1
|
van Niekerk I, Panieri M, Müller T, Mapahla L, Dzanibe S, Day C, Stein DJ, Peter J. Acute serum protein biomarker profile and prevalence of persistent (>6 months) neuropsychiatric symptoms in a cohort of SARS-CoV-2 PCR positive patients in Cape Town, South Africa. Brain Behav Immun Health 2025; 46:100990. [PMID: 40386506 PMCID: PMC12084414 DOI: 10.1016/j.bbih.2025.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/03/2025] [Accepted: 04/03/2025] [Indexed: 05/20/2025] Open
Abstract
Background SARS-CoV-2 is a neurotrophic and pro-inflammatory virus, with several acute and more persistent neuropsychiatric sequelae reported. There are limited data from African cohorts and few acute illness biomarkers of persistent neuropsychiatric symptoms. Objectives To examine the association of neuropsychiatric outcomes with clinical illness severity, systemic inflammation, cardiovascular and renin-angiotensin-system (RAS) biomarkers. Second, to determine the prevalence of neuropsychiatric symptoms in a cohort of South African SARS-CoV-2 PCR positive patients at least six months following infection/hospitalization. Methodology SARS-CoV-2 PCR positive patients were recruited prospectively from Cape Town, South Africa, including hospitalized patients from ancestral, beta and delta-dominant COVID-19 waves (pre-vaccine rollout); and asymptomatic/mild SARS-CoV-2 positive patients. The 96-protein O-link inflammation and cardiovascular panels, RAS fingerprinting, and antibody responses were measured in serum samples collected at peak severity and recovery (>3 months post-infection). Telephonic interviews were conducted at least six months post infection/hospitalization. Validated measures employed were: WHO Self-Report Questionnaire (SRQ-20), Generalized Anxiety Disorder Scale (GAD-7), Chalder Fatigue Scale (CFS-11) and Telephonic Montreal Cognitive Assessment (T-MoCA). Results Ninety-seven participants completed telephonic interviews. The median (IQR) age was 48 (37-59) years, and 54 % were female. There were no significant associations between neuropsychiatric outcomes and illness severity, systemic inflammation, cardiovascular and/or renin-angiotensin-system (RAS) biomarkers from either peak illness or recovery samples. More than half of this SA COVID-19 cohort had one or more persistent neuropsychiatric symptoms >6 months post vaccine-naïve infection. On the T-MoCA, 44 % of participants showed evidence of cognitive and/or memory impairments. Conclusion The high prevalence of persistent neuropsychiatric symptoms in this African cohort supports ongoing attention to long COVID. Acute and early serum protein biomarkers were not associated with persistent neuropsychiatric outcomes post-COVD-19.
Collapse
Affiliation(s)
| | - Monica Panieri
- Faculty of Health Sciences, University of Cape Town, South Africa
| | - Talitha Müller
- Division of Allergology and Clinical Immunology, Department of Medicine, University of Cape Town, South Africa
| | - Lovemore Mapahla
- The Modelling and Simulation Hub, Africa, Department of Statistical Science, University of Cape Town, South Africa
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sonwabile Dzanibe
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, South Africa
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Cascia Day
- Division of Allergology and Clinical Immunology, Department of Medicine, University of Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, South Africa
| | - Dan J. Stein
- Department of Psychiatry, University of Cape Town, South Africa
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, South Africa
| | - Jonny Peter
- Division of Allergology and Clinical Immunology, Department of Medicine, University of Cape Town, South Africa
- Allergy and Immunology Unit, University of Cape Town Lung Institute, South Africa
- Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| |
Collapse
|
2
|
Brinkman N, Teunis T, Choi S, Ring D, Brode WM. Factors associated with the presence and intensity of ongoing symptoms in Long COVID. PLoS One 2025; 20:e0319874. [PMID: 40267966 PMCID: PMC12017833 DOI: 10.1371/journal.pone.0319874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/10/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE Identification of modifiable factors associated with symptom intensity among people seeking care for Post-Acute Sequelae of SARS-CoV-2 infection (PASC) could help guide the development of comprehensive, whole-person care pathways to alleviate symptoms irrespective of potential underlying pathophysiologies. We aimed to better define the key contributors to PASC, and sought the factors associated with PASC symptom presence and intensity. METHODS In this cross-sectional study, 249 patients presenting for PASC care at a dedicated Post-COVID-19 clinic completed a standardized screening assessment prior to initial visit and evaluation by a general internist or nurse practitioner. We measured 46 symptoms based on the WHO's Global COVID-19 Clinical Platform Case Report Form for Post COVID Condition and performed a factor analysis and item response theory based 2-parameter logistic model to develop a population-based t-score to measure PASC symptom presence and intensity (PASC-SPI). A multivariable linear regression analysis was used to assess factors associated with PASC-SPI, accounting for demographics, comorbidities, COVID-19 infection duration and severity, and mental health. RESULTS Greater PASC-SPI was associated with greater symptoms of anxiety, a longer duration of COVID-19 infection, and hypercholesterolemia. Lower PASC-SPI was associated with older age, self-reported 1-3 units of alcohol per week, and self-reported clinician confirmation of COVID-19 diagnosis. Symptoms of anxiety accounted for a considerably higher proportion of variation in PASC-SPI than other variables. CONCLUSION Symptoms of anxiety were the strongest correlate of PASC-SPI, highlighting it as both a potential neuroinflammatory marker of PASC and a modifiable component of the illness. This emphasizes the need for comprehensive, whole person treatment strategies that integrate evidence-based interventions to address the multifaceted nature of PASC.
Collapse
Affiliation(s)
- Niels Brinkman
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin,
| | - Teun Teunis
- Department of Orthopedic Surgery & Department of Plastic and Reconstructive Surgery, The University of Pittsburgh,
| | - Seung Choi
- The Center for Applied Psychometric Research, Educational Psychology Department, The University of Texas at Austin,
| | - David Ring
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin,
| | - W. Michael Brode
- Department of Internal Medicine & Department of Population Health, Dell Medical School, The University of Texas at Austin
| |
Collapse
|
3
|
Nemkov T, Stauffer E, Cendali F, Stephenson D, Nader E, Robert M, Skinner S, Dzieciatkowska M, Hansen KC, Robach P, Millet G, Connes P, D'Alessandro A. Long-Distance Trail Running Induces Inflammatory-Associated Protein, Lipid, and Purine Oxidation in Red Blood Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648006. [PMID: 40291720 PMCID: PMC12027326 DOI: 10.1101/2025.04.09.648006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ultra-endurance exercise places extreme physiological demands on oxygen transport, yet its impact on red blood cells (RBCs) remains underexplored. We conducted a multi-omics analysis of plasma and RBCs from endurance athletes before and after a 40-km trail race (MCC) and a 171-km ultramarathon (UTMB®). Ultra-running led to oxidative stress, metabolic shifts, and inflammation-driven RBC damage, including increased acylcarnitines, kynurenine accumulation, oxidative lipid and protein modifications, reduced RBC deformability, enhanced microparticle release, and decreased hematocrit - hallmarks of accelerated RBC aging and clearance. Post-race interleukin-6 strongly correlated with kynurenine elevation, mirroring inflammatory responses in severe infections. These findings challenge the assumption that RBC damage in endurance exercise is primarily mechanical, revealing systemic inflammation and metabolic remodeling as key drivers. This study underscores RBCs as both mediators and casualties of extreme exercise stress, with implications for optimizing athlete recovery, endurance training, and understanding inflammation-linked RBC dysfunction in clinical settings. Teaser Marathon running imparts molecular damage to red blood cells, the effects of which are exacerbated by increased distances of ultramarathons.
