1
|
Ning W, Lv S, Wang Q, Xu Y. The pivotal role of microglia in injury and the prognosis of subarachnoid hemorrhage. Neural Regen Res 2025; 20:1829-1848. [PMID: 38993136 PMCID: PMC11691474 DOI: 10.4103/nrr.nrr-d-24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Subarachnoid hemorrhage leads to a series of pathological changes, including vascular spasm, cellular apoptosis, blood-brain barrier damage, cerebral edema, and white matter injury. Microglia, which are the key immune cells in the central nervous system, maintain homeostasis in the neural environment, support neurons, mediate apoptosis, participate in immune regulation, and have neuroprotective effects. Increasing evidence has shown that microglia play a pivotal role in the pathogenesis of subarachnoid hemorrhage and affect the process of injury and the prognosis of subarachnoid hemorrhage. Moreover, microglia play certain neuroprotective roles in the recovery phase of subarachnoid hemorrhage. Several approaches aimed at modulating microglia function are believed to attenuate subarachnoid hemorrhage injury. This provides new targets and ideas for the treatment of subarachnoid hemorrhage. However, an in-depth and comprehensive summary of the role of microglia after subarachnoid hemorrhage is still lacking. This review describes the activation of microglia after subarachnoid hemorrhage and their roles in the pathological processes of vasospasm, neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, cerebral edema, and cerebral white matter lesions. It also discusses the neuroprotective roles of microglia during recovery from subarachnoid hemorrhage and therapeutic advances aimed at modulating microglial function after subarachnoid hemorrhage. Currently, microglia in subarachnoid hemorrhage are targeted with TLR inhibitors, nuclear factor-κB and STAT3 pathway inhibitors, glycine/tyrosine kinases, NLRP3 signaling pathway inhibitors, Gasdermin D inhibitors, vincristine receptor α receptor agonists, ferroptosis inhibitors, genetic modification techniques, stem cell therapies, and traditional Chinese medicine. However, most of these are still being evaluated at the laboratory stage. More clinical studies and data on subarachnoid hemorrhage are required to improve the treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Wenjing Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
2
|
Lang J, Li M, Sun B, Feng S, Zhao J, Zhao G, Sun G. CEBPD is a pivotal factor for the activation of NLRP3 inflammasome in traumatic brain injury. Int Immunopharmacol 2025; 159:114930. [PMID: 40414072 DOI: 10.1016/j.intimp.2025.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Traumatic brain injury (TBI) is a significant global health concern and a leading cause of mortality and disability worldwide. Neuroinflammation is a pivotal pathological mechanism underlying secondary brain injury following TBI. CCAAT enhancer-binding protein-delta (CEBPD), a transcription factor necessary for regulating immune and inflammatory responses, plays an important role in the progression of neuroinflammatory disorders. However, the role of CEBPD in the prognosis of TBI needs to be determined. We found that the expression of CEBPD increased significantly in TBI patients and animal models, as well as in the HT-22 neuron mechanical scratch injury model. The inhibition of CEBPD by in vivo siRNA effectively suppressed neuronal death, brain edema, and brain contusion volume and alleviated neurofunctional deficits. Knocking down CEBPD considerably inhibited the activation of the neuronal NLRP3 inflammasome, downregulated the expression of the GSDMD N-terminal fragment, and reduced the production of IL-1β and IL-18, significantly mitigating neuronal pyroptosis after TBI. Increasing CEBPD levels led to the activation of the NLRP3 inflammasome and neuronal pyroptosis in the mechanical scratch injury cell model. We also determined that the NLRP3 inflammasome activated by nigericin depended on the CEBPD pathway following TBI. Our results suggested that CEBPD may serve as a pivotal factor in promoting neuronal pyroptosis and that inhibiting CEBPD might be a promising strategy for treating TBI.
Collapse
Affiliation(s)
- Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Mingkang Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Shiyao Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - JianFei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Gengshui Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
3
|
Hao X, Cao L, Li J, Lei Q, Liu X, Li Y, Fan Y, Xu J, Fang B. FOXA2/miR-148a-3p/SMURF2 signaling feed-forward loop alleviates spinal cord ischemia-reperfusion injury-induced neuropathic pain by modulating microglia polarization in rats. Front Immunol 2025; 16:1563377. [PMID: 40433390 PMCID: PMC12108549 DOI: 10.3389/fimmu.2025.1563377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/04/2025] [Indexed: 05/29/2025] Open
Abstract
Background Microglia polarization is crucial in mediating neuropathic pain. However, the role of microglia polarization in regulating spinal cord ischemia-reperfusion injury (SCIRI)-induced neuropathic pain is largely unknown. This study aimed to elucidate the relationship between SCIRI-induced neuropathic pain and microglia polarization, as well as the underlying mechanisms, with the objective of identifying potential therapeutic targets. Methods A rat model of SCIRI was established by aortic arch clamping, then pain thresholds were measured. In vitro, oxygen-glucose deprivation/reperfusion (OGD/R) of HAPI microglia was performed. The expressions of sirtuin1 (SIRT1), SMAD specific E3 ubiquitin protein ligase 2 (SMURF2), and markers of microglial polarization (CD206, iNOS) were quantitated by Western blot and immunofluorescence, and the levels of cytokines (TNF-α, IL-4) were assessed by Enzyme-linked immunosorbent assay (ELISA). Real-time quantitative reverse transcription PCR (RT-qPCR) experiments were conducted to quantify the levels of miR-148a-3p and FOXA2. Dual-luciferase reporter assay was employed to identify the targeted regulation of SMURF2 by miR-148a-3p and the transcriptional regulation of miR-148a-3p by FOXA2. The regulatory role of FOXA2 in the transcription of miR-148a-3p was validated using chromatin immunoprecipitation (ChIP). In addition, co-immunoprecipitation (Co-IP) assays were performed to confirm the binding relationship between SMURF2 and FOXA2. And the ubiquitination levels of FOXA2 and SIRT1 were measured. Subsequently, rats were administered miR-148a-3p to assess pain thresholds. Western blot and immunofluorescence quantitative analysis was conducted to assess the expression of markers associated with microglia polarization. Results SCIRI significantly reduced mechanical and thermal pain thresholds in rats and promoted microglial polarization, with a concomitant decrease in SIRT1 expression and an increase in SMURF2 expression in microglial cells. Further analysis revealed that upregulation of miR-148a-3p promoted microglia polarization toward M2 by targeting SMURF2, which in turn inhibited ubiquitination of SIRT1. FOXA2 was an upstream transcription factor of miR-148a-3p and SMURF2 bound to FOXA2, resulting in its ubiquitination. Finally, in vivo experiments demonstrated that miR-148a-3p effectively promoted microglia transformation from M1 to M2 and reduced neuropathic pain following SCIRI. Conclusions The FOXA2/miR-148a-3p/SMURF2 signaling feed-forward loop regulates SIRT1 levels and thereby exerts control over microglia polarization and the regulation of SCIRI-induced neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Li G, Yi Y, Qian S, Xu X, Min H, Wang J, Guo P, Yu T, Zhang Z. Shikonin attenuates blood-brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/Nrf2/HO-1 signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:283-291. [PMID: 40254555 PMCID: PMC12012320 DOI: 10.4196/kjpp.24.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 04/22/2025]
Abstract
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood-brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
Collapse
Affiliation(s)
- Guanghu Li
- Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| | - Yang'e Yi
- Department of Vascular Surgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| | - Sheng Qian
- Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| | - Xianping Xu
- Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| | - Hao Min
- Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| | - Jianpeng Wang
- Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| | - Pan Guo
- Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| | - Tingting Yu
- Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| | - Zhiqiang Zhang
- Department of Neurosurgery, Affiliated Hospital of Jianghan University, Wuhan 430000, China
| |
Collapse
|
5
|
Wang G, Li Z, Han W, Tian Q, Liu C, Jiang S, Xiang X, Zhao X, Wang L, Liao J, Li M. Itaconate promotes mitophagy to inhibit neuronal ferroptosis after subarachnoid hemorrhage. Apoptosis 2025; 30:991-1004. [PMID: 39924585 DOI: 10.1007/s10495-025-02077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
Subarachnoid hemorrhage (SAH), representing 5-10% of all stroke cases, is a cerebrovascular event associated with a high mortality rate and a challenging prognosis. The role of IRG1-regulated itaconate in bridging metabolism, inflammation, oxidative stress, and immune response is pivotal; however, its implications in the early brain injury following SAH remain elusive. The SAH nerve inflammation model was constructed by Hemin solution and BV2 cells. In vitro and in vivo SAH models were established by intravascular puncture and Hemin solution treatment of HT22 cells. To explore the relationship between IRG1 and neuroinflammation by interfering the expression of Irg1 in BV2 cells. By adding itaconate and its derivatives to explore the relationship between mitophagy and ferroptosis. IRG1 knockdown increased the expression of inflammatory factors and induced the transformation of microglia to pro-inflammatory phenotype after SAH; Itaconate and itaconate derivative 4-OI can reduce oxidative stress and lipid peroxidation level in neuron after SAH, and reduce EBI after SAH; IRG1/ itaconate promotes mitophagy through PINK1/Parkin signaling pathway to inhibit neuronal ferroptosis. IRG1 can improve nerve inflammation after SAH, M2 of microglia induced polarization. IRG1/ Itaconate participates in mitophagy through PINK1/Parkin to alleviate neuronal ferroptosis after SAH and play a neuroprotective role.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Zhijie Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Shengming Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Xi Xiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Xincan Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Lei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei Province, 443000, China.
- Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China.
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China.
