. These findings provide candidate molecules and cells for future OP research and may help facilitate the development of new therapies.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi, People's Republic of China
| | - Yulin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi, People's Republic of China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Wenyang Chen
- Department of Orthopedics, Liuzhou People's Hospital, Liuzhou, 545006, Guangxi, People's Republic of China.
| | - Xiangtao Xie
- Department of Orthopedics, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545005, Guangxi, People's Republic of China.
- Department of Orthopedics, Liuzhou Worker's Hospital, Liuzhou, 545005, Guangxi, People's Republic of China.
| |
Collapse
|
16
|
Chen S, Zhang J, Chen J, Ke J, Huang Y, Du X, Fu B, Wei H. Compromised C3b-VSIG4 axis between decidual NK cells and macrophages contributes to recurrent spontaneous abortion. J Transl Med 2024; 22:1017. [PMID: 39529122 PMCID: PMC11556194 DOI: 10.1186/s12967-024-05829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
NK cells and macrophages constitute the predominant immune cell subsets in the decidua during the first trimester of pregnancy, with macrophages typically adopting an anti-inflammatory phenotype. Conversely, in the third trimester, macrophages undergo a shift towards a pro-inflammatory phenotype concurrent with a reduction in NK cell numbers. The direct regulatory impact of NK cells on macrophage phenotype remains poorly explored. In our investigation, we observed that ICAM1+ macrophages stimulate the expression of intracellular C3 in LFA1+ decidual NK cells. Notably, Cathepsin W within NK cells exhibit the potential to generate active C3b fragments, effectively inhibit the proinflammatory phenotype of macrophages by binding to VSIG4. Our study unveils a direct regulatory mechanism orchestrated by decidual NK cells over macrophages, providing a potential pathogenic explanation for recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Siao Chen
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
| | - Jinghe Zhang
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Chen
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Intensive Care Unit, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Jieqi Ke
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Huang
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianghui Du
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Binqing Fu
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| | - Haiming Wei
- Department of Life Sciences and Medicine, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Obstetrics and Gynecology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
17
|
Ge Y, Jiang L, Yang C, Dong Q, Tang C, Xu Y, Zhong X. Interactions between tumor-associated macrophages and regulated cell death: therapeutic implications in immuno-oncology. Front Oncol 2024; 14:1449696. [PMID: 39575419 PMCID: PMC11578871 DOI: 10.3389/fonc.2024.1449696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in sculpting the tumor microenvironment and influencing cancer progression, particularly through their interactions with various forms of regulated cell death (RCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis. This review examines the interplay between TAMs and these RCD pathways, exploring the mechanisms through which they interact to promote tumor growth and advancement. We examine the underlying mechanisms of these intricate interactions, emphasizing their importance in cancer progression and treatment. Moreover, we present potential therapeutic strategies for targeting TAMs and manipulating RCD to enhance anti-tumor responses. These strategies encompass reprogramming TAMs, inhibiting their recruitment, and selectively eliminating them to enhance anti-tumor functions, alongside modulating RCD pathways to amplify immune responses. These insights offer a novel perspective on tumor biology and provide a foundation for the development of more efficacious cancer therapies.
Collapse
Affiliation(s)
- Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixue Jiang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengwu Tang
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Hepatopancreatobiliary Surgery, Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
18
|
Zhao H, Zhou X, Wang G, Yu Y, Li Y, Chen Z, Song W, Zhao L, Wang L, Wang X, Cao X, Tian Y. Integrating Bulk and Single-cell RNA-seq to Construct a Macrophage-related Prognostic Model for Prognostic Stratification in Triple-negative Breast Cancer. J Cancer 2024; 15:6002-6015. [PMID: 39440065 PMCID: PMC11493015 DOI: 10.7150/jca.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is a poor prognostic subtype of breast cancer due to limited treatment. Macrophage plays a critical role in tumor growth and survival. Our study intends to explore the heterogeneity of macrophage in TNBC and establish a macrophage-related prognostic model for TNBC prognostic stratification. Materials and Methods: Seurat package was conducted to analyze the single-cell RNA expression profilers. The cell types were identified by the markers derived from public research and online database. The cell-cell interactions were calculated by the CellChat package. Monocle package was used to visualize the cell trajectory of macrophages. The prognostic model was constructed by six macrophage-related genes after a series of selections. The expression of six genes were validated in normal and TNBC tissues. And several potential agents for high-risk TNBC patients were analyzed by Connectivity Map analysis. Results: Nine cell types were identified, and the macrophages were highly enriched in TNBC samples. five distinct subgroups of macrophage were identified. Notably, SPP1+ tumor-associated macrophages exhibited a poor prognosis. The prognostic model was constructed by HSPA6, LPL, IDO1, ALDH2, TK1, and QPCT with good predictive accuracy at 3-, 5- years overall survival for TNBC patients in both training and external test cohorts. Finally, several drugs were identified for the high-risk TNBC patients decided by model. Conclusion: Our study provides a valuable source for clarifying macrophage heterogeneity in TNBC, and a promising tool for prognostic risk stratification of TNBC.
Collapse
Affiliation(s)
- Hongmeng Zhao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xuejie Zhou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Guixin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yingxi Li
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 30007, China
| | - Zhaohui Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Wenbin Song
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Liwei Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xuchen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yao Tian
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
19
|
Yang Y, Lu S, Gu G. Identification of costimulatory molecule signatures for evaluating prognostic risk in non-small cell lung cancer. Heliyon 2024; 10:e36816. [PMID: 39286099 PMCID: PMC11403524 DOI: 10.1016/j.heliyon.2024.e36816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related mortality worldwide. Despite advances in treatment, prognosis remains poor, necessitating the identification of reliable prognostic biomarkers. Costimulatory molecules (CMs) have shown to enhance antitumor immune responses. We aimed to explore their prognostic signals in NSCLC. Methods This study is a combination of bioinformatics analysis and laboratory validation. Gene expression profiles from The Cancer Genome Atlas (TCGA), GSE120622, and GSE131907 datasets were collected. NSCLC samples in TCGA were clustered based on CMs using consensus clustering. We used LASSO regression to identify CMs-related signatures and constructed nomogram and risk models. Differences in immune cells and checkpoint expressions between risk models were evaluated. Enrichment analysis was performed for differentially expressed CMs between NSCLC and controls. Key results were validated using qRT-PCR and flow cytometry. Results NSCLC samples in TCGA were divided into two clusters based on CMs, with cluster 1 showing poor overall survival. Ten CMs-related signatures were identified using LASSO regression. NSCLC samples in TCGA were stratified into high- and low-risk groups based on the median risk score of these signatures, revealing differences in survival probability, drug sensitivity, immune cell infiltration and checkpoints expression. The area under the ROC curve values (AUC) for EDA, ICOS, PDCD1LG2, and VTCN1 exceeded 0.7 in both datasets and considered as hub genes. Expression of these hub genes was significance in GSE131907 and validated by qRT-PCR. Macrophage M1 and T cell follicular helper showed high correlation with hub genes and were lower in NSCLC than controls detected by flow cytometry. Conclusion The identified hub genes can serve as prognostic biomarkers for NSCLC, aiding in treatment decisions and highlighting potential targets for immunotherapy. This study provides new insights into the role of CMs in NSCLC prognosis and suggests future directions for clinical research and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pulmonary Medicine, Cancer Hospital of Xinjiang Medical University, 789 Suzhou Street, Urumqi, 830011, Xinjiang, China
| | - Suqiong Lu
- Department of Pulmonary Medicine, Cancer Hospital of Xinjiang Medical University, 789 Suzhou Street, Urumqi, 830011, Xinjiang, China
| | - Guomin Gu
- Department of Pulmonary Medicine, Cancer Hospital of Xinjiang Medical University, 789 Suzhou Street, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
20
|
Becker AL, Scholle L, Klause CH, Staege MS, Strauss C, Otto M, Rampp S, Scheller C, Leisz S. Correlation of Immunomodulatory Cytokines with Tumor Volume and Cerebrospinal Fluid in Vestibular Schwannoma Patients. Cancers (Basel) 2024; 16:3002. [PMID: 39272860 PMCID: PMC11394145 DOI: 10.3390/cancers16173002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Sporadic vestibular schwannomas (VSs) often exhibit slow or negligible growth. Nevertheless, some VSs increase significantly in volume within a few months or grow continuously. Recent evidence indicates a role of inflammation in promoting VS growth. Therefore, our study aimed to identify cytokines, which are associated with larger VSs. The expression of different cytokines in VS tumor samples and VS primary cultures was investigated. Additionally, the concentration of cytokines in cell culture supernatants of VS primary cultures and cerebrospinal fluid (CSF) of VS patients and healthy controls were determined. Correlation analysis of cytokine levels with tumor volume, growth rate, Koos grade, age, and hearing was examined with Spearman's-rank test. The mRNA expression of CC-chemokine ligand (CCL) 18, growth differentiation factor (GDF) 15, and interferon regulatory factor 4 correlated positively with tumor volume. Moreover, the amount of GDF15 in the cell culture supernatant of primary cells correlated positively with tumor volume. The concentrations of the cytokines CCL2, CCL5, and CCL18 and transforming growth factor beta (TGFB) 1 in the CSF of the patients were significantly different from those in the CSF controls. Inhibition of immune cell infiltration could be a putative approach to prevent and control VS growth.
