1
|
Zhou Q, Xiong H, Wu H, Wang C, Chen X, Liu H. Chicken surfactant protein A1 activates macrophages phagocytosis and attenuates LPS-induced inflammatory response through the TLR4-mediated NF-кB pathway. Poult Sci 2025; 104:104854. [PMID: 39879901 PMCID: PMC11815655 DOI: 10.1016/j.psj.2025.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Chicken surfactant protein A1 (cSP-A1) is a soluble C-type lectin found primarily in chicken lungs. Its function and other potential bioactivities are unclear. This study aimed to express, purify, and identify recombinant cSP-A1 (RcSP-A1), investigate its effects on chicken macrophage HD11 cells, and evaluate its ability to regulate the LPS-induced inflammatory response. The results showed that RcSP-A1 was produced in HEK 293F cells and could be purified using a Ni2+ affinity column. The RcSP-A1 purified concentration was 7.5 µg/mL. Functional examinations showed that RcSP-A1 could aggregate all tested bacterial strains and led to a macrophage phagocytosis rate significantly higher than in the control (p < 0.01). Subsequently, HD11 cells, preincubated with various RcSP-A1 concentrations (12.5, 25, and 50 μg/mL) and 5 mM CaCl2 for 2 h, were stimulated by LPS (1 μg/mL) for 24 h. The results showed that RcSP-A1 significantly attenuated the stimulating effects of LPS on the transcription and protein expression levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and inhibited nitric oxide production. Mechanism studies demonstrated that RcSP-A1 exerted an anti-inflammatory effect on LPS-stimulated cells by down-regulating the expression of TLR4, MyD88, and p65, up-regulating the expression of IкB-α, and inhibiting the activation of the NF-кB signaling pathway. These findings suggested that RcSP-A1 promoted bacterial aggregation and phagocytosis and inhibited the LPS-induced inflammatory response in HD11 cells through the TLR4/NF-κB signaling pathway, displaying an important role in innate immune defense.
Collapse
Affiliation(s)
- Qian Zhou
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Haifeng Xiong
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Hanwen Wu
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Chenxiao Wang
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Xinyuan Chen
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China
| | - Hongmei Liu
- College of Veterinary Medicine, Anhui Agricultural University, 130 West Changjiang Road, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Gandhi CK, Depicolzuane LC, Chen C, Roberts CM, Sicher N, Johnson Wegerson K, Thomas NJ, Wu R, Floros J. Association of SNP-SNP interactions of surfactant protein genes with severity of respiratory syncytial virus infection in children. Physiol Genomics 2024; 56:691-697. [PMID: 39222066 PMCID: PMC11495184 DOI: 10.1152/physiolgenomics.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The severity of respiratory syncytial virus (RSV) may be linked to host genetic susceptibility. Surfactant protein (SP) genetic variants have been associated with RSV severity, but the impact of single-nucleotide polymorphism (SNP)-SNP interactions remains unexplored. Therefore, we used a novel statistical model to investigate the association of SNP-SNP interactions of SFTP genes with RSV severity in two- and three-interaction models. We analyzed available genotype and clinical data from prospectively enrolled 405 children diagnosed with RSV, categorizing them into moderate or severe RSV groups. Using Wang's statistical model, we studied significant associations of SNP-SNP interactions with RSV severity in a case-control design. We observed, first, association of three interactions with increased risk of severe RSV in a two-SNP model. One intragenic interaction was between SNPs of SFTPA2, and the other two were intergenic, involving SNPs of hydrophilic and hydrophobic SPs alone. We also observed, second, association of 22 interactions with RSV severity in a three-SNP model. Among these, 20 were unique, with 12 and 10 interactions associated with increased or decreased risk of RSV severity, respectively, and included at least one SNP of either SFTPA1 or SFTPA2. All interactions were intergenic except one, among SNPs of SFTPA1. The remaining interactions were either among SNPs of hydrophilic SPs alone (n = 8) or among SNPs of both hydrophilic or hydrophobic SPs (n = 11). Our findings indicate that SNPs of all SFTPs may contribute to genetic susceptibility to RSV severity. However, the predominant involvement of SFTPA1 and/or SFTPA2 SNPs in these interactions underscores their significance in RSV severity.NEW & NOTEWORTHY Although surfactant protein (SP) genetic variants are associated with respiratory syncytial virus (RSV) severity, the impact of single-nucleotide polymorphism (SNP)-SNP interactions of SP genes remained unexplored. Using advanced statistical models, we uncovered 22 SNP-SNP interactions associated with RSV severity, with notable involvement of SFTPA1 and SFTPA2 SNPs. This highlights the comprehensive role of all SPs in genetic susceptibility to RSV severity, shedding light on potential avenues for targeted interventions.