- 99 Ziyang Road, Wuhan, Hubei Province, 430060, China.
| |
Collapse
|
6
|
Singh V, Ubaid S, Kashif M, Singh T, Singh G, Pahwa R, Singh A. Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:109. [PMID: 40155968 PMCID: PMC11954315 DOI: 10.1186/s13046-025-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
Inflammasomes are multi-protein complexes that detect pathogenic and damage-associated molecular patterns, activating caspase-1, pyroptosis, and the maturation of pro-inflammatory cytokines such as IL-1β and IL-18Within the tumor microenvironment, inflammasomes like NLRP3 play critical roles in cancer initiation, promotion, and progression. Their activation influences the crosstalk between innate and adaptive immunity by modulating immune cell recruitment, cytokine secretion, and T-cell differentiation. While inflammasomes can contribute to tumor growth and metastasis through chronic inflammation, their components also present novel therapeutic targets. Several inhibitors targeting inflammasome components- such as sensor proteins (e.g., NLRP3, AIM2), adaptor proteins (e.g., ASC), caspase-1, and downstream cytokines- are being explored to modulate inflammasome activity. These therapeutic strategies aim to modulate inflammasome activity to enhance anti-tumor immune responses and improve clinical outcomes. Understanding the role of inflammasomes in cancer immunity is crucial for developing interventions that effectively bridge innate and adaptive immune responses for better therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saba Ubaid
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Mohammad Kashif
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tanvi Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Gaurav Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Roma Pahwa
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Sinclair P, Jeffries W, Lebert N, Saeed M, Ullah A, Kabbani N. A predictive machine learning model for cannabinoid effect based on image detection of reactive oxygen species in microglia. PLoS One 2025; 20:e0320219. [PMID: 40131976 PMCID: PMC11936260 DOI: 10.1371/journal.pone.0320219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
Neuroinflammation is a key feature of human neurodisease including neuropathy and neurodegenerative disease and is driven by the activation microglia, immune cells of the nervous system. During activation microglia release pro-inflammatory cytokines as well as reactive oxygen species (ROS) that can drive local neuronal and glial damage. Phytocannabinoids are an important class of naturally occurring compounds found in the cannabis plant (Cannabis sativa) that interact with the body's endocannabinoid receptor system. Cannabidiol (CBD) is a prototype phytocannabinoid with anti-inflammatory properties observed in cells and animal models. We measured ROS in human microglia (HMC3) cells using CellROX, a fluorescent dynamic ROS indicator. We tested the effect of CBD on ROS level in the presence of three known immune activators: lipopolysaccharide (LPS), amyloid beta (Aβ42), and human immunodeficiency virus (HIV) glycoprotein (GP120). Confocal microscopy images within microglia were coupled to a deep learning model using a convolutional neural network (CNN) to predict ROS responses. Our study demonstrates a deep learning platform that can be used in the assessment of CBD effect in immune cells using ROS image measure.
Collapse
Affiliation(s)
- Patricia Sinclair
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
| | - William Jeffries
- Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, United Sates of America
| | - Nadege Lebert
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
| | - Maheen Saeed
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
| | - Aman Ullah
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
- Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, United Sates of America
| | - Nadine Kabbani
- Interdiscplinary Program in Neuroscience, George Mason University, Fairfax, Virginia, United Sates of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United Sates of America
| |
Collapse
|
8
|
Hu ZQ, Ma R, Sun JQ, Peng M, Yuan J, Lai N, Liu J, Xia D. Tenascin-C Facilitates Microglial Polarization via TLR4/MyD88/NF-κB Pathway Following Subarachnoid Hemorrhage. J Inflamm Res 2025; 18:3555-3570. [PMID: 40093948 PMCID: PMC11908393 DOI: 10.2147/jir.s511378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose This study primarily aims to elucidate the underlying mechanism of Tenascin-C in neuroinflammation and microglia polarization in a mouse model of subarachnoid hemorrhage (SAH). Methods The subarachnoid hemorrhage model was constructed by injecting blood into the anterior chiasmatic cistern and stimulating primary microglia with hemoglobin in vitro. Then, Imatinib mesylate was used to inhibit Tenascin-C. Through neurological function scoring, brain edema, primary cell extraction, immunofluorescence staining, CCK8, Tunel staining, Elisa, Western blot and other methods, the potential mechanism of Tenascin-C induced microglia cell polarization was explored. Results The results of this study observed that the expression of Tenascin-C was up-regulated after subarachnoid hemorrhage. Inhibiting the increase of Tenascin-C by imatinib could significantly ameliorate neuroinflammation, neuronal apoptosis, blood brain barrier disruption and brain edema. When the level of Tenascin-C decreased, the numbers of TLR4 positive, MyD88 positive and NF-κB positive microglial cells decreased accordingly. Moreover, after subarachnoid hemorrhage, the number of microglial cells positive for M1-type markers increased significantly. After imatinib inhibited Tenascin-C, the number of M1-type microglial cells decreased and the number of M2-type microglial cells increased significantly. Conclusion In summary, the elevated level of Tenascin-C after subarachnoid hemorrhage induces the activation of microglia, releasing a large number of inflammatory factors and aggravating early brain injury.
Collapse
Affiliation(s)
- Zheng-Qing Hu
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People's Republic of China
| | - Ruijie Ma
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People's Republic of China
| | - Jia-Qing Sun
- Deparment of Neurosurgery, Nanjing DrumTower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, People's Republic of China
| | - Min Peng
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People's Republic of China
| | - Jinlong Yuan
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People's Republic of China
| | - Niansheng Lai
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People's Republic of China
| | - Jiaqiang Liu
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People's Republic of China
| | - Dayong Xia
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241001, People's Republic of China
| |
Collapse
|
9
|
Ding Y. Histone deacetylases: the critical enzymes for microglial activation involved in neuropathic pain. Front Pharmacol 2025; 16:1515787. [PMID: 40115267 PMCID: PMC11922887 DOI: 10.3389/fphar.2025.1515787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Neuropathic pain is a common health problem in clinical practice that can be caused by many different factors, including infection, ischemia, trauma, diabetes mellitus, nerve compression, autoimmune disorders, cancer, trigeminal neuralgia, and abuse of certain drugs. This type of pain can persistently affect patients for a long time, even after the rehabilitation of their damaged tissues. Researchers have identified the crucial role of microglial activation in the pathogenesis of neuropathic pain. Furthermore, emerging evidence has shown that the expression and/or activities of different histone deacetylases (HDACs) can modulate microglial function and neuropathic pain. In this review, we will summarize and discuss the functions and mechanisms of HDACs in microglial activation and neuropathic pain development. Additionally, we will also list the emerging HDAC inhibitors or activators that may contribute to therapeutic advancement in alleviating neuropathic pain.
Collapse
Affiliation(s)
- Yi Ding
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Zhang SY, Yang N, Hao PH, Wen R, Zhang TN. Targeting sirtuins in neurological disorders: A comprehensive review. Int J Biol Macromol 2025; 292:139258. [PMID: 39736297 DOI: 10.1016/j.ijbiomac.2024.139258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function. This review summarizes the latest research advancements in the role of the SIRT family in neurological diseases, mainly including neurodegenerative diseases, ischemia-related diseases, bleeding-related diseases, nervous system injury and other nervous system diseases, emphasizing their critical functions and associated signaling pathways, (e.g., AMPK/SIRT1/PGC-1α, AMPK/SIRT1/IL-1β/NF-κB, STAT2-SIRT4-mTOR, SIRT3/FOXO3α, and other signaling pathways in disease progression, particularly their protective roles in neurodegenerative diseases, ischemic injuries, and neural damage. Additionally, this review discusses progress in clinical studies targeting SIRT-specific small-molecule agonists and inhibitors. Further research on SIRTs may provide new insights into potential therapeutic strategies for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
11
|
He KL, Yu X, Xia L, Xie YD, Qi EB, Wan L, Hua XM, Jing CH. A new perspective on the regulation of neuroinflammation in intracerebral hemorrhage: mechanisms of NLRP3 inflammasome activation and therapeutic strategies. Front Immunol 2025; 16:1526786. [PMID: 40083546 PMCID: PMC11903264 DOI: 10.3389/fimmu.2025.1526786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Intracerebral hemorrhage (ICH), a specific subtype within the spectrum of stroke disorders, is characterized by its high mortality and significant risk of long-term disability. The initiation and progression of neuroinflammation play a central and critical role in the pathophysiology of ICH. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a protein complex involved in initiating inflammation, is the central focus of this article. Microglia and astrocytes play critical roles in the inflammatory damage process associated with neuroinflammation. The NLRP3 inflammasome is expressed within both types of glial cells, and its activation drives these cells toward a pro-inflammatory phenotype, which exacerbates inflammatory damage in the brain. However, the regulatory relationship between these two cell types remains to be explored. Targeting NLRP3 inflammasomes in microglia or astrocytes may provide an effective approach to mitigate neuroinflammation following ICH. This article first provides an overview of the composition and activation mechanisms of the NLRP3 inflammasome. Subsequently, it summarizes recent research findings on novel signaling pathways that regulate NLRP3 inflammasome activity. Finally, we reviewed recent progress in NLRP3 inflammasome inhibitors, highlighting the clinical translation potential of certain candidates. These inhibitors hold promise as innovative strategies for managing inflammation following ICH.
Collapse
Affiliation(s)
- Kai-long He
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xian Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xia
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yan-dong Xie
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - En-bo Qi
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Liang Wan
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu-ming Hua
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chao-hui Jing
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Sheu ML, Pan LY, Pan SY, Chen YJ, Sheehan J, You WC, Wang CC, Pan HC. Caloric Restriction Attenuated Nerve Damages Mediated Through SIRT-1-a Study Using Nerve Crush Injury Model in Rats. Mol Neurobiol 2025:10.1007/s12035-025-04786-9. [PMID: 39994158 DOI: 10.1007/s12035-025-04786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Activation of Sirtuin 1 (SIRT-1) is vital for axonogenesis and nerve regeneration. Caloric restriction (CR) has health benefits and protects against neurodegenerative disorders, largely through SIRT-1 regulation. This study investigates how diet control impacts peripheral nerve injury, focusing on SIRT-1 expression. We prepared nerve tissue cultures for a pharmacological analysis of SIRT-1's effects on nerve degeneration. After two weeks of 70% caloric restriction, we crushed the left sciatic nerve of Sprague-Dawley rats with a vessel clamp. We then administered SIRT-1 agonists or antagonists intraperitoneally. Nerve explant cultures showed increased SIRT-1 expression with SRT-1720, which was reduced by EX527, indicating enhanced regeneration. In the animal study, diet control led to notable SIRT-1 expression in plasma. This expression increased with SIRT-1 agonists and decreased with antagonists. SIRT-1 levels in paw skin were strongly correlated with PGP 9.5 and collagen deposition, while nerve fiber size and regeneration markers (S-100 and NF) also correlated with SIRT-1 expression. Inflammatory markers showed an inverse relationship with SIRT-1. TNF-α and NGF in the dorsal root ganglion responded reciprocally to SIRT-1 expression. Increased acetylcholine receptors and desmin in denervated muscle were parallel to SIRT-1 levels, with similar trends observed in muscle weight and diameter. Neurobehavioral and electrophysiological results aligned with these measurements. Caloric restriction has a preventative effect on nerve damage, mainly through SIRT-1 modulation. From a health perspective, promoting caloric restriction is important for mitigating nerve injury severity.
