1
|
Zhong R, Qiu C, Chan S, Wang Y, Liu K, Xia Y, Zhang H, Zou B. TDH-11 inhibits the proliferation and colonization of colorectal cancer by reducing the activity of HDAC. Cell Signal 2025; 132:111817. [PMID: 40250693 DOI: 10.1016/j.cellsig.2025.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/28/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Histone deacetylase inhibitors (HDACIs) have demonstrated significant efficacy and minimal toxic side effects in certain hematological tumors. Nevertheless, their utilization in the therapy of solid tumors, including colorectal cancer (CRC), is constrained by the occurrence of adverse effects such as myelosuppression and cardiotoxicity. Therefore, the development of more efficient and safer HDACIs is crucial for managing CRC. Here, the effects of TDH-11 (a novel HDAC inhibitor) and the underlying molecular mechanisms that inhibits the deveolpment and progression of CRC cells were investigated using in vitro and in vivo experiments. The results indicated that TDH-11 inhibited CRC tumorigenic behavior while also promoted apoptosis and cell cycle arrest. In vivo, TDH-11 markedly inhibited tumor progression and reduces tumor colonization without causing substantial damage to key organs, such as the kidneys, heart, lungs, spleen, and liver. Results of RNA sequencing and western blot suggested that TDH-11 exerted its antitumor effects through modulation of the p53 signaling pathway and its downstream pathways involved in apoptosis and cell cycle regulation. In summary, TDH-11 exhibited significant potential in suppressing the growth and colonization of CRC, as determined in both cellular and animal models. These results provided novel insights into CRC-associated pathways and suggest promising prospects for managing advanced and metastatic CRC.
Collapse
Affiliation(s)
- Rulei Zhong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chenyang Qiu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yiming Wang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China; Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kaige Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yihui Xia
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China; Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Bingbing Zou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Engel NW, Steinfeld I, Ryan D, Anupindi K, Kim S, Wellhausen N, Chen L, Wilkins K, Baker DJ, Rommel PC, Jarocha D, Gohil M, Zhang Q, Milone MC, Fraietta JA, Davis M, Young RM, June CH. Quadruple adenine base-edited allogeneic CAR T cells outperform CRISPR/Cas9 nuclease-engineered T cells. Proc Natl Acad Sci U S A 2025; 122:e2427216122. [PMID: 40324075 PMCID: PMC12107175 DOI: 10.1073/pnas.2427216122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/27/2025] [Indexed: 05/07/2025] Open
Abstract
Genome-editing technologies have enabled the clinical development of allogeneic cellular therapies, yet the optimal gene-editing modality for multiplex editing of therapeutic T cell product manufacturing remains elusive. In this study, we conducted a comprehensive comparison of CRISPR/Cas9 nuclease and adenine base editor (ABE) technologies in generating allogeneic chimeric antigen receptor (CAR) T cells, utilizing extensive in vitro and in vivo analyses. Both methods achieved high editing efficiencies across four target genes, critical for mitigating graft-versus-host disease and allograft rejection: TRAC or CD3E, B2M, CIITA, and PVR. Notably, ABE demonstrated higher manufacturing yields and distinct off-target profiles compared to Cas9, with translocations observed exclusively in Cas9-edited products. Functionally, ABE-edited CAR T cells exhibited superior in vitro effector functions under continuous antigen stimulation, including enhanced proliferative capacity and increased surface CAR expression. Transcriptomic analysis revealed that ABE editing resulted in reduced activation of p53 and DNA damage response pathways at baseline, along with sustained activation of metabolic pathways during antigen stress. Consistently, Assay for Transposase-Accessible Chromatin using sequencing data indicated that Cas9-edited, but not ABE-edited, CAR T cells showed enrichment of chromatin accessibility peaks associated with double-strand break repair and DNA damage response pathways. In a preclinical leukemia model, ABE-edited CAR T cells demonstrated improved tumor control and extended overall survival compared to their Cas9-edited counterparts. Collectively, these findings position ABE as superior to Cas9 nucleases for multiplex gene editing of therapeutic T cells.
Collapse
Affiliation(s)
- Nils W. Engel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Daniel Ryan
- Agilent Research Laboratories, Santa Clara, CA95051
| | - Kusala Anupindi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Samuel Kim
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Translational Center of Excellence in Hematopoietic Stem Cell Engineering, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA19104
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Linhui Chen
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | - Daniel J. Baker
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Medicine, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Philipp C. Rommel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Danuta Jarocha
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Mercy Gohil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Qian Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michael C. Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Joseph A. Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Megan Davis
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
3
|
Chen Y, Ohara T, Hamada Y, Wang Y, Tian M, Noma K, Tazawa H, Fujisawa M, Yoshimura T, Matsukawa A. HIF-PH inhibitors induce pseudohypoxia in T cells and suppress the growth of microsatellite stable colorectal cancer by enhancing antitumor immune responses. Cancer Immunol Immunother 2025; 74:192. [PMID: 40343532 PMCID: PMC12064516 DOI: 10.1007/s00262-025-04067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/18/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Recent studies have revealed that CD8+ T cells can be activated via genetic upregulation of HIF-1α, thereby augmenting antitumor effector functions. HIF-1α upregulation can be attained by inhibiting HIF-prolyl hydroxylase (HIF-PH) under normoxic conditions, termed pseudohypoxia. This study investigated whether pseudohypoxia induced by HIF-PH inhibitors suppresses Microsatellite stable (MSS) colorectal cancer (CRC) by affecting tumor immune response. METHODS The HIF-PH inhibitors Roxadustat and Vadadustat were utilized in this study. In vitro, we assessed the effects of HIF-PH inhibitors on human and murine colon cancer cell lines (SW480, HT29, Colon26) and murine T cells. In vivo experiments were performed with mice bearing Colon26 tumors to evaluate the effect of these inhibitors on tumor immune responses. Tumor and spleen samples were analyzed using immunohistochemistry, RT-qPCR, and flow cytometry to elucidate potential mechanisms. RESULTS HIF-PH inhibitors demonstrated antitumor effects in vivo but not in vitro. These inhibitors enhanced the tumor immune response by increasing the infiltration of CD8+ and CD4+ tumor-infiltrating lymphocytes (TILs). HIF-PH inhibitors induced IL-2 production in splenic and intratumoral CD4+ T cells, promoting T cell proliferation, differentiation, and immune responses. Roxadustat synergistically enhanced the efficacy of anti-PD-1 antibody for MSS cancer by increasing the recruitment of TILs and augmenting effector-like CD8+ T cells. CONCLUSION Pseudohypoxia induced by HIF-PH inhibitors activates antitumor immune responses, at least in part, through the induction of IL-2 secretion from CD4+ T cells in the spleen and tumor microenvironment, thereby enhancing immune efficacy against MSS CRC.