Collapse
Affiliation(s)
- Anna-Louisa Becker
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Leila Scholle
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Clara Helene Klause
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Martin Sebastian Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stefan Rampp
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Sandra Leisz
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
21
|
Meng X, Zheng Y, Zhang L, Liu P, Liu Z, He Y. Single-Cell Analyses Reveal the Metabolic Heterogeneity and Plasticity of the Tumor Microenvironment during Head and Neck Squamous Cell Carcinoma Progression. Cancer Res 2024; 84:2468-2483. [PMID: 38718319 DOI: 10.1158/0008-5472.can-23-1344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 08/02/2024]
Abstract
Metabolic reprogramming is a hallmark of cancer. In addition to metabolic alterations in the tumor cells, multiple other metabolically active cell types in the tumor microenvironment (TME) contribute to the emergence of a tumor-specific metabolic milieu. Here, we defined the metabolic landscape of the TME during the progression of head and neck squamous cell carcinoma (HNSCC) by performing single-cell RNA sequencing on 26 human patient specimens, including normal tissue, precancerous lesions, early stage cancer, advanced-stage cancer, lymph node metastases, and recurrent tumors. The analysis revealed substantial heterogeneity at the transcriptional, developmental, metabolic, and functional levels in different cell types. SPP1+ macrophages were identified as a protumor and prometastatic macrophage subtype with high fructose and mannose metabolism, which was further substantiated by integrative analysis and validation experiments. An inhibitor of fructose metabolism reduced the proportion of SPP1+ macrophages, reshaped the immunosuppressive TME, and suppressed tumor growth. In conclusion, this work delineated the metabolic landscape of HNSCC at a single-cell resolution and identified fructose metabolism as a key metabolic feature of a protumor macrophage subpopulation. Significance: Fructose and mannose metabolism is a metabolic feature of a protumor and prometastasis macrophage subtype and can be targeted to reprogram macrophages and the microenvironment of head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiaoyan Meng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, P.R. China
| | - Yang Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, P.R. China
| | - Lingfang Zhang
- Suzhou Lingdian Biotechnology Co., Ltd., Suzhou, P.R. China
| | - Peipei Liu
- Suzhou Lingdian Biotechnology Co., Ltd., Suzhou, P.R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, P.R. China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P.R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology Shanghai, Shanghai, P.R. China
| |
Collapse
|
22
|
Sun HJ, Zheng ZF, Zhang LJ, Fang L, Fu H, Chen SY, Feng RX, Liu XY, Tang QN, Liu XW. Increased infiltration of M2-polarized tumour-associated macrophages is highly associated with advanced disease stage and high expression of PD-L1 in buccal mucosa carcinoma. Discov Oncol 2024; 15:314. [PMID: 39073672 PMCID: PMC11286931 DOI: 10.1007/s12672-024-01190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE To assess the infiltration characteristics of tumour-associated macrophages (TAMs) in buccal mucosa carcinoma (BMC) and the correlation of these features with clinicopathological factors. MATERIALS AND METHODS Immunohistochemistry was used to detect the expression of TAM-related markers (CD68, CD163, CD206), CD8+ T cell markers, PD-L1, and epidermal growth factor receptor (EGFR) in 46 patients with mucosal cancer after radical surgery. In addition, the correlation between TAM infiltration and clinical characteristics, PD-L1 expression, and EGFR expression was analysed. RESULTS A high infiltration level of M2-polarized (CD206+) TAMs and M2-polarized (CD163+) TAMs was more common in stage T3-T4, N+, III-IV patients than in other patient groups (P < 0.05). The infiltration degree of M2-polarized (CD68+) TAMs was positively correlated with the PD-L1 TPS (P = 0.0331). The infiltration level of M2-polarized (CD206+) TAMs was higher in the EGFR high expression group than in the EGFR low expression group (P = 0.040). CONCLUSION High infiltration of M2-polarized TAMs is highly associated with advanced disease stage and higher expression of PD-L1 and EGFR in BMCs, suggesting that M2-polarized TAMs infiltration can serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Hao-Jia Sun
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhui-Feng Zheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Department of Breast Medical Oncology, Fujian Cancer Hospital and the Fujian Medical University Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Li-Jun Zhang
- Department of Oncology, Huaihua First People's Hospital, Huaihua, 418000, Hunan, China
| | - Le Fang
- Department of Oncology, Loudi Central Hospital, Loudi, 417099, Hunan, China
| | - Hua Fu
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Shao-Yang Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong-Xiu Feng
- Department of Radiation Oncology, Xiangtan Central Hospital, Xiangtan, 411199, Hunan, China
| | - Xiao-Yang Liu
- Department of Oncology, Changde First People's Hospital, Changde, 415003, Hunan, China
| | - Qing-Nan Tang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xue-Wen Liu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
23
|
Wischnewski S, Thäwel T, Ikenaga C, Kocharyan A, Lerma-Martin C, Zulji A, Rausch HW, Brenner D, Thomas L, Kutza M, Wick B, Trobisch T, Preusse C, Haeussler M, Leipe J, Ludolph A, Rosenbohm A, Hoke A, Platten M, Weishaupt JH, Sommer CJ, Stenzel W, Lloyd TE, Schirmer L. Cell type mapping of inflammatory muscle diseases highlights selective myofiber vulnerability in inclusion body myositis. NATURE AGING 2024; 4:969-983. [PMID: 38834884 PMCID: PMC11257986 DOI: 10.1038/s43587-024-00645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
Inclusion body myositis (IBM) is the most prevalent inflammatory muscle disease in older adults with no effective therapy available. In contrast to other inflammatory myopathies such as subacute, immune-mediated necrotizing myopathy (IMNM), IBM follows a chronic disease course with both inflammatory and degenerative features of pathology. Moreover, causal factors and molecular drivers of IBM progression are largely unknown. Therefore, we paired single-nucleus RNA sequencing with spatial transcriptomics from patient muscle biopsies to map cell-type-specific drivers underlying IBM pathogenesis compared with IMNM muscles and noninflammatory skeletal muscle samples. In IBM muscles, we observed a selective loss of type 2 myonuclei paralleled by increased levels of cytotoxic T and conventional type 1 dendritic cells. IBM myofibers were characterized by either upregulation of cell stress markers featuring GADD45A and NORAD or protein degradation markers including RNF7 associated with p62 aggregates. GADD45A upregulation was preferentially seen in type 2A myofibers associated with severe tissue inflammation. We also noted IBM-specific upregulation of ACHE encoding acetylcholinesterase, which can be regulated by NORAD activity and result in functional denervation of myofibers. Our results provide promising insights into possible mechanisms of myofiber degeneration in IBM and suggest a selective type 2 fiber vulnerability linked to genomic stress and denervation pathways.
