1
|
Chu C, Huang Y, Cao L, Ji S, Zhu B, Shen Q. Role of macrophages in peritoneal dialysis-associated peritoneal fibrosis. Ren Fail 2025; 47:2474203. [PMID: 40044628 PMCID: PMC11884102 DOI: 10.1080/0886022x.2025.2474203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Peritoneal dialysis (PD) can be used as renal replacement therapy when chronic kidney disease (CKD) progresses to end-stage renal disease. However, peritoneal fibrosis (PF) is a major cause of PD failure. Studies have demonstrated that PD fluid contains a significantly larger numbers of macrophages compared with the healthy individuals. During PD, macrophages can secrete cytokines to keep peritoneal tissue in sustained low-grade inflammation, and participate in the regulation of fibrosis-related signaling pathways, such as NF-κB, TGF-β/Smad, IL4/STAT6, and PI3K/AKT. A series of basic pathological changes occurs in peritoneal tissues, including epithelial mesenchymal transformation, overgeneration of neovasculature, and abnormal deposition of extracellular matrix. This review focuses on the role of macrophages in promoting PF during PD, summarizes the targets of macrophage-related inhibition of fibrosis, and provides new ideas for clinical research on delaying PF, maintaining the function and integrity of peritoneum, prolonging duration of PD as a renal replacement modality, and achieving longer survival in CKD patients.
Collapse
Affiliation(s)
- Chenling Chu
- Department of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Huang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Public Health and Preventive Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luxi Cao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuiyu Ji
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Bin Zhu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Quanquan Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Department of Nephrology, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, Guizhou, China
| |
Collapse
|
2
|
Zhou J, Wu K, Ma Y, Zhu J, Zhou Y, Zhang Z, Li F, Zeng G, Li S, Tan S, Zhang Y, Wan C, Tu T, Lin Q, Liu Q. GTS-21 alleviates sepsis-induced atrial fibrillation susceptibility by modulating macrophage polarization and Neuregulin-1 secretion. Int Immunopharmacol 2025; 154:114561. [PMID: 40186903 DOI: 10.1016/j.intimp.2025.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/02/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE Sepsis-induced atrial fibrillation (AF) is driven by systemic inflammation and macrophage-mediated atrial remodeling, with proinflammatory M1 macrophages playing a key role. This study investigates whether GTS-21, an α7nAChR agonist, can reduce AF susceptibility by promoting macrophage polarization towards the anti-inflammatory M2 phenotype. METHODS A mouse model of lipopolysaccharide (LPS) (10 mg/kg)-induced sepsis was used to explore the relationship between atrial inflammation and AF. GTS-21 (20 mg/kg) was administered to assess its impact on 48-h survival and AF incidence. Cardiac function was evaluated using echocardiography. Markers of myocardial injury, including CK-MB, LDH, and cTnI, were measured. Macrophage polarization and atrial inflammation were assessed using immunofluorescence, flow cytometry, RT-qPCR, and western blotting. Oxidative stress and mitochondrial function were evaluated using reactive oxygen species (ROS) measurements, electron microscopy, and mitochondrial protein expression analysis. Calcium dynamics were studied using western blotting and confocal microscopy. RESULTS In LPS-induced septic mice, GTS-21 improved 48-h survival rates and reduced the induction rate and duration of AF (P < 0.05). Echocardiography showed a preserved left ventricular ejection fraction and enhanced diastolic function. Mechanistically, it promoted M2 macrophage polarization, inhibited the NF-κB P65/NLRP3/C-caspase 1 pathway to reduce IL-1β release, and alleviated oxidative stress. Additionally, mitochondrial structure was restored by reversing fission and promoting fusion, while calcium-handling proteins (NCX-1, RYR2, and SERCA2a) were regulated to prevent intracellular calcium overload, reducing AF susceptibility. CONCLUSION GTS-21 mitigated atrial inflammation and reduced the incidence of AF in mice with sepsis by regulating macrophage polarization, reducing oxidative stress, and preserving mitochondrial and calcium dynamics in cardiomyocytes. These findings highlight the therapeutic potential of GTS-21 in treating sepsis-induced AF.
Collapse
Affiliation(s)
- Jiabao Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Jiayi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Zixi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Fanqi Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Gaoming Zeng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Shunyi Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Siyuan Tan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Yusha Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Cancan Wan
- First Clinical College, Changsha Medical University, Changsha, Hunan 410219, PR China
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China.
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan 410011, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
3
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
4
|
Zhang S, Xin Y, Yang Y, Zhang Y, Geng J. The Polarization of Macrophages Regulated by KCNG3 via the Activation of ASK1 Mediated by Potassium Ion Efflux. Cell Biol Int 2025. [PMID: 40255142 DOI: 10.1002/cbin.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Inflammatory diseases burden the human body and their pathogenesis remains unclear. Macrophages, with plasticity to polarize into M1/M2 phenotypes, play crucial roles in inflammation. The impact of diverse ion channels on macrophage functions and their underlying mechanisms still requires further investigation. In this research, we observed that the expression magnitudes of some ion channels increased under the stimulation of LPS by transcriptomics analysis. Among them, KCNG3 has drawn our attention as it represents a potassium channel subunit with an undefined role in macrophages. To investigate its role, we knocked down KCNG3, resulting in an enhancement of phagocytosis, bactericidal ability, and the expression of pro-inflammatory cytokines, thereby facilitating M1 polarization. Knockdown of KCNG3 led to an increase in potassium ion efflux, an effect that was recapitulated under low potassium conditions, which in turn activated ASK1 and promoted M1 polarization. Through administering inhibitors NQDI-1, ASK1 was blocked and reversed the M1 phenotype caused by KCNG3 knockdown. In summary, KCNG3 regulates macrophage polarization via potassium ion flux and ASK1, offering potential for inflammatory disease treatment.
Collapse
Affiliation(s)
- Shuting Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Precision Medicine Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yanlong Xin
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Precision Medicine Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Yang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Precision Medicine Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Precision Medicine Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Geng
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- International Joint Research Center on Cell Stress and Disease Diagnosis and Therapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Provincial Academician Workstation, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Wu S, Zhao S, Hai L, Yang Z, Wang S, Cui D, Xie J. Macrophage polarization regulates the pathogenesis and progression of autoimmune diseases. Autoimmun Rev 2025; 24:103820. [PMID: 40268127 DOI: 10.1016/j.autrev.2025.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are integral components of the innate immune system, present in nearly all tissues and organs throughout the body. They exhibit a high degree of plasticity and heterogeneity, participating in immune responses to maintain immune homeostasis. When the immune system loses tolerance, macrophages rapidly proliferate and polarize in response to various signaling pathways within a disrupted microenvironment. The direction of macrophage polarization can be regulated by a variety of factors, including transcription factors, non-coding RNAs, and metabolic reprogramming. Autoimmune diseases arise from the immune system's activation against host cells, with macrophage polarization playing a critical role in the pathogenesis of numerous chronic inflammatory and autoimmune conditions, such as rheumatoid arthritis, systemic lupus erythematosus, immune thrombocytopenic purpura, and type 1 diabetes. Consequently, elucidating the molecular mechanisms underlying macrophage development and function presents opportunities for the development of novel therapeutic targets. This review outlines the functions of macrophage polarization in prevalent autoimmune diseases and the underlying mechanisms involved. Furthermore, we discuss the immunotherapeutic potential of targeting macrophage polarization and highlight the characteristics and recent advancements of promising therapeutic targets. Our aim is to inspire further strategies to restore macrophage balance in preventing and treating autoimmune diseases.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shubi Zhao
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Lei Hai
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyin Yang
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shifen Wang
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jue Xie
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Li C, Fang L, Su X, Zhang J, Xiong H, Yu H, Zhu Z, Lin X, Min K, Wu D, Chen Z, Gong J, Xie CM. Macrophage miR-4524a-5p/TBP promotes β-TrCP -TIM3 complex activation and TGFβ release and aggravates NAFLD-associated fibrosis. Cell Death Dis 2025; 16:315. [PMID: 40251185 PMCID: PMC12008196 DOI: 10.1038/s41419-025-07574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/20/2025]
Abstract
Macrophages hold a critical position in maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. TIM3 is a promising protector in MCD-induced steatohepatitis in acute liver injury. However, we recently find TIM3 as a driver of fibrosis in MCD/HFD-induced chronic liver injury. This study aims to explore how macrophage TIM3 drivers NAFLD-associated chronic liver injury as well as identify a subtype of fibrotic patients suitable for anti-TIM3 immunotherapy. Here, we found that TIM3 was highly expressed in liver macrophages in a long-term MCD- or HFD-fed mice with fibrotic NASH. Elevated β-TrCP in macrophages promoted TIM3 polyubiquitination and membrane translocation. The ubiquitinated TIM3 then bound with PI3K and followed by inhibition of mTOR and activation of macrophage M2 polarization and TGF-β release, leading to HSC activation and liver fibrosis. Furthermore, elevated TIM3 was attributed to the transcriptional TBP upregulation and miR-4524a-5p downregulation. Targeting of TIM3 significantly attenuated liver fibrosis in mice. In clinical NASH patients, elevated macrophage TIM3 is positively correlated with TBP expression and negatively associated with miR-4524a-5p. Decreased miR-4524a-5p in plasma was a biomarker for the NASH fibrosis patients suitable for anti-TIM3 therapy. In conclusion, this study reveals that miR-4524a-5p/TBP promotes β-TrCP/TIM3 complex activation in macrophages and aggravates chronic NASH fibrosis, providing miR-4524a-5p as an effective blood biomarker for a subtype of chronic NASH patients with fibrosis suitable for anti-TIM3 treatment.