Collapse
|
4
|
Chen CJ, Kimble B, Van Aggelen A, Fischer S, Flanagan C, Gillett A, Reed J, Wakeman J, Govendir M. Preliminary analyses of tryptophan, kynurenine, and the kynurenine: Tryptophan ratio in plasma, as potential biomarkers for systemic chlamydial infections in koalas. PLoS One 2024; 19:e0314945. [PMID: 39700217 DOI: 10.1371/journal.pone.0314945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Chlamydiosis is the major infectious disease responsible for significant morbidity and mortality in free-living koalas. Recently, it was reported that 28.5% of koalas infected with chlamydiosis were presented with no overt clinical signs. Identification and quantification of changes in plasma biomarkers' fluctuations have the potential to enhance C. pecorum detection and facilitate the monitoring of therapeutic efficacy of antibiotics to treat this disease in koalas. Therefore, concentrations of the essential amino acid tryptophan, tryptophan's metabolite kynurenine, and the kynurenine:tryptophan ratio were quantified by high-performance liquid chromatography in the plasma of clinically normal koalas (n = 35), koalas identified with chlamydial disease (n = 35) and koalas that had other non-chlamydial co-morbidities (n = 10). Results showed that there was a significant difference between the clinically normal versus diseased, and clinically normal versus 'other' (both p < 0.001) in kynurenine plasma concentrations and kynurenine:tryptophan ratio; and also between the clinically normal and diseased in tryptophan plasma concentrations (p = 0.001). Proposed reference ranges of tryptophan, kynurenine, and kynurenine:tryptophan ratio in koalas are: 4.27-10.4 μg/mL, 0.34-1.23 μg/mL, and 0.05-0.22, respectively. Proposed optimal cut-off points to differentiate between clinically normal and diseased are: ≤ 4.75 μg/mL (tryptophan), ≥ 0.88 μg/mL (kynurenine), and ≥ 0.12 (kynurenine:tryptophan); and ≤ 7.67 μg/mL (tryptophan), ≥ 1.18 μg/mL (kynurenine), and ≥ 0.16 (kynurenine:tryptophan) to differentiate between released/recovered and euthanised of the diseased/'other' koalas. Significant differences in haematological and biochemical analytes were in the plasma globulins between the clinically normal and diseased koalas (p = 0.01), and in alkaline phosphatase between the clinically normal and 'other' koalas (p = 0.03). Although these potential biomarkers, especially tryptophan, may not be specific for detecting C. pecorum from the rest of the population, kynurenine and the kynurenine:tryptophan ratio may have a role in identifying unhealthy koalas from the clinically normal ones, irrespective of the underlying cause.
Collapse
Affiliation(s)
- Chien-Jung Chen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin Kimble
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Astrid Van Aggelen
- Port Macquarie Koala Hospital, Koala Conservation Australia, Port Macquarie, New South Wales, Australia
| | - Shalini Fischer
- Port Macquarie Koala Hospital, Koala Conservation Australia, Port Macquarie, New South Wales, Australia
| | - Cheyne Flanagan
- Port Macquarie Koala Hospital, Koala Conservation Australia, Port Macquarie, New South Wales, Australia
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Wildlife Warriors, Beerwah, Queensland, Australia
| | - Jackie Reed
- Northern Rivers Koala Hospital, Friends of the Koala, East Lismore, New South Wales, Australia
| | - Jodie Wakeman
- Northern Rivers Koala Hospital, Friends of the Koala, East Lismore, New South Wales, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Almulla AF, Thipakorn Y, Zhou B, Vojdani A, Paunova R, Maes M. The tryptophan catabolite or kynurenine pathway in long COVID disease: A systematic review and meta-analysis. Neuroscience 2024; 563:268-277. [PMID: 39424264 DOI: 10.1016/j.neuroscience.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Recent studies confirm the involvement of activated immune-inflammatory responses and increased oxidative and nitrosative stress in Long COVID (LC) disease. However, the influence of these pathways on the metabolism of tryptophan (TRP) through the TRP catabolite (TRYCAT) pathway and their mediating effects on LC pathophysiology, has not been fully explored. OBJECTIVE This meta-analysis investigates peripheral TRP and TRYCAT levels and the TRYCAT pathway in patients with LC disease. METHOD This review utilized systematic searches of PubMed, Google Scholar, SCOPUS and SciFinder, including 14 full-text articles and 1,167 participants, consisting of 480 patients with LC and 687 normal controls. RESULTS The results indicated a significant increase in the kynurenine (KYN)/TRP ratio, with a large effect size (standardized mean difference, SMD = 0.755; confidence intervals, CI: 0.119;1.392), in LC patients compared to normal controls. Additionally, LC patients exhibited a significant decrease in TRP levels (SMD = -0.520, CI: -0.793; -0.246) and an increase in KYN levels after imputing missing studies (SMD = 1.176, CI: 0.474; 1.877), suggesting activation of the indoleamine 2,3-dioxygenase (IDO) enzyme and upregulation of the TRYCAT pathway. No significant elevation in TRYCAT-related neurotoxicity, kynurenic acid (KA)/KYN and 3-hydroxykynurenine (3-HK)/KYN ratios were observed in LC patients compared to normal controls. CONCLUSION The current findings suggest that an activated TRYCAT pathway, characterized by decreased TRP levels and maybe elevated KYN levels, plays a significant role in the pathophysiology of LC.
Collapse
Affiliation(s)
- Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Rossitsa Paunova
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Strategic Research and Innovation Program for the Development of MU - PLOVDIV-(SRIPD-MUP), European Union - NextGenerationEU
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Strategic Research and Innovation Program for the Development of MU - PLOVDIV-(SRIPD-MUP), European Union - NextGenerationEU; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine. Chulalongkorn University, Bangkok, 10330, Thailand, Bangkok, 10330, Thailand; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
6
|
Reyes Z, Stovall MC, Punyamurthula S, Longo M, Maraganore D, Solch-Ottaiano RJ. The impact of gut microbiome and diet on post-acute sequelae of SARS-CoV-2 infection. J Neurol Sci 2024; 467:123295. [PMID: 39550783 DOI: 10.1016/j.jns.2024.123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Long COVID, also known as Post COVID-19 condition by the World Health Organization or Post-Acute Sequelae of SARS-CoV-2 infection (PASC), is defined as the development of symptoms such as post-exertional malaise, dysgeusia, and partial or full anosmia three months after initial SARS-CoV-2 infection. The multisystem effects of PASC make it difficult to distinguish from its mimickers. Further, a comprehensive evaluation of the gut microbiome, nutrition, and PASC has yet to be studied. The gut-brain axis describes bidirectional immune, neural, endocrine, and humoral modulatory interactions between the gut microbiome and brain function. We explore recent studies that support an association between alterations in gut microbiome diversity and the severity of acute-phase COVID-19, and how these may be affected by diets rich in antioxidants and fiber. The Mediterranean Diet (MeDi) has demonstrated promising neuroprotective effects through its anti-inflammatory processes. Further, diets rich in fiber increase gut diversity and increase the amount of short-chain fatty acids (SCFAs) within the body-both shown to protect from acute COVID-19 complications. Long-term changes to the gut microbiome persist after acute infection and may increase susceptibility to PASC. This study builds on existing knowledge of determinants of PASC and highlights a relationship between nutrition, gut microbiome, acute-phase COVID-19, and, subsequently, PASC susceptibility.