Collapse
Affiliation(s)
- Chintan K Gandhi
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Lynnlee C Depicolzuane
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Chixiang Chen
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Catherine M Roberts
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Natalie Sicher
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Katelyn Johnson Wegerson
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Neal J Thomas
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Rongling Wu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| | - Joanna Floros
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
- Department of Obstetrics and Gynecology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
3
|
Tribondeau A, Du Pasquier D, Benchouaia M, Blugeon C, Buisine N, Sachs LM. Overlapping action of T 3 and T 4 during Xenopus laevis development. Front Endocrinol (Lausanne) 2024; 15:1360188. [PMID: 38529399 PMCID: PMC10961411 DOI: 10.3389/fendo.2024.1360188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024] Open
Abstract
Thyroid hormones are involved in many biological processes such as neurogenesis, metabolism, and development. However, compounds called endocrine disruptors can alter thyroid hormone signaling and induce unwanted effects on human and ecosystems health. Regulatory tests have been developed to detect these compounds but need to be significantly improved by proposing novel endpoints and key events. The Xenopus Eleutheroembryonic Thyroid Assay (XETA, OECD test guideline no. 248) is one such test. It is based on Xenopus laevis tadpoles, a particularly sensitive model system for studying the physiology and disruption of thyroid hormone signaling: amphibian metamorphosis is a spectacular (thus easy to monitor) life cycle transition governed by thyroid hormones. With a long-term objective of providing novel molecular markers under XETA settings, we propose first to describe the differential effects of thyroid hormones on gene expression, which, surprisingly, are not known. After thyroid hormones exposure (T3 or T4), whole tadpole RNAs were subjected to transcriptomic analysis. By using standard approaches coupled to system biology, we found similar effects of the two thyroid hormones. They impact the cell cycle and promote the expression of genes involves in cell proliferation. At the level of the whole tadpole, the immune system is also a prime target of thyroid hormone action.
Collapse
Affiliation(s)
- Alicia Tribondeau
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, Paris, France
| | | | - Médine Benchouaia
- Genomique ENS, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Universités Paris Sciences & Lettres (PSL), Paris, France
| | - Corinne Blugeon
- Genomique ENS, Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Universités Paris Sciences & Lettres (PSL), Paris, France
| | - Nicolas Buisine
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, Paris, France
| | - Laurent M. Sachs
- Unité Mixte de Recherche 7221, Département Adaptation du Vivant, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, Alliance Sorbonne Universités, Paris, France
| |
Collapse
|
4
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
5
|
Wu H, Zhou Q, Xiong H, Wang C, Cui Y, Qi K, Liu H. Goose surfactant protein A inhibits the growth of avian pathogenic Escherichia coli via an aggregation-dependent mechanism that decreases motility and increases membrane permeability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104592. [PMID: 36414098 DOI: 10.1016/j.dci.2022.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Pulmonary collectins have been reported to bind carbohydrates on pathogens and inhibit infection by agglutination, neutralization, and opsonization. In this study, surfactant protein A (SP-A) was identified from goose lung and characterized at expression- and agglutination-functional levels. The deduced amino acid sequence of goose surfactant protein A (gSP-A) has two characteristic structures: a shorter, collagen-like region and a carbohydrate recognition domain. The latter contains two conserved motifs in its Ca2+-binding site: EPN (Glu-Pro-Asn) and WND (Trp-Asn-Asp). Expression analysis using qRT-PCR and fluorescence IHC revealed that gSP-A was highly expressed in the air sac and present in several other tissues, including the lung and trachea. We went on to produce recombinant gSP-A (RgSP-A) using a baculovirus/insect cell system and purified using a Ni2+ affinity column. A biological activity assay showed that all bacterial strains tested in this study were aggregated by RgSP-A, but only Escherichia coli AE17 (E. coli AE17, O2) and E. coli AE158 (O78) were susceptible to RgSP-A-mediated growth inhibition at 2-6 h. Moreover, the swarming motility of the two bacterial strains were weakened with increasing RgSP-A concentration, and their membrane permeability was compromised at 3 h, as determined by flow cytometry and laser confocal microscopy. Therefore, RgSP-A is capable of reducing bacterial viability of E. coli O2 and O78 via an aggregation-dependent mechanism which involves decreasing motility and increasing the bacterial membrane permeability. These data will facilitate detailed studies into the role of gSP-A in innate immune defense as well as for development of antibacterial agents.