Collapse
Affiliation(s)
- Chunming Li
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xingxing Su
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haojun Xiong
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongqiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhu Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ke Min
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyu Chen
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
7
|
Mou H, Zhang X, Ren F, Deng Y, Chi A, Zhan G, Li D, Sun Q, You W, Ge Y, Zhang M, Ju Z. Nicotinamide mononucleotide supplementation ameliorates testicular damage induced by ischemia-reperfusion through reshaping macrophage and neutrophil inflammatory properties. Int Immunopharmacol 2025; 152:114407. [PMID: 40073809 DOI: 10.1016/j.intimp.2025.114407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is the main pathophysiology of testicular torsion-detorsion (T/D). However, there is no safe and effective treatment for testicular I/R injury. METHODS The levels of NAD+ related genes were measured in the sham group, I/R + saline-treated group, and I/R + NMN-treated group by quantitative reverse transcription PCR (qRT-PCR). Testicular NAD+, Malondialdehyde (MDA), and superoxide dismutase (SOD) were evaluated. The markers of testicular function, including sperm quality, testosterone secretion, and the number of germ cells, were compared between groups. The reactive oxygen species (ROS), apoptosis, and immune cells were analyzed by flow cytometry. The expression of inflammatory genes, germ cell markers, and the phosphorylation of p65 and STAT3 were assessed by qRT-PCR, immunofluorescence, and western blot, respectively. RESULTS In this study, we analyzed the therapeutic potentials of NMN supplementation in testicular injury induced by torsion-detorsion in mice. NMN supplementation could increase testicular NAD+ content, increase serum testosterone levels, prevent Leydig cell and germ cell injury, and improve sperm quantity. Mechanistically, NMN supplementation relieved the sharply hostile immune microenvironment. Specifically, NMN supplementation could mitigate the oxidative stress and cell apoptosis in the I/R injured testes, downregulate the protein expression of p-p65 and p-STAT3 in inflammatory pathways, limit the excessive activation of inflammatory responses in testicular tissues, and reshape the inflammatory properties of macrophages and neutrophils. CONCLUSIONS The beneficial effects of NMN supplementation indicated that boosting NAD+ may be a promising and safe strategy to improve clinical outcomes in I/R-induced testicular damage.
Collapse
Affiliation(s)
- Hanchuan Mou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fan Ren
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuanyao Deng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ani Chi
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Dan Li
- Xiamen Kingdomway Group Company, Xiamen, China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wanling You
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Min Zhang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Ge F, Tian F, Zhu Y, Yan Q, Sun Q, Lu J. Modified Xi-Jiao-Di-Huang Decoction Alleviates Sepsis via Regulating Macrophage Polarization by Inhibiting the PIM2/NF-κB Pathway. J Inflamm Res 2025; 18:5017-5030. [PMID: 40248592 PMCID: PMC12005212 DOI: 10.2147/jir.s509734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
Purpose Modified Xi-Jiao-Di-Huang decoction (MXJDH) has significant clinical efficacy for the treatment of sepsis; however, its mechanism of action remains unclear. The purpose of this study was to investigate the protective effects of MXJDH in septic mice and explore its mechanism of action. Methods Utilizing UPLC-Q-TOF-MS, we identified the primary constituents of the compound MXJDH. Subsequently, we created a mouse model for sepsis, observing their overall condition, including specific symptoms and behavior. We also monitored key inflammatory markers and pathological changes in their organs. Flow cytometry was then employed to assess the polarization of macrophages. Transcriptome sequencing was used to identify genes with altered expression patterns. We investigated the connection between MXJDH and the Pim2/NF-κB signaling pathway, a crucial regulatory mechanism in inflammation. Finally, we examined the expression and tissue distribution of macrophages in the sepsis-induced mice. Results MXJDH effectively reduces inflammation in sepsis mice, leading to a progressive recovery of organ functions. Moreover, MXJDH facilitates the conversion of macrophages from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. This transformation is potentially mediated through the Pim2/NF-κB signaling pathway. By suppressing Pim2 expression, MXJDH mitigates the nuclear translocation of NF-κB, thereby modulating the expression of downstream inflammatory mediators. The role of MXJDH in regulating macrophage polarization has also been confirmed in sepsis mouse tissues. Conclusion MXJDH regulates macrophage polarization, inhibits CRS, and alleviates sepsis by inhibiting the Pim2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fan Ge
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Fang Tian
- Department of Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yeyan Zhu
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qixiang Yan
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Qimeng Sun
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jun Lu
- Department of Intensive Care Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
9
|
Mak KM, Shekhar AC, Ding SY. Neutrophil extracellular traps mediate pathophysiology of hepatic cells during liver injury. Anat Rec (Hoboken) 2025. [PMID: 40219700 DOI: 10.1002/ar.25673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Neutrophil extracellular traps (NETs) are web-like, bactericidal structures produced by neutrophils and are composed principally of extracellular DNA, histones, elastase, and myeloperoxidase, among other components. NET formation is an innate immune response that is beneficial for pathogen killing and clearance. However, excessive NET formation and clearance defects can lead to inflammation and induce damage to host organs. NETs are also implicated in the development of noninfectious inflammatory disorders, such as liver injury in chronic liver diseases. The liver parenchyma contains hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells. Each of these cells possesses unique structures and functions, and their interactions with NETs result in pathophysiological changes contributing to liver injury. This review updates the findings related to the modes of action and molecular mechanisms by which NETs modulate the pathophysiology of various hepatic cells and potentiate liver injury. The article also reviews the roles of NETs in hepatic ischemia reperfusion injury, hepatocellular carcinoma pathogenesis, and cancer metastasis. Last, we examine data to determine whether NETs induce crosstalk among various hepatic cells during liver injury and to identify future research directions.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena Y Ding
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Xie K, Zhang Y, Ou X, Xiao Y, Luo J, Tan S. Taurine ameliorates liver fibrosis by repressing Fpr2-regulated macrophage M1 polarization. Eur J Pharmacol 2025; 997:177614. [PMID: 40216178 DOI: 10.1016/j.ejphar.2025.177614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Liver fibrosis is a reversible pathophysiological condition characterized by excessive extracellular matrix deposition that can progress to cirrhosis and liver failure if left untreated. Taurine, a sulfur-containing amino acid, protects the liver from damage. However, the effects of taurine on liver fibrogenesis have not been completely elucidated. In this study, we used amino acid metabolomics, gene expression microanalysis, and single-cell RNA sequencing (scRNA-seq) to investigate the roles of taurine, formyl peptide receptor 2 (Fpr2), and proinflammatory macrophages in liver fibrosis in human fibrotic sections and two distinct mouse models of liver fibrosis. Taurine transporter SLC6A6 wild-type and knockout littermate models and critical element inhibitors were also used. We found that taurine levels were significantly reduced in both human and murine fibrotic sections and that exogenous taurine supplementation alleviated fibrosis via SLC6A6. Furthermore, gene expression microarray analysis and scRNA-seq analyses demonstrated that exogenous taurine mitigated liver fibrosis, mainly by regulating Fpr2-related macrophage status. WRW4-mediated inhibition of Fpr2 ameliorated M1 macrophage polarization and alleviated liver fibrosis. Additionally, exogenous taurine suppressed Fpr2-modulated macrophage M1 polarization and the production of associated proinflammatory cytokines by repressing NF-κBp65 phosphorylation; moreover, SLC6A6 deficiency or treatment of liver fibrosis mouse models with an NF-κB inhibitor, BAY, impaired this protective effect of taurine. Therefore, taurine exerts a protective effect against liver fibrosis by repressing Fpr2/NF-κBp65-regulated macrophage M1 polarization, highlighting its potential therapeutic agent.
Collapse
Affiliation(s)
- Kaiduan Xie
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yiwang Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Xingtong Ou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Yuelin Xiao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Jiajie Luo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, 510630, China.
| |
Collapse
|
11
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
12
|
Ji M, Yuan Z. The application of traditional Chinese medicine polysaccharides in wound healing: A review. Int J Biol Macromol 2025; 304:140993. [PMID: 39952517 DOI: 10.1016/j.ijbiomac.2025.140993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
"Skin wound" refers to damage or disruption of skin tissue caused by trauma, burns, surgeries, or other factors. Currently available treatment systems are relatively limited, and traditional methods such as debridement using basic materials like gauze, bandages, or vacuum sealing drainage are commonly employed. These approaches often overlook individual patient differences, leading to prolonged pain and recurrent infections. Consequently, there is an urgent need for safe and effective new materials to optimize existing treatment systems in order to enhance the management of skin wounds. In recent years, studies have reported the effects of polysaccharides derived from traditional Chinese medicine (TCMPs) including hemostatic, anti-inflammatory, antioxidative, cell migration, angiogenesis enhancement, and collagen deposition stimulation effects. These findings underscore their potential in treating skin wounds. The aim of this review is to investigate the therapeutic effects of TCMPs in skin wound healing. This investigation aims to analyze recent research advancements in this field by classifying and summarizing existing findings based on different mechanisms of action. Furthermore, various drug delivery methods for TCMP will also be reviewed to provide a theoretical foundation for future developments concerning the application of these compounds in skin wound treatment.
Collapse
Affiliation(s)
- Minrui Ji
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zaixin Yuan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
13
|
Li H, Zhu Q, Wang W, Bao Y, Bai Y, Liu H, Leng W. Identification of biomarkers associated with M1 macrophages in the ST-segment elevation myocardial infarction through bioinformatics and machine learning approaches. Sci Rep 2025; 15:11069. [PMID: 40169697 PMCID: PMC11961635 DOI: 10.1038/s41598-025-89125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/03/2025] [Indexed: 04/03/2025] Open
Abstract
ST-segment elevation myocardial infarction (STEMI) is considered a critical cardiac condition with a poor prognosis. Shortly after STEMI occurs, the increased number of circulating leukocytes including macrophages can lead to the accumulation of more cells in the myocardium, affecting the cardiac immune microenvironment. Identifying serum biomarkers associated with immune infiltration after STEMI is important for diagnosing and treating STEMI. In this work, we aimed to use integrated bioinformatics and machine learning methods to identify new biomarkers. First, candidate genes closely associated with M1 macrophage immune infiltration and STEMI were obtained using the limma package, the CIBERSORTx package, weighted gene coexpression network analysis (WGCNA), and protein‒protein interaction (PPI) networks from the GSE59867 dataset, which comprises peripheral blood mononuclear cell (PBMC) samples. The STEMI patients were subsequently stratified into subtypes using the ConsensusClusterPlus package. Furthermore, using machine learning methods, we identified AKT3, GJC2, HMGCL and RBM17 as the genes with the greatest potential to be associated with STEMI subtypes and with M1 macrophage infiltration during the acute phase of STEMI. Finally, the expression profile and diagnostic value of the four feature genes were validated in the GSE59867 and GSE62646 datasets and in 24 patients using real-time PCR. This study revealed logically and comprehensively that AKT3, GJC2, HMGCL and RBM17, which are derived from PBMCs, could enhance the accuracy of STEMI diagnosis and might provide effective treatment options for STEMI patients.