Collapse
Affiliation(s)
- Zabrina Reyes
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America
| | - Mary Catherine Stovall
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America
| | - Sanjana Punyamurthula
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America
| | - Michele Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America
| | - Demetrius Maraganore
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America; Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, United States of America; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, United States of America
| | - Rebecca J Solch-Ottaiano
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, United States of America; Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, United States of America; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, United States of America.
| |
Collapse
|
7
|
Lopes de Lima I, Ap. Rosini Silva A, Brites C, Angelo da Silva Miyaguti N, Raposo Passos Mansoldo F, Vaz Nunes S, Henrique Godoy Sanches P, Regiani Cataldi T, Pais de Carvalho C, Reis da Silva A, Ribeiro da Rosa J, Magalhães Borges M, Vilarindo Oliveira W, Canevari TC, Beatriz Vermelho A, Nogueira Eberlin M, M. Porcari A. Mass Spectrometry-Based Metabolomics Reveals a Salivary Signature for Low-Severity COVID-19. Int J Mol Sci 2024; 25:11899. [PMID: 39595969 PMCID: PMC11593410 DOI: 10.3390/ijms252211899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 11/28/2024] Open
Abstract
Omics approaches were extensively applied during the coronavirus disease 2019 (COVID-19) pandemic to understand the disease, identify biomarkers with diagnostic and prognostic value, and discover new molecular targets for medications. COVID-19 continues to challenge the healthcare system as the virus mutates, becoming more transmissible or adept at evading the immune system, causing resurgent epidemic waves over the last few years. In this study, we used saliva from volunteers who were negative and positive for COVID-19 when Omicron and its variants became dominant. We applied a direct solid-phase extraction approach followed by non-target metabolomics analysis to identify potential salivary signatures of hospital-recruited volunteers to establish a model for COVID-19 screening. Our model, which aimed to differentiate COVID-19-positive individuals from controls in a hospital setting, was based on 39 compounds and achieved high sensitivity (85%/100%), specificity (82%/84%), and accuracy (84%/92%) in training and validation sets, respectively. The salivary diagnostic signatures were mainly composed of amino acids and lipids and were related to a heightened innate immune antiviral response and an attenuated inflammatory profile. The higher abundance of thyrotropin-releasing hormone in the COVID-19 positive group highlighted the endocrine imbalance in low-severity disease, as first reported here, underscoring the need for further studies in this area.
Collapse
Affiliation(s)
- Iasmim Lopes de Lima
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Alex Ap. Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| | - Carlos Brites
- LAPI-Laboratory of Research in Infectology, University Hospital Professor Edgard Santos (HUPES), Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (C.B.); (S.V.N.)
| | - Natália Angelo da Silva Miyaguti
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| | - Felipe Raposo Passos Mansoldo
- BIOINOVAR-Biotechnology Laboratories, Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil; (F.R.P.M.); (A.B.V.)
| | - Sara Vaz Nunes
- LAPI-Laboratory of Research in Infectology, University Hospital Professor Edgard Santos (HUPES), Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (C.B.); (S.V.N.)
| | - Pedro Henrique Godoy Sanches
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| | - Thais Regiani Cataldi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo (USP/ESALQ), Piracicaba 13418-900, SP, Brazil;
| | - Caroline Pais de Carvalho
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Adriano Reis da Silva
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Jonas Ribeiro da Rosa
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| | - Mariana Magalhães Borges
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Wellisson Vilarindo Oliveira
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Thiago Cruz Canevari
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
| | - Alane Beatriz Vermelho
- BIOINOVAR-Biotechnology Laboratories, Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil; (F.R.P.M.); (A.B.V.)
| | - Marcos Nogueira Eberlin
- PPGEMN, School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil; (I.L.d.L.); (C.P.d.C.); (A.R.d.S.); (M.M.B.); (T.C.C.)
- MackGraphe—Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo 01302-907, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University—USF, Bragança Paulista 12916-900, SP, Brazil; (A.A.R.S.); (N.A.d.S.M.); (P.H.G.S.); (J.R.d.R.); (A.M.P.)
| |
Collapse
|
8
|
Chatterjee B, Thakur SS. Valuable Contributions and Lessons Learned from Proteomics and Metabolomics Studies of COVID-19. J Proteome Res 2024; 23:4171-4187. [PMID: 39157976 DOI: 10.1021/acs.jproteome.4c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus infected more than 775,686,716 humans and was responsible for the death of more than 7,054,093 individuals. COVID-19 has taught us that the development of vaccines, repurposing of drugs, and understanding the mechanism of a disease can be done within a short time. The COVID-19 proteomics and metabolomics has contributed to its diagnosis, understanding of its progression, host-virus interaction, disease mechanism, and also in the search of suitable anti-COVID therapeutics. Mass spectrometry based proteomics was used to find the potential biomarkers of different stages of COVID-19 including severe and nonsevere cases in the blood serum. Notably, protein-protein interaction techniques to understand host-virus interactions were also significantly useful. The single-cell proteomics studies were carried out to ascertain the changes in immune cell composition and its activation in mild COVID-19 patients versus severe COVID-19 patients using whole-blood and peripheral-blood mononuclear cells. Modern technologies were helpful to deal with the pandemic; however, there is still scope for further development. Further, attempts were made to understand the protein-protein, metabolite-metabolite, and protein-metabolite interactomes, derived from proteins and metabolite fingerprints of COVID-19 patients by reanalysis of COVID-19 public mass spectrometry based proteomics and metabolomics studies. Further, some of these interactions were supported by the literature as validations in the COVID-19 studies.