Collapse
Affiliation(s)
- Yuehua Chen
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Yusuke Hamada
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Miao Tian
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
4
|
Chen Y, Zhang A, Wang J, Pan H, Liu L, Li R. Refining Lung Cancer Brain Metastasis Models for Spatiotemporal Dynamic Research and Personalized Therapy. Cancers (Basel) 2025; 17:1588. [PMID: 40361513 PMCID: PMC12071743 DOI: 10.3390/cancers17091588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
Lung cancer brain metastasis (LCBM) is a major contributor to cancer-related mortality, with a median survival of 8-16 months following diagnosis, despite advances in therapeutic strategies. The development of clinically relevant animal models is crucial for understanding the metastatic cascade and assessing therapies that can penetrate the blood-brain barrier (BBB). This review critically evaluates five primary LCBM modeling approaches-orthotopic implantation, intracardiac injection, stereotactic intracranial injection, carotid artery injection, and tail vein injection-focusing on their clinical applicability. We systematically compare their ability to replicate human metastatic pathophysiology and highlight emerging technologies for personalized therapy screening. Additionally, we analyze breakthrough strategies in central nervous system (CNS)-targeted drug delivery, including microparticle targeted delivery systems designed to enhance brain accumulation. By incorporating advances in single-cell omics and AI-driven metastasis prediction, this work provides a roadmap for the next generation of LCBM models, aimed at bridging preclinical and clinical research.
Collapse
Affiliation(s)
- Ying Chen
- Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (Y.C.); (A.Z.); (J.W.); (H.P.)
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 511430, China
| | - Ao Zhang
- Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (Y.C.); (A.Z.); (J.W.); (H.P.)
| | - Jingrong Wang
- Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (Y.C.); (A.Z.); (J.W.); (H.P.)
| | - Hudan Pan
- Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (Y.C.); (A.Z.); (J.W.); (H.P.)
| | - Liang Liu
- Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (Y.C.); (A.Z.); (J.W.); (H.P.)
| | - Runze Li
- Chinese Medicine Guangdong Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (Y.C.); (A.Z.); (J.W.); (H.P.)
| |
Collapse
|
5
|
Xing K, Chang Y, Jia H, Song J. Advances in Subclinical and Clinical Trials and Immunosuppressive Therapies in Xenotransplantation. Xenotransplantation 2025; 32:e70053. [PMID: 40387233 DOI: 10.1111/xen.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Organ transplantation remains the foremost effective intervention for end-stage organ failure. Nevertheless, the scarcity of donors has resulted in prolonged waiting times for countless patients globally. The advent of xenografts presents a promising solution to the organ shortage crisis. Although the utilization of xenografts has a long history, it is only in recent years that breakthroughs in genetically modified pigs have rendered successful xenotransplantation a feasible option. In the past 4 years, numerous subclinical and clinical trials have involved xenotransplantation from genetically modified pigs to humans. However, the outcomes have been disappointing, necessitating a reassessment of basic and preclinical research to address the emerging challenges. Furthermore, immunosuppressive therapies remain essential in xenotransplantation. The range of immunosuppressive agents, encompassing traditional immunosuppressants and monoclonal antibodies such as anti-CD154/CD40 monoclonal antibodies, exhibits considerable diversity. However, the most effective drug combination for achieving optimal efficacy remains elusive. This review will offer a succinct overview of the results from recent clinical and subclinical xenotransplantation trials. Moreover, it will highlight recent advancements in immunosuppressive strategies and discuss potential future research directions in this field.
Collapse
Affiliation(s)
- Kai Xing
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Jia
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|
6
|
Wu S, Gan X, Huang S, Zhong Y, Wu J, Yang H, Xiang B. Application and prospect analysis of chimeric antigen receptor T-cell therapy in hepatocellular carcinoma treatment: a systematic review and meta-analysis. Front Immunol 2025; 16:1566976. [PMID: 40260256 PMCID: PMC12009702 DOI: 10.3389/fimmu.2025.1566976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Hepatocellular carcinoma (HCC), accounting for 90% of primary liver cancers, is a high-mortality malignancy and the third leading cause of cancer-related deaths globally, with major risk factors like hepatitis B/C, aflatoxin exposure, and obesity. Most patients are diagnosed at advanced stages, with a 5-year survival rate below 10%. Therefore, HCC treatment and research still face significant challenges, and more effective treatments need to be further explored. Methods We searched PubMed, Scopus, Web of Science and Embase from the time of repository construction to March 1, 2025, preliminary included studies involving animal experiments on the therapeutic effects of Chimeric Antigen Receptor T-cell (CAR-T cell) therapy on HCC. After exclusion and evaluation of literature, the random/fixed effects model was employed to perform meta-analysis and obtain Weighted Mean Difference (WMD) and 95% confidence interval (CI) of tumor volume and mass. We then verify the robustness of the results through subgroup analysis and sensitivity analysis. Use Q-test to evaluate heterogeneity and quantify it based on I² value. Results We included a total of 16 studies. Multiple independent sets of data were extracted from the experiments of these studies, of which 25 were used for volume-based meta-analysis and 16 were used for mass-based meta-analysis. Regarding volume, The combined mean CAR-T treatment group/control group resulted in an WMD of -515.77 (95% CI: -634.78 to -396.76; I² =90.8%). Meanwhile, based on mass, the combined mean CAR-T treatment group/control group resulted in an WMD of -0.30 (95% CI: -0.38 to -0.22; I² = 94.4%). The results of the bias analysis further validated the reliability of the research conclusions. Conclusions Based on the dual-index meta-analysis, the CAR-T therapy have been proved to possess significant therapeutic effect in HCC. However, the funnel plot of tumor mass and the Egger's regression suggest the potential presence of publication bias. Thus, it warrants further research to evaluate the potential of CAR-T therapy alone or as an adjuvant for HCC treatment.
Collapse
Affiliation(s)
- Sichang Wu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- The Second Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Xinli Gan
- The Second Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Shuxin Huang
- The Second Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Yujun Zhong
- The Second Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Jialin Wu
- The Second Clinical Medical College of Guangxi Medical University, Nanning, China
| | - Haojie Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Hepatobiliary Surgery, Changde Hospital (The First People’s Hospital of Changde), Xiangya School of Medicine, Central South University, Changde, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
7
|
Jiang B, Wang Z, Wang M, Wang S, Li M, Meng Z, Yuan J, Ke Y. Safety Assessment of Two Human Fecal Bacteroides Strain Isolates in Immunodeficient Mice. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10529-y. [PMID: 40167961 DOI: 10.1007/s12602-025-10529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Bacteroides are potential candidates for next-generation probiotics (NGPs), which require preclinical safety and efficacy evaluations to ensure their rational use. This study aimed to verify the safety of two Bacteroides strains isolated from human fecal samples, Bacteroides dorei CK16 (B. dorei CK16) and Bacteroides vulgatus CK29 (B. vulgatus CK29), using genomic analysis and in vivo experiments. Whole-genome sequencing analysis of B. dorei CK16 revealed a predicted 4,898 protein-coding sequences (CDS), about 5.5 Mb of total genome length with a G + C content of 42.08%, and B. vulgatus CK29 revealed a predicted 4,610 CDS, about 5.3 Mb of total genome length with a G + C content of 42.56%. Moreover, the genome demonstrated the absence of virulence factors, and insertion sequences related to clinically relevant strains in either strain. A 42-day in vivo experiment was conducted on BALB/c and BALB/c nude mice, with each mouse receiving a daily dose of 1 × 108 colony forming units (CFU) /mL of B. dorei CK16 or B. vulgatus CK29. No significant in vivo pathogenic characteristics were observed based on body weight, organ index, hematological, serum biochemical, or histological analyses, particularly in nude mice. Therefore, the initial safety assessment of the two novel Bacteroides strains exhibited no notable adverse effects in both immunocompetent and immunodeficient mice models.