Collapse
Affiliation(s)
- Huiying Li
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China
- Medical School of Chinese PLA, 28 Fuxing Road, Haidian, Beijing, 100853, China
| | - Qiwei Zhu
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China
| | - Wei Wang
- Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, 6 Fucheng Road, Haidian, Beijing, 100037, China
| | - Yu Bao
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China
| | - Yongyi Bai
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China.
| | - Hongbin Liu
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China.
| | - Wenxiu Leng
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Haidian, Beijing, 100853, China.
| |
Collapse
|
14
|
Sarmiento-Ortega VE, Moroni-González D, Diaz A, Brambila E, Treviño S. Curcumin Treatment Ameliorates Hepatic Insulin Resistance Induced by Sub-chronic Oral Exposure to Cadmium LOAEL Dose via NF-κB and Nrf2 Pathways. Biol Trace Elem Res 2025; 203:2382-2393. [PMID: 39103711 PMCID: PMC11919948 DOI: 10.1007/s12011-024-04314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Cadmium (Cd) is a global pollutant, and its accumulation in the liver causes oxidative stress, inflammation, insulin resistance (IR), and metabolic complications. This study investigated whether curcumin treatment could alleviate hepatic IR in Wistar rats exposed to sub-chronic cadmium and explored the underlying molecular pathways. Male Wistar rats were divided into a control group (standard normocaloric diet + cadmium-free water) and a cadmium group (standard normocaloric diet + drinking water with 32.5 ppm CdCl2) for 30 days. Oral glucose tolerance, insulin response, and IR were assessed using mathematical models. Liver tissue was analyzed for markers of oxidative stress, inflammation, and key regulatory pathways, including NF-κB, Nrf2, MAPKs (JNK and p38), and the IRS1-Akt pathway. We established an effective curcumin dose of 250 mg/kg for 5 days orally. Results demonstrated that after 30 days of exposure, cadmium accumulated in the liver, inducing an oxidative and inflammatory state. This was characterized by increased expression of NF-κB, JNK, and p38, along with diminished Nrf2 expression, hepatic IR, hyperglycemia, and hyperinsulinemia. Curcumin treatment effectively alleviated these metabolic disorders by restoring the balance between NF-κB and Nrf2 in the liver, modulating the MAPK pathway, and, consequently, improving oxidative and inflammatory balance. In conclusion, this study suggests that cadmium induces hepatic IR through an imbalance between NF-κB and Nrf2 signaling pathways. Curcumin treatment appears to improve these pathways, thereby ameliorating hepatic IR.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
15
|
Chen Y, Wang Z, Ma Q, Sun C. The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). Int J Mol Med 2025; 55:61. [PMID: 39950330 PMCID: PMC11878481 DOI: 10.3892/ijmm.2025.5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Various forms of tissue damage can lead to fibrosis, an abnormal reparative reaction. In the industrialized countries, 45% of deaths are attributable to fibrotic disorders. Autophagy is a highly preserved process. Lysosomes break down organelles and cytoplasmic components during autophagy. The cytoplasm is cleared of pathogens and dysfunctional organelles, and its constituent components are recycled. With the growing body of research on autophagy, it is becoming clear that autophagy and its associated mechanisms may have a role in the development of numerous fibrotic disorders. However, a comprehensive understanding of autophagy in fibrosis is still lacking and the progression of fibrotic disease has not yet been thoroughly investigated in relation to autophagy‑associated processes. The present review focused on the latest findings and most comprehensive understanding of macrophage autophagy, endoplasmic reticulum stress‑mediated autophagy and autophagy‑mediated endothelial‑to‑mesenchymal transition in the initiation, progression and treatment of fibrosis. The article also discusses treatment strategies for fibrotic diseases and highlights recent developments in autophagy‑targeted therapies.
Collapse
Affiliation(s)
| | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
16
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
17
|
Zeng L, Zhu L, Fu S, Li Y, Hu K. Mitochondrial Dysfunction-Molecular Mechanisms and Potential Treatment approaches of Hepatocellular Carcinoma. Mol Cell Biochem 2025; 480:2131-2142. [PMID: 39463200 DOI: 10.1007/s11010-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Primary liver cancer (PLC), also known as hepatocellular carcinoma (HCC), is a common type of malignant tumor of the digestive system. Its pathological form has a significant negative impact on the patients' quality of life and ability to work, as well as a significant financial burden on society. Current researches had identified chronic hepatitis B virus infection, aflatoxin B1 exposure, and metabolic dysfunction-associated steatotic liver disease (MASLD) as the main causative factors of HCC. Numerous variables, including inflammatory ones, oxidative stress, apoptosis, autophagy, and others, have been linked to the pathophysiology of HCC. On the other hand, autoimmune regulation, inflammatory response, senescence of the hepatocytes, and mitochondrial dysfunction are all closely related to the pathogenesis of HCC. In fact, a growing number of studies have suggested that mitochondrial dysfunction in hepatocytes may be a key factor in the pathogenesis of HCC. In disorders linked to cancer, mitochondrial dysfunction has gained attention in recent 10 years. As the primary producer of adenosine triphosphate (ATP) in liver cells, mitochondria are essential for preserving cell viability and physiological processes. By influencing multiple pathological processes, including mitochondrial fission/fusion, mitophagy, cellular senescence, and cell death, mitochondrial dysfunction contributes to the development of HCC. We review the molecular mechanisms of HCC-associated mitochondrial dysfunction and discuss new directions for quality control of mitochondrial disorders as a treatment for HCC.
Collapse
Affiliation(s)
- Lianlin Zeng
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Lutao Zhu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Shasha Fu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Yangan Li
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China
| | - Kehui Hu
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China.
| |
Collapse
|
18
|
Topan C, Bilge S, Demirbas AE, Ağyüz G, Kara A. Royal Jelly as a Therapeutic Intervention in Medication-Related Osteonecrosis of the Jaw (MRONJ): An Animal Model Study. J Oral Pathol Med 2025; 54:232-240. [PMID: 40083273 DOI: 10.1111/jop.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/01/2024] [Accepted: 01/12/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND To evaluate the efficacy of royal jelly in managing experimentally created MRONJ model in rats. METHODS Sixty rats were randomly allocated into control, bisphosphonate (BP), royal jelly (RJ), Treatment, and Preventive groups. A defect was created in the alveolar socket following tooth extraction in the mandible as a surgical procedure in all groups. Before surgery, RJ was administered orally to the RJ group. Zoledronic acid was administered intraperitoneally to induce osteonecrosis in BP, treatment, and preventive group rats. Treatment group rats received RJ orally post-surgery, while preventive group rats received it pre-surgery. Histological and radiographic evaluations were performed post-study completion. RESULTS Micro-CT examinations demonstrated significantly improved values in RJ-received groups (RJ, treatment, and preventive) compared to BP and control groups (p < 0.001). Immunohistochemical analysis revealed higher mean IL-1β and TNF-α levels in the BP group. The highest IL-1β difference was between BP and preventive groups (p < 0.001). TNF-α expression levels in all RJ-received groups were comparatively close to those of the control group. CONCLUSION RJ enhances soft and hard tissue healing in MRONJ rat models, suggesting its potential as a therapeutic or preventive agent in osteonecrosis management.
Collapse
Affiliation(s)
- Cihan Topan
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Suheyb Bilge
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Ahmet Emin Demirbas
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Gürkan Ağyüz
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Ayça Kara
- Genom and Stem Cell Centre, Erciyes University, Kayseri, Turkey
| |
Collapse
|
19
|
Xu S, Zhang Y, Ding X, Yang Y, Gao J, Zou N, Lu L, He J. Intestinal microbiota affects the progression of colorectal cancer by participating in the host intestinal arginine catabolism. Cell Rep 2025; 44:115370. [PMID: 40022728 DOI: 10.1016/j.celrep.2025.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/11/2024] [Accepted: 02/07/2025] [Indexed: 03/04/2025] Open
Abstract
Arginine plays a critical role in colorectal cancer (CRC) progression. We find that arginine catabolism is reduced in the intestinal microbiota of patients with CRC but increased in tumor tissue. We further verify that Escherichia coli can consume arginine via the arginine succinyltransferase (AST) pathway, and gavaging mice with the AST-deficient E. coli Nissle 1917 (ΔacEcN) can inhibit arginine catabolism of the intestinal microbiota, thereby increasing the arginine concentration in the colon. In the azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC mouse model, reduced arginine catabolism in the intestinal microbiota increases the arginine concentration in the tumor microenvironment, thereby activating the nitric oxide (NO) synthesis pathway and polyamine synthesis pathway in tumor tissues, stimulating angiogenesis in the tumor microenvironment, inducing M2 macrophage polarization, and activating the Wingless/Integrated (Wnt)/β-catenin pathway, ultimately accelerating CRC progression. This study reveals that intestinal microbiota can affect CRC progression through arginine catabolism, providing a potential target for the prevention and therapy of CRC.
Collapse
Affiliation(s)
- Siyang Xu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuling Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaoqi Ding
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yijun Yang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jinge Gao
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ning Zou
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, P.R. China
| | - Li Lu
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, P.R. China.