Collapse
Affiliation(s)
- Meei-Ling Sheu
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
- Doctoral Program in Biotechnology Industrial Management and Innovation, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec.4, 40705, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Liang-Yi Pan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
| | - Szu-Yen Pan
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying Ju Chen
- PhD program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung, Taiwan
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Weir-Chiang You
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Hung-Chuan Pan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Department of Medical Research, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec.4, 40705, Taichung, Taiwan.
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
13
|
Wang C, Zhang J, Chen W, Gao L, He J, Xia Y. Exosomal lncRNA RMRP-shuttled by Olfactory Mucosa-Mesenchymal Stem Cells Suppresses Microglial Pyroptosis to Improve Spinal Cord Injury via EIF4A3/SIRT1. Mol Neurobiol 2025:10.1007/s12035-025-04756-1. [PMID: 39982689 DOI: 10.1007/s12035-025-04756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Microglial pyroptosis significantly influences the pathological process and functional recovery after spinal cord injury (SCI). Olfactory mucosal mesenchymal stem cells (OM-MSCs) have shown remarkable therapeutic effects in SCI due to their neural substitution potential and paracrine mechanism. Therefore, the purpose of this study was to investigate the function and mechanism of OM-MSCs-derived exosomes (Exo) in regulating microglial pyroptosis after SCI. OM-MSCs and their secreted Exo were extracted and identified correspondingly. Microglia cells (HMC3) were stimulated by lipopolysaccharide (LPS) and co-cultured with Exo; the cell viability and pyroptosis of HMC3 cells were validated by CCK-8 and flow cytometry analysis. The inflammatory cytokines and pyroptosis-related proteins were measured by ELISA and western blot. Molecular interactions were verified by RNA immunoprecipitation and RNA pull-down. The SCI mouse model was constructed and administered with Exo, and then the histopathological features were detected using H&E, Nissl staining, and BMS score. lncRNA RMRP was enriched in OM-MSCs-Exo and downregulated in LPS-induced HMC3 cells. OM-MSCs-Exo administration markedly elevated lncRNA RMRP expression and repressed microglial pyroptosis in LPS-induced HMC3 cells, while these effects were diminished when lncRNA RMRP was depleted in OM-MSCs-Exo. Mechanistically, lncRNA RMRP maintained SIRT1 mRNA stability by recruiting EIF4A3. Overexpression of SIRT1 could rescue lncRNA RMRP knockdown-mediated microglia pyroptosis. In vivo data further supported that OM-MSCs-Exo administration relieves pyroptosis and nerve damage after SCI by carrying lncRNA RMRP. Our data suggested that exosomal lncRNA RMRP mitigated microglia pyroptosis and promoted motor function recovery after SCI by regulating the EIF4A3/SIRT1 axis.
Collapse
Affiliation(s)
- Chuang Wang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Jiangshan Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Weiming Chen
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Ling Gao
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan Province, P. R. China.
| |
Collapse
|
14
|
Zhang X, Xu C, Liu ZY, Zhang DY, Wang BH, Wang J, Ding XM. The Inflammasome: A Promising Potential Therapeutic Target for Early Brain Injury Following Subarachnoid Hemorrhage. FRONT BIOSCI-LANDMRK 2025; 30:33454. [PMID: 40018941 DOI: 10.31083/fbl33454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
Subarachnoid hemorrhage (SAH), a severe cerebrovascular disorder, is principally instigated by the rupture of an aneurysm. Early brain injury (EBI), which gives rise to neuronal demise, microcirculation impairments, disruption of the blood-brain barrier, cerebral edema, and the activation of oxidative cascades, has been established as the predominant cause of mortality among patients with SAH. These pathophysiological processes hinge on the activation of inflammasomes, specifically the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)and absent in melanoma 2 (AIM2) inflammasomes. These inflammasomes assume a crucial role in downstream intracellular signaling pathways and hold particular significance within the nervous system. The activation of inflammasomes can be modulated, either by independently regulating these two entities or by influencing their engagement at specific target loci within the pathway, thereby attenuating EBI subsequent to SAH. Although certain clinical instances lend credence to this perspective, more in-depth investigations are essential to ascertain the optimal treatment regimen, encompassing dosage, timing, administration route, and frequency. Consequently, targeting the ensuing early brain injury following SAH represents a potentially efficacious therapeutic approach.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Chao Xu
- Department of Neurosurgery, Chongqing General Hospital, 400799 Chongqing, China
| | - Zi-Yuan Liu
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Dong-Yuan Zhang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Bo-Hong Wang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Xin-Min Ding
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| |
Collapse
|
15
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
16
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
17
|
Wang Y, Yuan T, Lyu T, Zhang L, Wang M, He Z, Wang Y, Li Z. Mechanism of inflammatory response and therapeutic effects of stem cells in ischemic stroke: current evidence and future perspectives. Neural Regen Res 2025; 20:67-81. [PMID: 38767477 PMCID: PMC11246135 DOI: 10.4103/1673-5374.393104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment. This review summarizes several major cells involved in the inflammatory response following ischemic stroke, including microglia, neutrophils, monocytes, lymphocytes, and astrocytes. Additionally, we have also highlighted the recent progress in various treatments for ischemic stroke, particularly in the field of stem cell therapy. Overall, understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes. Stem cell therapy may potentially become an important component of ischemic stroke treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tingli Yuan
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Tianjie Lyu
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiying He
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yongjun Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| |
Collapse
|
18
|
Yang BSK, Gusdon AM, Ren XS, Jeong HG, Lee CH, Blackburn S, Choi HA. Update on Strategies to Reduce Early Brain Injury after Subarachnoid Hemorrhage. Curr Neurol Neurosci Rep 2024; 25:14. [PMID: 39722093 DOI: 10.1007/s11910-024-01396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE OF REVIEW Early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (SAH) is the most influential clinical determinant of outcomes. Despite significant advances in understanding of the pathophysiology of EBI, currently no treatments to target EBI have been developed. This review summarizes recent advances in EBI research over the past five years with a focus on potential therapeutic targets. RECENT FINDINGS Mechanism-specific translational studies are converging on several pathophysiologic pathways: improved antioxidant delivery and the Sirt1/Nrf2 pathway for reactive oxygen species; NLRP3 inflammasome and microglial polarization for inflammation; and the PI3K/Akt pathway for apoptosis. Recently identified mechanistic components, such as microcirculatory failure and ferroptosis, need particular attention. Clinical studies developing radiographic markers and mechanism-specific, biofluid markers are attempting to bridge the translational therapeutic gap. There has been an exponential growth in EBI research. Further clinical studies which address specific pathophysiology mechanisms need to be performed to identify novel therapeutic approaches.
Collapse
Affiliation(s)
- Bosco Seong Kyu Yang
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aaron M Gusdon
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuefang Sophie Ren
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han-Gil Jeong
- Department of Neurology and Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Spiros Blackburn
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huimahn Alex Choi
- The NABI institute, Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
19
|
Nan Y, Ni S, Liu M, Hu K. The emerging role of microglia in the development and therapy of multiple sclerosis. Int Immunopharmacol 2024; 143:113476. [PMID: 39476566 DOI: 10.1016/j.intimp.2024.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Microglia are innate immune cells that maintain homeostasis of the central nervous system (CNS) and affect various neurodegenerative diseases, especially multiple sclerosis (MS). MS is an autoimmune disease of the CNS characterized by persistent inflammation, diffuse axonal damage, and microglia activation. Recent studies have shown that microglia are extremely related to the pathological state of MS and play an important role in the development of MS. This article reviews the multiple roles of microglia in the progression of MS, including the regulatory role of microglia in inflammation, remyelination, oxidative stress, the influence of phagocytosis and antigen-presenting capacity of microglia, and the recent progress by using microglia as a target for MS therapy. Microglia modulation may be a potential way for better MS therapy.
Collapse
Affiliation(s)
- Yunrong Nan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuting Ni
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mei Liu
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Huang Q, Shi Z, Zheng D, Chen H, Huang Q. Shikonin Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis to Attenuate Renal Ischemia/Reperfusion Injury by Activating the Sirt1/Nrf2/HO-1 Pathway. Kidney Blood Press Res 2024; 50:131-146. [PMID: 39662059 PMCID: PMC11844683 DOI: 10.1159/000542417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Shikonin is the major bioactive compound abundant in Lithospermum erythrorhizon and possesses diverse pharmacological properties. This study aimed to examine shikonin roles in experimental renal ischemia/reperfusion (I/R) injury. METHODS Renal tissues and blood were collected from experimental renal I/R injury models. Kidney functions, structural injuries, and cellular death were assessed. Markers of endoplasmic reticulum (ER) stress were evaluated by RT-qPCR and Western blotting. The effect of shikonin on Sirt1/Nrf2/HO-1 signaling was detected by Western blotting and immunofluorescence staining. HK-2 cells that underwent hypoxia/reoxygenation (H/R) process were used to perform CCK-8 and flow cytometry. RESULTS For in vivo analysis, renal dysfunctions and tissue structural damage induced by I/R were relieved by shikonin. Additionally, shikonin alleviated ER stress-induced apoptosis in I/R mice. For in vitro analysis, shikonin inhibited ER stress-stimulated apoptosis of H/R cells. Mechanistically, shikonin activated Sirt1/Nrf2/HO-1 signaling post-I/R, and inhibition of Sirt1 limited shikonin-mediated protection against ER stress-stimulated apoptosis in both animal and cellular models. CONCLUSION By activating Sirt1/Nrf2/HO-1 signaling, shikonin inhibits apoptosis caused by ER stress and relieves renal I/R injury.