Collapse
Affiliation(s)
- Boyi Jiang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
| | - Zhen Wang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Mingxuan Wang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050091, Hebei Province, China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, 050091, Hebei Province, China
| | - Mengmeng Li
- Department of Anesthesiology, Fourth Center of Chinese PLA General Hospital, Beijing, 100143, China.
| | - Zhaoting Meng
- Department of Thoracic Medical Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China.
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China.
| |
Collapse
|
8
|
Zheng Y, Li H, Wang Y, Huang L, Chen L, Lin S, Lin S. Identification and immunoassay of biomarkers associated with T cell exhaustion in systemic lupus erythematosus. Front Immunol 2025; 16:1476575. [PMID: 40207215 PMCID: PMC11979134 DOI: 10.3389/fimmu.2025.1476575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease with unclear etiology. T cell exhaustion (TEX) suppresses the immune response and can be a potential therapeutic strategy for autoimmune diseases. Therefore, this study primarily investigated the mechanism by which TEX influences SLE, offering a novel target for its treatment. Methods GSE72326 and GSE81622 were utilized in this study. TEX related genes (TEX-RGs) were obtained from the published literature. Differentially expressed genes (DEGs) were obtained through differential expression analysis. Subsequently, candidate genes were selected by overlapping DEGs and TEX-RGs. These candidate genes underwent protein-protein interactions (PPIs) analysis for further screening. Machine learning was applied to identify candidate key genes from the PPI-identified genes. The candidate key genes exhibiting an area under the receiver operating characteristic (ROC) curve (AUC) greater than 0.7, along with consistent expression trends and significant differences in GSE72326 and GSE81622 were defined as biomarkers. Additionally, enrichment analysis, immune infiltration analysis, chemical compounds prediction and molecular docking were carried out. Importantly, the biomarkers were validated for expression by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results The biomarkers MX1, LY6E, IFI44 and OASL were screened by overlapping 327 DEGs and 1,408 TEX-RGs. Gene set enrichment analysis (GSEA) showed that there was a significant positive correlation between the expression of these biomarkers and immune-related pathways, such as the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway and RIG-I-like receptor signaling pathway significant positive correlation. The immune infiltration of 8 types of immune cells differed significantly in SLE. Naive B cells, resting memory CD4 T cells and resting NK cells were significantly down-regulated in the SLE group. 4 biomarkers showed the highest correlation with resting memory CD4 T cells. Bisphenol A targeted OASL and LY6E, whereas acetaminophen targeted IFI44 and MX1.The binding activity between the biomarkers and the chemical compounds targeting them was very strong. Finally, RT-qPCR expression of MX1, LY6E, IFI44 and OASL was consistent with the results of the dataset. Conclusion MX1, LY6E, IFI44 and OASL were identified as biomarkers related to TEX in SLE. These biomarkers could be detected in the blood for early diagnosis of the disease or to monitor the efficacy of the disease treatment, thus providing a new target for the management of SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuhuan Lin
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
9
|
Guo R, Rao PG, Liao BZ, Luo X, Yang WW, Lei XH, Ye JM. Melatonin suppresses PD-L1 expression and exerts antitumor activity in hepatocellular carcinoma. Sci Rep 2025; 15:8451. [PMID: 40069331 PMCID: PMC11897332 DOI: 10.1038/s41598-025-93486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Melatonin, also known as the pineal hormone, is secreted by the pineal gland and primarily regulates circadian rhythms. Additionally, it possesses immunomodulatory properties and anticancer effects. However, its specific mechanism in hepatocellular carcinoma (HCC) remains unclear, particularly regarding its effect on HCC-mediated immune escape through PD-L1 expression.In this study, in vitro experiments were conducted using Huh7 and HepG2 HCC cells. Melatonin treatment was applied to both cell types to observe changes in malignant phenotypes. Additionally, melatonin-pretreated Huh7 or HepG2 cells were co-cultured with T cells to simulate the tumor microenvironment. The results showed that melatonin inhibited cancer cell proliferation, migration, and invasion, as well as reduced PD-L1 expression in cancer cells, exhibiting similar anti-cancer effects in the co-culture system. In vivo experiments involved establishing ascitic HCC mouse models using H22 cells, followed by subcutaneous tumor models in Balb/c nude and Balb/c wild-type mice. Melatonin inhibited tumor growth and suppressed PD-L1 expression in cancer tissues in both subcutaneous tumor models, and it increased T lymphocyte activity in the spleen of Balb/c wild-type mice. Overall, the in vitro and in vivo experiments demonstrated that melatonin has dual anti-cancer effects in HCC: direct intrinsic anti-cancer activity and enhancement of anti-tumor immunity by reducing PD-L1 expression thereby inhibiting cancer immune escape. Furthermore, a decrease in the expression of the upstream molecule HIF-1α of PD-L1 and an increase in the expression levels of JNK, P38, and their phosphorylated forms were detected. Thus, the mechanism by which melatonin reduces PD-L1 may involve the downregulation of HIF-1α expression or the activation of the MAPK-JNK and MAPK-P38 pathways. This provides new insights and strategies for HCC treatment.
Collapse
Affiliation(s)
- Rui Guo
- Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, No.23 Qingnian Road, Ganzhou City, Jiangxi Province, China.
| | - Pan-Guo Rao
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Xin Luo
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wen-Wen Yang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Jun-Ming Ye
- Suzhou Medical College of Soochow University, Suzhou, China.
- Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
10
|
Sun Z, Gu M, Yang Z, Shi L, Zhao L, Zheng M, Wang Y, Zhang W, Han K, Tang N. Application of humanized mice in the safety experiments of antibody drugs. Animal Model Exp Med 2025. [PMID: 39981754 DOI: 10.1002/ame2.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Therapeutic antibodies are valued for their high specificity and selectivity in immunotherapy. However, the potential toxicity they may elicit underscores the necessity of assessing their preclinical efficacy and safety using suitable animal models. In this context, we review the various categories and applications of humanized mice, which have been engrafted with human cells or tissues to mimic the human immune system. These models are extensively utilized in the nonclinical assessment and development of various antibody drugs, acting as a conduit to clinical research. However, several challenges remain, including the limited lifespan of humanized mice, inadequate engraftment of human cells, and the rudimentary nature of the immune environment in these models. The development of humanized immune system models in mice presents both opportunities and challenges, potentially leading to new insights into the evolution and application of antibody therapeutics.