Collapse
Affiliation(s)
| | - Suman S Thakur
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
9
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
10
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
11
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
13
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Yang S, Datta D, Krienen FM, Ling E, Woo E, May A, Anderson GM, Galvin VC, Gonzalez-Burgos G, Lewis DA, McCarroll SA, Arnsten AF, Wang M. Kynurenic acid inflammatory signaling expands in primates and impairs prefrontal cortical cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598842. [PMID: 38915595 PMCID: PMC11195225 DOI: 10.1101/2024.06.13.598842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cognitive deficits from dorsolateral prefrontal cortex (dlPFC) dysfunction are common in neuroinflammatory disorders, including long-COVID, schizophrenia and Alzheimer's disease, and have been correlated with kynurenine inflammatory signaling. Kynurenine is further metabolized to kynurenic acid (KYNA) in brain, where it blocks NMDA and α7-nicotinic receptors (nic-α7Rs). These receptors are essential for neurotransmission in dlPFC, suggesting that KYNA may cause higher cognitive deficits in these disorders. The current study found that KYNA and its synthetic enzyme, KAT II, have greatly expanded expression in primate dlPFC in both glia and neurons. Local application of KYNA onto dlPFC neurons markedly reduced the delay-related firing needed for working memory via actions at NMDA and nic-α7Rs, while inhibition of KAT II enhanced neuronal firing in aged macaques. Systemic administration of agents that reduce KYNA production similarly improved cognitive performance in aged monkeys, suggesting a therapeutic avenue for the treatment of cognitive deficits in neuroinflammatory disorders.
Collapse
|
15
|
Chen Z, Zhang S, Sun X, Meng D, Lai C, Zhang M, Wang P, Huang X, Gao X. Analysis of the Protective Effects of Rosa roxburghii-Fermented Juice on Lipopolysaccharide-Induced Acute Lung Injury in Mice through Network Pharmacology and Metabolomics. Nutrients 2024; 16:1376. [PMID: 38732622 PMCID: PMC11085916 DOI: 10.3390/nu16091376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.
Collapse
Affiliation(s)
- Zhiyu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Experimental Animal Center of Guizhou Medical University, Guiyang 550025, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Duo Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Chencen Lai
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xuncai Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (Z.C.); (S.Z.); (X.S.); (D.M.); (C.L.); (M.Z.); (P.W.); (X.H.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Guizhou Medical University, Guiyang 550025, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
16
|
Pedraz-Petrozzi B, Lamadé EK, Marszalek-Grabska M, Trzpil A, Lindner O, Meininger P, Fornal E, Turski WA, Witt SH, Gilles M, Deuschle M. Fetal Sex as Moderating Factor for the Relationship Between Maternal Childhood Trauma and Salivary Kynurenic Acid and Tryptophan in Pregnancy: A Pilot Study. Int J Tryptophan Res 2024; 17:11786469241244603. [PMID: 38660592 PMCID: PMC11041113 DOI: 10.1177/11786469241244603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024] Open
Abstract
Traumatic experiences and fetal development influence tryptophan (TRP) and its neuroactive byproduct, kynurenic acid (KYNA). Maternal TRP metabolite levels during pregnancy vary by fetal sex, with higher concentrations in mothers carrying male fetuses. This pilot study aimed to explore the relationship between offspring sex, maternal childhood trauma, and maternal salivary KYNA and TRP levels during pregnancy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine KYNA and TRP levels in maternal saliva samples collected from 35 late-pregnancy participants. Maternal childhood trauma was assessed using the Childhood Trauma Questionnaire, including subscales for emotional abuse, physical abuse, sexual abuse, emotional neglect, and physical neglect. Among mothers pregnant with boys, salivary KYNA significantly correlated with physical and emotional neglect, and salivary TRP with emotional neglect. No significant correlations were found in mothers who delivered female offspring. Significant associations of childhood trauma and offspring sex were found for salivary KYNA but not TRP concentrations. Mothers with higher trauma levels who delivered boys exhibited higher levels of salivary KYNA compared to those with lower trauma levels. Moreover, mothers with higher trauma levels who delivered boys had higher salivary KYNA levels than those with higher trauma levels who delivered girls. This pilot study provides evidence of an association between maternal childhood trauma and TRP metabolism, measured in saliva, especially in mothers pregnant with boys. However, longitudinal studies with larger sample sizes are required to confirm these results.
Collapse
Affiliation(s)
- Bruno Pedraz-Petrozzi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Eva Kathrin Lamadé
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | | | - Alicja Trzpil
- Department of Bioanalytics, Medical University of Lublin, Poland
| | - Ole Lindner
- Center for Child and Adolescent Health, Pediatrics, University Hospital of Freiburg, Germany
| | - Pascal Meininger
- Department of Gynecology and Obstetrics, Westpfalz-Klinikum, Kaiserslautern, Germany
| | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Poland
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Germany
| |
Collapse
|
17
|
Lonati C, Berezhnoy G, Lawler N, Masuda R, Kulkarni A, Sala S, Nitschke P, Zizmare L, Bucci D, Cannet C, Schäfer H, Singh Y, Gray N, Lodge S, Nicholson J, Merle U, Wist J, Trautwein C. Urinary phenotyping of SARS-CoV-2 infection connects clinical diagnostics with metabolomics and uncovers impaired NAD + pathway and SIRT1 activation. Clin Chem Lab Med 2024; 62:770-788. [PMID: 37955280 DOI: 10.1515/cclm-2023-1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES The stratification of individuals suffering from acute and post-acute SARS-CoV-2 infection remains a critical challenge. Notably, biomarkers able to specifically monitor viral progression, providing details about patient clinical status, are still not available. Herein, quantitative metabolomics is progressively recognized as a useful tool to describe the consequences of virus-host interactions considering also clinical metadata. METHODS The present study characterized the urinary metabolic profile of 243 infected individuals by quantitative nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS). Results were compared with a historical cohort of noninfected subjects. Moreover, we assessed the concentration of recently identified antiviral nucleosides and their association with other metabolites and clinical data. RESULTS Urinary metabolomics can stratify patients into classes of disease severity, with a discrimination ability comparable to that of clinical biomarkers. Kynurenines showed the highest fold change in clinically-deteriorated patients and higher-risk subjects. Unique metabolite clusters were also generated based on age, sex, and body mass index (BMI). Changes in the concentration of antiviral nucleosides were associated with either other metabolites or clinical variables. Increased kynurenines and reduced trigonelline excretion indicated a disrupted nicotinamide adenine nucleotide (NAD+) and sirtuin 1 (SIRT1) pathway. CONCLUSIONS Our results confirm the potential of urinary metabolomics for noninvasive diagnostic/prognostic screening and show that the antiviral nucleosides could represent novel biomarkers linking viral load, immune response, and metabolism. Moreover, we established for the first time a casual link between kynurenine accumulation and deranged NAD+/SIRT1, offering a novel mechanism through which SARS-CoV-2 manipulates host physiology.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Nathan Lawler
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Reika Masuda
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Aditi Kulkarni
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Samuele Sala
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Philipp Nitschke
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Daniele Bucci
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Claire Cannet
- Bruker BioSpin GmbH, AIC Division, Ettlingen, Germany
| | | | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Nicola Gray
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Samantha Lodge
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Jeremy Nicholson
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Tang N, Kido T, Shi J, McCafferty E, Ford JM, Dal Bon K, Pulliam L. Blood Markers Show Neural Consequences of LongCOVID-19. Cells 2024; 13:478. [PMID: 38534322 PMCID: PMC10969290 DOI: 10.3390/cells13060478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists throughout the world with over 65 million registered cases of survivors with post-COVID-19 sequelae, also known as LongCOVID-19 (LongC). LongC survivors exhibit various symptoms that span multiple organ systems, including the nervous system. To search for neurological markers of LongC, we investigated the soluble biomolecules present in the plasma and the proteins associated with plasma neuronal-enriched extracellular vesicles (nEVs) in 33 LongC patients with neurological impairment (nLongC), 12 COVID-19 survivors without any LongC symptoms (Cov), and 28 pre-COVID-19 healthy controls (HC). COVID-19 positive participants were infected between 2020 and 2022, not hospitalized, and were vaccinated or unvaccinated before infection. IL-1β was significantly increased in both nLongC and Cov and IL-8 was elevated in only nLongC. Both brain-derived neurotrophic factor and cortisol were significantly elevated in nLongC and Cov compared to HC. nEVs from people with nLongC had significantly elevated protein markers of neuronal dysfunction, including amyloid beta 42, pTau181 and TDP-43. This study shows chronic peripheral inflammation with increased stress after COVID-19 infection. Additionally, differentially expressed nEV neurodegenerative proteins were identified in people recovering from COVID-19 regardless of persistent symptoms.