Collapse
Affiliation(s)
- Qian Huang
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou, China
| | - Zilu Shi
- Department of Nephrology, First Hospital of Quanzhou Affiliated to Fujian Medical College, Quanzhou, China
| | - Dandan Zheng
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou, China
| | - Huiqin Chen
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou, China
| | - Qiuhong Huang
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou, China
| |
Collapse
|
21
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
22
|
Shao L, Chang Y, Liu J, Lin L, Chang L, Zhang J, Lan Z, Zhang H, Chen X. scRNA-Seq reveals age-dependent microglial evolution as a determinant of immune response following spinal cord injury. Brain Res Bull 2024; 219:111116. [PMID: 39515654 DOI: 10.1016/j.brainresbull.2024.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition of the central nervous system (CNS) that leads to severe impairments in sensory and motor functions. Previous studies have pointed out that patient age is a critical factor influencing SCI prognosis. However, the role of microglia in age-related differences in SCI outcomes remains unclear. The current study aims to identify specific microglial subtypes and investigate their responses and functional differences in SCI recovery across different age groups. Single-cell RNA sequencing (scRNA-seq) data were obtained from the Gene Expression Omnibus (GEO) database, integrating multiple datasets to identify microglial subtypes. We performed pseudotime trajectory analysis and cell-cell communication analysis to understand microglial differentiation and interactions. Finally, immunofluorescence staining of mouse model samples was conducted to validate our bioinformatics findings. Microglia were classified into four subtypes: Homeostatic, Proliferating, Inflammatory A, and Inflammatory B. The Young SCI group exhibited a higher proportion of Homeostatic microglia and Inflammatory microglia A, whereas the old SCI group had more Inflammatory Microglia B but lacked Homeostatic Microglia. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that markers for homeostasis microglia were enriched in immune modulation pathways. While makers for Inflammatory Microglia were enriched in immune response pathways. Specifically, markers for Inflammatory microglia B were enriched in pathways associated with overactive immune response. Pseudotime analysis indicated that microglia in young mice predominantly differentiated into Inflammatory Microglia A and Homeostatic Microglia, whereas in old mice, they tended to only differentiate into Inflammatory Microglia B. CellChat analysis showed increased pro-inflammatory signaling generated by Inflammatory Microglia B, exclusively in the old group. Our study demonstrates significant differences in microglial subtypes and functions between different age groups following SCI. These findings provide novel insights into the development of age-related therapeutic strategies and microglia-targeted biological treatments for SCI.
Collapse
Affiliation(s)
- Lufei Shao
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Ningxia nervous system disease Diagnosis and treatment Engineering Technology Research center, Yinchuan 750004, China
| | - Yueliang Chang
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jinfang Liu
- Neurology Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Leilei Lin
- Orthopedics Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Long Chang
- Orthopedics Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Jialin Zhang
- Orthopedics Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Zhibin Lan
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Honglai Zhang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolei Chen
- Orthopedics Department, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
23
|
Bao L, Li M, Li J, Gao J. Circular RNA circVAPA mediates alveolar macrophage activation by modulating miR-212-3p/Sirt1 axis in acute respiratory distress syndrome. J Mol Histol 2024; 56:7. [PMID: 39612054 PMCID: PMC11607097 DOI: 10.1007/s10735-024-10312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/28/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening condition associated with the inflammatory activation of alveolar macrophages. Here, we examined the role of circVAPA in regulating inflammasome activation and macrophage inflammatory polarization in an ARDS model. METHODS circVAPA expression levels were analyzed in macrophages isolated from healthy controls and patients with ARDS. In vitro cell models of mouse alveolar macrophages and an in vivo mouse ARDS model were established through Lipopolysaccharide (LPS) stimulation. The effects of circVAPA knockdown on macrophage inflammatory polarization, inflammasome activation, and pulmonary tissue damage were investigated in both cell and animal models. The interaction between circVAPA and downstream factors was verified through a luciferase reporter assay and by silencing circVAPA. RESULTS circVAPA upregulation in alveolar macrophages was associated with the inflammation in ARDS patients. circVAPA was also upregulated in LPS-stimulated mouse alveolar macrophages (MH-S cells). Additionally, circVAPA knockdown attenuated the inflammatory activation of MH-S cells and reduced the expression of pyroptosis-related proteins. circVAPA silencing also mitigated the inflammatory effects of LPS-stimulated MH-S cells on lung epithelial cells (MLE-12), and alleviated the inflammatory damage in the pulmonary tissue of ARDS mouse model. We further showed that miR-212-3p/Sirt1 axis mediated the functional role of circVAPA in the inflammatory polarization of MH-S cells. CONCLUSION Our data suggest that circVAPA promotes inflammasome activity and macrophage inflammation by modulating miR-212-3p/Sirt1 axis in ARDS. Targeting circVAPA may be employed to suppress the inflammatory activation of alveolar macrophages in ARDS.
Collapse
Affiliation(s)
- Lingyun Bao
- Department of Neonatology, Kunming Children's Hospital, Kunming, Yunnan, China.
| | - Mingpan Li
- Department of Neonatology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Jiaxin Li
- Department of Neonatology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Jin Gao
- Department of Neonatology, Kunming Children's Hospital, Kunming, Yunnan, China
| |
Collapse
|
24
|
Wang M, Zhu W, Guo Y, Zeng H, Liu J, Liu J, Zou Y. Astragalus polysaccharide treatment relieves cerebral ischemia‒reperfusion injury by promoting M2 polarization of microglia by enhancing O-GlcNAcylation. Metab Brain Dis 2024; 40:16. [PMID: 39560836 DOI: 10.1007/s11011-024-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Cerebral ischemia‒reperfusion (I/R) injury seriously threatens the lives of patients. Astragalus polysaccharide (APS) is the main active ingredient of Astragalus membranaceus and has a wide range of pharmacological activities. Here, we aimed to explore the impacts of APS on cerebral I/R injury and its specific mechanisms. We established a cerebral I/R injury model using middle cerebral artery occlusion (MCAO)-treated rats and oxygen glucose deprivation/reoxygenation (OGD/R)-treated BV2 cells. The interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin (IL-10) levels were determined using corresponding ELISA kits and RT‒qPCR. The levels of M1 microglial markers (INOS and CD16) and M2 microglial markers (Arg-1 and CD206) were measured by RT‒qPCR. The O-linked N-acetylglucosamine modification (O-GlcNAcylation), O-GlcNAc transfer (OGT) and O-GlcNAc glycosidase (OGA) protein levels were measured by Western blot. Our results showed that APS treatment decreased IL-1β (179.72 ± 9.08 vs. 81.33 ± 6.30) and IL-6 (445.56 ± 33.09 vs. 234.75 ± 27.62) levels and increased IL-10 (41.95 ± 4.18 vs. 86.40 ± 7.16) levels in OGD/R-treated BV2 cells (p < 0.001). In addition, APS promoted the M2 polarization of OGD/R-treated BV2 cells, manifested by an increase in Arg-1 (0.43 ± 0.04 vs. 0.76 ± 0.03) and CD206 (0.36 ± 0.03 vs. 0.65 ± 0.06) and a decrease in INOS (2.84 ± 0.39 vs. 1.56 ± 0.19) and CD16 (4.04 ± 0.36 vs. 1.88 ± 0.09) in OGD/R-treated BV2 cells (p < 0.001). Additionally, APS treatment increased the O-GlcNAcylation and OGT levels in OGD/R-treated BV2 cells, while OGT knockdown reversed the effect of APS in OGD/R-treated BV2 cells and MCAO-treated rats (p < 0.05). Our study demonstrated that APS alleviated cerebral I/R injury by promoting the M2 polarization of microglia by enhancing OGT-mediated O-GlcNAcylation.
Collapse
Affiliation(s)
- Mingyi Wang
- Department of Rehabilitation Medicine, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), No.39, Donghua Road, Longjiang Town, Shunde District, Foshan City, Guangdong Province, 528318, China.
| | - Wenfeng Zhu
- Department of Ultrasound, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Yingmei Guo
- Department of Traditional Chinese Medicine, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Huan Zeng
- Endoscopy Center, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Jincan Liu
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Guangzhou, China
| | - Jiemei Liu
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Guangzhou, China
| | - Yucong Zou
- Department of Rehabilitation, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, China
| |
Collapse
|
25
|
Gao Y, Li S, Zhang S, Zhang Y, Zhang J, Zhao Y, Chang C, Gao X, Chen L, Yang G. Atractylenolide-I Attenuates MPTP/MPP +‑Mediated Oxidative Stress in Parkinson's Disease Through SIRT1/PGC‑1α/Nrf2 Axis. Neurochem Res 2024; 50:18. [PMID: 39556135 DOI: 10.1007/s11064-024-04258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Parkinson's disease (PD) is typically marked by motor dysfunction accompanied by loss of dopaminergic (DA) neurons and aggravated oxidative stress in the substantia nigra pars compacta (SNpc). Atractylenolide-I (ATR-I) is a potent antioxidant sesquiterpene with neuroprotective properties. However, whether ATR-I plays a neuroprotective role against oxidative stress in PD remains unclear. The objective of this study was to explore the mechanism of antioxidant action of ATR-I in PD models both in vivo and in vitro. Here, we show that ATR-I alleviated motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice. Moreover, ATR-I treatment effectively reduced DA neuron loss and increased tyrosine hydroxylase expression in the SNpc of MPTP-induced mice. Additionally, ATR-I inhibited oxidative stress (as manifested by elevated superoxide dismutase and glutathione peroxidase activities, and reduced malondialdehyde content) in MPTP-induced mice and attenuated reactive oxygen species levels in 1-methyl-4-phenylpyridinum (MPP+)-treated SH-SY5Y cells. Finally, ATR-I upregulated expressions of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), NF-E2-related factor-2 (Nrf2), and heme oxygenase-1 in MPTP-induced mice and MPP+-treated SH-SY5Y cells, but had little effect on these factors in the presence of the SIRT1 inhibitor EX527. Taken together, these findings indicated that the important antioxidant role of ATR-I in MPTP/MPP+-mediated oxidative stress and the pathogenesis of PD through the SIRT1/PGC-1α/Nrf2 axis, highlighting its potential as a therapeutic option for PD.
Collapse
Affiliation(s)
- Ya Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shuyue Li
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shuming Zhang
- Department of Internal Medicine, Fuping County Hospital, Baoding, Hebei, 073200, China
| | - Yidan Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Jian Zhang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yuan Zhao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Cui Chang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xuan Gao
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Ling Chen
- Department of Neurological Rehabilitation, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, 050000, China
| | - Guofeng Yang
- Department of Geriatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
26
|
Hao X, Bai Y, Li W, Zhang MX. Phloretin attenuates inflammation induced by subarachnoid hemorrhage through regulation of the TLR2/MyD88/NF-kB pathway. Sci Rep 2024; 14:26583. [PMID: 39496685 PMCID: PMC11534998 DOI: 10.1038/s41598-024-77671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
Subarachnoid hemorrhage (SAH), a stroke subtype associated with high mortality, is closely linked to neuroinflammation. Phloretin, a naturally occurring flavonoid abundant in fruits, possesses anti-inflammatory properties. However, its specific role in SAH remains unclear. Therefore, we aimed to investigate the potential role of phloretin in SAH. We established in vitro and in vivo SAH models to assess the effects of phloretin. Subsequently, utilizing SAH-related public datasets from the GEO database, we identified key genes associated with SAH and investigated the potential mechanism of action of phloretin. Our findings reveal that phloretin significantly improves prognostic outcomes and mitigates inflammation in SAH mice. Moreover, our results suggest that phloretin mitigates neuroinflammation by inhibiting the TLR2/MYD88/NF-κB pathway.