Collapse
Affiliation(s)
- Zhimin Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
| | - Mengyun Gu
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Zixuan Yang
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Lei Shi
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Liyuan Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
| | - Minhui Zheng
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Yan Wang
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Wei Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
| | - Kexin Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
| | - Naping Tang
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| |
Collapse
|
11
|
Jin Y, Chen P, Zhou H, Mu G, Wu S, Zha Z, Ma B, Han C, Chiu ML. Developing transcriptomic biomarkers for TAVO412 utilizing next generation sequencing analyses of preclinical tumor models. Front Immunol 2025; 16:1505868. [PMID: 39995668 PMCID: PMC11847686 DOI: 10.3389/fimmu.2025.1505868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction TAVO412, a multi-specific antibody targeting epidermal growth factor receptor (EGFR), mesenchymal epithelial transition factor (c-Met), and vascular endothelial growth factor A (VEGF-A), is undergoing clinical development for the treatment of solid tumors. TAVO412 has multiple mechanisms of action for tumor growth inhibition that include shutting down the EGFR, c-Met, and VEGF signaling pathways, having enhanced Fc effector functions, addressing drug resistance that can be mediated by the crosstalk amongst these three targets, as well as inhibiting angiogenesis. TAVO412 demonstrated strong in vivo tumor growth inhibition in 23 cell-line derived xenograft (CDX) models representing diverse cancer types, as well as in 9 patient-derived xenograft (PDX) lung tumor models. Methods Using preclinical CDX data, we established transcriptomic biomarkers based on gene expression profiles that were correlated with anti-tumor response or distinguished between responders and non-responders. Together with specific driver mutation that associated with efficacy and the targets of TAVO412, a set of 21-gene biomarker was identified to predict the efficacy. A biomarker predictor was formulated based on the Linear Prediction Score (LPS) to estimate the probability of patients or tumor model response to TAVO412 treatment. Results This efficacy predictor for TAVO412 demonstrated 78% accuracy in the CDX training models. The biomarker model was further validated in the PDX data set and resulted in comparable accuracy. Conclusions In implementing precision medicine by leveraging preclinical model data, a predictive transcriptomic biomarker empowered by next-generation sequencing was identified that could optimize the selection of patients that may benefit most from TAVO412 treatment.
Collapse
Affiliation(s)
- Ying Jin
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Peng Chen
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Huajun Zhou
- Global Center for Data Science and Bioinformatics, Crown Bioscience Inc., Suzhou, Jiangsu, China
| | - Guangmao Mu
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Simin Wu
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Zhengxia Zha
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Bin Ma
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
| | - Chao Han
- Research & Development, Tavotek Biotherapeutics, Spring House, PA, United States
| | - Mark L. Chiu
- Research & Development Department, Tavotek Biotherapeutics, Suzhou, Jiangsu, China
- Research & Development, Tavotek Biotherapeutics, Spring House, PA, United States
| |
Collapse
|
12
|
Sakaguchi H, Matsuda M, Iwanami N. Single-cell transcriptome analysis of medaka lymphocytes reveals absence of fully mature T cells in the thymus and the T-lineage commitment in the kidney. Front Immunol 2025; 15:1517467. [PMID: 39867910 PMCID: PMC11759298 DOI: 10.3389/fimmu.2024.1517467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
The cellular and molecular mechanisms underlying lymphocyte development are diverse among teleost species. Although recent scRNA-seq analyses of zebrafish hematopoietic cells have advanced our understanding of teleost hematopoiesis, comparative studies using another genetic model, medaka, which is evolutionarily distant among teleosts, is useful for understanding commonality and species-specificity in teleosts. In order to gain insight into how different molecular and cellular mechanisms of lymphocyte development in medaka and zebrafish, we established a recombination activating gene 1 (rag1) mutant medaka, which exhibited defects in V(D)J rearrangement of lymphocyte antigen receptor genes, accordingly lacking mature B and T cells. scRNA-seq analysis of wild type and rag1 mutant lymphocytes in the thymus and kidney characterized the developing stages of T and B cells, and found that most developed cd4+cd8- and cd4-cd8+ single-positive (SP) T-cell populations are absent in the thymus, and identified lymphoid progenitor cells already committed to the T lineage in kidney, implying unique features of medaka lymphocyte development.
Collapse
Affiliation(s)
| | | | - Norimasa Iwanami
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| |
Collapse
|
13
|
Kannen V, Rasmussen M, Das S, Giuliana P, Izzati FN, Choksi H, Erlingsson LAM, Olafsen NE, Åhrling SS, Cappello P, Teino I, Maimets T, Jaudzems K, Gulbinas A, Dambrauskas Z, Edgar LJ, Grant DM, Matthews J. Loss of Parp7 increases type I interferon signalling and reduces pancreatic tumour growth by enhancing immune cell infiltration. Front Immunol 2025; 15:1513595. [PMID: 39867896 PMCID: PMC11759301 DOI: 10.3389/fimmu.2024.1513595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer, and despite low incidence rates, it remains the sixth leading cause of cancer related deaths worldwide. Immunotherapy, which aims to enhance the immune system's ability to recognize and eliminate cancer cells, has emerged as a promising approach in the battle against PDAC. PARP7, a mono-ADP-ribosyltransferase, is a negative regulator of the type I interferon (IFN-I) pathway and has been reported to reduce anti-tumour immunity. Methods We used murine pancreatic cancer cells, CR705, CRISPR/Cas9, in vivo tumour models and spectral flow cytometry to determine the role of PARP7 in pancreatic tumour growth. Results Loss of Parp7 elevated the levels of interferon stimulated gene factor 3 (ISGF3) and its downstream target genes, even in the absence of STING. Cancer cells knocked out for Parp7 (CR705Parp7KO) produced smaller tumours than control cells (CR705Cas9) when injected into immunocompetent mice. Transcriptomic analyses revealed that CR705Parp7KO tumours had increased expression of genes involved in immunoregulatory interactions and interferon signalling pathways. Characterization of tumour infiltrating leukocyte (TIL) populations showed that CR705Parp7KO tumours had higher proportions of natural killer cells, CD8+ T cells and a lower proportion of anti-inflammatory macrophages (M2). The overall TIL profile of CR705Parp7KO tumours was suggestive of a less suppressive microenvironment. Conclusions Our data show that loss of Parp7 reduces PDAC tumour growth by increasing the infiltration of immune cells and enhancing anti-tumour immunity. These findings provide support to pursue PARP7 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Vinicius Kannen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marit Rasmussen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Siddhartha Das
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Paolo Giuliana
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Fauzia N. Izzati
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Hani Choksi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Linnea A. M. Erlingsson
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ninni E. Olafsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Samaneh S. Åhrling
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health of Sciences, Kaunas, Lithuania
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, Institute for Digestive Research, Lithuanian University of Health of Sciences, Kaunas, Lithuania
| | - Landon J. Edgar
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Denis M. Grant
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Lee J, Song J, Yoo W, Choi H, Jung D, Choi E, Jo SG, Gong EY, Jeoung YH, Park YS, Son WC, Lee H, Lee H, Kim JJ, Kim T, Lee S, Park JJ, Kim TD, Kim SH. Therapeutic potential of anti-ErbB3 chimeric antigen receptor natural killer cells against breast cancer. Cancer Immunol Immunother 2025; 74:73. [PMID: 39751931 PMCID: PMC11698710 DOI: 10.1007/s00262-024-03923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy. Here, we report the generation of ErbB3-targeted chimeric antigen receptor (CAR)-modified natural killer (NK) cells by transducing cord blood-derived primary NK cells using vsv-g envelope-pseudotyped lentiviral vectors. Transduced cells displayed stable CAR-expressing activity and increased cytotoxicity against ErbB3-positive breast cancer cell lines. Furthermore, anti-ErbB3 (aErbB3) CAR-NK cells strongly reduced the tumor burden in the SK-BR-3 xenograft mouse model without observable side effects. These findings underscore the potential of aErbB3 CAR-NK cells as targeted immunotherapy for ErbB3-positive breast cancer, suggesting a promising alternative to conventional treatments.