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| |
Collapse
|
20
|
Kim JH, Yeo IJ, Son DJ, Han SB, Yoon DY, Lee DH, Hong JT. Chitinase 3-like protein 1 deficiency ameliorates drug-induced acute liver injury by inhibition of neutrophil recruitment through lipocalin-2. Front Pharmacol 2025; 16:1548832. [PMID: 40196357 PMCID: PMC11973357 DOI: 10.3389/fphar.2025.1548832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Chitinase-3-like protein 1 (Chi3l1) is a member of the mammalian Chitinase-like protein family, and several studies reported that Chi3l1 is associated with various inflammatory diseases as well as liver diseases. Acetaminophen (APAP) is usually used for antipyretic drug, but its overdose induces acute liver injury (ALI). Several studies reported that subsequent inflammatory responses of the immune system play a critical role in the severity and outcome of APAP-induced ALI. In the present study, we investigated the role of Chi3l1 and its mechanism during APAP-induced ALI using Chi3l1 knock-out (KO) mice. We explored the function of Chi3l1 using APAP-injected KO mice and sought proteins associated with Chi3l1 through biological research data program for investigating mechanism. Liver histological analysis revealed that APAP-induced ALI was attenuated in KO mice compared to wild-type (WT) mice. We observed that APAP-induced neutrophil infiltration was decreased in the liver of KO mice compared to WT mice. To investigate this mechanism, we sought proteins potentially associated with Chi3l1 by mRNA sequencing and protein correlation analysis data. We found lipocalin-2 (Lcn2) and examined Chi3l1, Lcn2, and their relationship in the APAP-induced ALI model using recombinant proteins and antibodies. Our results suggest that Chi3l1 deficiency ameliorates APAP-induced liver injury through abrogating Lcn2-mediated neutrophil infiltration in the liver.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Dong Hun Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
21
|
Mazzitelli M, Kiritoshi T, Presto P, Hurtado Z, Antenucci N, Ji G, Neugebauer V. BDNF Signaling and Pain Modulation. Cells 2025; 14:476. [PMID: 40214430 PMCID: PMC11987912 DOI: 10.3390/cells14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important neuromodulator of nervous system functions and plays a key role in neuronal growth and survival, neurotransmission, and synaptic plasticity. The effects of BDNF are mainly mediated by the activation of tropomyosin receptor kinase B (TrkB), expressed in both the peripheral and central nervous system. BDNF has been implicated in several neuropsychiatric conditions such as schizophrenia and anxio-depressive disorders, as well as in pain states. This review summarizes the evidence for a critical role of BDNF throughout the pain system and describes contrasting findings of its pro- and anti-nociceptive effects. Different cellular sources of BDNF, its influence on neuroimmune signaling in pain conditions, and its effects in different cell types and regions are described. These and endogenous BDNF levels, downstream signaling mechanisms, route of administration, and approaches to manipulate BDNF functions could explain the bidirectional effects in pain plasticity and pain modulation. Finally, current knowledge gaps concerning BDNF signaling in pain are discussed, including sex- and pathway-specific differences.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Zachary Hurtado
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
22
|
Yi Z, Li X, Li Y, Wang R, Zhang W, Wang H, Ji Y, Zhao J, Song J. Multi-cohort validation based on a novel prognostic signature of anoikis for predicting prognosis and immunotherapy response of esophageal squamous cell carcinoma. Front Oncol 2025; 15:1530035. [PMID: 40165896 PMCID: PMC11955476 DOI: 10.3389/fonc.2025.1530035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunotherapy is recognized as an effective and promising treatment modality that offers a new approach to cancer treatment. However, identifying responsive patients remains challenging. Anoikis, a distinct form of programmed cell death, plays a crucial role in cancer progression and metastasis. Thus, we aimed to investigate prognostic biomarkers based on anoikis and their role in guiding immunotherapy decisions for esophageal squamous cell carcinoma (ESCC). By consensus clustering, the GSE53624 cohort of ESCC patients was divided into two subgroups based on prognostic anoikis-related genes (ARGs), with significant differences in survival outcomes between the two subgroups. Subsequently, we constructed an ARGs signature with four genes, and its reliability and accuracy were validated both internally and externally. Additional, different risk groups showed notable variances in terms of immunotherapy response, tumor infiltration, functional enrichment, immune function, and tumor mutation burden. Notably, the effectiveness of the signature in predicting immunotherapy response was confirmed across multiple cohorts, including GSE53624, GSE53625, TCGA-ESCC, and IMvigor210, highlighting its potential utility in predicting immunotherapy response. In conclusion, the ARGs signature has the potential to serve as an innovative and dependable prognostic biomarker for ESCC, facilitating personalized treatment strategies in this field, and may represent a valuable new tool for guiding ESCC immunotherapy decision-making.
Collapse
Affiliation(s)
- Zhongquan Yi
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Yangyang Li
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Rui Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Weisong Zhang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Hao Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yanan Ji
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Jing Zhao
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - JianXiang Song
- Department of Cardiothoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
23
|
Yu H, Zhang T, Liu Y, Wang W, Guan Z, Li P. Association between cardiovascular health and markers of liver function: a cross-sectional study from NHANES 2005-2018. Front Med (Lausanne) 2025; 12:1538654. [PMID: 40144884 PMCID: PMC11936933 DOI: 10.3389/fmed.2025.1538654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background Cardiovascular health (CVH) has been associated with various systemic diseases. However, the relationship between CVH, as measured by Life's Essential 8 (LE8), and liver function markers in the general population remains poorly understood. Methods This study analyzed data from 21,156 participants (aged ≥ 20) from the NHANES 2005-2018 to investigate the associations between CVH and liver function markers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), albumin and AST/ALT ratio]. Linear regression models were used, along with a restricted cubic spline (RCS) to assess dose-response. Weighted quantile sum (WQS) regression and quantile g-computation (QGC) analyses were employed to evaluate the association between CVH and liver function markers. Results Linear regression analysis showed that each 1-point increase in CVH score was significantly associated with decreased levels of liver enzymes [ALT: -0.200 U/L (95% CI: -0.223, -0.176), AST: -0.043 U/L (-0.062, -0.024), GGT: -0.453 U/L (-0.509, -0.397), ALP: -0.310 U/L (-0.340, -0.281)] and increased levels of albumin [0.040 g/dL (0.036, 0.045)] and AST/ALT ratio [0.0056 (0.0051, 0.0061)]. Notably, CVH score demonstrated non-linear dose-response relationships with ALT, ALP, and AST/ALT ratio. Age significantly modified these associations, while nicotine exposure, BMI, and blood lipids were identified as primary contributors through WQS and QGC analyses. E-value analysis suggested robustness to unmeasured confounding. Conclusion This study demonstrates robust associations between CVH and liver function markers in United States adults, with nicotine exposure, BMI, and blood lipids identified as significant contributors. These findings suggest that maintaining optimal cardiovascular health may have beneficial effects on liver function, highlighting potential targets for integrated prevention strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
He H, Zhou Z, Zhang L, Lu Z, Li B, Li X. HIF1α/MIF/CD74 signaling mediated OSA-induced atrial fibrillation by promoting M1 macrophages polarization. Int Immunopharmacol 2025; 149:114248. [PMID: 39929098 DOI: 10.1016/j.intimp.2025.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is known to contribute to the occurrence and recurrence of atrial fibrillation (AF). However, the mechanism remains unknown. METHODS Chronic OSA rat model was established to elucidate the role of macrophages in OSA-induced AF. Moreover, to reveal the mechanisms underlying the abnormal polarization of macrophages induced by chronic OSA, co-culture cell model of macrophages and atrial myocytes was created. RESULTS Chronic OSA altered the pathological phenotype of atrial myocardial tissues, rendering it more susceptible to AF. Furthermore, chronic OSA promoted the polarization of M1 macrophages in the atrial tissue, and the AF susceptibility induced by chronic OSA was reversed upon clearance of macrophages. Then, we found that macrophages induced an atrial fibrillation-like phenotype in atrial myocytes, while atrial myocytes promoted M1 polarization of macrophages, under hypoxia/reoxygenation treatment. Moreover, hypoxia/reoxygenation upregulated the expression of hypoxia-inducible factor 1-α (HIF1α) in atrial myocytes, which subsequently promoted the expression of macrophage migration inhibitory factor (MIF) by binding to the promoter region. The increased expression of MIF further activated the expression of nuclear factor-kappa B (NF-κB) through interaction with CD74, ultimately leading to M1 macrophages polarization. CONCLUSIONS Increased polarization of M1-type macrophages was involved in the increased susceptibility to AF induced by OSA. In mechanism, OSA increased MIF expression by HIF1α in atrial myocytes. Then, MIF activated NF-κB expression by CD74 in macrophages, consequently driving the polarization of M1-type macrophages. Finally, M1 macrophages exacerbated atrial remodeling through the secretion of inflammatory cytokines, which contributed to the increased susceptibility to AF.
Collapse
Affiliation(s)
- Hangyuan He
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China; Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Zhen Zhou
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Lin Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Zhengjie Lu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China.
| | - Xuefei Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| |
Collapse
|
25
|
Farhadi S, Mohammadi S, AlKindi AY, Al-Amri IS. Therapeutic potential of elafibranor in alcohol-associated liver disease: Insights into macrophage modulation and fibrosis reduction. World J Biol Chem 2025; 16:104535. [PMID: 40070853 PMCID: PMC11891553 DOI: 10.4331/wjbc.v16.i1.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/05/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a major global health concern, contributing to liver injury, morbidity, and mortality. Elafibranor (EFN), a dual peroxisome proliferator-activated receptor α/δ agonist, has shown promise as a therapeutic candidate in preclinical studies. EFN reduces liver fibrosis by inhibiting lipid accumulation, apoptosis, and inflammatory pathways (LPS/TLR4/NF-κB), while enhancing autophagy and antioxidant responses. It also improves intestinal barrier function and modulates gut microbiota, reducing endotoxin-producing bacteria and increasing beneficial species. By strengthening the intestinal barrier and suppressing pro-inflammatory mediators like tumor necrosis factor-alpha and interleukin-6, EFN mitigates hepatic stellate cell activation and fibrogenic signaling. Macrophages play a central role in ALD progression, and EFN's ability to modulate macrophage activity further highlights its anti-inflammatory properties. This review emphasizes EFN's dual-targeted approach, addressing both hepatic and intestinal dysfunctions, distinguishing it from conventional ALD treatments. While preclinical results are promising, EFN remains under clinical investigation, with ongoing trials evaluating its safety and efficacy. Future research should focus on elucidating EFN's molecular mechanisms and advancing its clinical application to establish its therapeutic potential in human populations. EFN represents a novel, comprehensive strategy for ALD management, targeting both liver and gut pathologies.
Collapse
Affiliation(s)
- Samira Farhadi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4188958643, Gīlān, Iran
| | - Saeed Mohammadi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan 4934174515, Golestān, Iran
| | - Abdulaziz Y AlKindi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
| | - Issa S Al-Amri
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa 616, Ad Dākhilīyah, Oman
| |
Collapse
|
26
|
Habermaass V, Takami Y, Izawa T, Abramo F, Biolatti C, Marchetti V. Lipid Dysmetabolism in Canine Chronic Liver Disease: Relationship Between Clinical, Histological and Immunohistochemical Features. Vet Sci 2025; 12:220. [PMID: 40266905 PMCID: PMC11946210 DOI: 10.3390/vetsci12030220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025] Open
Abstract
Chronic liver diseases (CLDs) in dogs are progressive conditions that often lead to liver failure. Metabolic dysfunctions such as cholestasis, obesity, hyperlipidemia, and endocrine disorders play a key role in human liver diseases like MASLD (Metabolic Dysfunction Associated Steatotic Liver Disease) and MASH (Metabolic Dysfunction Associated Steatohepatitis), but their significance in canine CLDs is poorly understood. This study aims to evaluate the association between hepatic lipid accumulation and inflammation or fibrosis in canine CLDs and its potential association with metabolic dysfunctions. Sixteen client-owned dogs with CLDs were assessed for clinical data, histological features, and liver immunohistochemistry (IHC). Histological and IHC markers of inflammation (Iba-1, iNOS, NF-κB), fibrosis (CD206, α-SMA, Sirius Red), and lipid accumulation (adipophilin) were assessed to identify correlations with clinical conditions. The applied markers showed effectiveness in their use on canine liver tissue. Adipophilin-marked lipid accumulation correlated positively with inflammatory markers, indicating a link between steatosis and inflammation. Metabolic dysfunctions were linked to hepatic lipid accumulation and inflammation. These findings show a potential alignment of canine CLDs with human MASLD/MASH, where lipid-induced inflammation drives disease progression. IHC markers could effectively assess these processes, suggesting potential for guiding diagnostics and therapies, though further research is needed to clarify clinical associations.
Collapse
Affiliation(s)
- Verena Habermaass
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (F.A.); (V.M.)
| | - Yuki Takami
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan; (Y.T.); (T.I.)