Collapse
Affiliation(s)
- Xudong Hao
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Shuangtasi Street, 29, Taiyuan, 030012, China.
| | - Yu Bai
- Comprehensive Examination Department, Children's Hospital of Shanxi, Taiyuan, 030000, China
| | - Wei Li
- Department of Neurosurgery, Bengbu Third People's Hospital Bengbu, 233000, Anhui, China
| | - Ming Xing Zhang
- Department of Neurosurgery, Bengbu Third People's Hospital Bengbu, 233000, Anhui, China
| |
Collapse
|
27
|
Zhu J, Jin P, Zhou T, Zhang D, Wang Z, Tang Z, Liu Z, Ren G. SIRT1 modulates microglia phenotypes via inhibiting drp1 phosphorylation reduces neuroinflammation in heatstroke. Brain Res Bull 2024; 218:111101. [PMID: 39396713 DOI: 10.1016/j.brainresbull.2024.111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Brain injury often results in high mortality rates and significant sequelae following severe heatstroke (HS). Neuroinflammation aggravates HS-induced brain injury, yet the involvement of microglia in heat-induced neuroinflammation deserves further investigation. METHODS Our study investigated activation status, phenotype markers, production of pro-inflammatory cytokine and reactive oxygen species (ROS) of microglia both in vitro and in vivo under HS. Utilizing high-throughput sequencing, we identified SIRT1 as a potential modulator of microglia phenotype, and observed that SIRT1 alleviated severe heatstroke-induced brain injury following intraperitoneal administration of the SIRT1 agonist SRT-1720 and the inhibitor selisistat. Additionally, the effects of SRT-1720 and selisistat on mitochondrial dynamics and microglial phenotype transition were examined in BV2 cells in vitro. RESULTS Heatstroke promotes microglia activation, as evidenced by the increased production of pro-inflammatory cytokine and reactive oxygen species. High-throughput sequencing revealed elevated expression of SIRT1 in BV2 cells under HS. Upon inhibition of SIRT1 expression, there was a corresponding increase in pro-inflammatory cytokine, iNOS, and ROS expression in BV2 cells. In vivo experiments with the SIRT1 agonist SRT-1720 showed a mitigation of neuron injury under HS, as assessed by Nissl and HE staining. Activation of SIRT1 was associated with a reduction in mitochondrial injury and a decrease in the phosphorylation of mitochondrial fission protein Drp1ser616. Furthermore, the heat-induced activation of microglia was reversed by the Drp1 inhibitor, Mdivi. CONCLUSIONS Our findings provided evidence that SIRT1 played a crucial role in inhibiting heat stress-induced microglial activation. By suppressing the phosphorylation of mitochondrial fission protein Drp1, SIRT1 contributed to the reduction of neuroinflammation and severity of heatstroke-induced brain injury.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Pediatric, Daping Hospital, Army Medical University, China; Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China.
| | - Panshi Jin
- Department of Plastic Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Tingting Zhou
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Dingshun Zhang
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Zixin Wang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510010, China
| | - Zhen Tang
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Zhifeng Liu
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China; Southern Medical University, Guangzhou 510010, China.
| | - Guangli Ren
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China; Southern Medical University, Guangzhou 510010, China.
| |
Collapse
|
28
|
Shi Y, Yang Y, Liu J, Zheng J. Avicularin Treatment Ameliorates Ischemic Stroke Damage by Regulating Microglia Polarization and its Exosomes via the NLRP3 Pathway. J Integr Neurosci 2024; 23:196. [PMID: 39613475 DOI: 10.31083/j.jin2311196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Avicularin (AL), an ingredient of Banxia, has anti-inflammatory properties in cerebral disease and regulates polarization of macrophages, but its effects on ischemic stroke (IS) damage have not been studied. METHODS In vivo, AL was administered by oral gavage to middle cerebral artery occlusion/reperfusion (MCAO/R) C57BL/6J mice in doses of 1.25, 2.5, and 5 mg/kg/day for seven days, and, in vitro, AL was added to treat oxygen-glucose deprivation (OGD)-BV2 cells. Modified neurological severity score, Triphenyltetrazolium chloride (TTC) staining, brain-water-content detection, TdT-mediated dUTP nick-end labeling (TUNEL) assay, flow cytometry, immunofluorescence assay, Enzyme linked immunosorbent assay (ELISA), and Western-blot analysis were used to investigate the functions and mechanism of the effect of AL treatment on IS. The exosomes of AL-treated microglia were studied by transmission electron microscope (TEM), nanoparticle tracking analyzer (NTA), and Western-blot analysis. RESULTS AL treatment reduced the neurological severity score, infarct volume, brain-water content, neuronal apoptosis, and the release of inflammatory factors, that were induced by MCAO/R. Notably, M2 microglia polarization was promoted but M1 microglia polarization was inhibited by AL in the ischemic penumbra of MCAO/R mice. Subsequently, anti-inflammatory and polarization-regulating effects of AL were verified in vitro. Suppressed NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation was found in the ischemic penumbra of animal and Oxygen-Glucose Deprivation/Reoxygenation (OGD/R) cells treated with AL, as evidenced by decreasing NLRP3-inflammasome-related protein and downstream factors. After AL treatment, the anti-apoptosis effect of microglial exosomes on OGD/R primary cortical neurons was increased. CONCLUSION AL reduce inflammatory responses and neuron death of IS-associated models by regulating microglia polarization by the NLRP3 pathway and by affecting microglial exosomes.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, 110032 Shenyang, Liaoning, China
| | - Yufeng Yang
- Department of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, 110032 Shenyang, Liaoning, China
| | - Juntong Liu
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, 110032 Shenyang, Liaoning, China
| | - Jinling Zheng
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, 116023 Dalian, Liaoning, China
| |
Collapse
|
29
|
Wang L, Cai Z, Gu Q, Xu C. cGAS Deficiency Regulates the Phenotypic Polarization and Glycolysis of Microglia Through Lactylation in Hypoxic-Ischemic Encephalopathy Cell Model. Biochem Genet 2024; 62:3961-3976. [PMID: 38246965 DOI: 10.1007/s10528-023-10631-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Promoting the M2 phenotype polarization of microglia is of great significance in alleviating hypoxic-ischemic encephalopathy (HIE). The umbilical artery blood sample was collected to evaluate the expression of cGAS, and the aberrant expressed cGAS was verified in the oxygen glucose deprivation (OGD) microglia which was established to mimic HIE in vitro. Then the regulating role of cGAS on the transformation of microglia M2 phenotype polarization and glycolysis was investigated. Moreover, the lactylation of cGAS in OGD treated microglia was evaluated by western blot. cGAS was found to be highly expressed in umbilical artery blood of HIE group, and OGD treated microglia. OGD interference activated microglia into M1 phenotype by enhancing CD86 and suppressing CD206 levels; meanwhile, the microglia in OGD group highly expressed IL-1β, iNOS and TNF-α, and lowly expressed IL-4, IL-10, and Arg-1. Inhibition of cGAS promotes the transformation of microglia from M1 to M2 phenotype. Meanwhile, OGD increased ECAR and decreased OCR to regulate glycolysis, cGAS deficiency inhibits glycolysis in OGD treated microglia. Moreover, the pan lysine lactylation (Pan-Kla) levels and lactated cGAS levels in microglia were upregulated in the OGD group. Lactate reversed the effects of cGAS knockdown on microglia polarization and glycolysis. The present study reveals that the cGAS-mediated neuron injury is associated with high level of cGAS lactylation. Inhibition of cGAS promotes the M2 phenotype polarization of microglia and suppress glycolysis. Thereby, targeting cGAS provides a new strategy for the development of therapeutic agents against HIE.
Collapse
Affiliation(s)
- Lisheng Wang
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Zhonghua Cai
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Qi Gu
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China
| | - Changli Xu
- Department of Pediatrics, Funing County People's Hospital, No.111, Fucheng Street, Funing County, Yancheng, 224400, China.
| |
Collapse
|
30
|
Wang Y, Zhang J, Yang Z, Li C, Zhang C, Sun S, Jiao Z, Che G, Gao H, Liu J, Li J. Ocotillol-Type Pseudoginsenoside-F11 Alleviates Lipopolysaccharide-Induced Acute Kidney Injury through Regulation of Macrophage Function by Suppressing the NF-κB/NLRP3/IL-1β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20496-20512. [PMID: 39239930 DOI: 10.1021/acs.jafc.4c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decline in renal function. The inflammatory response is the fundamental pathologic alteration throughout AKI, regardless of the various causal factors. Macrophages are the main immune cells involved in the inflammatory microenvironment in AKI. Consequently, targeting macrophages might become a novel strategy for the treatment of AKI. In this study, we demonstrated that pseudoginsenoside-F11 (PF11), a distinctive component of Panax quinquefolius L., regulated macrophage function and protected renal tubular epithelial cells TCMK-1 from lipopolysaccharide (LPS) in vitro. PF11 also alleviated renal injuries in an LPS-induced AKI mouse model, decreased the levels of inflammatory cytokines, reduced macrophage inflammatory infiltration, and promoted the polarization of M1 macrophages to M2c macrophages with suppression of the nuclear factor-κB/NOD-like receptor thermal protein domain-associated protein 3/interleukin-1β (NF-κB/NLRP3/IL-1β) signaling pathway. To further investigate whether this nephroprotective effect of PF11 is mediated by macrophages, we performed macrophage depletion by injection of clodronate liposomes in mice. Macrophage depletion abolished PF11's ability to protect against LPS-induced kidney damage with downregulating the NF-κB/NLRP3/IL-1β signaling pathway. In summary, this is the first study providing data on the efficacy and mechanism of PF11 in the treatment of AKI by regulating macrophage function.