Collapse
Affiliation(s)
- Hanwen Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Qian Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Chenxiao Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Yaqian Cui
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Emery L, Kane E, Anderson-Fears K, Liu D, Floros J, Gandhi CK. Association of surfactant protein A2 with acute respiratory failure in children. Pediatr Int 2023; 65:e15672. [PMID: 37888536 PMCID: PMC10617656 DOI: 10.1111/ped.15672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Interactions among single nucleotide polymorphisms (SNPs) of surfactant protein (SP) are associated with acute respiratory failure (ARF) and its short-term outcome, pulmonary dysfunction at discharge (PDAD) in children. However, genetic association studies using individual SNPs have not been conducted before. We hypothesize that SP genetic variants are associated with pediatric ARF and its short-term complications by themselves. METHODS We used available genotype and clinical data in the Floros biobank consisting of 248 children aged ≤24 months with ARF; 86 developed PDAD. A logistic regression analysis was performed for each of the 14 selected SNPs, SP-A1 and SP-A2 genotypes. A p-value less than the Bonferroni correction threshold was considered significant. A likelihood ratio test was done to compare two models (one with demographic data and another with genetic variants). RESULTS Before Bonferroni correction, female sex is associated with a decreased risk of ARF. Black race and the rs721917 of the SFTPD are associated with increased risk of ARF. After Bonferroni correction, the 1A0 1A1 genotype of SFTPA2 was associated with decreased risk of ARF. The likelihood ratio test showed that the model of the genotype information with demographic data was a better fit to predict ARF risk. None of the SP SNPs and SP-A1, SP-A2 genotypes were associated with PDAD. CONCLUSION Our results indicate that SNPs and genotypes of SPs involved in innate immunity and host defense play an important role in ARF and, in the future, may be used as biomarkers.
Collapse
Affiliation(s)
- Lucy Emery
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Elizabeth Kane
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Keenan Anderson-Fears
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Dajiang Liu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Joanna Floros
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Obstetrics & Gynecology, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Chintan K Gandhi
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
7
|
Depicolzuane LC, Roberts CM, Thomas NJ, Anderson-Fears K, Liu D, Barbosa JPP, Souza FR, Pimentel AS, Floros J, Gandhi CK. Hydrophilic But Not Hydrophobic Surfactant Protein Genetic Variants Are Associated With Severe Acute Respiratory Syncytial Virus Infection in Children. Front Immunol 2022; 13:922956. [PMID: 35903101 PMCID: PMC9317530 DOI: 10.3389/fimmu.2022.922956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection-related hospitalization in the first year of life. Surfactant dysfunction is central to pathophysiologic mechanisms of various pulmonary diseases including RSV. We hypothesized that RSV severity is associated with single nucleotide polymorphisms (SNPs) of surfactant proteins (SPs). We prospectively enrolled 405 RSV-positive children and divided them into moderate and severe RSV disease. DNA was extracted and genotyped for sixteen specific SP gene SNPs. SP-A1 and A2 haplotypes were assigned. The association of RSV severity with SP gene SNPs was investigated by multivariate logistic regression. A likelihood ratio test was used to test the goodness of fit between two models (one with clinical and demographic data alone and another that included genetic variants). p ≤ 0.05 denotes statistical significance. A molecular dynamics simulation was done to determine the impact of the SFTPA2 rs1965708 on the SP-A behavior under various conditions. Infants with severe disease were more likely to be younger, of lower weight, and exposed to household pets and smoking, as well as having co-infection on admission. A decreased risk of severe RSV was associated with the rs17886395_C of the SFTPA2 and rs2243639_A of the SFTPD, whereas an increased risk was associated with the rs1059047_C of the SFTPA1. RSV severity was not associated with SNPs of SFTPB and SFTPC. An