Collapse
Affiliation(s)
- Norina Tang
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (N.T.); (T.K.); (E.M.)
| | - Tatsuo Kido
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (N.T.); (T.K.); (E.M.)
| | - Jian Shi
- Department of Neurology, San Francisco VA Health Care System, San Francisco, CA 94121, USA;
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Erin McCafferty
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (N.T.); (T.K.); (E.M.)
| | - Judith M. Ford
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (J.M.F.); (K.D.B.)
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kaitlyn Dal Bon
- Department of Mental Health, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (J.M.F.); (K.D.B.)
| | - Lynn Pulliam
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA 94121, USA; (N.T.); (T.K.); (E.M.)
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Walitt B, Singh K, LaMunion SR, Hallett M, Jacobson S, Chen K, Enose-Akahata Y, Apps R, Barb JJ, Bedard P, Brychta RJ, Buckley AW, Burbelo PD, Calco B, Cathay B, Chen L, Chigurupati S, Chen J, Cheung F, Chin LMK, Coleman BW, Courville AB, Deming MS, Drinkard B, Feng LR, Ferrucci L, Gabel SA, Gavin A, Goldstein DS, Hassanzadeh S, Horan SC, Horovitz SG, Johnson KR, Govan AJ, Knutson KM, Kreskow JD, Levin M, Lyons JJ, Madian N, Malik N, Mammen AL, McCulloch JA, McGurrin PM, Milner JD, Moaddel R, Mueller GA, Mukherjee A, Muñoz-Braceras S, Norato G, Pak K, Pinal-Fernandez I, Popa T, Reoma LB, Sack MN, Safavi F, Saligan LN, Sellers BA, Sinclair S, Smith B, Snow J, Solin S, Stussman BJ, Trinchieri G, Turner SA, Vetter CS, Vial F, Vizioli C, Williams A, Yang SB, Nath A. Deep phenotyping of post-infectious myalgic encephalomyelitis/chronic fatigue syndrome. Nat Commun 2024; 15:907. [PMID: 38383456 PMCID: PMC10881493 DOI: 10.1038/s41467-024-45107-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naïve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention.
Collapse
Affiliation(s)
- Brian Walitt
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Komudi Singh
- National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA
| | - Samuel R LaMunion
- National Institute of Diabetes, Digestion, and Kidney Disease (NIDDK), Bethesda, MD, USA
| | - Mark Hallett
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Steve Jacobson
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Kong Chen
- National Institute of Diabetes, Digestion, and Kidney Disease (NIDDK), Bethesda, MD, USA
| | | | - Richard Apps
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | | | - Patrick Bedard
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Robert J Brychta
- National Institute of Diabetes, Digestion, and Kidney Disease (NIDDK), Bethesda, MD, USA
| | | | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research (NIDCR), Bethesda, MD, USA
| | - Brice Calco
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Brianna Cathay
- Texas A&M School of Engineering Medicine, College Station, TX, USA
| | - Li Chen
- Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Snigdha Chigurupati
- George Washington University Hospital, District of Columbia, Washington, DC, USA
| | - Jinguo Chen
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | - Foo Cheung
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | | | | | - Amber B Courville
- National Institute of Diabetes, Digestion, and Kidney Disease (NIDDK), Bethesda, MD, USA
| | | | | | | | | | - Scott A Gabel
- National Institute of Environmental Health Sciences (NIEHS), Chapel Hill, NC, USA
| | - Angelique Gavin
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - David S Goldstein
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | | | - Sean C Horan
- Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Silvina G Horovitz
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Kory R Johnson
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Anita Jones Govan
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Kristine M Knutson
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Joy D Kreskow
- National Institute of Nursing Research (NINR), Bethesda, MD, USA
| | - Mark Levin
- National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA
| | - Jonathan J Lyons
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, MD, USA
| | - Nicholas Madian
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | - Nasir Malik
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Andrew L Mammen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | | | - Patrick M McGurrin
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | | | - Ruin Moaddel
- National Institute of Aging (NIA), Baltimore, MD, USA
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences (NIEHS), Chapel Hill, NC, USA
| | - Amrita Mukherjee
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | - Sandra Muñoz-Braceras
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Gina Norato
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Katherine Pak
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Iago Pinal-Fernandez
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Traian Popa
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Lauren B Reoma
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Michael N Sack
- National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA
| | - Farinaz Safavi
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
- National Institute of Allergy and Infectious Disease (NIAID), Bethesda, MD, USA
| | - Leorey N Saligan
- National Institute of Nursing Research (NINR), Bethesda, MD, USA
| | - Brian A Sellers
- NIH Center for Human Immunology, Autoimmunity, and Inflammation (CHI), Bethesda, MD, USA
| | | | - Bryan Smith
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Joseph Snow
- National Institute of Mental Health (NIMH), Bethesda, MD, USA
| | | | - Barbara J Stussman
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD, USA
| | | | | | | | - Felipe Vial
- Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Carlotta Vizioli
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA
| | - Ashley Williams
- Oakland University William Beaumont School of Medicine, Rochester, NY, USA
| | | | - Avindra Nath
- National Institute of Neurological Diseases and Stroke (NINDS), Bethesda, MD, USA.