Collapse
Affiliation(s)
- Yaru Wang
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jinyu Zhang
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Zhuo Yang
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Changcheng Li
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Chenming Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Shengkai Sun
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Ziyan Jiao
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Guanghua Che
- The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130062, China
| | - Hang Gao
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences of Jilin University, Changchun, Jilin 130012, China
| | - Jing Li
- Innovation Center of New Drug Preclinical Pharmacology Evaluation of Jilin Province, Department of pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
31
|
Wang L, Fan Z, Wang H, Xiang S. Propofol alleviates M1 polarization and neuroinflammation of microglia in a subarachnoid hemorrhage model in vitro, by targeting the miR-140-5p/TREM-1/NF-κB signaling axis. Eur J Histochem 2024; 68:4034. [PMID: 39287134 PMCID: PMC11459918 DOI: 10.4081/ejh.2024.4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is a devastating stroke caused by ruptured intracranial aneurysms, leading to blood accumulation around the brain. Early brain injury (EBI) within 72 h post-SAH worsens prognosis, primarily due to intense neuroinflammation. Microglia, pivotal in central nervous system defense and repair, undergo M1 to M2 polarization post-SAH, with M1 exacerbating neuroinflammation. Propofol (PPF), an anesthetic with anti-inflammatory properties, shows promise in mitigating neuroinflammation in SAH by modulating microglial activation. It likely acts through microRNAs like miR-140-5p, which attenuates microglial activation and inflammation by targeting TREM-1 and the NF-κB pathway. Understanding these mechanisms could lead to new therapeutic approaches for SAH-related EBI. In this study, BV-2 cell was used to establish in vitro model of SAH, and the expression of miR-140-5p and TREM-1 was detected after modeling. Microglial activity, apoptosis, the inflammatory pathway and response, oxidative damage, and M1/M2 polarization of microglia were evaluated by drug administration or transfection according to experimental groups. Finally, the targeting relationship between miR-140-5p and TREM-1 was verified by dual luciferase reporter assays, and the effect of PPF on the miR-140-5p/TREM-1/NF-κB signaling cascade was evaluated by RT‒qPCR or Western blotting. PPF effectively mitigates apoptosis, neuroinflammation, oxidative damage, and M1 microglial polarization in SAH. In SAH cells, PPF upregulates miR-140-5p and downregulates TREM-1. Mechanistically, PPF boosts miR-140-5p expression, while TREM-1, a downstream target of miR-140-5p, inhibits NF-κB signaling by regulating TREM-1, promoting M1 to M2 microglial polarization. Reduced miR-140-5p or increased TREM-1 counters PPF's therapeutic impact on SAH cells. In conclusion, PPF plays a neuroprotective role in SAH by regulating the miR-140-5p/TREM-1/NF-κB signaling axis to inhibit neuroinflammation and M1 polarization of microglia.
Collapse
Affiliation(s)
- Lan Wang
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang.
| | - Zhenyu Fan
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang.
| | - Haijin Wang
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang.
| | - Shougui Xiang
- Department of Critical Care Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang.
| |
Collapse
|
32
|
陈 露, 杨 轶, 赵 苗, 李 翰, 孙 文, 石 曌. [Mechanism of tetramethylpyrazine attenuates inflammatory injury in endothelial cells by activating the SIRT1 signaling pathway]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:967-973. [PMID: 39267513 PMCID: PMC11404461 DOI: 10.7499/j.issn.1008-8830.2405084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/24/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVES To study the effects and mechanisms of tetramethylpyrazine (TMP) on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human coronary artery endothelial cells (HCAEC). METHODS HCAEC were randomly divided into four groups: the control group (no treatment), the model group (treated with TNF-α, 50 ng/mL for 24 hours), the TMP group (pre-treated with TMP, 80 μg/mL for 12 hours followed by TNF-α treatment for 24 hours), and the SIRT1 inhibitor group (pre-treated with TMP and the specific SIRT1 inhibitor EX527 for 12 hours followed by TNF-α treatment for 24 hours). Cell viability was assessed using the CCK-8 method, lactate dehydrogenase (LDH) activity was measured using an LDH assay kit, reactive oxygen species (ROS) levels were observed using DCFH-DA staining, expression of pyroptosis-related proteins was detected by Western blot, and SIRT1 expression was analyzed using immunofluorescence staining. RESULTS Compared to the control group, the model group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). Compared to the model group, the TMP group exhibited increased cell viability, decreased LDH activity, ROS level and expression of pyroptosis-related proteins, and increased SIRT1 expression (P<0.05). In comparison to the TMP group, the SIRT1 inhibitor group showed decreased cell viability, increased LDH activity, ROS level and expression of pyroptosis-related proteins, and decreased SIRT1 expression (P<0.05). CONCLUSIONS TMP may attenuate TNF-α-induced inflammatory injury in HCAEC, which is associated with the inhibition of pyroptosis and activation of the SIRT1 signaling pathway.
Collapse
|
33
|
Tian S, Zhong K, Yang Z, Fu J, Cai Y, Xiao M. Investigating the mechanism of tricyclic decyl benzoxazole -induced apoptosis in liver Cancer cells through p300-mediated FOXO3 activation. Cell Signal 2024; 121:111280. [PMID: 38960058 DOI: 10.1016/j.cellsig.2024.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE To investigate whether tricyclic decylbenzoxazole (TDB) regulates liver cancer cell proliferation and apoptosis through p300-mediated FOXO acetylation. METHODS Sequencing, adenovirus, and lentivirus transfection were performed in human liver cancer cell line SMMC-7721 and apoptosis was detected by Tunel, Hoechst, and flow cytometry. TEM for mitochondrial morphology, MTT for cell proliferation ability, Western blot, and PCR were used to detect protein levels and mRNA changes. RESULTS Sequencing analysis and cell experiments confirmed that TDB can promote the up-regulation of FOXO3 expression. TDB induced FOXO3 up-regulation in a dose-dependent manner, promoted the expression of p300 and Bim, and enhanced the acetylation and dephosphorylation of FOXO3, thus promoting apoptosis. p300 promotes apoptosis of cancer cells through Bim and other proteins, while HAT enhances the phosphorylation of FOXO3 and inhibits apoptosis. Overexpression of FOXO3 can increase the expression of exo-apoptotic pathways (FasL, TRAIL), endo-apoptotic pathways (Bim), and acetylation at the protein level and inhibit cell proliferation and apoptotic ability, while FOXO3 silencing or p300 mutation can partially reverse apoptosis. In tumor tissues with overexpression of FOXO3, TDB intervention can further increase the expression of p53 and caspase-9 proteins in tumor cells, resulting in loss of mitochondrial membrane integrity during apoptosis, the release of cytoplasm during signal transduction, activation of caspase-9 and synergistic inhibition of growth. CONCLUSION TDB induces proliferation inhibition and promotes apoptosis of SMMC-7721 cells by activating p300-mediated FOXO3 acetylation.
Collapse
Affiliation(s)
- Shuhong Tian
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Keyan Zhong
- Clinical Skills Experimental Teaching Center of Hainan Medical University, Haikou 571199, China
| | - Zhaoxin Yang
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Jian Fu
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Yangbo Cai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Min Xiao
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
34
|
Zhao Q, Liu G, Ding Q, Zheng F, Shi X, Lin Z, Liang Y. The ROS/TXNIP/NLRP3 pathway mediates LPS-induced microglial inflammatory response. Cytokine 2024; 181:156677. [PMID: 38896955 DOI: 10.1016/j.cyto.2024.156677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction activated by microglia. The potential pathological changes of SAE are complex, and the cellular pathophysiological characteristics remains unclear. This study aims to explore the ROS/TXNIP/NLRP3 pathway mediated lipopolysaccharide (LPS)-induced inflammatory response in microglia. METHODS BV-2 cells were pre-incubated with 10 μM N-acetyl-L-cysteine (NAC) for 2 h, which were then reacted with 1 μg/mL LPS for 24 h. Western blot assay examined the protein levels of IBA1, CD68, TXNIP, NLRP3, ASC, and Cleaved Caspase-1 in BV-2 cells. The contents of inflammatory factor were detected by ELISA assay. The co-immunoprecipitation assay examined the interaction between TXNIP and NLRP3. RESULTS LPS was confirmed to promote the positive expressions of IBA1 and CD68 in BV-2 cells. The further experiments indicated that LPS enhanced ROS production and NLRP3 inflammasome activation in BV-2 cells. Moreover, we also found that NAC partially reversed the facilitation of LPS on the levels of ROS, IL-1β, IL-18, TXNIP, NLRP3, ASC, and Cleaved Caspase-1 in BV-2 cells. NAC treatment also notably alleviated the interaction between TXNIP and NLRP3 in BV-2 cells. CONCLUSION ROS inhibition mediated NLRP3 signaling inactivation by decreasing TXNIP expression.
Collapse
Affiliation(s)
- Qianlei Zhao
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Guanhao Liu
- Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Qiang Ding
- Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Feixia Zheng
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Xulai Shi
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Yafeng Liang
- Department of Pediatric Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China.
| |
Collapse
|
35
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
36
|
Li F, Sun X, Sun K, Kong F, Jiang X, Kong Q. Lupenone improves motor dysfunction in spinal cord injury mice through inhibiting the inflammasome activation and pyroptosis in microglia via the nuclear factor kappa B pathway. Neural Regen Res 2024; 19:1802-1811. [PMID: 38103247 PMCID: PMC10960275 DOI: 10.4103/1673-5374.389302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00034/figure1/v/2023-12-16T180322Z/r/image-tiff Spinal cord injury-induced motor dysfunction is associated with neuroinflammation. Studies have shown that the triterpenoid lupenone, a natural product found in various plants, has a remarkable anti-inflammatory effect in the context of chronic inflammation. However, the effects of lupenone on acute inflammation induced by spinal cord injury remain unknown. In this study, we established an impact-induced mouse model of spinal cord injury, and then treated the injured mice with lupenone (8 mg/kg, twice a day) by intraperitoneal injection. We also treated BV2 cells with lipopolysaccharide and adenosine 5'-triphosphate to simulate the inflammatory response after spinal cord injury. Our results showed that lupenone reduced IκBα activation and p65 nuclear translocation, inhibited NLRP3 inflammasome function by modulating nuclear factor kappa B, and enhanced the conversion of proinflammatory M1 microglial cells into anti-inflammatory M2 microglial cells. Furthermore, lupenone decreased NLRP3 inflammasome activation, NLRP3-induced microglial cell polarization, and microglia pyroptosis by inhibiting the nuclear factor kappa B pathway. These findings suggest that lupenone protects against spinal cord injury by inhibiting inflammasomes.