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan; (Y.T.); (T.I.)
| | - Francesca Abramo
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (F.A.); (V.M.)
| | | | - Veronica Marchetti
- Department of Veterinary Sciences, University of Pisa, Via Livornese Lato Monte, 56122 Pisa, Italy; (F.A.); (V.M.)
| |
Collapse
|
27
|
An R, Zhu Z, Chen Y, Guan W, Wang J, Ren H. MSCs Suppress Macrophage Necroptosis and Foster Liver Regeneration by Modulating SP1/SK1 Axis in Treating Acute Severe Autoimmune Hepatitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408974. [PMID: 39899606 PMCID: PMC11948073 DOI: 10.1002/advs.202408974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/31/2024] [Indexed: 02/05/2025]
Abstract
Acute severe autoimmune hepatitis (AS-AIH) is characterized by rapid progression and poor prognosis, with a current lack of effective targeted treatments. Stem cell therapy has demonstrated significant therapeutic promise across various autoimmune diseases. However, the intricate pathogenesis of AS-AIH has hindered the widespread utilization of mesenchymal stem cells (MSCs) in this domain. Herein, it is demonstrated that necroptosis, as the primary mode of cell death in AIH, is crucial in causing AS-AIH. Inflammatory macrophages are the primary cell population involved in necroptosis. Inhibition of the specificity protein 1/sphingosine kinase 1/sphingosine-1-phosphate (SP1/SK1/S1P) axis is responsible for this phenomenon, leading to excessive activation of the intrahepatic immune system and aggravating liver damage. Furthermore, the S1P/S1PR2/YAP axis is the key pathway in initiating liver regeneration during AS-AIH. S1P synthesized by hepatocytes is the primary source, and this process is also regulated by the SP1/SK1 axis. MSCs promote S1P synthesis by macrophages through the delivery of SP1, which inhibits necroptosis and synergistically enhances liver regeneration. In addition, MSCs also promote S1P synthesis in hepatocytes through the same mechanism, further aiding liver regeneration. These findings unveil the core pathogenesis of AS-AIH and provide a theoretical foundation for using MSCs as a potential targeted therapeutic modality.
Collapse
Affiliation(s)
- Ran An
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower Hospitalthe Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Zhengyi Zhu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower Hospitalthe Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Yuyan Chen
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower Hospitalthe Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Wenxian Guan
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower Hospitalthe Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower Hospitalthe Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower Hospitalthe Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| |
Collapse
|
28
|
Tao W, Chen L. Evaluation of the causal effects of perfluorooctanesulfonate on COVID-19 and its associated mechanisms: Integrated Mendelian randomization and network toxicology analyses. Toxicol Lett 2025; 405:1-8. [PMID: 39894319 DOI: 10.1016/j.toxlet.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
Observational reports have suggested that exposure to perfluorooctanesulfonate (PFOS) can influence COVID-19 infection-related parameters. This study thus sought to use integrated Mendelian randomization (MR) and network toxicology approaches to clarify the potential causal link between PFOS exposure and COVID-19 severity and the molecular mechanisms underlying this relationship. Inverse-variance-weighted analyses highlighted a causal link between plasma PFOS concentrations and a greater risk of sCOVID-19 (OR 1.293, 95 % CI 1.077-1.552, p = 0.006), but not of SARS-CoV-2 infection (p = 0.257) or COVID-19 hospitalization (p = 0.516). No causal link between PFOS concentration and sCOVID-19 was found by reverse MR. In total, 65 targets were tentatively linked to the relationship between PFOS exposure and sCOVID-19. GO and KEGG analyses highlighted involvement in pathways associated with kinase activity, inflammatory responses, and epithelial and endothelial cell migration. In molecular docking analyses, PFOS was confirmed to readily bind to all five analyzed core targets (IL10, ALB, NOTCH1, PPARG, and NFE2L2). These results suggest that PFOS exposure is causally linked to sCOVID-19 risk, while also offering promising insights into the mechanisms that may underlie this association and candidate targets for treatments aimed at limiting the negative effects of PFOS on COVID-19 severity.
Collapse
Affiliation(s)
- Wenting Tao
- Department of Critical Care Medicine, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, China
| | - Liang Chen
- Department of Infectious Diseases, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical College of Nanjing University, Nanjing 210046, China.
| |
Collapse
|
29
|
Mak KM, Shekhar AC. Lipopolysaccharide, arbiter of the gut-liver axis, modulates hepatic cell pathophysiology in alcoholism. Anat Rec (Hoboken) 2025; 308:975-1004. [PMID: 39166429 DOI: 10.1002/ar.25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Over the last four decades, clinical research and experimental studies have established that lipopolysaccharide (LPS)-a component of the outer membrane of gram-negative bacteria-is a potent hepatotoxic molecule in humans and animals. Alcohol abuse is commonly associated with LPS endotoxemia. This review highlights LPS molecular structures and modes of release from bacteria, plasma LPS concentrations, induction of microbiota dysbiosis, disruption of gut epithelial barrier, and translocation of LPS into the portal circulation impacting the pathophysiology of hepatic cells via the gut-liver axis. We describe and illustrate the portal vein circulation and its distributaries draining the gastrointestinal tract. We also elaborate on the gut-liver axis coupled with enterohepatic circulation that represents a bidirectional communication between the gut and liver. The review also updates the data on how circulating LPS is cleared in a coordinated effort between Kupffer cells, hepatocytes, and liver sinusoidal endothelial cells. Significantly, the article reviews and updates the modes/mechanisms of action by which LPS mediates the diverse pathophysiology of Kupffer cells, hepatocytes, sinusoidal endothelial cells, and hepatic stellate cells primarily in association with alcohol consumption. Specifically, we review the intricate linkages between ethanol, microbiota dysbiosis, LPS production, gut-liver axis, and pathophysiology of various hepatic cells. The maintenance of the gut barrier structural and functional integrity and microbiome homeostasis is essential in mitigating alcoholic liver disease and improving liver health.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
30
|
Pudgerd A, Pluangnooch P, Soontrapa K, Saedan S, Vanichviriyakit R, Sridurongrit S. Macrophage expression of constitutively active TβRI alleviates hepatic injury in a mouse model of concanavalin A-induced autoimmune hepatitis. Heliyon 2025; 11:e42691. [PMID: 40040984 PMCID: PMC11876931 DOI: 10.1016/j.heliyon.2025.e42691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025] Open
Abstract
Transforming growth factor-β (Tgf-β) contributes to the development of liver diseases through its regulation of various cell types. While Tgf-β signaling to hepatic stellate cells (HSCs) and hepatocytes was shown to mediate hepatic damage, the effect of Tgf-β on other cells in liver is yet to be clearly defined. Herein we identified a regulatory function of macrophage Tgf-β signaling in liver injury. We found that transgenic mice expressing constitutively active Tgf-β receptor type I (TβRI CA ) under the control of Fsp1-Cre (TβRI CA /Fsp1-Cre mice) were less susceptible to concanavalin A (conA)-induced autoimmune hepatitis. Liver tissue examination showed a decrease of necrotic area in conA-treated TβRI CA /Fsp1-Cre liver compared to those of wild-type mice. Blood test revealed that serum aminotransferases were significantly reduced in conA-treated TβRI CA /Fsp1-Cre mice as compared to those of wild-type mice. Immunohistochemistry for CD3 and myeloperoxidase demonstrated that there was a decreased accumulation of T cells and neutrophils, respectively, whereas ELISA showed that IL-4, IL-5, IL-10, IL-12 and IFN-γ was increased in livers of conA-treated TβRI CA /Fsp1-Cre mice. Alternatively activated macrophage (M2) polarization was significantly elevated in livers of conA-treated TβRI CA /Fsp1-Cre mice as indicated by enhanced hepatic expression of CCR2 and CD206 as well as increased numbers of liver macrophages expressing M2 subtype marker, CD163. qPCR analysis indicated an increased expression of TβRI CA , Arg1, Ym1, CD206, Snail1, Foxo1 and IRF4 as well as a decreased expression of MHC class II and CD1d in liver macrophages that were isolated from TβRI CA /Fsp1-Cre mice. Moreover, flow cytometry analysis showed a lower number of NKT cells in livers of conA-treated TβRI CA /Fsp1-Cre mice when compared to those of wild-type mice. In conclusion, Fsp1-Cre-mediated expression of TβRI CA lead to a decreased conA-induced liver injury that was associated with enhanced M2 macrophage polarization and reduced NKT cell recruitment.
Collapse
Affiliation(s)
- Arnon Pudgerd
- Division of Anatomy, School of Medical Science, University of Phayao, Phayao, 56000, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Panwadee Pluangnooch
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kitipong Soontrapa
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sukanya Saedan
- Division of Anatomy, School of Medical Science, University of Phayao, Phayao, 56000, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Rapeepun Vanichviriyakit
- Division of Anatomy, School of Medical Science, University of Phayao, Phayao, 56000, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Somyoth Sridurongrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| |
Collapse
|
31
|
Godin B, Frieboes HB. Realizing the potential of nanomedicines to treat breast cancer liver metastasis. Nanomedicine (Lond) 2025:1-4. [PMID: 40013682 DOI: 10.1080/17435889.2025.2469491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Affiliation(s)
- Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College, New York, NY, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
- UofL Health - Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
32
|
Wang Z, Ren Y, Li Y, Zhang Y, Bai S, Hou W, Zhang W, Yao Y, Zhao H, Wang M, Luo Y, Pang G, Du J. MiR-186-5p carried by M2 macrophage-derived exosomes downregulates TRPP2 expression in airway smooth muscle to alleviate asthma progression. Int Immunopharmacol 2025; 148:114107. [PMID: 39884080 DOI: 10.1016/j.intimp.2025.114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Bronchial asthma (asthma) is a chronic inflammatory disease of the airways that remains an unresolved problem. Reportedly M2 macrophages and exosomes play a role in inflammation, including asthma. We investigated the roles of M2 macrophage-derived exosomes (M2-Exos) effect in asthmatic progression by using ovalbumin (OVA) induced asthmatic mice model. M2-Exos significantly ameliorated the pulmonary inflammatory response and airway hyperresponsiveness in asthmatic mice and suppressed aberrant proliferation and transient receptor potential polycystic protein 2(TRPP2) expression in LPS-stimulated primary airway smooth muscle cells (ASMCs). Then, we found that miR-186-5p of M2-Exos could target TRPP2 through online database analysis. However, miR-186-5p downregulation by miR-186-5p inhibitors decreased the protective effect of M2-Exos in asthmatic mouse and cellular models. miR-186-5p was identified and selectively combined with the polycystin-2 gene encoding TRPP2 protein, inhibited TRPP2 protein production, and downregulated TRPP2 expression. A reduction in the number of TRPP2 calcium (Ca) channels formed on the cell membrane leads to a decreased intracellular Ca2+ concentration ([Ca2+] i), causing reduced ASMC contraction and proliferation, thereby improving airway hyperresponsiveness and airway remodeling in asthma. Collectively, we conclude that M2 exosomal miR-186-5p to alleviate asthma progression and airway hyperresponsiveness though downregulating TRPP2 expression. These results may offer a novel insight to the treatment and drug delivery of asthma.