| |
Collapse
|
20
|
Del Sole R, Stomeo T, Mergola L. Disposable Molecularly Imprinted Polymer-Modified Screen-Printed Electrodes for Rapid Electrochemical Detection of l-Kynurenine in Human Urine. Polymers (Basel) 2023; 16:3. [PMID: 38201667 PMCID: PMC10780426 DOI: 10.3390/polym16010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
l-Kynurenine (l-Kyn) is an endogenous metabolite produced in the catabolic route of l-Tryptophan (l-Trp), and it is a potential biomarker of several immunological disorders. Thus, the development of a fast and cheap technology for the specific detection of l-Kyn in biological fluids is of great relevance, especially considering its recent correlation with SARS-CoV-2 disease progression. Herein, a disposable screen-printed electrode based on a molecularly imprinted polymer (MIP) has been constructed: the o-Phenylenediamine monomer, in the presence of l-Kyn as a template with a molar ratio of monomer/template of 1/4, has been electropolymerized on the surface of a screen-printed carbon electrode (SPCE). The optimized kyn-MIP-SPCE has been characterized via cyclic voltammetry (CV), using [Fe(CN)6)]3-/4- as a redox probe and a scanning electron microscopy (SEM) technique. After the optimization of various experimental parameters, such as the number of CV electropolymerization cycles, urine pretreatment, electrochemical measurement method and incubation period, l-Kyn has been detected in standard solutions via square wave voltammetry (SWV) with a linear range between 10 and 100 μM (R2 = 0.9924). The MIP-SPCE device allowed l-Kyn detection in human urine in a linear range of 10-1000 μM (R2 = 0.9902) with LOD and LOQ values of 1.5 and 5 µM, respectively. Finally, a high selectivity factor α (5.1) was calculated for l-Kyn toward l-Trp. Moreover, the Imprinting Factor obtained for l-Kyn was about seventeen times higher than the IF calculated for l-Trp. The developed disposable sensing system demonstrated its potential application in the biomedical field.
Collapse
Affiliation(s)
- Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, Via per Monteroni Km 1, 73100 Lecce, Italy;
| | - Tiziana Stomeo
- Center for Bio-Molecular Nanotechnology, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano, Italy;
| | - Lucia Mergola
- Department of Engineering for Innovation, University of Salento, Via per Monteroni Km 1, 73100 Lecce, Italy;
| |
Collapse
|
21
|
Wang Y, Shen M, Li Y, Shao J, Zhang F, Guo M, Zhang Z, Zheng S. COVID-19-associated liver injury: Adding fuel to the flame. Cell Biochem Funct 2023; 41:1076-1092. [PMID: 37947373 DOI: 10.1002/cbf.3883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
COVID-19 is mainly characterized by respiratory disorders and progresses to multiple organ involvement in severe cases. With expansion of COVID-19 and SARS-CoV-2 research, correlative liver injury has been revealed. It is speculated that COVID-19 patients exhibited abnormal liver function, as previously observed in the SARS and MERS pandemics. Furthermore, patients with underlying diseases such as chronic liver disease are more susceptible to SARS-CoV-2 and indicate a poor prognosis accompanied by respiratory symptoms, systemic inflammation, or metabolic diseases. Therefore, COVID-19 has the potential to impair liver function, while individuals with preexisting liver disease suffer from much worse infected conditions. COVID-19 related liver injury may be owing to direct cytopathic effect, immune dysfunction, gut-liver axis interaction, and inappropriate medication use. However, discussions on these issues are infancy. Expanding research have revealed that angiotensin converting enzyme 2 (ACE2) expression mediated the combination of virus and target cells, iron metabolism participated in the virus life cycle and the fate of target cells, and amino acid metabolism regulated immune response in the host cells, which are all closely related to liver health. Further exploration holds great significance in elucidating the pathogenesis, facilitating drug development, and advancing clinical treatment of COVID-19-related liver injury. This article provides a review of the clinical and laboratory hepatic characteristics in COVID-19 patients, describes the etiology and impact of liver injury, and discusses potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Li J, Zhou Y, Ma J, Zhang Q, Shao J, Liang S, Yu Y, Li W, Wang C. The long-term health outcomes, pathophysiological mechanisms and multidisciplinary management of long COVID. Signal Transduct Target Ther 2023; 8:416. [PMID: 37907497 PMCID: PMC10618229 DOI: 10.1038/s41392-023-01640-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
There have been hundreds of millions of cases of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the growing population of recovered patients, it is crucial to understand the long-term consequences of the disease and management strategies. Although COVID-19 was initially considered an acute respiratory illness, recent evidence suggests that manifestations including but not limited to those of the cardiovascular, respiratory, neuropsychiatric, gastrointestinal, reproductive, and musculoskeletal systems may persist long after the acute phase. These persistent manifestations, also referred to as long COVID, could impact all patients with COVID-19 across the full spectrum of illness severity. Herein, we comprehensively review the current literature on long COVID, highlighting its epidemiological understanding, the impact of vaccinations, organ-specific sequelae, pathophysiological mechanisms, and multidisciplinary management strategies. In addition, the impact of psychological and psychosomatic factors is also underscored. Despite these crucial findings on long COVID, the current diagnostic and therapeutic strategies based on previous experience and pilot studies remain inadequate, and well-designed clinical trials should be prioritized to validate existing hypotheses. Thus, we propose the primary challenges concerning biological knowledge gaps and efficient remedies as well as discuss the corresponding recommendations.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiechao Ma
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Qin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Postgraduate Student, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shufan Liang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yizhou Yu
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Med-X Center for Manufacturing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Michaelis S, Zelzer S, Schneider C, Schnedl WJ, Baranyi A, Meinitzer A, Herrmann M, Enko D. The possible role of quinolinic acid as a predictive marker in patients with SARS-CoV-2. Clin Chim Acta 2023; 550:117583. [PMID: 37802207 DOI: 10.1016/j.cca.2023.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND AND AIMS Quinolinic acid (QA) is a metabolite of the kynurenine pathway, which is activated by inflammatory stimuli during viral infection. We investigated the role of QA in patients infected with SARS-CoV-2, particularly its prognostic value for survival. METHODS Overall, 104 unvaccinated inpatients were included, divided into a survival (N = 80) and a deceased group (N = 24). Plasma levels of tryptophan, kynurenine, QA, C-reactive protein (CRP) and procalcitonin (PCT) were measured on admission and after seven days. The QA/TRP ratio and the relative differences between the measurements for QA (QA-Diff) and QA/TRP (Diff-QA/TRP) were calculated. RESULTS Among the kynurenine pathway markers, QA-Diff showed the highest discriminatory power for the survival prognosis (Youden index 0.467, cut-off -1.3 %, AUC 0.733, p < 0.001, sensitivity 0.79, specificity 0.675). Among the inflammatory markers, CRP showed the highest discriminatory power (Youden index 0.533, cut-off 25.0 mg/L, AUC 0.794, p < 0.001, sensitivity 0.958, specificity 0.575). A significant correlation between QA and PCT was found on admission and after one week (Spearman's rho 0.455 and 0.539, all p-values < 0.001). CONCLUSIONS QA may serve as prognostic marker for survival in patients with SARS-CoV-2. The repeated measurements during the first week of the disease may enhance the prognostic power.
Collapse
Affiliation(s)
- Simon Michaelis
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Hochsteiermark, Vordernberger Straße 42, 8700 Leoben, Austria.