Collapse
Grants
- R01 AR076390 NIAMS NIH HHS
- U41 HG002371 NHGRI NIH HHS
- European Research Council (DecOmPress ERC StG 950584), German Research Foundation grant (SCHI 1330/2-1, SCHI 1330/4-1, SCHI 1330/6-1, GRK 2727, SPP 2395), Hertie Foundation (P1180016), National Multiple Sclerosis Society (RFA-2203-39300, PA-2002-36405)
- The Myositis Association (90097118)
- German Cancer Aid
- National Human Genome Research Institute (5U41HG002371)
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01-AR076390), Muscular Dystrophy Association (MDA630399), The Peter and Carmen Lucia Buck Foundation, The Peter Frampton Myositis Research Fund
Collapse
Affiliation(s)
- Sven Wischnewski
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Thäwel
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Chiseko Ikenaga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Kocharyan
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Celia Lerma-Martin
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Amel Zulji
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Werner Rausch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Brenner
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Leonie Thomas
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kutza
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Brittney Wick
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Tim Trobisch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | | | - Jan Leipe
- Division of Rheumatology, Department of Medicine V, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Albert Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | | | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Jochen H Weishaupt
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Clemens J Sommer
- Institute for Neuropathology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
24
|
Jin S, Wang W, Xu X, Yu Z, Feng Z, Xie J, Lv H. miR-34b-3p-mediated regulation of STC2 and FN1 enhances chemosensitivity and inhibits proliferation in cervical cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:740-752. [PMID: 38477044 PMCID: PMC11177115 DOI: 10.3724/abbs.2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/27/2023] [Indexed: 03/14/2024] Open
Abstract
Dysregulation of microRNA (miRNA) expression in cancer is a significant factor contributing to the progression of chemoresistance. The objective of this study is to explore the underlying mechanisms by which miR-34b-3p regulates chemoresistance in cervical cancer (CC). Previous findings have demonstrated low expression levels of miR-34b-3p in both CC chemoresistant cells and tissues. In this study, we initially characterize the behavior of SiHa/DDP cells which are CC cells resistant to the chemotherapeutic drug cisplatin (DDP). Subsequently, miR-34b-3p mimics are transfected into SiHa/DDP cells. It is observed that overexpression of miR-34b-3p substantially inhibits the proliferation, migration, and invasion abilities of SiHa/DDP cells and also enhances their sensitivity to DDP-induced cell death. Quantitative RT-PCR and western blot analysis further reveal elevated expression levels of STC2 and FN1 in SiHa/DDP cells, contrary to the expression pattern of miR-34b-3p. Moreover, STC2 and FN1 contribute to DDP resistance, proliferation, migration, invasion, and decreased apoptosis in CC cells. Through dual-luciferase assay analysis, we confirm that STC2 and FN1 are direct targets of miR-34b-3p in CC. Finally, rescue experiments demonstrate that overexpression of either STC2 or FN1 can partially reverse the inhibitory effects of miR-34b-3p overexpression on chemoresistance, proliferation, migration and invasion in CC cells. In conclusion, our findings support the role of miR-34b-3p as a tumor suppressor in CC. This study indicates that targeting the miR-34b-3p/STC2 or FN1 axis has potential therapeutic implications for overcoming chemoresistance in CC patients.
Collapse
Affiliation(s)
- Shanshan Jin
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Wenting Wang
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Xinrui Xu
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Zhaowei Yu
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Zihan Feng
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationKey Laboratory for Cellular Physiology of Ministry of EducationShanxi Medical UniversityTaiyuan030001China
| | - Huimin Lv
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
25
|
Wang Q, Ma J, Gong Y, Zhu L, Tang H, Ye X, Su G, Huang F, Tan S, Zuo X, Gao Y, Yang P. Sex-specific circulating unconventional neutrophils determine immunological outcome of auto-inflammatory Behçet's uveitis. Cell Discov 2024; 10:47. [PMID: 38704363 PMCID: PMC11069589 DOI: 10.1038/s41421-024-00671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/21/2024] [Indexed: 05/06/2024] Open
Abstract
Neutrophils are the most abundant immune cells that first respond to insults in circulation. Although associative evidence suggests that differences in neutrophils may be linked to the sex-specific vulnerability of inflammatory diseases, mechanistic links remain elusive. Here, we identified extensive sex-specific heterogeneity in neutrophil composition under normal and auto-inflammatory conditions at single-cell resolution. Using a combination of single-cell RNA sequencing analysis, neutrophil-specific genetic knockouts and transfer experiments, we discovered dysregulation of two unconventional (interferon-α responsive and T cell regulatory) neutrophil subsets leading to male-biased incidence, severity and poor prognosis of auto-inflammatory Behçet's uveitis. Genome-wide association study (GWAS) and exosome study revealed that male-specific negative effects of both genetic factors and circulating exosomes on unconventional neutrophil subsets contributed to male-specific vulnerability to disease. Collectively, our findings identify sex-specifically distinct neutrophil subsets and highlight unconventional neutrophil subsets as sex-specific therapeutic targets to limit inflammatory diseases.
Collapse
Affiliation(s)
- Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junfeng Ma
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yuxing Gong
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lifu Zhu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Huanyu Tang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fanfan Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xianbo Zuo
- China-Japan Friendship Hospital, Beijing, China, and No. 1 Hospital, Anhui Medical University, Anhui, China
| | - Yuan Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
26
|
Shen L, Liu J, Hu F, Fang Y, Wu Y, Zhao W, Ma S. Single-cell RNA sequencing reveals aberrant sphingolipid metabolism in non-small cell lung cancer impacts tumor-associated macrophages and stimulates angiogenesis via macrophage inhibitory factor signaling. Thorac Cancer 2024; 15:1164-1175. [PMID: 38587042 DOI: 10.1111/1759-7714.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Sphingolipids not only serve as structural components for maintaining cell membrane fluidity but also function as bioactive molecules involved in cell signaling and the regulation of various biological processes. Their pivotal role in cancer cell development, encompassing cancer cell proliferation, migration, angiogenesis, and metastasis, has been a focal point for decades. However, the contribution of sphingolipids to the complexity of tumor microenvironment promoting cancer progression has been rarely investigated. METHODS Through the integration of publicly available bulk RNA-seq and single-cell RNA-seq data, we conducted a comprehensive analysis to compare the transcriptomic features between tumors and adjacent normal tissues, thus elucidating the intricacies of the tumor microenvironment (TME). RESULTS Disparities in sphingolipid metabolism (SLM)-associated genes were observed between normal and cancerous tissues, with the TME characterized by the enrichment of sphingolipid signaling in macrophages. Cellular interaction analysis revealed robust communication between macrophages and cancer cells exhibiting low SLM, identifying the crucial ligand-receptor pair, macrophage inhibitory factor (MIF)-CD74. Pseudo-time analysis unveiled the involvement of SLM in modulating macrophage polarization towards either M1 or M2 phenotypes. Categorizing macrophages into six subclusters based on gene expression patterns and function, the SPP1+ cluster, RGS1+ cluster, and CXCL10+ cluster were likely implicated in sphingolipid-induced M2 macrophage polarization. Additionally, the CXCL10+, AGER+, and FABP4+ clusters were likely to be involved in angiogenesis through their interaction with endothelial cells. CONCLUSION Based on multiple scRNA-seq datasets, we propose that a MIF-targeted strategy could potentially impede the polarization from M1 to M2 and impair tumor angiogenesis in low-SLM non-small cell lung cancer (NSCLC), demonstrating its potent antitumor efficacy.