Collapse
Affiliation(s)
- Zunyun Wang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong Shenzhen Guangdong China
| | - Yan Ren
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Yicong Li
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Yuxin Zhang
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Suwen Bai
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Wenxuan Hou
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Wenjun Zhang
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Yanheng Yao
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Hongxian Zhao
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong Shenzhen Guangdong China
| | - Minghua Wang
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Yumei Luo
- The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China
| | - Gang Pang
- School of Basic Medical Sciences Anhui Medical University Hefei Anhui China.
| | - Juan Du
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong Shenzhen Guangdong China; The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong Shenzhen & Longgang District People's Hospital of Shenzhen Shenzhen Guangdong China.
| |
Collapse
|
33
|
Ma Y, Gong H, Cheng L, Zhang D. Discoid Domain Receptors Signaling in Macrophages-Mediated Diseases. Int J Gen Med 2025; 18:907-926. [PMID: 39990299 PMCID: PMC11847422 DOI: 10.2147/ijgm.s487093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/18/2025] [Indexed: 02/25/2025] Open
Abstract
Macrophages, as a crucial component of the body's immune system, play a vital role in the onset, progression, and outcome of diseases. Discoidin domain receptors (DDRs), important members of the novel receptor tyrosine kinase superfamily, exhibit unique functions in macrophage physiology. Through interactions with the extracellular matrix, DDRs activate signaling pathways such as p38 MAPK and NF-κB, regulating macrophage adhesion, migration, and secretory functions, thereby influencing their behavior in diseases. Recent studies have indicated a direct correlation between DDRs and the progression of various diseases, including inflammation, cancer, and fibrosis. However, there remain numerous knowledge gaps regarding the specific mechanisms by which DDRs function in macrophage-mediated diseases. This article provides an in-depth summary of the regulatory mechanisms of DDRs on macrophages, detailing their modulatory roles in various diseases through macrophages and their underlying mechanisms. The aim is to offer new insights into biomedical therapies targeting DDRs and the development of novel drugs.
Collapse
Affiliation(s)
- Yaohui Ma
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Hang Gong
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Long Cheng
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Dekui Zhang
- Department of Gastroenterology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
34
|
Kuklin A, Slabber CF, Tortola L, Kwan CL, Liebisch G, Kondylis V, Mair F, Kopf M, Weber A, Werner S. An Nrf2-NF-κB Crosstalk Controls Hepatocyte Proliferation in the Normal and Injured Liver. Cell Mol Gastroenterol Hepatol 2025; 19:101480. [PMID: 39970988 DOI: 10.1016/j.jcmgh.2025.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND & AIMS The liver has remarkable regenerative and detoxification capacities, which require the Nrf2 and NF-κB transcription factors. Although their individual functions in hepatocytes are well characterized, knowledge about their crosstalk in the adult liver is limited. METHODS We performed AAV8-Cre inducible, hepatocyte-specific knockout of Nrf2, the NF-κB subunit p65, or both genes to determine the individual and combined roles of these transcription factors in the intact liver of male adult mice and after acute CCl4 injury. Mice were characterized using histologic and immunohistochemical stainings, serum and liver bile acid analysis, flow cytometry, and RNA sequencing. To distinguish between cell-autonomous and non-cell-autonomous mechanisms, we generated and analyzed knockout and knockdown AML12 liver cells. Clodronate liposome-mediated macrophage depletion was used to determine the role of these immune cells in hepatocyte proliferation after CCl4 injection. RESULTS Loss of p65 alone or p65 in combination with Nrf2 caused spontaneous liver inflammation and necrosis. Gene expression profiling identified individual and common target genes of both transcription factors, including genes involved in the control of cell proliferation. Consistent with the expression of these genes, hepatocyte proliferation was reduced by Nrf2 deficiency under homeostatic conditions and after CCl4 injury, which was rescued by additional loss of p65. The increased hepatocyte proliferation in the double-knockout mice was non-cell-autonomous and correlated with macrophage accumulation in the liver. Depletion of macrophages in these mice suppressed hepatocyte proliferation after CCl4 treatment. CONCLUSIONS These results reveal a crosstalk between Nrf2 and p65 in the control of hepatocyte proliferation and point to a key role of macrophages in this effect.
Collapse
Affiliation(s)
- Andrii Kuklin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Chan Lap Kwan
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland; Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Vangelis Kondylis
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Florian Mair
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland; Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
35
|
Shi M, Li H, Liang R, Lin H, Tang Q. The transcription factor STAT3 and aging: an intermediate medium. Biogerontology 2025; 26:55. [PMID: 39920354 DOI: 10.1007/s10522-025-10193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Aging is a physiological/pathological process accompanied by progressive impairment of cellular function, leading to a variety of aging-related diseases. STAT3 is one of the core regulatory factors of aging. It is involved in body metabolism, development and senescence, cell apoptosis and so on. During the aging process, the changes of growth factors and cytokines will cause the activation of STAT3 to varying degrees, regulate the inflammatory pathways related to aging, regulate body inflammation, mitochondrial function, cell aging and autophagy to regulate and influence the aging process. Drugs targeting STAT3 can treat senescence related diseases. This review summarizes the role of STAT3 signaling factors in the pathogenesis of aging, including mitochondrial function, cellular senescence, autophagy, and chronic inflammation mediated by inflammatory pathways. Finally, the key regulatory role of STAT3 in senescence related diseases is emphasized. In summary, we reveal that drug development and clinical application targeting STAT3 is one of the key points in delaying aging and treating aging-related diseases in the future.
Collapse
Affiliation(s)
- Min Shi
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Honyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Haiyan Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
36
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
37
|
Zhang J, Hao L, Li S, He Y, Zhang Y, Li N, Hu X. mTOR/HIF-1α pathway-mediated glucose reprogramming and macrophage polarization by Sini decoction plus ginseng soup in ALF. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156374. [PMID: 39798342 DOI: 10.1016/j.phymed.2025.156374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Acute liver failure (ALF) has a high mortality rate, and despite treatment advancements, long-term outcomes remain poor. PURPOSE This study explores the therapeutic targets and pathways of Sini Decoction plus Ginseng Soup (SNRS) in ALF using bioinformatics and network pharmacology, focusing on its impact on macrophage polarization through glucose metabolism reprogramming. The efficacy of SNRS was validated in an LPS/D-GalN-induced ALF model, and its optimal concentration was determined for in vitro macrophage intervention. STUDY DESIGN AND METHODS Differentially expressed genes (DEGs) in HBV-induced and acetaminophen-induced ALF were identified from GEO datasets. The correlation between target gene expression and immune cell infiltration in ALF liver tissue was analyzed. AST, ALT, TNF-α, HMGB1, IL-1β, IL-6, and IL-10 levels were measured, and liver histopathology was assessed. Macrophage polarization was analyzed via immunofluorescence, flow cytometry, and Western blot. Glycolysis-related enzymes and metabolites, including HK2, PFK-1, PKM2, and LDHA, were quantified. Cellular ultrastructure was examined by transmission electron microscopy. RESULTS Five key glycolysis-regulating genes (HK2, CDK1, SOD1, VEGFA, GOT1) were identified, with significant involvement in the HIF-1 signaling pathway. Immune infiltration was markedly higher in ALF liver tissue. SNRS improved survival, reduced ALT/AST levels, alleviated liver injury, and modulated macrophage polarization by decreasing CD86 and increasing CD163 expression. In vitro, SNRS inhibited LPS-induced inflammatory cytokine release, lactate production, p-mTOR/mTOR ratio, and HIF-1α expression. CONCLUSION SNRS modulates macrophage polarization and glucose metabolism reprogramming via the mTOR/HIF-1α pathway, showing promise as a treatment for ALF.