Collapse
Affiliation(s)
- Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Jinhoo Song
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Wonbeak Yoo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyunji Choi
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dana Jung
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eunjeong Choi
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Seo-Gyeong Jo
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea
| | - Eun-Yeung Gong
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - Young-Hee Jeoung
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea
| | - You-Soo Park
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Woo-Chang Son
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences Busan, Busan, 46033, Republic of Korea
| | - Hosuk Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hayoung Lee
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeom Ji Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - TaeEun Kim
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sooyun Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jang-June Park
- ISU Abxis, Drug Discovery Division, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
15
|
Monzavi SM, Muhammadnejad S, Mansouri V, Ashraf H, Ahmadbeigi N. Unwanted disorders and xenogeneic graft-versus-host disease in experimental immunodeficient mice: How to evaluate and how to report. Animal Model Exp Med 2025; 8:20-29. [PMID: 39601130 PMCID: PMC11798742 DOI: 10.1002/ame2.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human-derived tumor models are essential for preclinical development of new anticancer drug entities. Generating animal models bearing tumors of human origin, such as patient-derived or cell line-derived xenograft tumors, is dependent on immunodeficient strains. Tumor-bearing immunodeficient mice are susceptible to developing unwanted disorders primarily irrelevant to the tumor nature; and if get involved with such disorders, reliability of the study results will be undermined, inevitably confounding the research in general. Therefore, a rigorous health surveillance and clinical monitoring system, along with the establishment of a strictly controlled barrier facility to maintain a pathogen-free state, are mandatory. Even if all pathogen control and biosafety measures are followed, there are various noninfectious disorders capable of causing tissue and multiorgan damage in immunodeficient animals. Therefore, the researchers should be aware of sentinel signs to carefully monitor and impartially report them. This review discusses clinical signs of common unwanted disorders in experimental immunodeficient mice, and how to examine and report them.
Collapse
Affiliation(s)
- Seyed Mostafa Monzavi
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Samad Muhammadnejad
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- INSERM U981Institut Gustave RoussyVillejuifFrance
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| | - Hami Ashraf
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
16
|
Lee MC, Lee JS, Kim S, Jamaiyar A, Wu W, Gonzalez ML, Acevedo Durán TC, Madrigal-Salazar AD, Bassous N, Carvalho V, Choi C, Kim DS, Seo JW, Rodrigues N, Teixeira SF, Alkhateeb AF, Lozano Soto JA, Hussain MA, Leijten J, Feinberg MW, Shin SR. Synergistic effect of Hypoxic Conditioning and Cell-Tethering Colloidal Gels enhanced Productivity of MSC Paracrine Factors and Accelerated Vessel Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408488. [PMID: 39380372 PMCID: PMC11757084 DOI: 10.1002/adma.202408488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Microporous hydrogels have been widely used for delivering therapeutic cells. However, several critical issues, such as the lack of control over the harsh environment they are subjected to under pathological conditions and rapid egression of cells from the hydrogels, have produced limited therapeutic outcomes. To address these critical challenges, cell-tethering and hypoxic conditioning colloidal hydrogels containing mesenchymal stem cells (MSCs) are introduced to increase the productivity of paracrine factors locally and in a long-term manner. Cell-tethering colloidal hydrogels that are composed of tyramine-conjugated gelatin prevent cells from egressing through on-cell oxidative phenolic crosslinks while providing mechanical stimulation and interconnected microporous networks to allow for host-implant interactions. Oxygenating microparticles encapsulated in tyramine-conjugated colloidal microgels continuously generated oxygen for 2 weeks with rapid diffusion, resulting in maintaining a mild hypoxic condition while MSCs consumed oxygen under severe hypoxia. Synergistically, local retention of MSCs within the mild hypoxic-conditioned and mechanically robust colloidal hydrogels significantly increased the secretion of various angiogenic cytokines and chemokines. The oxygenating colloidal hydrogels induced anti-inflammatory responses, reduced cellular apoptosis, and promoted numerous large blood vessels in vivo. Finally, mice injected with the MSC-tethered oxygenating colloidal hydrogels significantly improved blood flow restoration and muscle regeneration in a hindlimb ischemia (HLI) model.
Collapse
Affiliation(s)
- Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| | - Seongsoo Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul 02792, Korea
| | - Anurag Jamaiyar
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Winona Wu
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Montserrat Legorreta Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Tania Carolina Acevedo Durán
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Andrea Donaxi Madrigal-Salazar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Nicole Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Violeta Carvalho
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- ALGORITMI/LASI Center, University of Minho, Campus de Azurém, 4800‐058 Guimarães, Portugal
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Cholong Choi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Da-Seul Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jeong Wook Seo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Nelson Rodrigues
- ALGORITMI/LASI Center, University of Minho, Campus de Azurém, 4800‐058 Guimarães, Portugal
- COMEGI - Center for Research in Organizations, Markets and Industrial Management, Lusíada Norte University, Portugal
| | | | - Abdulhameed F. Alkhateeb
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javier Alejandro Lozano Soto
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Mohammad Asif Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jeroen Leijten
- Leijten Lab, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede 7522 NB, The Netherlands
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
17
|
Steel C, James ER, Matthews JD, Turner SD. Establishing Patient-Derived Xenograft (PDX) Models of Lymphomas. Methods Mol Biol 2025; 2865:429-448. [PMID: 39424736 DOI: 10.1007/978-1-0716-4188-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Patient-derived xenograft (PDX) models of lymphoma typically involve the injection of human tumor cells into an immunocompromised murine host. PDXs have the advantage that the tumor cells grow in a 3D environment within the mouse, meaning the selection pressure of in vitro establishment is avoided and the tumor cells better maintain their genetic heterogeneity. Here, we outline a method for producing and maintaining a PDX model of lymphoma. We describe three different methods to isolate a single cell suspension of the primary patient tumor, followed by either subcutaneous or intraperitoneal injection into an immunocompromised mouse. We then detail how to monitor tumor growth and how to harvest, passage, and store the tumors once they have grown. We highlight and discuss important protocol considerations including technical hints as well as the advantages and disadvantages of the methods described.