Collapse
Affiliation(s)
- Luyan Shen
- Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jingtao Liu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Pharmacology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fengling Hu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yifan Fang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yaya Wu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Zhao
- Key Laboratory of Carcinogenesis and Translational Research, Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Shaohua Ma
- State Key Laboratory of Molecular Oncology, Beijing, Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
27
|
Pukhalskaia TV, Yurakova TR, Bogdanova DA, Demidov ON. Tumor-Associated Senescent Macrophages, Their Markers, and Their Role in Tumor Microenvironment. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:839-852. [PMID: 38880645 DOI: 10.1134/s0006297924050055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/18/2024]
Abstract
Tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment (TME) and the most abundant population of immune cells infiltrating a tumor. TAMs can largely determine direction of anti-tumor immune response by promoting it or, conversely, contribute to formation of an immunosuppressive TME that allows tumors to evade immune control. Through interactions with tumor cells or other cells in the microenvironment and, as a result of action of anti-cancer therapy, macrophages can enter senescence. In this review, we have attempted to summarize information available in the literature on the role of senescent macrophages in tumors. With the recent development of senolytic therapeutic strategies aimed at removing senescent cells from an organism, it seems important to discuss functions of the senescent macrophages and potential role of the senolytic drugs in reprogramming TAMs to enhance anti-tumor immune response and improve efficacy of cancer treatment.
Collapse
Affiliation(s)
- Tamara V Pukhalskaia
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daria A Bogdanova
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - Oleg N Demidov
- Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia.
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
- INSERM UMR1231, Université de Bourgogne, Dijon, 21000, France
| |
Collapse
|
28
|
Rakina M, Larionova I, Kzhyshkowska J. Macrophage diversity in human cancers: New insight provided by single-cell resolution and spatial context. Heliyon 2024; 10:e28332. [PMID: 38571605 PMCID: PMC10988020 DOI: 10.1016/j.heliyon.2024.e28332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
M1/M2 paradigm of macrophage plasticity has existed for decades. Now it becomes clear that this dichotomy doesn't adequately reflect the diversity of macrophage phenotypes in tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a major population of innate immune cells in the TME that promotes tumor cell proliferation, angiogenesis and lymphangiogenesis, invasion and metastatic niche formation, as well as response to anti-tumor therapy. However, the fundamental restriction in therapeutic TAM targeting is the limited knowledge about the specific TAM states in distinct human cancer types. Here we summarized the results of the most recent studies that use advanced technologies (e.g. single-cell RNA sequencing and spatial transcriptomics) allowing to decipher novel functional subsets of TAMs in numerous human cancers. The transcriptomic profiles of these TAM subsets and their clinical significance were described. We emphasized the characteristics of specific TAM subpopulations - TREM2+, SPP1+, MARCO+, FOLR2+, SIGLEC1+, APOC1+, C1QC+, and others, which have been most extensively characterized in several cancers, and are associated with cancer prognosis. Spatial transcriptomics technologies defined specific spatial interactions between TAMs and other cell types, especially fibroblasts, in tumors. Spatial transcriptomics methods were also applied to identify markers of immunotherapy response, which are expressed by macrophages or in the macrophage-abundant regions. We highlighted the perspectives for novel techniques that utilize spatial and single cell resolution in investigating new ligand-receptor interactions for effective immunotherapy based on TAM-targeting.
Collapse
Affiliation(s)
- Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, 68167, Germany
| |
Collapse
|
29
|
Xu L, Chen Y, Liu L, Hu X, He C, Zhou Y, Ding X, Luo M, Yan J, Liu Q, Li H, Lai D, Zou Z. Tumor-associated macrophage subtypes on cancer immunity along with prognostic analysis and SPP1-mediated interactions between tumor cells and macrophages. PLoS Genet 2024; 20:e1011235. [PMID: 38648200 PMCID: PMC11034676 DOI: 10.1371/journal.pgen.1011235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Tumor-associated macrophages (TAM) subtypes have been shown to impact cancer prognosis and resistance to immunotherapy. However, there is still a lack of systematic investigation into their molecular characteristics and clinical relevance in different cancer types. Single-cell RNA sequencing data from three different tumor types were used to cluster and type macrophages. Functional analysis and communication of TAM subpopulations were performed by Gene Ontology-Biological Process and CellChat respectively. Differential expression of characteristic genes in subpopulations was calculated using zscore as well as edgeR and Wilcoxon rank sum tests, and subsequently gene enrichment analysis of characteristic genes and anti-PD-1 resistance was performed by the REACTOME database. We revealed the heterogeneity of TAM, and identified eleven subtypes and their impact on prognosis. These subtypes expressed different molecular functions respectively, such as being involved in T cell activation, apoptosis and differentiation, or regulating viral bioprocesses or responses to viruses. The SPP1 pathway was identified as a critical mediator of communication between TAM subpopulations, as well as between TAM and epithelial cells. Macrophages with high expression of SPP1 resulted in poorer survival. By in vitro study, we showed SPP1 mediated the interactions between TAM clusters and between TAM and tumor cells. SPP1 promoted the tumor-promoting ability of TAM, and increased PDL1 expression and stemness of tumor cells. Inhibition of SPP1 attenuated N-cadherin and β-catenin expression and the activation of AKT and STAT3 pathway in tumor cells. Additionally, we found that several subpopulations could decrease the sensitivity of anti-PD-1 therapy in melanoma. SPP1 signal was a critical pathway of communication between macrophage subtypes. Some specific macrophage subtypes were associated with immunotherapy resistance and prognosis in some cancer types.
Collapse
Affiliation(s)
- Liu Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University & Sun Yat-sen Institute of Hematology, Guangzhou, China
| | - Xinyu Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengsi He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yuan Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xinyi Ding
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Minhua Luo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongsheng Li
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Dongming Lai
- Shenshan Medical Center and Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
30
|
Zhang X, Wu L, Zhang X, Xu Y. Identifying the tumor-associated macrophage of lung adenocarcinoma reveals immune landscape through omics data integration. Heliyon 2024; 10:e27586. [PMID: 38509996 PMCID: PMC10951532 DOI: 10.1016/j.heliyon.2024.e27586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
The tumor-associated macrophages (TAM) play a crucial role in lung adenocarcinoma (LUAD), which can cause the proliferation, migration and invasion of tumor cells. In particular, TAMs mainly regulate changes in the tumor microenvironment thereby contributing to tumorigenesis and progression. Recently, an increasing number of studies are using single-cell RNA (Sc-RNA) sequencing to investigate changes in the composition and transcriptomics of the tumor microenvironment. We obtained Sc-RNA sequencing data of LUAD from GEO database and transcriptome data with clinical information of LUAD patients from TCGA database. A group of important genes in the state transition of TAMs was identified by analyzing TAMs at the single-cell level, while 5 TAM-related prognostic genes were obtained by omics data integration, and a prognostic model was constructed. GOBP analysis revealed that TAM-related genes were mainly enriched in tumor-promoting and immunosuppression-related pathways. After ROC analysis, it was found that the AUC of the prognosis model reached 0.751, with well predictive effectiveness. The 5 unique genes, HLA-DMB, HMGN3, ID3, PEBP1, and TUBA1B, was finally identified through synthesized analysis. The transcriptional characteristics of 5 genes were determined through GEPIA2 database and RT-qPCR. The increased expression of TUBA1B in advanced LUAD may serve as a prognostic indicator, while low expression of PEBP1 in LUAD may have the potential to become a therapeutic target.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Surgery, Jinshan Hospital of Fudan University, Fudan University, Shanghai, PR China
| | - Liwei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, PR China
| | - Xiaotian Zhang
- Department of Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, PR China
| | - Yanlong Xu
- Department of Surgery, Jinshan Hospital of Fudan University, Fudan University, Shanghai, PR China
| |
Collapse
|
31
|
Gao J, Tan W, Yuan L, Wang H, Wen J, Sun K, Chen X, Wang S, Deng W. Antitumour mechanisms of traditional Chinese medicine elicited by regulating tumour-associated macrophages in solid tumour microenvironments. Heliyon 2024; 10:e27220. [PMID: 38463777 PMCID: PMC10923716 DOI: 10.1016/j.heliyon.2024.e27220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Tumour-associated macrophages (TAMs), particularly M2-TAMs, constitute the largest proportion of immune cells in the solid tumour microenvironment, playing a crucial role in tumour progression and correlating with poor prognosis. TAMs promote the proliferation, invasion, and metastasis of tumour cells by remodelling the extracellular matrix, inhibiting immunity, promoting immune escape and tumour angiogenesis, and affecting cell metabolism. Traditional Chinese medicine (TCM) has been used clinically in China for millennia. Chinese herbs exhibit potent antitumour effects with minimal to no toxicity, substantially contributing to prolonging the lives of patients with cancer and improving their quality of life. TCM has unique advantages in improving the solid tumour microenvironment, particularly in regulating TAMs to further inhibit tumour angiogenesis, reduce drug resistance, reverse immunosuppression, and enhance antitumour immunity. This review highlights the TAM-associated mechanisms within the solid tumour microenvironment, outlines the recent advancements in TCM targeting TAMs for antitumour effects, emphasises the superiority of combining TCM with standard treatments or new nano-drug delivery systems, and evaluates the safety and efficacy of TCM combined with conventional treatments via clinical trials to provide insights and strategies for future research and clinical treatment.