Collapse
Affiliation(s)
- Junli Zhang
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinghuai District, Nanjing, Jiangsu 210029, PR China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Ying He
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Yang Zhang
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Na Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-er-qiao Road, Chengdu 610075, Sichuan Province, PR China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
38
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2025; 33:185-205. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
39
|
Yang J, Wang D, Yu H, Wang L, Wang Y, Liu X, Huang Y, Ouyang C, Hong Y, Ren S, Wang Y, Jin Y, Hu J, Feng J. Lauric acid-mediated gelatin/hyaluronic acid composite hydrogel with effective antibacterial and immune regulation for accelerating MRSA-infected diabetic wound healing. Int J Biol Macromol 2025; 290:138792. [PMID: 39689796 DOI: 10.1016/j.ijbiomac.2024.138792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The infected diabetic wound healing is an increasingly severe healthcare problem worldwide. Bacterial infection and the inflammatory microenvironment hinder diabetic wound healing. Meanwhile, the combination of inhibiting bacterial growth and promoting macrophage polarization in the wound microenvironment is beneficial for treating diabetic wounds. Nowadays, hydrogels, as an emerging wound dressing, have great potential to replace or supplement traditional bandages or gauze. Here, glycyl methacrylate gelatin (Gel-Gym), oxidized hyaluronic acid (HA-CHO) and lauric acid (LA) were used to prepare the composite hydrogel (GH/LA) in addressing the clinical dilemma. The hydrogel could withstand 50 % compression deformation, its swelling rate was as low as 18 %, and its adhesion to pig skin reached 14 kPa. Moreover, a diabetic infected wound model was used to evaluate the feasibility of GH/LA hydrogel in vivo. The hydrogels' antimicrobial, anti-inflammatory and prorestitutive potentials were further investigated, and GH/LA showed a therapeutic effect on diabetic wounds. Interestingly, macrophage polarization into the M2 phenotype was significantly enhanced in the presence of GH/LA via GPR40/NF-κB pathway. This study provided a new avenue for treating methicillin-resistant staphylococcus aureus (MRSA) infected diabetic wounds.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Dongyu Wang
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yun Wang
- Zhejiang TUANYUAN Composite Materials Co., Ltd., Pinghu 314200, PR China
| | - Xiaowei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jian Hu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| |
Collapse
|
40
|
Ishikawa K, Murao A, Aziz M, Wang P. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 (MOP3) attenuates inflammation and improves survival in hepatic ischemia/reperfusion injury. Surgery 2025; 178:108872. [PMID: 39455391 PMCID: PMC11717596 DOI: 10.1016/j.surg.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION Hepatic ischemia/reperfusion injury is a severe clinical condition leading to high mortality as the result of excessive inflammation, partially triggered by released damage-associated molecular patterns. Extracellular cold-inducible RNA-binding protein is a new damage-associated molecular pattern. Current clinical management of hepatic ischemia/reperfusion injury is limited to supportive therapy, necessitating the development of novel and effective treatment strategies. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 is a newly invented oligopeptide originating from milk fat globule-epidermal growth factor-VIII. This peptide acts as an opsonic compound that specifically binds to extracellular cold-inducible RNA-binding protein to facilitate its clearance by phagocytes, thereby attenuating inflammation. In this study, we hypothesized that milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 attenuated hepatic ischemia/reperfusion injury by inhibiting extracellular cold-inducible RNA-binding protein-induced inflammation in Kupffer cells. METHODS We treated Kupffer cells isolated from male C57BL/6 mice with extracellular cold-inducible RNA-binding protein and various doses of milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 for 4 hours, then measured cytokines in the culture supernatants. In addition, mice underwent 70% hepatic ischemia for 60 minutes immediately followed by the intravenous administration of either vehicle or milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3. Blood and ischemic liver tissues were collected 24 hours later, and inflammatory markers including cytokines, liver enzymes, chemokines, myeloperoxidase activity, and Z-DNA-binding protein 1 were measured. Hepatic tissue damage and cell death were evaluated histologically. Survival rates were monitored for 10 days posthepatic ischemia/reperfusion. RESULTS The release of interleukin-6 and tumor necrosis factor-α from extracellular cold-inducible RNA-binding protein-challenged Kupffer cells was significantly reduced by milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 in a dose-dependent manner. In hepatic ischemia/reperfusion mice, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly decreased serum levels of extracellular cold-inducible RNA-binding protein, interleukin-6, tumor necrosis factor-α, aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment also significantly reduced mRNA levels of interleukin-6, tumor necrosis factor-α, interleukin-1β, Z-DNA-binding protein 1, and chemokine macrophage inflammatory protein-2, as well as myeloperoxidase activity in hepatic tissues. Histologic evaluation demonstrated that treatment with milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated tissue damage and cell death in the liver of hepatic ischemia/reperfusion mice. Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 treatment significantly improved the survival rate of hepatic ischemia/reperfusion mice. CONCLUSION Milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 significantly attenuated inflammation and liver tissue damage and improved survival after hepatic ischemia/reperfusion. Thus, milk fat globule-epidermal growth factor-VIII-derived oligopeptide 3 holds promise as a potential future therapeutic strategy for hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Kouhei Ishikawa
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
41
|
Kuang G, Zhao Y, Wang L, Wen T, Liu P, Ma B, Peng Q, Xu F, Ye L, Fan J. Astragaloside IV Alleviates Acute Hepatic Injury by Regulating Macrophage Polarization and Pyroptosis via Activation of the AMPK/SIRT1 Signaling Pathway. Phytother Res 2025; 39:733-746. [PMID: 39660635 DOI: 10.1002/ptr.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/17/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Acute hepatic injury (AHI) is associated with poor prognosis in sepsis patient; however, to date, no specific therapeutic approach has been established for this disease. Therefore, we aimed to explore the effects and action mechanisms of Astragaloside IV (AS) on AHI. C57BL/6 mice, RAW264.7 cells, and bone marrow-derived macrophages were used in this study. Sepsis-associated AHI model mice were established using lipopolysaccharide + D-galactosamine. Pathological examination of liver tissues and serum alanine aminotransferase/aspartate aminotransferase was performed to evaluate the liver function. Moreover, inflammatory cytokine levels, proportion of M1/M2 macrophages and their marker levels, and cell pyroptosis-related indicator levels were determined in the liver of the AHI model mice with or without AS treatment. AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) expression was determined after AS treatment. Additionally, inflammatory cytokine levels, liver injury, and macrophage polarization were evaluated after inhibiting the AMPK/SIRT1 pathway. AS alleviated lipopolysaccharide + D-galactosamine-induced AHI and inhibited inflammatory reactions in the blood and liver of mice. AS also promoted the M1-to-M2 phenotypic transformation of macrophages in the liver of AHI model mice and in vitro, thereby decreasing the pro-inflammatory cytokine levels and increasing the anti-inflammatory cytokine levels. AS increased AMPK and SIRT1 levels in the liver and macrophages. Furthermore, AS improved liver injury by elevating the expression of the AMPK/SIRT1 signaling pathway and inhibiting pyroptosis in macrophages. Overall, AS alleviated AHI by promoting M1-to-M2 macrophage transformation and inhibiting macrophage pyroptosis via activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Gang Kuang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Yisi Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Liuyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingyu Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Panting Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Bei Ma
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Qiaozhi Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Fan
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Zhang H, Gao M, Wang H, Zhang J, Wang L, Dong G, Ma Q, Li C, Dai J, Li Z, Yan F, Xiong H. Atractylenolide I prevents acute liver failure in mouse by regulating M1 macrophage polarization. Sci Rep 2025; 15:4015. [PMID: 39893238 PMCID: PMC11787394 DOI: 10.1038/s41598-025-86977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Acute liver failure (ALF) is a life-threatening clinical syndrome with a substantial risk of mortality. A murine model of lipopolysaccharide (LPS)- and D-galactosamine (D-GalN)-induced ALF is widely used to investigate the underlying mechanisms and potential therapeutic drugs for human liver failure. Atractylenolide I (ATR-I) is an active component of the Atractylodes macrocephala rhizome and possesses various pharmacological activities, including anti-tumor, anti-inflammatory, and anti-oxidant properties. Given the key role of oxidative stress and inflammation in ALF pathogenesis, this study investigates the protective effects of ATR-I on LPS/D-GalN-induced ALF in mice. The results suggest that ATR-I pretreatment significantly ameliorates ALF, as evidenced by decreased serum aminotransferase levels and prolonged mice survival. Additionally, ATR-I pretreatment inhibits oxidative stress. Furthermore, the ATR-I pretreatment markedly suppresses M1 macrophage activation in hepatic mononuclear cells. In vitro experiments with bone marrow-derived macrophages indicate that ATR-I regulates macrophage polarization through the mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) signaling pathways. Collectively, ATR-I pretreatment protects mice from LPS/D-GalN-induced ALF partially by regulating M1 macrophage polarization.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, Shandong, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
43
|
Zhang Y, Ding D, Li S, Pan Q, Ru J, Zhao H, Yao G, Wei J, Wang S, Hou S, Wang X. Single-cell RNA sequencing reveals intrahepatic signature related to pathobiology of duck hepatitis A virus type 3 (DHAV-3) infection. Poult Sci 2025; 104:104798. [PMID: 39799860 PMCID: PMC11770546 DOI: 10.1016/j.psj.2025.104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
DHAV-3 is one of the main causative agents of duck viral hepatitis (DVH), an acute and highly lethal infectious disease in duck industry. However, the understanding of the pathogenesis of this virus in ducklings is limited. To dissect the molecular characteristics associated with pathobiology of ducklings to DHAV-3, we applied single-cell RNA-sequencing approach to profile the transcriptome of 1.4 million cells from 14 livers of DHAV-3 susceptible (S) and resistant (R) ducklings during viral infection and 4 uninfected healthy controls. We found that infected S ducks exhibited the activation of type I and II interferon pathways with elevated expression of interferon-stimulated genes (ISGs) compared to infected R ducks and healthy controls. DHAV-3 promoted proinflammatory phenotype and inhibited the cell apoptosis pathway of Kupffer cells of S ducks. Furthermore, we observed the elevated expression of host factor PLAC8 in S ducks and validated its ability to facilitate the infection of DHAV-3. We identified significant dysregulation of various genes in complement and coagulation cascades in hepatocytes2 exclusive to S ducks, together with over-secretion of ANGPTL4 from endothelial cells in S ducks which is confirmed to promote cellular migration, suggesting etiology of coagulopathic complications in ducks with severe DVH. Collectively, this study provides a rich resource for understanding the inflammatory immune signatures and cell communications underlying the pathogenesis of DHAV-3 infection, which may accelerate the development of better diagnostic methods and strategies for controlling this disease.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Dingbang Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China
| | - Shaofei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China
| | - Qiong Pan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721 AZ, United States
| | - Jinlong Ru
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China
| | - Haonan Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721 AZ, United States
| | - Jie Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shuaiqin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shuisheng Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, PR China.
| |
Collapse
|
44
|
Dong L, Dong C, Yu Y, Jiao X, Zhang X, Zhang X, Li Z. Transcriptomic analysis of Paraoxonase 1 expression in hepatocellular carcinoma and its potential impact on tumor immunity. Clin Transl Oncol 2025; 27:612-629. [PMID: 39031295 DOI: 10.1007/s12094-024-03598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by a complex pathogenesis that confers aggressive malignancy, leading to a lack of dependable biomarkers for predicting invasion and metastasis, which results in poor prognoses in patients with HCC. Glycogen storage disease (GSD) is an uncommon metabolic disorder marked by hepatomegaly and liver fibrosis. Notably, hepatic adenomas in GSD patients present a heightened risk of malignancy compared to those in individuals without the disorder. In this investigation, PON1 emerged as a potential pivotal gene for HCC through bioinformatics analysis. METHODS Transcriptomic profiling data of liver cancer were collected and integrated from TCGA and GEO databases. Bioinformatics analysis was conducted to identify mutated mRNAs associated with GSD, and the PON1 gene was selected as a key gene. Patients were grouped based on the expression levels of PON1, and differences in clinical characteristics, biological pathways, immune infiltration, and expression of immune checkpoints were compared. RESULTS The expression levels of the PON1 gene showed significant differences between the high-expression group and the low-expression group in HCC patients. Further analysis indicated that the PON1 gene at different expression levels might influence the clinical manifestations, biological processes, immune infiltration, and expression of immune checkpoints in HCC. Additionally, immunohistochemistry (IHC) results revealed high expression of PON1 in normal tissues and low expression in HCC tissues. These findings provide important clues and future research directions for the early diagnosis, prognosis, immunotherapy, and potential molecular interactions of HCC. CONCLUSION Our investigation underscores the noteworthy prognostic significance of PON1 in HCC, suggesting its potential pivotal role in modulating tumor progression and immune cell infiltration. These findings establish PON1 as a novel tumor biomarker with significant implications for the prognosis, targeted therapy, and immunotherapy of patients with HCC.