Collapse
Affiliation(s)
- Fudong Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Jiang
- Department of Anesthesiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Liang X, Miao Y, Tong X, Chen J, Liu H, He Z, Liu A, Hu Z. Dental pulp mesenchymal stem cell-derived exosomes inhibit neuroinflammation and microglial pyroptosis in subarachnoid hemorrhage via the miRNA-197-3p/FOXO3 axis. J Nanobiotechnology 2024; 22:426. [PMID: 39030593 PMCID: PMC11264715 DOI: 10.1186/s12951-024-02708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe stroke subtype that lacks effective treatment. Exosomes derived from human dental pulp stem cells (DPSCs) are a promising acellular therapeutic strategy for neurological diseases. However, the therapeutic effects of DPSC-derived exosomes (DPSC-Exos) on SAH remain unknown. In this study, we investigated the therapeutic effects and mechanisms of action of DPSC-Exos in SAH. MATERIALS AND METHODS SAH was established using 120 male Sprague-Dawley rats. One hour after SAH induction, DPSC-Exos were administered via tail vein injection. To investigate the effect of DPSC-Exos, SAH grading, short-term and long-term neurobehavioral assessments, brain water content, western blot (WB), immunofluorescence staining, Nissl staining, and HE staining were performed. The role of miR-197-3p/FOXO3 in regulating pyroptosis was demonstrated through miRNA sequencing, bioinformatics analysis, and rescue experiments. The SAH model in vitro was established by stimulating BV2 cells with hemoglobin (Hb) and the underlying mechanism of DPSC-Exos was investigated through WB and Hoechst/PI staining. RESULTS The expressions of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were increased after SAH. DPSC-Exos alleviated brain edema and neuroinflammation by inhibiting the expression of FOXO3 and reducing NLRP3 inflammasome activation, leading to improved neurobehavioral functions at 24 h after SAH. In vitro, the expression of the NLRP3 inflammasome components (NLRP3 and caspase1-p20), GSDMD-N, and IL-18 was inhibited in BV2 cells pretreated with DPSC-Exos. Importantly, DPSC-Exos overexpressing miR-197-3p had a more obvious protective effect than those from NC-transfected DPSCs, while those from DPSCs transfected with the miR-197-3p inhibitor had a weaker protective effect. Functional studies indicated that miR-197-3p bound to the 3'-untranslated region of FOXO3, inhibiting its transcription. Furthermore, the overexpression of FOXO3 reversed the protective effects of miR-197-3p. CONCLUSIONS DPSC-Exos inhibited activation of the NLRP3 inflammasome and related cytokine release via the miR-197-3p/FOXO3 pathway, alleviated neuroinflammation, and inhibited microglial pyroptosis. These findings suggest that using DPSC-Exos is a promising therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Xin Liang
- Department of Neurosurgery, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Department of Neurosurgery, Affiliated Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yan Miao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin Tong
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Cerebrovascular Disease Department, Neurological Disease Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jigang Chen
- Department of burn and plastic surgery, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Hongyi Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Zilong He
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China.
| | - Zhiqiang Hu
- Department of Neurosurgery, Affiliated Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
38
|
Zhang H, Xu L, He Y, Zhang Z, Zhang J, Yu Q, Liu Y, Wang X, Zhang A, Wang K, Fang Y, Chen S. Tat-NR2B9c attenuates oxidative stress via inhibition of PSD95-NR2B-nNOS complex after subarachnoid hemorrhage in rats. Neuropharmacology 2024; 251:109905. [PMID: 38521229 DOI: 10.1016/j.neuropharm.2024.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Oxidative stress plays important roles in the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Tat-NR2B9c has shown efficacy as a neuroprotective agent in several studies. Here, we identified the neuroprotective role of Tat-NR2B9c after SAH and its related mechanisms. The results showed that Tat-NR2B9c treatment attenuated oxidative stress, therefore alleviated neuronal apoptosis and neurological deficits after SAH. Tat-NR2B9c treatment could alleviate mitochondrial vacuolization induced by SAH. Compared to SAH + vehicle group, Tat-NR2B9c resulted in the decrease of Acetylated superoxide dismutase2 (Ac-SOD2), Bcl-2-associated X protein (Bax) and cleaved-caspase3 (CC3) protein expression, and the up-regulation of Sirtunin 3 (Sirt3) and Bcl-2 protein level. Moreover, Tat-NR2B9c attenuated excitotoxicity by inhibiting the interaction of PSD95-NR2B-nNOS. Our results demonstrated that Tat-NR2B9c inhibited oxidative stress via inhibition of PSD95-NR2B-nNOS complex formation after SAH. Tat-NR2B9c may serve as a potential treatment for SAH induced brain injury.
Collapse
Affiliation(s)
- Haocheng Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Longbiao Xu
- Department of Neurosurgery, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yezhao He
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jiahao Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yibo Liu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Anke Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Peng Z, Xiao H, Tan Y, Zhang X. Spotlight on macrophage pyroptosis: A bibliometric and visual analysis from 2001 to 2023. Heliyon 2024; 10:e31819. [PMID: 38845992 PMCID: PMC11154638 DOI: 10.1016/j.heliyon.2024.e31819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Macrophage pyroptosis plays a significant role in the pathogenesis of various diseases, especially acute lung injury, atherosclerosis, and sepsis. Despite its importance, analysis of the existing literature has been limited. Therefore, we conducted a bibliometric analysis to provide a comprehensive overview of research on macrophage pyroptosis and identify the current research foci and trends in this field. We collected articles related to macrophage pyroptosis published between 2001 and 2022 from the Web of Science Core Collection and PubMed. Citespace, VOSviewer, bibliometrix R package, and Microsoft Excel 2019 were used to analyze co-occurrence relationships and the contribution of countries/regions, institutions, journals, authors, references, and keywords. In total, 1321 papers were included. China and the United States of America published the most articles in this field. TD Kanneganti had the most publications; BT Cookson was the most cited. Although China contributed the most publications, it had a relatively low ratio of multiple-country collaborations (0.132). Among journals, Frontiers in Immunology and Cell Death Disease published the most papers; Nature and the Journal of Immunology were frequently co-cited. Frequently occurring keywords included "inflammation," "NLRP3 inflammasome," "apoptosis," "caspase-1," and "cell death." Moreover, with the advancement of gene editing technology and the integration of clinical applications, novel molecules ("caspases," "GSDMD," "ASC"), programmed cell death topics ("pyroptosis," "ferroptosis," "necrosis"), and clinical applications ("alveolar macrophage," "atherosclerosis," "prognosis") emerged as frontiers. The macrophage pyroptosis field is rapidly evolving and holds promise as a potential target for treating macrophage pyroptosis-related diseases.
Collapse
Affiliation(s)
- Zhimei Peng
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hua Xiao
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, China
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Lauzier DC, Athiraman U. Role of microglia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:841-856. [PMID: 38415607 PMCID: PMC11318405 DOI: 10.1177/0271678x241237070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Subarachnoid hemorrhage is a devastating sequela of aneurysm rupture. Because it disproportionately affects younger patients, the population impact of hemorrhagic stroke from subarachnoid hemorrhage is substantial. Secondary brain injury is a significant contributor to morbidity after subarachnoid hemorrhage. Initial hemorrhage causes intracranial pressure elevations, disrupted cerebral perfusion pressure, global ischemia, and systemic dysfunction. These initial events are followed by two characterized timespans of secondary brain injury: the early brain injury period and the delayed cerebral ischemia period. The identification of varying microglial phenotypes across phases of secondary brain injury paired with the functions of microglia during each phase provides a basis for microglia serving a critical role in both promoting and attenuating subarachnoid hemorrhage-induced morbidity. The duality of microglial effects on outcomes following SAH is highlighted by the pleiotropic features of these cells. Here, we provide an overview of the key role of microglia in subarachnoid hemorrhage-induced secondary brain injury as both cytotoxic and restorative effectors. We first describe the ontogeny of microglial populations that respond to subarachnoid hemorrhage. We then correlate the phenotypic development of secondary brain injury after subarachnoid hemorrhage to microglial functions, synthesizing experimental data in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
41
|
Zhang X, Zhang W, Wang Y, Zhang Y, Zhang D, Qin G, Zhou J, Chen L. SIRT1-regulated ROS generation activates NMDAR2B phosphorylation to promote central sensitization and allodynia in a male chronic migraine rat model. Front Mol Neurosci 2024; 17:1387481. [PMID: 38840778 PMCID: PMC11150646 DOI: 10.3389/fnmol.2024.1387481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Background Central sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway. Methods Inflammatory soup was repeatedly administered to male Sprague-Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT-PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining. Results After repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1. Conclusion The results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyun Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Wu J, Sun X, Jiang P. Metabolism-inflammasome crosstalk shapes innate and adaptive immunity. Cell Chem Biol 2024; 31:884-903. [PMID: 38759617 DOI: 10.1016/j.chembiol.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Inflammasomes are a central component of innate immunity and play a vital role in regulating innate immune response. Activation of inflammasomes is also indispensable for adaptive immunity, modulating the development and response of adaptive immunity. Recently, increasing studies have shown that metabolic alterations and adaptations strongly influence and regulate the differentiation and function of the immune system. In this review, we will take a holistic view of how inflammasomes bridge innate and adaptive (especially T cell) immunity and how inflammasomes crosstalk with metabolic signals during the immune responses. And, special attention will be paid to the metabolic control of inflammasome-mediated interactions between innate and adaptive immunity in disease. Understanding the metabolic regulatory functions of inflammasomes would provide new insights into future research directions in this area and may help to identify potential targets for inflammasome-associated diseases and broaden therapeutic avenues.
Collapse
Affiliation(s)
- Jun Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China; State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xuan Sun
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
43
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
44
|
Kang C, Sang Q, Liu D, Wang L, Li J, Liu X. Polyphyllin I alleviates neuroinflammation after cerebral ischemia-reperfusion injury via facilitating autophagy-mediated M2 microglial polarization. Mol Med 2024; 30:59. [PMID: 38745316 PMCID: PMC11094947 DOI: 10.1186/s10020-024-00828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.
Collapse
Affiliation(s)
- Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China
| | - Qiuling Sang
- Department of Neuroelectrophysiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Dingxi Liu
- Department of Clinical Medicine, Zunyi Medical University, Zhuhai, 519041, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China.