Collapse
Affiliation(s)
- Jiamin Gao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Weishan Tan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Luyun Yuan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Haoyue Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Junkai Wen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Kexiang Sun
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Xin Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Shuyun Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Wanli Deng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| |
Collapse
|
32
|
Jiang G, Hong J, Sun L, Wei H, Gong W, Wang S, Zhu J. Glycolysis regulation in tumor-associated macrophages: Its role in tumor development and cancer treatment. Int J Cancer 2024; 154:412-424. [PMID: 37688376 DOI: 10.1002/ijc.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Tumor-associated macrophages constitute the main cell population in the tumor microenvironment and play a crucial role in regulating the microenvironment composition. Emerging evidence has revealed that the metabolic profile determines the tumor-associated macrophage phenotype. Tumor-associated macrophage function is highly dependent on glucose metabolism, with glycolysis being the major metabolic pathway. Recent reports have demonstrated diversity in glucose flux of tumor-associated macrophages and complex substance communication with cancer cells. However, how the glucose flux in tumor-associated macrophages connects with glycolysis to influence tumor progression and the tumor microenvironment is still obscure. Moreover, while the development of single-cell sequencing technology allows a clearer and more accurate classification of tumor-associated macrophages, the metabolic profiles of tumor-associated macrophages from the perspective of single-cell omics has not been well summarized. Here, we review the current state of knowledge on glucose metabolism in tumor-associated macrophages and summarize the metabolic profiles of different tumor-associated macrophage subtypes from the perspective of single-cell omics. Additionally, we describe the current strategies targeting glycolysis in tumor-associated macrophages for cancer therapy.
Collapse
Affiliation(s)
- Guangyi Jiang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Junjie Hong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Lu Sun
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Haibin Wei
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Wangang Gong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Shu Wang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jianqing Zhu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| |
Collapse
|
33
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol 2024; 14:1264774. [PMID: 38347955 PMCID: PMC10859433 DOI: 10.3389/fimmu.2023.1264774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are present in almost all solid tumor tissues. 16They play critical roles in immune regulation, tumor angiogenesis, tumor stem cell activation, tumor invasion and metastasis, and resistance to therapy. However, it is unclear how TAMs perform these functions. With the application of single-cell RNA sequencing (scRNA-seq), it has become possible to identify TAM subpopulations associated with distinct functions. In this review, we discuss four novel TAM subpopulations in distinct solid tumors based on core gene signatures by scRNA-seq, including FCN1 +, SPP1 +, C1Q + and CCL18 + TAMs. Functional enrichment and gene expression in scRNA-seq data from different solid tumor tissues found that FCN1 + TAMs may induce inflammation; SPP1 + TAMs are potentially involved in metastasis, angiogenesis, and cancer cell stem cell activation, whereas C1Q + TAMs participate in immune regulation and suppression; And CCL18 + cells are terminal immunosuppressive macrophages that not only have a stronger immunosuppressive function but also enhance tumor metastasis. SPP1 + and C1Q + TAM subpopulations can be further divided into distinct populations with different functions. Meanwhile, we will also present emerging evidence highlighting the separating macrophage subpopulations associated with distinct functions. However, there exist the potential disconnects between cell types and subpopulations identified by scRNA-seq and their actual function.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Bhattacharya S, Sadhukhan D, Saraswathy R. Role of sex in immune response and epigenetic mechanisms. Epigenetics Chromatin 2024; 17:1. [PMID: 38247002 PMCID: PMC10802034 DOI: 10.1186/s13072-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
The functioning of the human immune system is highly dependent on the sex of the individual, which comes by virtue of sex chromosomes and hormonal differences. Epigenetic mechanisms such as X chromosome inactivation, mosaicism, skewing, and dimorphism in X chromosome genes and Y chromosome regulatory genes create a sex-based variance in the immune response between males and females. This leads to differential susceptibility in immune-related disorders like infections, autoimmunity, and malignancies. Various naturally available immunomodulators are also available which target immune pathways containing X chromosome genes.
Collapse
Affiliation(s)
- Sombodhi Bhattacharya
- Biomedical Genetics Research Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Debasmita Sadhukhan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Radha Saraswathy
- Biomedical Genetics Research Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
35
|
Qian Y, Yin Y, Zheng X, Liu Z, Wang X. Metabolic regulation of tumor-associated macrophage heterogeneity: insights into the tumor microenvironment and immunotherapeutic opportunities. Biomark Res 2024; 12:1. [PMID: 38185636 PMCID: PMC10773124 DOI: 10.1186/s40364-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population that play diverse functions in tumors. Their identity is determined not only by intrinsic factors, such as origins and transcription factors, but also by external signals from the tumor microenvironment (TME), such as inflammatory signals and metabolic reprogramming. Metabolic reprogramming has rendered TAM to exhibit a spectrum of activities ranging from pro-tumorigenic to anti-tumorigenic, closely associated with tumor progression and clinical prognosis. This review implicates the diversity of TAM phenotypes and functions, how this heterogeneity has been re-evaluated with the advent of single-cell technologies, and the impact of TME metabolic reprogramming on TAMs. We also review current therapies targeting TAM metabolism and offer new insights for TAM-dependent anti-tumor immunotherapy by focusing on the critical role of different metabolic programs in TAMs.
Collapse
Affiliation(s)
- Yujing Qian
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhaoyuan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
36
|
Chen C, Guo Q, Liu Y, Hou Q, Liao M, Guo Y, Zang Y, Wang F, Liu H, Luan X, Liang Y, Guan Z, Li Y, Liu H, Dong X, Zhang X, Liu J, Xu Q. Single-cell and spatial transcriptomics reveal POSTN + cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer. Clin Transl Med 2023; 13:e1515. [PMID: 38115703 PMCID: PMC10731139 DOI: 10.1002/ctm2.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are potential targets for cancer therapy. Due to the heterogeneity of CAFs, the influence of CAF subpopulations on the progression of lung cancer is still unclear, which impedes the translational advances in targeting CAFs. METHODS We performed single-cell RNA sequencing (scRNA-seq) on tumour, paired tumour-adjacent, and normal samples from 16 non-small cell lung cancer (NSCLC) patients. CAF subpopulations were analyzed after integration with published NSCLC scRNA-seq data. SpaTial enhanced resolution omics-sequencing (Stereo-seq) was applied in tumour and tumour-adjacent samples from seven NSCLC patients to map the architecture of major cell populations in tumour microenvironment (TME). Immunohistochemistry (IHC) and multiplexed IHC (mIHC) were used to validate marker gene expression and the association of CAFs with immune infiltration in TME. RESULTS A subcluster of myofibroblastic CAFs, POSTN+ CAFs, were significantly enriched in advanced tumours and presented gene expression signatures related to extracellular matrix remodeling, tumour invasion pathways and immune suppression. Stereo-seq and mIHC demonstrated that POSTN+ CAFs were in close localization with SPP1+ macrophages and were associated with the exhausted phenotype and lower infiltration of T cells. POSTN expression or the abundance of POSTN+ CAFs were associated with poor prognosis of NSCLC. CONCLUSIONS Our study identified a myofibroblastic CAF subpopulation, POSTN+ CAFs, which might associate with SPP1+ macrophages to promote the formation of desmoplastic architecture and participate in immune suppression. Furthermore, we showed that POSTN+ CAFs associated with cancer progression and poor clinical outcomes and may provide new insights on the treatment of NSCLC.