Collapse
Affiliation(s)
| | - Emily R James
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Suzanne D Turner
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Du X, Chang Y, Song J. Use of Brain Death Recipients in Xenotransplantation: A Double-Edged Sword. Xenotransplantation 2025; 32:e70010. [PMID: 39825621 DOI: 10.1111/xen.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025]
Abstract
Organ transplants are used to treat many end-stage diseases, but a shortage of donors means many patients cannot be treated. Xenogeneic organs have become an important part of filling the donor gap. Many current studies of kidney, heart, and liver xenotransplantation have used gene-edited pig organs on brain-dead recipients. However, the endocrine system, immune system, and nervous system of brain-dead people are changed, which are different from that of real patients transplanted, and the current research results of brain death (BD) recipients are also different. So there are drawbacks to using brain-dead people for xenotransplantation. In addition, although the policy requires the use of non-human primate (NHP) experiments as the research standard for xenotransplantation, there are still differences between NHP and humans in terms of immunity. Therefore, to better study xenotransplantation, new models may be needed in addition to NHP and brain-dead individuals. Humanized animal models or organoids may be able to fill this gap.
Collapse
Affiliation(s)
- Xingchao Du
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
19
|
Kang M, Park HK, Kim KS, Choi D. Animal models for transplant immunology: bridging bench to bedside. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:354-376. [PMID: 39233453 PMCID: PMC11732767 DOI: 10.4285/ctr.24.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 09/06/2024]
Abstract
The progress of transplantation has been propelled forward by animal experiments. Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
Collapse
Affiliation(s)
- Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Hwon Kyum Park
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyeong Sik Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
20
|
Li P, Huang M, Ma Y, Zhang Y, Shi C. Novel research model for in vitro immunotherapy: co-culturing tumor organoids with peripheral blood mononuclear cells. Cancer Cell Int 2024; 24:438. [PMID: 39741287 DOI: 10.1186/s12935-024-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025] Open
Abstract
Tumor organoids have emerged as powerful tools for in vitro cancer research due to their ability to retain the structural and genetic characteristics of tumors. Nevertheless, the absence of a complete tumor microenvironment (TME) limits the broader application of organoid models in immunological studies. Given the critical role of immune cells in tumor initiation and progression, the co-culture model of organoids and peripheral blood mononuclear cells (PBMCs) may provide an effective platform for simulating the interactions between immune and tumor cells in vitro. This model stands as a robust instrument for dissecting the TME, elucidating the molecular interactions, and exploring the therapeutic applications of chimeric antigen receptor (CAR)-engineered lymphocytes, as well as other cancer treatment modalities. This review systematically evaluates the advantages and disadvantages of the co-culture model, identifies its technical bottlenecks, and proposes corresponding optimization strategies. By summarizing the latest research advancements in this co-culture model, our goal is to provide valuable insights for further model optimization and clinical application, thereby promoting immunological research and bridging the gap between experimental outcomes and clinical practice.
Collapse
Affiliation(s)
- Peng Li
- Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Minli Huang
- Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yifan Ma
- Gansu University of traditional Chinese medicine, Lanzhou, 730030, Gansu, China
| | - Yongbin Zhang
- Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
21
|
Saito M, McDonald KA, Grier AK, Meghwani H, Rangel-Moreno J, Becerril-Villanueva E, Gamboa-Dominguez A, Bruno J, Beck CA, Proctor RA, Kates SL, Schwarz EM, Muthukrishnan G. Immune Checkpoint Molecules as Biomarkers of Staphylococcus aureus Bone Infection and Clinical Outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630837. [PMID: 39803468 PMCID: PMC11722373 DOI: 10.1101/2024.12.30.630837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Staphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and clinical diagnostics that guide conservative vs. aggressive surgical treatments don't exist. Multi-omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased expression of immune checkpoint proteins (LAG3, TIM-3). Importantly, these proteins are upregulated in the serum and the bone marrow of S. aureus PJI patients. A multiparametric nomogram combining high serum immune checkpoint protein levels with low proinflammatory cytokine levels (IFN-γ, IL-2, TNF-α, IL-17) revealed that TIM-3 was highly predictive of adverse disease outcomes (AUC=0.89). Hence, T cell impairment in the form of immune checkpoint expression and exhaustion could be a functional biomarker for S. aureus PJI disease outcome, and blockade of checkpoint proteins could potentially improve outcomes following surgery.
Collapse
Affiliation(s)
- Motoo Saito
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Katya A. McDonald
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alex K. Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Himanshu Meghwani
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Enrique Becerril-Villanueva
- Psychoimmunology laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz.” Mexico City, Mexico
| | - Armando Gamboa-Dominguez
- Deparment of Pathology, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jennifer Bruno
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
22
|
Jeong SY, Park D, Park T, Han JS, Lee J, Choi CH, Jo M, Lee YB, Kyun ML, Choi M, Park D, Moon KS. Interspecies transcriptome profiles of human T cell activation and liver inflammation in a xenogeneic graft-versus-host disease model. Heliyon 2024; 10:e40559. [PMID: 39687194 PMCID: PMC11648781 DOI: 10.1016/j.heliyon.2024.e40559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Xenogeneic transplantation induces acute graft-versus-host disease (aGvHD) and subsequent vital organ damage. Herein, we aimed to examine hepatic damage associated with aGvHD using histopathology and gene expression profiles. Methods A xenografic GvHD model was established by engrafting human peripheral blood mononuclear cells (PBMCs) into immunodeficient NOD-scid IL2Rγnull (NSG) mice after busulfan conditioning. NSG mice were assigned to groups treated with saline (S group) or a combination of busulfan and PBMCs (BP group). Histological lesions and RNA sequencing analysis of gene profiles in the BP group (GvHD model) were compared with those in the P group. Results Predominant T cell subsets (95 %) in the blood of the BP group were identified as cytotoxic CD8+ T cells (56 %) and helper CD4+ T cells (31 %). Symptoms of aGvHD, including hepatocyte necrosis, bile duct hyperplasia, and human T cell infiltration, were observed. Gene expression analysis revealed upregulation of Th1 and Th2 cell differentiation (STAT4, IL4R, and NFACT1), T cell receptor signaling pathway (CD226 and GBP1), IL-1 pathway (CCL3, NAIP, and IRAK4), cell cycle (CDCA5, CDCA8, MCM5, KNL1, BUB1B, FBXO5, and CENPE) in human cells. In mouse cells, Il1a, Ifngr, Tnfrsf, and Il6ra genes (cytokines or their receptors) and Icam, Vcam, and Endra genes (adhesion molecules) were upregulated, whereas genes related to chromosome condensation (H2ac and H2bc) and fatty acid/steroid metabolism (Fasn, Rdh, and Scd) were downregulated. Interspecies gene network analysis revealed that activated human T cells are associated with liver damage through inflammatory and metabolic pathways, accompanied by increased mouse cell adhesion molecules and cytokines. Conclusion Our findings offer valuable insights into the pathophysiology and biomarkers of aGvHD and may contribute to the development of novel therapeutics.