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China.
| |
Collapse
|
45
|
Ma Y, Liu Z, Deng L, Du J, Fan Z, Ma T, Xiong J, Xiuyun X, Gu N, Di Z, Zhang Y. FGF21 attenuates neuroinflammation following subarachnoid hemorrhage through promoting mitophagy and inhibiting the cGAS-STING pathway. J Transl Med 2024; 22:436. [PMID: 38720350 PMCID: PMC11077765 DOI: 10.1186/s12967-024-05239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) represents a form of cerebrovascular event characterized by a notable mortality and morbidity rate. Fibroblast growth factor 21 (FGF21), a versatile hormone predominantly synthesized by the hepatic tissue, has emerged as a promising neuroprotective agent. Nevertheless, the precise impacts and underlying mechanisms of FGF21 in the context of SAH remain enigmatic. METHODS To elucidate the role of FGF21 in inhibiting the microglial cGAS-STING pathway and providing protection against SAH-induced cerebral injury, a series of cellular and molecular techniques, including western blot analysis, real-time polymerase chain reaction, immunohistochemistry, RNA sequencing, and behavioral assays, were employed. RESULTS Administration of recombinant fibroblast growth factor 21 (rFGF21) effectively mitigated neural apoptosis, improved cerebral edema, and attenuated neurological impairments post-SAH. Transcriptomic analysis revealed that SAH triggered the upregulation of numerous genes linked to innate immunity, particularly those involved in the type I interferon (IFN-I) pathway and microglial function, which were notably suppressed upon adjunctive rFGF21 treatment. Mechanistically, rFGF21 intervention facilitated mitophagy in an AMP-activated protein kinase (AMPK)-dependent manner, thereby preventing mitochondrial DNA (mtDNA) release into the cytoplasm and dampening the activation of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Conditional knockout of STING in microglia markedly ameliorated the inflammatory response and mitigated secondary brain injuries post-SAH. CONCLUSION Our results present the initial evidence that FGF21 confers a protective effect against neuroinflammation-associated brain damage subsequent to SAH. Mechanistically, we have elucidated a novel pathway by which FGF21 exerts this neuroprotection through inhibition of the cGAS-STING signaling cascade.
Collapse
Affiliation(s)
- Yue Ma
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Zhiqin Liu
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Lele Deng
- Department of Scientific Research Section, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Jingjing Du
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Zenghui Fan
- Department of Scientific Research Section, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Tian Ma
- Department of Scientific Research Section, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Jing Xiong
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Xue Xiuyun
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Naibing Gu
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China
| | - Zhengli Di
- Department of Neurology, The affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710032, Shaanxi, China.
| | - Yu Zhang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
46
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
47
|
Wang G, Lin N. NAD-Dependent Protein Deacetylase Sirtuin-1 Mediated Mitophagy Regulates Early Brain Injury After Subarachnoid Hemorrhage. J Inflamm Res 2024; 17:1971-1981. [PMID: 38562659 PMCID: PMC10984195 DOI: 10.2147/jir.s451922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background This study focuses on the role of SIRT1 in neuroinflammation caused by early brain injury (EBI) after subarachnoid hemorrhage (SAH), and explores its mechanism in mitophagy after SAH. Methods C57BL/6J mice and primary microglia SAH in vivo and in vitro models were constructed to explore the expression level of SIRT1 in neuroinflammation after SAH. Subsequently, the brain edema content, blood-brain barrier (BBB) damage and neurological function scores of the mice were observed after using the SIRT1 inhibitor EX-527. q-PCR and Western blot were used to detect relevant genes and proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of IL-6, IL-1β, and TNF-α inflammatory factors. Immunofluorescence staining was used to observe the positive level of SIRT1 and the degree of mitochondria-lysosome fusion, and transmission electron microscopy was used to observe mitochondrial damage and autophagosome levels. Results In in vivo and in vitro experiments, we found that SIRT1 expression increased after SAH, and neurological deficits, brain edema, and blood-brain barrier damage after SAH were aggravated. Inhibiting SIRT1 further aggravates the aforementioned damage. In addition, EX-527 can also inhibit the level of mitophagy and aggravate neuroinflammation after SAH. Conclusion Our results indicated that SIRT1 promotes mitophagy and alleviates neuroinflammation after SAH.
Collapse
Affiliation(s)
- Gen Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University (The First People’s Hospital of Chuzhou), Chuzhou, Anhui Province, People’s Republic of China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University (The First People’s Hospital of Chuzhou), Chuzhou, Anhui Province, People’s Republic of China
| |
Collapse
|
48
|
Yuan Y, Deng S, Yang J, Shou Z, Wei C, Zhang L, Zhu F, Gao F, Liu X, Liu Y, Chen Q, Fan H. Antagomir of miR-31-5p modulates macrophage polarization via the AMPK/SIRT1/NLRP3 signaling pathway to protect against DSS-induced colitis in mice. Aging (Albany NY) 2024; 16:5336-5353. [PMID: 38466649 PMCID: PMC11006482 DOI: 10.18632/aging.205651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024]
Abstract
Macrophage-driven immune dysfunction of the intestinal mucosa is involved in the pathophysiology of ulcerative colitis (UC). Emerging evidence indicates that there is an elevation in miR-31-5p levels in UC, which is accompanied by a downregulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) expression. Nevertheless, the precise influence of miR-31-5p on macrophage polarization and the integrity of the intestinal epithelial barrier in UC remains to be fully elucidated. This study explored the role of miR-31-5p and AMPK in UC through a bioinformatics investigation. It investigated the potential of miR-31-5p antagomir to shift macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype and enhance the intestinal mucosal barrier in DSS-induced UC mice. Additionally, RAW264.7 cells stimulated with LPS were employed to confirm the reversal of miR-31-5p antagomir's therapeutic effect under AMPK inhibition. The findings demonstrated that miR-31-5p antagomir penetrated colonic tissues and ameliorated DSS-induced experimental colitis. Transformation of spleen and mesenteric lymph node macrophages from M1 to M2 type was seen in the DSS+miR-31-5p antagomir group. AMPK/Sirt1 expression increased while NLRP3 expression decreased. Expression of M2-related genes and proteins was enhanced and that of the M1 phenotype suppressed. Tight junction proteins, ZO-1 and occludin, were increased. The therapeutic effects of miR-31-5p antagomir transfection into RAW264.7 cells were repressed when AMPK expression was inhibited. Therefore, our results suggest that suppression of miR-31-5p expression transformed macrophages from M1 to M2, ameliorated inflammation and repaired the intestinal epithelium to alleviate DSS-induced colitis. AMPK/Sirt1/NLRP3 was involved.
Collapse
Affiliation(s)
- Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuangjiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
49
|
Fu W, Che X, Tan J, Cui S, Ma Y, Xu D, Long H, Yang X, Wen T, He Z. Rasd1 is involved in white matter injury through neuron-oligodendrocyte communication after subarachnoid hemorrhage. CNS Neurosci Ther 2024; 30:e14452. [PMID: 37735980 PMCID: PMC10916428 DOI: 10.1111/cns.14452] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
AIMS Rasd1 has been reported to be correlated with neurotoxicity, metabolism, and rhythm, but its effect in case of subarachnoid hemorrhage (SAH) remained unclear. White matter injury (WMI) and ferroptosis participate in the early brain injury (EBI) after SAH. In this work, we have investigated whether Rasd1 can cause ferroptosis and contribute to SAH-induced WMI. METHODS Lentivirus for Rasd1 knockdown/overexpression was administrated by intracerebroventricular (i.c.v) injection at 7 days before SAH induction. SAH grade, brain water content, short- and long-term neurobehavior, Western blot, real-time PCR, ELISA, biochemical estimation, immunofluorescence, diffusion tensor imaging (DTI), and transmission electron microscopy (TEM) were systematically performed. Additionally, genipin, a selective uncoupling protein 2(UCP2) inhibitor, was used in primary neuron and oligodendrocyte co-cultures for further in vitro mechanistic studies. RESULTS Rasd1 knockdown has improved the neurobehavior, glia polarization, oxidative stress, neuroinflammation, ferroptosis, and demyelination. Conversely, Rasd1 overexpression aggravated these changes by elevating the levels of reactive oxygen species (ROS), inflammatory cytokines, MDA, free iron, and NCOA4, as well as contributing to the decrease of the levels of UCP2, GPX4, ferritin, and GSH mechanistically. According to the in vitro study, Rasd1 can induce oligodendrocyte ferroptosis through inhibiting UCP2, increasing reactive oxygen species (ROS), and activating NCOA4-mediated ferritinophagy. CONCLUSIONS It can be concluded that Rasd1 exerts a modulated role in oligodendrocytes ferroptosis in WMI following SAH.
Collapse
Affiliation(s)
- Wenqiao Fu
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xudong Che
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiahe Tan
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shizhen Cui
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yinrui Ma
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Daiqi Xu
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Haibo Long
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaolin Yang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Tangmin Wen
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhaohui He
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
50
|
Wang B, Qu X, Su A, Zhu H. PD protects Müller cells through the SIRT1/NLRP3 inflammasome pathway. Int Ophthalmol 2024; 44:97. [PMID: 38372810 DOI: 10.1007/s10792-024-02971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/04/2023] [Indexed: 02/20/2024]
Abstract
PURPOSE Polydatin (PD) has widely pharmacological activities. However, the effects of PD on high glucose (HG)-induced Müller cells in diabetic retinopathy (DR) are rarely studied. METHODS The protective effects of PD were evaluated in HG-induced human retinal Müller cells. The levels of pro-angiogenic factors and pro-inflammatory factors were detected using the ELISA kits. The expressions of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3 (NLRP3) and sirtuin-1 (SIRT1) were determined by western blot. RESULTS PD inhibited proliferation and activation of HG-induced MIO-M1 cells. PD treatment reduced the levels of pro-angiogenic factors, pro-inflammatory factors, and oxidative stress, while these effects were attenuated by NLRP3 agonist ATP in HG-induced MIO-M1 cells. Furthermore, PD inhibited the activation of NLRP3 inflammasome by regulating the SIRT1 expression after HG stimulation, and knockdown of SIRT1 reversed the inhibition effects of PD on NLRP3 inflammasome, pro-angiogenic factors, pro-inflammatory factors, and oxidative stress in HG-induced MIO-M1 cells. CONCLUSION PD may inhibit HG-induced Müller cells proliferation and activation and suppress pro-angiogenic factors, pro-inflammatory factors, and oxidative stress through the SIRT1/NLRP3 inflammasome pathway. In summary, PD treatment may be an effective therapeutic strategy for DR.
Collapse
Affiliation(s)
- Bing Wang
- Department of Ophthalmology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No.12, Yanta West Road, Yanta District, Xi'an City, 710006, Shaanxi Province, China
| | - Xiaoyu Qu
- Department of Ophthalmology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No.12, Yanta West Road, Yanta District, Xi'an City, 710006, Shaanxi Province, China
| | - Anle Su
- Department of Ophthalmology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No.12, Yanta West Road, Yanta District, Xi'an City, 710006, Shaanxi Province, China
| | - Hongna Zhu
- Department of Ophthalmology, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No.12, Yanta West Road, Yanta District, Xi'an City, 710006, Shaanxi Province, China.
| |
Collapse
|