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Christopher Schneider
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Hochsteiermark, Vordernberger Straße 42, 8700 Leoben, Austria
| | - Wolfgang J Schnedl
- Practice for General Internal Medicine, Dr.-Theodor-Körner-Straße 19b, 8600 Bruck/Mur, Austria
| | - Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical, University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Dietmar Enko
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Hochsteiermark, Vordernberger Straße 42, 8700 Leoben, Austria; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| |
Collapse
|
24
|
Su S, Zhao Y, Zeng N, Liu X, Zheng Y, Sun J, Zhong Y, Wu S, Ni S, Gong Y, Zhang Z, Gao N, Yuan K, Yan W, Shi L, Ravindran AV, Kosten T, Shi J, Bao Y, Lu L. Epidemiology, clinical presentation, pathophysiology, and management of long COVID: an update. Mol Psychiatry 2023; 28:4056-4069. [PMID: 37491461 DOI: 10.1038/s41380-023-02171-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
The increasing number of coronavirus disease 2019 (COVID-19) infections have highlighted the long-term consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection called long COVID. Although the concept and definition of long COVID are described differently across countries and institutions, there is general agreement that it affects multiple systems, including the immune, respiratory, cardiovascular, gastrointestinal, neuropsychological, musculoskeletal, and other systems. This review aims to provide a synthesis of published epidemiology, symptoms, and risk factors of long COVID. We also summarize potential pathophysiological mechanisms and biomarkers for precise prevention, early diagnosis, and accurate treatment of long COVID. Furthermore, we suggest evidence-based guidelines for the comprehensive evaluation and management of long COVID, involving treatment, health systems, health finance, public attitudes, and international cooperation, which is proposed to improve the treatment strategies, preventive measures, and public health policy making of long COVID.
Collapse
Affiliation(s)
- Sizhen Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yimiao Zhao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Scholl of Public Health, Peking University, Beijing, China
| | - Na Zeng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Scholl of Public Health, Peking University, Beijing, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yongbo Zheng
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jie Sun
- Pain Medicine Center, Peking University Third Hospital, Beijing, China
| | - Yi Zhong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shuilin Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Scholl of Public Health, Peking University, Beijing, China
| | - Shuyu Ni
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Scholl of Public Health, Peking University, Beijing, China
| | - Yimiao Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Zhibo Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Nan Gao
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Arun V Ravindran
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Thomas Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
- Scholl of Public Health, Peking University, Beijing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
| |
Collapse
|
25
|
Zhang X, Ahn S, Qiu P, Datta S. Identification of shared biological features in four different lung cell lines infected with SARS-CoV-2 virus through RNA-seq analysis. Front Genet 2023; 14:1235927. [PMID: 37662846 PMCID: PMC10468990 DOI: 10.3389/fgene.2023.1235927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of confirmed cases and deaths worldwide. Understanding the biological mechanisms of SARS-CoV-2 infection is crucial for the development of effective therapies. This study conducts differential expression (DE) analysis, pathway analysis, and differential network (DN) analysis on RNA-seq data of four lung cell lines, NHBE, A549, A549.ACE2, and Calu3, to identify their common and unique biological features in response to SARS-CoV-2 infection. DE analysis shows that cell line A549.ACE2 has the highest number of DE genes, while cell line NHBE has the lowest. Among the DE genes identified for the four cell lines, 12 genes are overlapped, associated with various health conditions. The most significant signaling pathways varied among the four cell lines. Only one pathway, "cytokine-cytokine receptor interaction", is found to be significant among all four cell lines and is related to inflammation and immune response. The DN analysis reveals considerable variation in the differential connectivity of the most significant pathway shared among the four lung cell lines. These findings help to elucidate the mechanisms of SARS-CoV-2 infection and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Seungjun Ahn
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peihua Qiu
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Guo L, Appelman B, Mooij-Kalverda K, Houtkooper RH, van Weeghel M, Vaz FM, Dijkhuis A, Dekker T, Smids BS, Duitman JW, Bugiani M, Brinkman P, Sikkens JJ, Lavell HAA, Wüst RCI, van Vugt M, Lutter R. Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection. EBioMedicine 2023; 94:104729. [PMID: 37506544 PMCID: PMC10406961 DOI: 10.1016/j.ebiom.2023.104729] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology. METHODS Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients. FINDINGS IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist. INTERPRETATION SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology. FUNDING None.
Collapse
Affiliation(s)
- Lihui Guo
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Kirsten Mooij-Kalverda
- Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frédéric M Vaz
- Core Facility Metabolomics, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Annemiek Dijkhuis
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tamara Dekker
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Barbara S Smids
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Willem Duitman
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Brinkman
- Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jonne J Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - H A Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rob C I Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Michèle van Vugt
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - René Lutter
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Janket SJ, Fraser DD, Baird AE, Tamimi F, Sohaei D, Conte HA, Prassas I, Diamandis EP. Tachykinins and the potential causal factors for post-COVID-19 condition. THE LANCET. MICROBE 2023; 4:e642-e650. [PMID: 37327802 PMCID: PMC10263974 DOI: 10.1016/s2666-5247(23)00111-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
The most prevalent symptoms of post-COVID-19 condition are pulmonary dysfunction, fatigue and muscle weakness, anxiety, anosmia, dysgeusia, headaches, difficulty in concentrating, sexual dysfunction, and digestive disturbances. Hence, neurological dysfunction and autonomic impairments predominate in post-COVID-19 condition. Tachykinins including the most studied substance P are neuropeptides expressed throughout the nervous and immune systems, and contribute to many physiopathological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems and participate in inflammation, nociception, and cell proliferation. Substance P is a key molecule in neuroimmune crosstalk; immune cells near the peripheral nerve endings can send signals to the brain with cytokines, which highlights the important role of tachykinins in neuroimmune communication. We reviewed the evidence that relates the symptoms of post-COVID-19 condition to the functions of tachykinins and propose a putative pathogenic mechanism. The antagonism of tachykinins receptors can be a potential treatment target.
Collapse
Affiliation(s)
- Sok-Ja Janket
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Douglas D Fraser
- Paediatric Critical Care, Western University and Lawson Health Research Institute, London, ON, Canada
| | - Alison E Baird
- Department of Neurology, SUNY Health Sciences University, Brooklyn, NY, USA
| | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar
| | - Dorsa Sohaei
- McGill University School of Medicine, Montreal, QC, Canada
| | - Harry A Conte
- Department of Infectious Diseases, Johnson Memorial Hospital, Stafford Springs, CT, USA
| | - Ioannis Prassas
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | | |
Collapse
|
28
|
Mrštná K, Kujovská Krčmová L, Švec F. Advances in kynurenine analysis. Clin Chim Acta 2023:117441. [PMID: 37321530 DOI: 10.1016/j.cca.2023.117441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Kynurenine, the first product of tryptophan degradation via the kynurenine pathway, has become one of the most frequently mentioned biomarkers in recent years. Its levels in the body indicate the state of the human physiology. Human serum and plasma are the main matrixes used to evaluate kynurenine levels and liquid chromatography is the dominant technique for its determination. However, their concentrations in blood do not always correspond to the levels in other matrixes obtained from the affected individuals. It is therefore important to decide when it is appropriate to analyse kynurenine in alternative matrices. However, liquid chromatography may not be the best option for the analysis. This review presents alternatives that can be used and summarizes the features that need to be considered prior to kynurenine determination. Possible approaches to kynurenine analysis in a variety of human matrixes, their challenges, and limitations are critically discussed.