Collapse
Affiliation(s)
- Chao Chen
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Qiang Guo
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yang Liu
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qinghua Hou
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Mengying Liao
- Department of PathologyPeking University Shenzhen HospitalShenzhenChina
| | - Yanying Guo
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
| | - Yupeng Zang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | - Huanyu Liu
- Department of PathologyPeking University Shenzhen HospitalShenzhenChina
| | - Xinyu Luan
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Yanling Liang
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhuojue Guan
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanling Li
- Central Laboratory of Peking University Shenzhen HospitalShenzhenChina
| | - Haozhen Liu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Xuan Dong
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of GenomicsBGI ResearchShenzhenChina
| | - Xiuqing Zhang
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of GenomicsBGI ResearchShenzhenChina
| | - Jixian Liu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Qumiao Xu
- BGI ResearchHangzhouChina
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of GenomicsBGI ResearchShenzhenChina
| |
Collapse
|
37
|
Li H, Lei Y, Li G, Huang Y. Identification of tumor-suppressor genes in lung squamous cell carcinoma through integrated bioinformatics analyses. Oncol Res 2023; 32:187-197. [PMID: 38188687 PMCID: PMC10767242 DOI: 10.32604/or.2023.030656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer is a prevalent malignancy, and fatalities of the disease exceed 400,000 cases worldwide. Lung squamous cell carcinoma (LUSC) has been recognized as the most common pathological form of lung cancer. The comprehensive understanding of molecular features related to LUSC progression has great significance in LUSC prognosis assessment and clinical management. In this study, we aim to identify a panel of signature genes closely associated with LUSC, which can provide novel insights into the progression of LUSC. Gene expression profiles were retrieved from public resources including gene expression omnibus (GEO) and the cancer genome atlas (TCGA) database. Differentially expressed genes (DEGs) between LUSC specimens and normal lung tissues were identified by bioinformatics analyses. A total of 66 DEGs were identified based on two cohorts of data. CytoHubba plugin of Cytoscape software was utilized for the further analyses of the top 10 candidate hub genes including OGN, ABI3BP, MAMDC2, FGF7, FAM107A, SPARCL1, DCN, COL14A1, and MFAP4 and CHRDL1, which showed significant downregulation in LUSC. Two LUSC cell lines were used to validate the functions of CHRDL1 and FAM107A through overexpression experiment. Together, our data revealed novel candidate tumor-suppressor genes in LUSC, suggesting previously unappreciated mechanisms in the progression of LUSC.
Collapse
Affiliation(s)
- Heng Li
- The 2nd Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, 650118, China
| | - Youming Lei
- Department of Geriatric Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Gaofeng Li
- The 2nd Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, 650118, China
| | - Yunchao Huang
- The 1st Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, 650118, China
| |
Collapse
|
38
|
Shao S, Miao H, Ma W. Unraveling the enigma of tumor-associated macrophages: challenges, innovations, and the path to therapeutic breakthroughs. Front Immunol 2023; 14:1295684. [PMID: 38035068 PMCID: PMC10682717 DOI: 10.3389/fimmu.2023.1295684] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are integral to the tumor microenvironment (TME), influencing cancer progression significantly. Attracted by cancer cell signals, TAMs exhibit unparalleled adaptability, aligning with the dynamic tumor milieu. Their roles span from promoting tumor growth and angiogenesis to modulating metastasis. While substantial research has explored the fundamentals of TAMs, comprehending their adaptive behavior, and leveraging it for novel treatments remains challenging. This review delves into TAM polarization, metabolic shifts, and the complex orchestration of cytokines and chemokines determining their functions. We highlight the complexities of TAM-targeted research focusing on their adaptability and potential variability in therapeutic outcomes. Moreover, we discuss the synergy of integrating TAM-focused strategies with established cancer treatments, such as chemotherapy, and immunotherapy. Emphasis is laid on pioneering methods like TAM reprogramming for cancer immunotherapy and the adoption of single-cell technologies for precision intervention. This synthesis seeks to shed light on TAMs' multifaceted roles in cancer, pinpointing prospective pathways for transformative research and enhancing therapeutic modalities in oncology.
Collapse
Affiliation(s)
- Shengwen Shao
- Clinical Research Center, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Hepatobiliary Surgery, Liaobu Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
39
|
Xie Z, Huang J, Li Y, Zhu Q, Huang X, Chen J, Wei C, Luo S, Yang S, Gao J. Single-cell RNA sequencing revealed potential targets for immunotherapy studies in hepatocellular carcinoma. Sci Rep 2023; 13:18799. [PMID: 37914817 PMCID: PMC10620237 DOI: 10.1038/s41598-023-46132-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a solid tumor prone to chemotherapy resistance, and combined immunotherapy is expected to bring a breakthrough in HCC treatment. However, the tumor and tumor microenvironment (TME) of HCC is highly complex and heterogeneous, and there are still many unknowns regarding tumor cell stemness and metabolic reprogramming in HCC. In this study, we combined single-cell RNA sequencing data from 27 HCC tumor tissues and 4 adjacent non-tumor tissues, and bulk RNA sequencing data from 374 of the Cancer Genome Atlas (TCGA)-liver hepatocellular carcinoma (LIHC) samples to construct a global single-cell landscape atlas of HCC. We analyzed the enrichment of signaling pathways of different cells in HCC, and identified the developmental trajectories of cell subpopulations in the TME using pseudotime analysis. Subsequently, we performed transcription factors regulating different subpopulations and gene regulatory network analysis, respectively. In addition, we estimated the stemness index of tumor cells and analyzed the intercellular communication between tumors and key TME cell clusters. We identified novel HCC cell clusters that specifically express HP (HCC_HP), which may lead to higher tumor differentiation and tumor heterogeneity. In addition, we found that the HP gene expression-positive neutrophil cluster (Neu_AIF1) had extensive and strong intercellular communication with HCC cells, tumor endothelial cells (TEC) and cancer-associated fibroblasts (CAF), suggesting that clearance of this new cluster may inhibit HCC progression. Furthermore, ErbB signaling pathway and GnRH signaling pathway were found to be upregulated in almost all HCC tumor-associated stromal cells and immune cells, except NKT cells. Moreover, the high intercellular communication between HCC and HSPA1-positive TME cells suggests that the immune microenvironment may be reprogrammed. In summary, our present study depicted the single-cell landscape heterogeneity of human HCC, identified new cell clusters in tumor cells and neutrophils with potential implications for immunotherapy research, discovered complex intercellular communication between tumor cells and TME cells.
Collapse
Affiliation(s)
- Zhouhua Xie
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
- Department of Tuberculosis, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Jinping Huang
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Yanjun Li
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Qingdong Zhu
- Department of Tuberculosis, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Xianzhen Huang
- Department of Tuberculosis, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Jieling Chen
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Cailing Wei
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Shunda Luo
- Department of Clinical Laboratory, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China
| | - Shixiong Yang
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China.
- Administrative Office, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China.
| | - Jiamin Gao
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China.