increased risk of severe RSV was associated with the 1A0 genotype of SFTPA2 in its homozygous or heterozygous form with 1A3. A molecular dynamic simulation study of SP-A variants that differ in amino acid 223, an important amino acid change (Q223K) between 1A0 and 1A3, showed no major impact on the behavior of these two variants except for higher thermodynamic stability of the K223 variant. The likelihood ratio test showed that the model with multi-allelic variants along with clinical and demographic data was a better fit to predict RSV severity. In summary, RSV severity was associated with hydrophilic (but not with hydrophobic) SPs gene variants. Collectively, our findings show that SP gene variants may play a key role in RSV infection and have a potential role in prognostication.
Collapse
Affiliation(s)
- Lynnlee C. Depicolzuane
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Catherine M. Roberts
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Neal J. Thomas
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Keenan Anderson-Fears
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Dajiang Liu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | | | - Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
- Department of Obstetrics & Gynecology, The Pennsylvania State College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros, ; Chintan K. Gandhi,
| | - Chintan K. Gandhi
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros, ; Chintan K. Gandhi,
| |
Collapse
|
8
|
Thorenoor N, Floros J. The Lung Alveolar Cell (LAC) miRNome and Gene Expression Profile of the SP-A-KO Mice After Infection With and Without Rescue With Human Surfactant Protein-A2 (1A0). Front Immunol 2022; 13:854434. [PMID: 35844510 PMCID: PMC9283764 DOI: 10.3389/fimmu.2022.854434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Human surfactant protein (SP)-A1 and SP-A2 exhibit differential qualitative and quantitative effects on the alveolar macrophage (AM), including a differential impact on the AM miRNome. Moreover, SP-A rescue (treatment) of SP-A-knockout (KO) infected mice impoves survival. Here, we studied for the first time the role of exogenous SP-A protein treatment on the regulation of lung alveolar cell (LAC) miRNome, the miRNA-RNA targets, and gene expression of SP-A-KO infected mice of both sexes. Toward this, SP-A-KO mice of both sexes were infected with Klebsiella pneumoniae, and half of them were also treated with SP-A2 (1A0). After 6 h of infection/SP-A treatment, the expression levels and pathways of LAC miRNAs, genes, and target miRNA-mRNAs were studied in both groups. We found 1) significant differences in the LAC miRNome, genes, and miRNA-mRNA targets in terms of sex, infection, and infection plus SP-A2 (1A0) protein rescue; 2) an increase in the majority of miRNA-mRNA targets in both study groups in KO male vs. female mice and involvement of the miRNA-mRNA targets in pathways of inflammation, antiapoptosis, and cell cycle; 3) genes with significant changes to be involved in TP-53, tumor necrosis factor (TNF), and cell cycle signaling nodes; 4) when significant changes in the expression of molecules from all analyses (miRNAs, miRNA-mRNA targets, and genes) were considered, two signaling pathways, the TNF and cell cycle, referred to as “integrated pathways” were shown to be significant; 5) the cell cycle pathway to be present in all comparisons made. Because SP-A could be used therapeutically in pulmonary diseases, it is important to understand the molecules and pathways involved in response to an SP-A acute treatment. The information obtained contributes to this end and may help to gain insight especially in the case of infection.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
- Department of Obstetrics and Gynecology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
9
|
Gandhi CK, Thomas NJ, Meixia Y, Spear D, Fu C, Zhou S, Wu R, Keim G, Yehya N, Floros J. SNP–SNP Interactions of Surfactant Protein Genes in Persistent Respiratory Morbidity Susceptibility in Previously Healthy Children. Front Genet 2022; 13:815727. [PMID: 35401703 PMCID: PMC8989419 DOI: 10.3389/fgene.2022.815727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