Collapse
Affiliation(s)
- Linhuan Dong
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Changjun Dong
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Yunlin Yu
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xin Jiao
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xiangwei Zhang
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xianlin Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
| | - Zheng Li
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
45
|
Qu F, Xu B, Kang H, Wang H, Ji J, Pang L, Wu Y, Zhou Z. The role of macrophage polarization in ulcerative colitis and its treatment. Microb Pathog 2025; 199:107227. [PMID: 39675441 DOI: 10.1016/j.micpath.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Macrophages have great plasticity. Typically, there are two of activated macrophages: M1 macrophages and M2 macrophages. Of them, M1 macrophages play a major role in responses that are pro-inflammatory, while M2 macrophages play an important part in responses that are anti-inflammatory. Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease of the intestine. The pathophysiology and course of UC are significantly influenced by the inflammatory response triggered by macrophage activation. M1 is a possible cause of increased inflammation in UC whereas M2 has a significant function in the healing of inflammation. The polarization imbalance of intestinal M1/M2 macrophages is closely linked to UC. Thus, by suppressing M1 polarization, encouraging M2 polarization, and reestablishing macrophage polarization balance, the treatment of UC based on macrophage polarization is beneficial for UC. Not only chemical drugs, but also traditional Chinese medicine compounds and herbal extracts have been shown to restore the balance of macrophage polarization, providing a new idea in the treatment of UC.
Collapse
Affiliation(s)
- Fanfan Qu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baoqing Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongchang Kang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianbin Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lianjing Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaqian Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenghua Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
46
|
Duman E, Müller-Deubert S, Pattappa G, Stratos I, Sieber SA, Clausen-Schaumann H, Sarafian V, Shukunami C, Rudert M, Docheva D. Fluoroquinolone-Mediated Tendinopathy and Tendon Rupture. Pharmaceuticals (Basel) 2025; 18:184. [PMID: 40005998 PMCID: PMC11858458 DOI: 10.3390/ph18020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The fluoroquinolone (FQ) class of antibiotics includes the world's most prescribed antibiotics such as ciprofloxacin, levofloxacin, and ofloxacin that are known for their low bacterial resistance. This is despite their potential to trigger severe side effects, such as myopathy, hearing loss, tendinopathy, and tendon rupture. Thus, healthcare organizations around the world have recommended limiting the prescription of FQs. Tendinopathy is a common name for maladies that cause pain and degeneration in the tendon tissue, which can result in tendon rupture. Whilst there are several identified effects of FQ on tendons, the exact molecular mechanisms behind FQ-mediated tendon rupture are unclear. Previous research studies indicated that FQ-mediated tendinopathy and tendon rupture can be induced by changes in gene expression, metabolism, and function of tendon resident cells, thus leading to alterations in the extracellular matrix. Hence, this review begins with an update on FQs, their mode of action, and their known side effects, as well as summary information on tendon tissue structure and cellular content. Next, how FQs affect the tendon tissue and trigger tendinopathy and tendon rupture is explored in detail. Lastly, possible preventative measures and promising areas for future research are also discussed. Specifically, follow-up studies should focus on understanding the FQ-mediated tendon changes in a more complex manner and integrating in vitro with in vivo models. With respect to in vitro systems, the field should move towards three-dimensional models that reflect the cellular diversity found in the tissue.
Collapse
Affiliation(s)
- Ezgi Duman
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Sigrid Müller-Deubert
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Girish Pattappa
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| | - Ioannis Stratos
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (I.S.); (M.R.)
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany;
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences, 80335 Munich, Germany;
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Dental Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Maximilian Rudert
- Department of Orthopaedics, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (I.S.); (M.R.)
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, 97070 Würzburg, Germany; (S.M.-D.); (G.P.)
| |
Collapse
|
47
|
Henriques-Pons A, Vacani-Martins N, dos Santos CDLP, Meuser-Batista M. The liver's dilemma: sensing real danger in a sea of PAMPs: the (arterial) sinusoidal segment theory. Front Immunol 2025; 15:1503063. [PMID: 39931578 PMCID: PMC11808282 DOI: 10.3389/fimmu.2024.1503063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
The liver is susceptible to viruses and bacterial infections, tumors, and sterile tissue damage, but immunological danger recognition in the liver is highly unconventional. When analyzing innate and adaptive immunity in the organ, the valid concepts that guide danger recognition and immune response in the periphery should be put aside. In the liver, the vascular anatomy is a game changer, as about 80% of the blood that percolates the organ arrives from the hepatic portal vein, draining blood rich in molecules from the intestinal flora. This 24/7 exposure to high amounts of pathogen-associated molecular pattern (PAMPs) molecules results in hepatic immunological tolerance. In the liver, dendritic, Kupffer (KC), liver sinusoidal endothelial cells (LSECs), and even hepatocytes express PD-L1, a T lymphocyte downregulatory molecule. Most cells express Fas-L, IL-10, TGF-β, low levels of co-stimulatory molecules, lack of or have low levels of MHC-I and/or MHC-II expression. Moreover, other negative regulators such as CTLA-4, IDO-1, and prostaglandin E2 (PGE2) are regularly expressed. Then, how can real danger be discerned and recognized in this sea of PAMPs? This is an open question. Here, we hypothesize that conventional immunological danger recognition can occur in the liver but in specific and minor arterial sinusoidal segments,. Then, in the portal triad, where the hepatic artery ramificates into the stroma and carries arterial blood with no gut-derived PAMPs, there is no evolutive or environmental pressure for immunosuppressive pathways, and conventional immunological danger recognition could occur. Therefore, in arterial sinusoidal segments with no sea of PAMPs, the liver could recognize real danger and support innate and adaptive immunity.
Collapse
Affiliation(s)
- Andrea Henriques-Pons
- Laboratorio de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natália Vacani-Martins
- Laboratorio de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Marcelo Meuser-Batista
- Laboratório de Educação Profissional em Técnicas Laboratoriais em Saúde, Escola Politecnica de Saúde Joaquim Venâncio, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Zhao Y, Zhao S, Liu S, Ye W, Chen WD. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol 2025; 146:113808. [PMID: 39673997 DOI: 10.1016/j.intimp.2024.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Kupffer cells are pivotal in initiating hepatocyte proliferation and establishing connections between different cell types during liver regeneration following partial hepatectomy. As resident macrophages within the liver, Kupffer cells collaborate with hepatocytes and non-parenchymal cells to release various inflammatory mediators that promote hepatocyte proliferation through induction signals like STAT3 phosphorylation. Additionally, the regeneration and replenishment of Kupffer cells themselves are integral components of liver regeneration. The supplementation of the Kupffer cell pool primarily occurs through two pathways: one involves local proliferation of Kupffer cells in their original location, while the other entails infiltration of circulating monocytes into the liver, followed by acquiring Kupffer cell phenotypes under the combined influence of multiple inducing factors. Extensive research has focused on intercellular crosstalk among various types of liver cells during liver regeneration, highlighting the crucial role played by Kupffer cells. This article aims to introduce Kupffer cells and their involvement in liver regeneration, as well as discuss the steady-state balance of Kupffer cell pools during this process.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shiwei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
49
|
Igarashi Y, Wada H, Muto M, Sone R, Hasegawa Y, Seino KI. Amelioration of liver fibrosis with autologous macrophages induced by IL-34-based condition. Inflamm Regen 2025; 45:2. [PMID: 39856797 PMCID: PMC11758727 DOI: 10.1186/s41232-025-00364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND For the treatment of liver fibrosis, several novel cell therapies have been proposed. Autologous macrophage therapy has been reported as one of the promising treatments. So far, most studies have used colony-stimulating factor 1 (CSF-1) to induce the differentiation of macrophage progenitor cells. The receptor for CSF-1, CSF-1R possesses another ligand, interleukin 34. However, the therapeutic capacity for liver fibrosis by interleukin 34-induced macrophages has not been evaluated. METHODS We have employed acute (bile duct ligation) and chronic (administration of carbon tetrachloride or thioacetamide) liver fibrosis models. Using these models, we evaluated the therapeutic capacity of macrophages induced by interleukin 34-based conditions. In most experiments, interleukin 4 was also added to the differentiation process to induce alternative-activated macrophages. As a mechanism analysis, we have examined liver inflammation and damage, the status of stellate cells, and the immunosuppressive capacity of the macrophages. Human macrophages were differentiated from CD14+ monocytes and analyzed. RESULTS In both acute and chronic liver damage experiments, interleukin 34-induced macrophages significantly ameliorated liver fibrosis. The addition of interleukin 4 to the differentiation process resulted in an increase of obtained macrophages and a bias to alternative activated macrophages (so-called M2). The alternative activated macrophages (M2-type) showed a reproducible therapeutic effect of liver fibrosis with a suppression of parameters of liver inflammation and damage, stellate cells, and T cell activation. Similar macrophages could be differentiated from human CD14+ monocytes in the presence of interleukin 34 plus interleukin 4, and a therapeutic effect was observed using a humanized mouse model. CONCLUSIONS Interleukin 34-induced macrophages, particularly when additionally stimulated with interleukin 4, significantly ameliorated the liver fibrosis.
Collapse
Affiliation(s)
- Yuichi Igarashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Muto
- MEDINET Medical Institute, MEDINET Co., Ltd., Tokyo, Japan
| | - Ryohei Sone
- MEDINET Medical Institute, MEDINET Co., Ltd., Tokyo, Japan
| | - Yoshinori Hasegawa
- Laboratory of Gene Sequencing Analysis, Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
50
|
Mpektsis T, Manolakis A, Kapsoritakis A. WNT/β-catenin-M2 macrophage interplay as a target for therapy against hepatocellular carcinoma: Role of Calculus bovis. World J Gastroenterol 2025; 31:99983. [PMID: 39839904 PMCID: PMC11684159 DOI: 10.3748/wjg.v31.i3.99983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/29/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Liver cancer, and in particular hepatocellular carcinoma (HCC) is a disease of rising prevalence and incidence. To date, definitive treatment options include either surgical excision or ablation of the affected area. With increasing research on several pathways that could be involved in the progression of HCC, new elements within these pathways emerge as potential targets for novel therapies. The WNT/β-catenin pathway favors the presence of M2 tumor-associated macrophages which in turn promote tumor growth and metastasis. The inhibition of this pathway is considered a good candidate for such targeted therapeutic interventions. Interestingly, as Huang et al show in their recently published article, Calculus bovis which is used in traditional Chinese medicine can exert an inhibitory effect on the β-catenin pathway and become a potential candidate for targeted pharmacotherapy against liver cancer.
Collapse
Affiliation(s)
- Tryfonas Mpektsis
- Department of Gastroenterology, University Hospital of Larisa, Larisa 41100, Greece
| | - Anastasios Manolakis
- Department of Gastroenterology, University Hospital of Larisa, Larisa 41100, Greece
| | - Andreas Kapsoritakis
- Department of Gastroenterology, University Hospital of Larisa, Larisa 41100, Greece
| |
Collapse
|