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, China.
| |
Collapse
|
40
|
Hu Z, Jin X, Hong W, Sui Q, Zhao M, Huang Y, Li M, Wang Q, Zhan C, Chen Z. Dissecting the single-cell transcriptome network of macrophage and identifies a signature to predict prognosis in lung adenocarcinoma. Cell Oncol (Dordr) 2023; 46:1351-1368. [PMID: 37079186 PMCID: PMC10116118 DOI: 10.1007/s13402-023-00816-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
PURPOSE The tumor immune microenvironment (TME) plays a vital role in tumorigenesis, progression, and treatment. Macrophages, as an important component of the tumor microenvironment, play an essential role in antitumor immunity and TME remodeling. In this study, we aimed to explore the different functions of different origins macrophages in TME and their value as potential predictive markers of prognosis and treatment. METHODS We performed single-cell analysis using 21 lung adenocarcinoma (LUAD), 12 normal, and four peripheral blood samples from our data and public databases. A prognostic prediction model was then constructed using 502 TCGA patients and explored the potential factors affecting prognosis. The model was validated using data from 4 different GEO datasets with 544 patients after integration. RESULTS According to the source of macrophages, we classified macrophages into alveolar macrophages (AMs) and interstitial macrophages (IMs). AMs mainly infiltrated in normal lung tissue and expressed proliferative, antigen-presenting, scavenger receptors genes, while IMs occupied the majority in TME and expressed anti-inflammatory, lipid metabolism-related genes. Trajectory analysis revealed that AMs rely on self-renew, whereas IMs originated from monocytes in the blood. Cell-to-cell communication showed that AMs interacted mainly with T cells through the MHC I/II signaling pathway, while IMs mostly interacted with tumor-associated fibrocytes and tumor cells. We then constructed a risk model based on macrophage infiltration and showed an excellent predictive power. We further revealed the possible reasons for its potential prognosis prediction by differential genes, immune cell infiltration, and mutational differences. CONCLUSION In conclusion, we investigated the composition, expression differences, and phenotypic changes of macrophages from different origins in lung adenocarcinoma. In addition, we developed a prognostic prediction model based on different macrophage subtype infiltration, which can be used as a valid prognostic biomarker. New insights were provided into the role of macrophages in the prognosis and potential treatment of LUAD patients.
Collapse
Affiliation(s)
- Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Weifeng Hong
- Department of Radiotherapy, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
41
|
Liu H, He R, Yang X, Huang B, Liu H. Mechanism of TCF21 Downregulation Leading to Immunosuppression of Tumor-Associated Macrophages in Non-Small Cell Lung Cancer. Pharmaceutics 2023; 15:2295. [PMID: 37765264 PMCID: PMC10536982 DOI: 10.3390/pharmaceutics15092295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer, as one of the high-mortality cancers, seriously affects the normal life of people. Non-small cell lung cancer (NSCLC) accounts for a high proportion of the overall incidence of lung cancer, and identifying therapeutic targets of NSCLC is of vital significance. This study attempted to elucidate the regulatory mechanism of transcription factor 21 (TCF21) on the immunosuppressive effect of tumor-associated macrophages (TAM) in NSCLC. The experimental results revealed that the expression of TCF21 was decreased in lung cancer cells and TAM. Macrophage polarization affected T cell viability and tumor-killing greatly, and M2-type polarization reduced the viability and tumor-killing of CD8+T cells. Meanwhile, overexpression of TCF21 promoted the polarization of TAM to M1 macrophages and the enhancement of macrophages to the viability of T cells. Furthermore, there appears to be a targeting relationship between TCF21 and Notch, suggesting that TCF21 exerts its influence via the Notch signaling pathway. This study demonstrated the polarization regulation of TAM to regulate the immunosuppressive effect, which provides novel targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Hong Liu
- Department of Thyroid Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China;
| | - Run He
- School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China;
| | - Xuliang Yang
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| | - Bo Huang
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| | - Hongxiang Liu
- Department of Thoracic Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China; (X.Y.); (B.H.)
| |
Collapse
|
42
|
Qin R, Ren W, Ya G, Wang B, He J, Ren S, Jiang L, Zhao S. Role of chemokines in the crosstalk between tumor and tumor-associated macrophages. Clin Exp Med 2023; 23:1359-1373. [PMID: 36173487 PMCID: PMC10460746 DOI: 10.1007/s10238-022-00888-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
Tumor microenvironment (TME) consists of a dynamic network of non-tumoral stromal cells, including cancer-associated fibroblasts, endothelial cells, tumor-associated macrophages (TAMs), B and T cells. In the TME, TAMs support tumor initiation, progression, invasion and metastasis by promoting angiogenesis and immunosuppression of the tumor cells. There is close crosstalk between TAMs and tumor cells. Notably, chemokines are a significant messenger mediating the crosstalk between tumor cells and TAMs. TAMs can promote tumor progression via secretion of chemokines. Various chemokines secreted by tumors are involved in the generation and polarization of TAMs, the infiltration of TAMs in tumors, and the development of TAMs' suppressive function. This paper reviews CCL2-CCR2, CCL3/5-CCR5, CCL15-CCR1, CCL18-CCR8, CX3CL1/CCL26-CX3CR1, CXCL8-CXCR1/2, CXCL12-CXCR4/CXCR7 signaling pathways, their role in the recruitment, polarization and exertion of TAMs, and their correlation with tumor development, metastasis and prognosis. Furthermore, we present the current research progress on modulating the effects of TAMs with chemokine antagonists and discuss the prospects and potential challenges of using chemokine antagonists as therapeutic tools for cancer treatment. The TAMs targeting by chemokine receptor antagonists in combination with chemotherapy drugs, immune checkpoint inhibitors or radiotherapy appears to be a promising approach.
Collapse
Affiliation(s)
- Rui Qin
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Guoqi Ya
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Bei Wang
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shaoxin Ren
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Lu Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
43
|
Zhang S, Fang W, Zhou S, Zhu D, Chen R, Gao X, Li Z, Fu Y, Zhang Y, Yang F, Zhao J, Wu H, Wang P, Shen Y, Shen S, Xu G, Wang L, Yan C, Zou X, Chen D, Lv Y. Single cell transcriptomic analyses implicate an immunosuppressive tumor microenvironment in pancreatic cancer liver metastasis. Nat Commun 2023; 14:5123. [PMID: 37612267 PMCID: PMC10447466 DOI: 10.1038/s41467-023-40727-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease refractory to all targeted and immune therapies. However, our understanding of PDAC microenvironment especially the metastatic microenvironment is very limited partly due to the inaccessibility to metastatic tumor tissues. Here, we present the single-cell transcriptomic landscape of synchronously resected PDAC primary tumors and matched liver metastases. We perform comparative analysis on both cellular composition and functional phenotype between primary and metastatic tumors. Tumor cells exhibit distinct transcriptomic profile in liver metastasis with clearly defined evolutionary routes from cancer cells in primary tumor. We also identify specific subtypes of stromal and immune cells critical to the formation of the pro-tumor microenvironment in metastatic lesions, including RGS5+ cancer-associated fibroblasts, CCL18+ lipid-associated macrophages, S100A8+ neutrophils and FOXP3+ regulatory T cells. Cellular interactome analysis further reveals that the lack of tumor-immune cell interaction in metastatic tissues contributes to the formation of the immunosuppressive microenvironment. Our study provides a comprehensive characterization of the transcriptional landscape of PDAC liver metastasis.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, 210008, China
| | - Dongming Zhu
- Department of General Surgery and Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Ruidong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xin Gao
- Department of General Surgery and Pancreatic Disease Research Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fa Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hao Wu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China
| | - Chao Yan
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
| | - Dijun Chen
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Nanjing University Institute of Pancreatology, Nanjing, 210008, China.