We studied associations of persistent respiratory morbidity (PRM) at 6 and 12 months after acute respiratory failure (ARF) in previously healthy children with single-nucleotide polymorphisms (SNPs) of surfactant protein (SP) genes. Of the 250 enrolled subjects, 155 and 127 were followed at 6 and 12 months after an ARF episode, respectively. Logistic regression analysis and SNP–SNP interaction models were used. We found that 1) in the multivariate analysis, an increased risk at 6 and 12 months was associated with rs1124_A and rs4715_A of SFTPC, respectively; 2) in a single SNP model, increased and decreased risks of PRM at both timepoints were associated with rs1124 of SFTPC and rs721917 of SFTPD, respectively; an increased risk at 6 months was associated with rs1130866 of SFTPB and rs4715 of SFTPC, and increased and decreased risks at 12 months were associated with rs17886395 of SFTPA2 and rs2243639 of SFTPD, respectively; 3) in a two-SNP model, PRM susceptibility at both timepoints was associated with a number of intergenic interactions between SNPs of the studied SP genes. An increased risk at 12 months was associated with one intragenic (rs1965708 and rs113645 of SFTPA2) interaction; 4) in a three-SNP model, decreased and increased risks at 6 and 12 months, respectively, were associated with an interaction among rs1130866 of SFTPB, rs721917 of SFTPD, and rs1059046 of SFTPA2. A decreased risk at 6 months was associated with an interaction among the same SNPs of SFTPB and SFTPD and the rs1136450 of SFTPA1. The findings revealed that SNPs of all SFTPs appear to play a role in long-term outcomes of ARF survivors and may serve as markers for disease susceptibility.
Collapse
Affiliation(s)
- Chintan K. Gandhi
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Neal J. Thomas
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Ye Meixia
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Debbie Spear
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chenqi Fu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Shouhao Zhou
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Garrett Keim
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nadir Yehya
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros,
| |
Collapse
|
10
|
Phelps DS, Chinchilli VM, Yang L, Shearer D, Weisz J, Zhang X, Floros J. The alveolar macrophage toponome of female SP-A knockout mice differs from that of males before and after SP-A1 rescue. Sci Rep 2022; 12:5039. [PMID: 35322074 PMCID: PMC8943067 DOI: 10.1038/s41598-022-08114-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
Using the Toponome Imaging System (TIS), a serial immunostainer, we studied the patterns of expression of multiple markers in alveolar macrophages (AM) from female mice lacking surfactant protein A (SP-A knockouts; KO) after "rescue" with exogenous SP-A1. We also used a 7-marker subset to compare with AM from males. AM were harvested 18 h after intrapharyngeal SP-A1 or vehicle, attached to slides, and subjected to serial immunostaining for 12 markers. Expression of the markers in each pixel of the image was analyzed both in the whole image and in individual selected cells. The marker combination in each pixel is referred to as a combinatorial molecular phenotype (CMP). A subset of antibodies was used to compare AM from male mice to the females. We found: (a) extensive AM heterogeneity in females by CMP analysis and by clustering analysis of CMPs in single cells; (b) AM from female KO mice respond to exogenous SP-A1 by increasing CMP phenotypic diversity and perhaps enhancing their potential innate immune capabilities; and (c) comparison of male and female AM responses to SP-A1 revealed that males respond more vigorously than females and clustering analysis was more effective in distinguishing males from females rather than treated from control.
Collapse
Affiliation(s)
- David S. Phelps
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Vernon M. Chinchilli
- grid.29857.310000 0001 2097 4281Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Lili Yang
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Debra Shearer
- grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Judith Weisz
- grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Xuesheng Zhang
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| | - Joanna Floros
- grid.29857.310000 0001 2097 4281Penn State Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research and Departments of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA ,grid.29857.310000 0001 2097 4281Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|