Collapse
Affiliation(s)
- Seo Yule Jeong
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Duhyeon Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-Seok Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jungyun Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Chang Hoon Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Minseong Jo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Mi-lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
23
|
Mansur AAP, Carvalho SM, Brito RMDM, Capanema NSV, Duval IDB, Cardozo ME, Rihs JBR, Lemos GGM, Lima LCD, dos Reys MP, Rodrigues APH, Oliveira LCA, de Sá MA, Cassali GD, Bueno LL, Fujiwara RT, Lobato ZIP, Mansur HS. Arginine-Biofunctionalized Ternary Hydrogel Scaffolds of Carboxymethyl Cellulose-Chitosan-Polyvinyl Alcohol to Deliver Cell Therapy for Wound Healing. Gels 2024; 10:679. [PMID: 39590035 PMCID: PMC11594054 DOI: 10.3390/gels10110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion. They were applied as bilayer skin biomimetic substitutes based on human-derived cell cultures of fibroblasts and keratinocytes were seeded and grown into their 3D porous structures, producing cell-based bio-responsive hybrid hydrogel scaffolds to assist the wound healing process. The results demonstrated that hydrophilic hybrid cross-linked networks were formed via esterification reactions with the 3D porous microarchitecture promoted by foam templating and freeze-drying. These hybrids presented chemical stability, physicochemical properties, high moisture adsorption capacity, surface properties, and a highly interconnected 3D porous structure well suited for use as a skin substitute in wound healing. Additionally, the surface biofunctionalization of these 3D hydrogel scaffolds with L-arginine through amide bonds had significantly enhanced cellular attachment and proliferation of fibroblast and keratinocyte cultures. Hence, the in vivo results using Hairless mouse models (an immunocompromised strain) confirmed that these responsive bio-hybrid hydrogel scaffolds possess hemocompatibility, bioadhesion, biocompatibility, adhesiveness, biodegradability, and non-inflammatory behavior and are capable of assisting the skin wound healing process.
Collapse
Affiliation(s)
- Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Ramayana M. de M. Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Isabela de B. Duval
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Marcelo E. Cardozo
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - José B. R. Rihs
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Gabriela G. M. Lemos
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Marina P. dos Reys
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Ana P. H. Rodrigues
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Luiz C. A. Oliveira
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Geovanni D. Cassali
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Lilian L. Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Ricardo T. Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil;
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| |
Collapse
|
24
|
Bushnell GG, Sharma D, Wilmot HC, Zheng M, Fashina TD, Hutchens CM, Osipov S, Burness M, Wicha MS. Natural Killer Cell Regulation of Breast Cancer Stem Cells Mediates Metastatic Dormancy. Cancer Res 2024; 84:3337-3353. [PMID: 39106452 PMCID: PMC11474167 DOI: 10.1158/0008-5472.can-24-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Patients with breast cancer with estrogen receptor-positive tumors face a constant risk of disease recurrence for the remainder of their lives. Dormant tumor cells residing in tissues such as the bone marrow may generate clinically significant metastases many years after initial diagnosis. Previous studies suggest that dormant cancer cells display "stem-like" properties (cancer stem cell, CSC), which may be regulated by the immune system. To elucidate the role of the immune system in controlling dormancy and its escape, we studied dormancy in immunocompetent, syngeneic mouse breast cancer models. Three mouse breast cancer cell lines, PyMT, Met1, and D2.0R, contained CSCs that displayed short- and long-term metastatic dormancy in vivo, which was dependent on the host immune system. Each model was regulated by different components of the immune system. Natural killer (NK) cells were key for the metastatic dormancy phenotype in D2.0R cells. Quiescent D2.0R CSCs were resistant to NK cell cytotoxicity, whereas proliferative CSCs were sensitive. Resistance to NK cell cytotoxicity was mediated, in part, by the expression of BACH1 and SOX2 transcription factors. Expression of STING and STING targets was decreased in quiescent CSCs, and the STING agonist MSA-2 enhanced NK cell killing. Collectively, these findings demonstrate the role of immune regulation of breast tumor dormancy and highlight the importance of utilizing immunocompetent models to study this phenomenon. Significance: The immune system controls disseminated breast cancer cells during disease latency, highlighting the need to utilize immunocompetent models to identify strategies for targeting dormant cancer cells and reducing metastatic recurrence. See related commentary by Cackowski and Korkaya, p. 3319.
Collapse
Affiliation(s)
- Grace G. Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Deeksha Sharma
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Henry C. Wilmot
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Michelle Zheng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | | | - Chloe M. Hutchens
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Samuel Osipov
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Monika Burness
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Max S. Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
25
|
Yang S, Tong L, Li X, Zhang Y, Chen H, Zhang W, Zhang H, Chen Y, Chen R. A novel clinically relevant human fecal microbial transplantation model in humanized mice. Microbiol Spectr 2024; 12:e0043624. [PMID: 39162553 PMCID: PMC11448399 DOI: 10.1128/spectrum.00436-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
The intact immune system of mice exhibits resistance to colonization by exogenous microorganisms, but the gut microbiota profiles of the humanized mice and the patterns of human fecal microbiota colonization remain unexplored. Humanized NCG (huNCG) mice were constructed by injected CD34 +stem cells. 16S rRNA sequencing and fecal microbiota transplantation (FMT) technologies were used to detect the differences in microbiota and selective colonization ability for exogenous community colonization among three mice cohorts (C57BL/6J, NCG, and huNCG). Flow cytometry analysis showed that all huNCG mice had over 25% hCD45 +in peripheral blood. 16S rRNA gene sequence analysis showed that compared with NCG mice, the gut microbiota of huNCG mice were significantly altered. After FMT, the principal coordinates analysis (PCoA) showed that the gut microbial composition of huNCG mice (huNCG-D9) was similar to that of donors. The relative abundance of Firmicutes and Bacteroidetes were significantly increased in huNCG mice compared to NCG mice. Further comparison of ASV sequences revealed that Bacteroides plebeius, Bacteroides finegoldii, Escherichia fergusonii, Escherichia albertii, Klebsiella pneumoniae, and Klebsiella variicola exhibited higher abundance and stability in huNCG mice after FMT. Furthermore, PICRUSt2 analysis showed that huNCG mice had significantly enhanced metabolism and immunity. This study demonstrated that humanized mice are more conducive to colonization within the human gut microbiota, which provides a good method for studying the association between human diseases and microbiota.IMPORTANCEThe gut microbiota and biomarkers of humanized mice are systematically revealed for the first time. The finding that human fecal microbiota colonize humanized mice more stably provides new insights into the study of interactions between immune responses and gut microbiota.