| |
Collapse
|
44
|
Zhang S, Peng W, Wang H, Xiang X, Ye L, Wei X, Wang Z, Xue Q, Chen L, Su Y, Zhou Q. C1q + tumor-associated macrophages contribute to immunosuppression through fatty acid metabolic reprogramming in malignant pleural effusion. J Immunother Cancer 2023; 11:e007441. [PMID: 37604643 PMCID: PMC10445384 DOI: 10.1136/jitc-2023-007441] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has shown remarkable benefits in cancers, a subset of patients with cancer exhibits unresponsiveness or develop acquired resistance due to the existence of abundant immunosuppressive cells. Tumor-associated macrophages (TAMs), as the dominant immunosuppressive population, impede the antitumor immune response; however, the underlying mechanisms have not been fully elucidated yet. METHODS Single-cell RNA sequencing analysis was performed to portray macrophage landscape and revealed the underlying mechanism of component 1q (C1q)+ TAMs. Malignant pleural effusion (MPE) of human and mouse was used to explore the phenotypes and functions of C1q+ TAMs. RESULTS C1q+ TAMs highly expressed multiple inhibitory molecules and their high infiltration was significantly correlated with poor prognosis. C1q+ TAMs promote MPE immunosuppression through impairing the antitumor effects of CD8+ T cells. Mechanistically, C1q+ TAMs enhance fatty acid binding protein 5 (FABP5)-mediated fatty acid metabolism, which activate transcription factor peroxisome proliferator-activated receptor-gamma, increasing the gene expression of inhibitory molecules. A high-fat diet increases the expression of inhibitory molecules in C1q+ TAMs and the immunosuppression of MPE microenvironment, whereas a low-fat diet ameliorates these effects. Moreover, FABP5 inhibition represses the expression of inhibitory molecules in TAMs and tumor progression, while enhancing the efficacy of ICB therapy in MPE and lung cancer. CONCLUSIONS C1q+ TAMs impede antitumor effects of CD8+ T cells promoting MPE immunosuppression. Targeting C1q+ TAMs effectively alleviates the immunosuppression and enhances the efficacy of ICB therapy. C1q+ TAMs subset has great potential to be a therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshan Wei
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Su
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Xi Y, Zhang Y, Zheng K, Zou J, Gui L, Zou X, Chen L, Hao J, Zhang Y. A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC. Front Oncol 2023; 13:1171582. [PMID: 37519793 PMCID: PMC10382026 DOI: 10.3389/fonc.2023.1171582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background Most patients with high-grade serous ovarian cancer (HGSOC) experienced disease recurrence with cumulative chemoresistance, leading to treatment failure. However, few biomarkers are currently available in clinical practice that can accurately predict chemotherapy response. The tumor immune microenvironment is critical for cancer development, and its transcriptomic profile may be associated with treatment response and differential outcomes. The aim of this study was to develop a new predictive signature for chemotherapy in patients with HGSOC. Methods Two HGSOC single-cell RNA sequencing datasets from patients receiving chemotherapy were reinvestigated. The subtypes of endoplasmic reticulum stress-related XBP1+ B cells, invasive metastasis-related ACTB+ Tregs, and proinflammatory-related macrophage subtypes with good predictive power and associated with chemotherapy response were identified. These results were verified in an independent HGSOC bulk RNA-seq dataset for chemotherapy. Further validation in clinical cohorts used quantitative real-time PCR (qRT-PCR). Results By combining cluster-specific genes for the aforementioned cell subtypes, we constructed a chemotherapy response prediction model containing 43 signature genes that achieved an area under the receiver operator curve (AUC) of 0.97 (p = 2.1e-07) for the GSE156699 cohort (88 samples). A huge improvement was achieved compared to existing prediction models with a maximum AUC of 0.74. In addition, its predictive capability was validated in multiple independent bulk RNA-seq datasets. The qRT-PCR results demonstrate that the expression of the six genes has the highest diagnostic value, consistent with the trend observed in the analysis of public data. Conclusions The developed chemotherapy response prediction model can be used as a valuable clinical decision tool to guide chemotherapy in HGSOC patients.
Collapse
Affiliation(s)
- Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kun Zheng
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Zou
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Gui
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
46
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
47
|
Zhang J, Song J, Tang S, Zhao Y, Wang L, Luo Y, Tang J, Ji Y, Wang X, Li T, Zhang H, Shao W, Sheng J, Liang T, Bai X. Multi-omics analysis reveals the chemoresistance mechanism of proliferating tissue-resident macrophages in PDAC via metabolic adaptation. Cell Rep 2023; 42:112620. [PMID: 37285267 DOI: 10.1016/j.celrep.2023.112620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer that typically demonstrates resistance to chemotherapy. Tumor-associated macrophages (TAMs) are essential in tumor microenvironment (TME) regulation, including promoting chemoresistance. However, the specific TAM subset and mechanisms behind this promotion remain unclear. We employ multi-omics strategies, including single-cell RNA sequencing (scRNA-seq), transcriptomics, multicolor immunohistochemistry (mIHC), flow cytometry, and metabolomics, to analyze chemotherapy-treated samples from both humans and mice. We identify four major TAM subsets within PDAC, among which proliferating resident macrophages (proliferating rMφs) are strongly associated with poor clinical outcomes. These macrophages are able to survive chemotherapy by producing more deoxycytidine (dC) and fewer dC kinases (dCKs) to decrease the absorption of gemcitabine. Moreover, proliferating rMφs promote fibrosis and immunosuppression in PDAC. Eliminating them in the transgenic mouse model alleviates fibrosis and immunosuppression, thereby re-sensitizing PDAC to chemotherapy. Consequently, targeting proliferating rMφs may become a potential treatment strategy for PDAC to enhance chemotherapy.
Collapse
Affiliation(s)
- Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China
| | - Yaxing Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yandong Luo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Taohong Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, China.
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310002, China.
| |
Collapse
|
48
|
May L, Shows K, Nana-Sinkam P, Li H, Landry JW. Sex Differences in Lung Cancer. Cancers (Basel) 2023; 15:3111. [PMID: 37370722 PMCID: PMC10296433 DOI: 10.3390/cancers15123111] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Sex disparities in the incidence and mortality of lung cancer have been observed since cancer statistics have been recorded. Social and economic differences contribute to sex disparities in lung cancer incidence and mortality, but evidence suggests that there are also underlying biological differences that contribute to the disparity. This review summarizes biological differences which could contribute to the sex disparity. Sex hormones and other biologically active molecules, tumor cell genetic differences, and differences in the immune system and its response to lung cancer are highlighted. How some of these differences contribute to disparities in the response to therapies, including cytotoxic, targeted, and immuno-therapies, is also discussed. We end the study with a discussion of our perceived future directions to identify the key biological differences which could contribute to sex disparities in lung cancer and how these differences could be therapeutically leveraged to personalize lung cancer treatment to the individual sexes.
Collapse
Affiliation(s)
- Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Disease and Critical Care Medicine, VCU School of Medicine, Richmond, VA 23298, USA; (P.N.-S.); (H.L.)
| | - Joseph W. Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, VCU School of Medicine, Richmond, VA 23298, USA;
| |
Collapse
|
49
|
Quatredeniers M, Serafin AS, Benmerah A, Rausell A, Saunier S, Viau A. Meta-analysis of single-cell and single-nucleus transcriptomics reveals kidney cell type consensus signatures. Sci Data 2023; 10:361. [PMID: 37280226 DOI: 10.1038/s41597-023-02209-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
While the amount of studies involving single-cell or single-nucleus RNA-sequencing technologies grows exponentially within the biomedical research area, the kidney field requires reference transcriptomic signatures to allocate each cluster its matching cell type. The present meta-analysis of 39 previously published datasets, from 7 independent studies, involving healthy human adult kidney samples, offers a set of 24 distinct consensus kidney cell type signatures. The use of these signatures may help to assure the reliability of cell type identification in future studies involving single-cell and single-nucleus transcriptomics while improving the reproducibility in cell type allocation.
Collapse
Affiliation(s)
- Marceau Quatredeniers
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France.
| | - Alice S Serafin
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Alexandre Benmerah
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Antonio Rausell
- Université de Paris Cité, Imagine Institute, Laboratory of Clinical Bioinformatics, Paris, INSERM UMR 1163, F-75015, France
| | - Sophie Saunier
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Amandine Viau
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| |
Collapse
|
50
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|