Collapse
Affiliation(s)
- K Mrštná
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - L Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - F Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
29
|
Fesharaki Zadeh A, Arnsten AFT, Wang M. Scientific Rationale for the Treatment of Cognitive Deficits from Long COVID. Neurol Int 2023; 15:725-742. [PMID: 37368329 PMCID: PMC10303664 DOI: 10.3390/neurolint15020045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Sustained cognitive deficits are a common and debilitating feature of "long COVID", but currently there are no FDA-approved treatments. The cognitive functions of the dorsolateral prefrontal cortex (dlPFC) are the most consistently afflicted by long COVID, including deficits in working memory, motivation, and executive functioning. COVID-19 infection greatly increases kynurenic acid (KYNA) and glutamate carboxypeptidase II (GCPII) in brain, both of which can be particularly deleterious to PFC function. KYNA blocks both NMDA and nicotinic-alpha-7 receptors, the two receptors required for dlPFC neurotransmission, and GCPII reduces mGluR3 regulation of cAMP-calcium-potassium channel signaling, which weakens dlPFC network connectivity and reduces dlPFC neuronal firing. Two agents approved for other indications may be helpful in restoring dlPFC physiology: the antioxidant N-acetyl cysteine inhibits the production of KYNA, and the α2A-adrenoceptor agonist guanfacine regulates cAMP-calcium-potassium channel signaling in dlPFC and is also anti-inflammatory. Thus, these agents may be helpful in treating the cognitive symptoms of long COVID.
Collapse
Affiliation(s)
- Arman Fesharaki Zadeh
- Departments of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Departments of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Amy F. T. Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Min Wang
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA;
| |
Collapse
|
30
|
Bourgin M, Durand S, Kroemer G. Diagnostic, Prognostic and Mechanistic Biomarkers of COVID-19 Identified by Mass Spectrometric Metabolomics. Metabolites 2023; 13:metabo13030342. [PMID: 36984782 PMCID: PMC10056171 DOI: 10.3390/metabo13030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
A number of studies have assessed the impact of SARS-CoV-2 infection and COVID-19 severity on the metabolome of exhaled air, saliva, plasma, and urine to identify diagnostic and prognostic biomarkers. In spite of the richness of the literature, there is no consensus about the utility of metabolomic analyses for the management of COVID-19, calling for a critical assessment of the literature. We identified mass spectrometric metabolomic studies on specimens from SARS-CoV2-infected patients and subjected them to a cross-study comparison. We compared the clinical design, technical aspects, and statistical analyses of published studies with the purpose to identify the most relevant biomarkers. Several among the metabolites that are under- or overrepresented in the plasma from patients with COVID-19 may directly contribute to excessive inflammatory reactions and deficient immune control of SARS-CoV2, hence unraveling important mechanistic connections between whole-body metabolism and the course of the disease. Altogether, it appears that mass spectrometric approaches have a high potential for biomarker discovery, especially if they are subjected to methodological standardization.
Collapse
Affiliation(s)
- Mélanie Bourgin
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
- Correspondence:
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75005 Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75610 Paris, France
| |
Collapse
|
31
|
Bizjak DA, John L, Matits L, Uhl A, Schulz SVW, Schellenberg J, Peifer J, Bloch W, Weiß M, Grüner B, Bracht H, Steinacker JM, Grau M. SARS-CoV-2 Altered Hemorheological and Hematological Parameters during One-Month Observation Period in Critically Ill COVID-19 Patients. Int J Mol Sci 2022; 23:15332. [PMID: 36499657 PMCID: PMC9735540 DOI: 10.3390/ijms232315332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hematological and hemorheological parameters are known to be altered in COVID-19; however, the value of combined monitoring in order to deduce disease severity is only scarcely examined. A total of 44 acute SARS-CoV-2-infected patients (aCOV) and 44 age-matched healthy controls (Con) were included. Blood of aCOV was sampled at admission (T0), and at day 2 (T2), day 5 (T5), day 10 (T10), and day 30 (T30) while blood of Con was only sampled once. Inter- and intra-group differences were calculated for hematological and hemorheological parameters. Except for mean cellular volume and mean cellular hemoglobin, all blood cell parameters were significantly different between aCOV and Con. During the acute disease state (T0-T5), hematological and hemorheological parameters were highly altered in aCOV; in particular, anemic conditions and increased immune cell response/inflammation, oxidative/nitrosative stress, decreased deformability, as well as increased aggregation, were observed. During treatment and convalescence until T30, almost all abnormal values of aCOV improved towards Con values. During the acute state of the COVID-19 disease, the hematological, as well as the hemorheological system, show fast and potentially pathological changes that might contribute to the progression of the disease, but changes appear to be largely reversible after four weeks. Measuring RBC deformability and aggregation, as well as oxidative stress induction, may be helpful in monitoring critically ill COVID-19 patients.
Collapse
Affiliation(s)
| | - Lucas John
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | - Lynn Matits
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
| | - Alisa Uhl
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | | | - Jana Schellenberg
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075 Ulm, Germany
| | - Johannes Peifer
- Central Emergency Services, University Hospital Ulm, 89081 Ulm, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
| | - Manfred Weiß
- Clinic for Anaesthesiology and Intensive Care Medicine, University Hospital Medical School, 89081 Ulm, Germany
| | - Beate Grüner
- Department of Internal Medicine III, Division of Infectious Diseases, University Hospital Ulm, 89081 Ulm, Germany
| | - Hendrik Bracht
- Central Emergency Services, University Hospital Ulm, 89081 Ulm, Germany
| | | | - Marijke Grau
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany
| |
Collapse
|
32
|
Running for Your Life: Metabolic Effects of a 160.9/230 km Non-Stop Ultramarathon Race on Body Composition, Inflammation, Heart Function, and Nutritional Parameters. Metabolites 2022; 12:metabo12111138. [DOI: 10.3390/metabo12111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Moderate endurance exercise leads to an improvement in cardiovascular performance, stress resilience, and blood function. However, the influence of chronic endurance exercise over several hours or days is still largely unclear. We examined the influence of a non-stop 160.9/230 km ultramarathon on body composition, stress/cardiac response, and nutrition parameters. Blood samples were drawn before (pre) and after the race (post) and analyzed for ghrelin, insulin, irisin, glucagon, cortisol, kynurenine, neopterin, and total antioxidant capacity. Additional measurements included heart function by echocardiography, nutrition questionnaires, and body impedance analyses. Of the 28 included ultra-runners (7f/21m), 16 participants dropped out during the race. The remaining 12 finishers (2f/10m) showed depletion of antioxidative capacities and increased inflammation/stress (neopterin/cortisol), while energy metabolism (insulin/glucagon/ghrelin) remained unchanged despite a high negative energy balance. Free fat mass, protein, and mineral content decreased and echocardiography revealed a lower stroke volume, left end diastolic volume, and ejection fraction post race. Optimizing nutrition (high-density protein-rich diet) during the race may attenuate the observed catabolic and inflammatory effects induced by ultramarathon running. As a rapidly growing discipline, new strategies for health prevention and extensive monitoring are needed to optimize the athletes’ performance.
Collapse
|