Collapse
Affiliation(s)
- Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linglin Tong
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Li
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuchen Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Chen
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Zhang
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - He Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
26
|
Yitayew MY, Gasparrini M, Li L, Paraskevas S, Tabrizian M. An investigation of functionalized chitosan and alginate multilayer conformal nanocoating on mouse beta cell spheroids as a model for pancreatic islet transplantation. Int J Biol Macromol 2024; 278:134960. [PMID: 39179080 DOI: 10.1016/j.ijbiomac.2024.134960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Multilayer conformal coatings have been shown to provide a nanoscale barrier between cells and their environment with adequate stability, while regulating the diffusion of nutrition and waste across the cell membrane. The coating method aims to minimize capsule thickness and implant volume while reducing the need for immunosuppressive drugs, making it a promising approach for islet cell encapsulation in clinical islet transplantation for the treatment of Type 1 diabetes. This study introduces an immunoprotective nanocoating obtained through electrostatic interaction between quaternized phosphocholine-chitosan (PC-QCH) and tetrahydropyran triazole phenyl-alginate (TZ-AL) onto mouse β-cell spheroids. First, successful synthesis of the proposed polyelectrolytes was confirmed with physico-chemical characterization. A coating with an average thickness of 540 nm was obtained with self-assembly of 4-bilayers of PC-QCH/TZ-AL onto MIN6 β-cell spheroids. Surface coating of spheroids did not affect cell viability, metabolic activity, or insulin secretion, when compared to non-coated spheroids. The exposure of the polyelectrolytes to THP-1 monocyte-derived macrophages lead to a reduced level of TNF-α secretion and exposure of coated spheroids to RAW264.7 macrophages showed a decreasing trend in the secretion of TNF-α and IL-6. In addition, coated spheroids were able to establish normoglycemia when implanted into diabetic NOD-SCID mice, demonstrating in vivo biocompatibility and cellular function. These results demonstrate the ability of the PC-QCH/TZ-AL conformal coating to mitigate pro-inflammatory responses from macrophages, and thus can be a promising candidate towards nanoencapsulation for cell-based therapy, particularly in type 1 diabetes, where the insulin secreting β-cells are subjected to inflammation and immune cell attack.
Collapse
Affiliation(s)
| | - Marco Gasparrini
- Metabolic Disorders and Complications (MeDiC) Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | - Ling Li
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Steven Paraskevas
- Metabolic Disorders and Complications (MeDiC) Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada; Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada; Department of Surgery, McGill University, Montréal, QC, Canada; Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC, Canada.
| |
Collapse
|
27
|
Standley A, Xie J, Lau AW, Grote L, Gifford AJ. Working with Miraculous Mice: Mus musculus as a Model Organism. Curr Protoc 2024; 4:e70021. [PMID: 39435766 DOI: 10.1002/cpz1.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The laboratory mouse has been described as a "miracle" model organism, providing a window by which we may gain an understanding of ourselves. Since the first recorded mouse experiment in 1664, the mouse has become the most used animal model in biomedical research. Mice are ideally suited as a model organism because of their small size, short gestation period, large litter size, and genetic similarity to humans. This article provides a broad overview of the laboratory mouse as a model organism and is intended for undergraduates and those new to working with mice. We delve into the history of the laboratory mouse and outline important terminology to accurately describe research mice. The types of laboratory mice available to researchers are reviewed, including outbred stocks, inbred strains, immunocompromised mice, and genetically engineered mice. The critical role mice have played in advancing knowledge in the areas of oncology, immunology, and pharmacology is highlighted by examining the significant contribution of mice to Nobel Prize winning research. International mouse mutagenesis programs and accurate phenotyping of mouse models are outlined. We also explain important considerations for working with mice, including animal ethics; the welfare principles of replacement, refinement, and reduction; and the choice of mouse model in experimental design. Finally, we present practical advice for maintaining a mouse colony, which involves adequate training of staff, the logistics of mouse housing, monitoring colony health, and breeding strategies. Useful resources for working with mice are also listed. The aim of this overview is to equip the reader with a broad appreciation of the enormous potential and some of the complexities of working with the laboratory mouse in a quest to improve human health. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anick Standley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Angelica Wy Lau
- Garvan Institute of Medical Research, St Vincent's Clinical School, Darlinghurst, NSW, Australia
| | - Lauren Grote
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Heath Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Ma Z, Qiu L, Sun J, Wu Z, Liang S, Zhao Y, Yang J, Yue S, Hu M, Li Y. A novel pulmonary fibrosis NOD/SCID murine model with natural aging. BMC Pulm Med 2024; 24:457. [PMID: 39285370 PMCID: PMC11406766 DOI: 10.1186/s12890-024-03268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an age-related disease severely affecting life quality with its prevalence rising as the population ages, yet there is still no effective treatment available. Cell therapy has emerged as a promising option for IPF, however, the absence of mature and stable animal models for IPF immunodeficiency hampers preclinical evaluations of human cell therapies, primarily due to rapid immune clearance of administered cells. This study aims to establish a reliable pulmonary fibrosis (PF) model in immunodeficient mice that supports autologous cell therapy and to investigate underlying mechanism. METHODS We utilized thirty 5-week-old male NOD/SCID mice, categorizing them into three age groups: 12weeks, 32 weeks and 43 weeks, with 6 mice euthanized randomly from each cohort for lung tissue analysis. We assessed fibrosis using HE staining, Masson's trichrome staining, α-SMA immunohistochemistry and hydroxyproline content measurement. Further, β-galactosidase staining and gene expression analysis of MMP9, TGF-β1, TNF-α, IL-1β, IL-6, IL-8, SOD1, SOD2, NRF2, SIRT1, and SIRT3 were performed. ELISA was employed to quantify protein levels of TNF-α, TGF-β1, and IL-8. RESULTS When comparing lung tissues from 32-week-old and 43-week-old mice to those from 12-week-old mice, we noted a marked increase in inflammatory infiltration, fibrosis severity, and hydroxyproline content, alongside elevated expression levels of α-SMA and MMP9. Notably, the degree of fibrosis intensified with age. Additionally, β-galactosidase staining became more pronounced in older mice. Quantitative PCR analyses revealed age-related, increases in the expression of senescence markers (GLB1, P16, P21), and proinflammatory genes (TGF-β1, TNF-α, IL-1β, IL-6, and IL-8). Conversely, the expression of anti-oxidative stress-related genes (SOD1, SOD2, NRF2, SIRT1, and SIRT3) declined, showing statistically significant differences (*P < 0.05, **P < 0.01, ***P < 0.001). ELISA results corroborated these findings, indicating a progressive rise in the protein levels of TGF-β1, TNF-α, and IL-8 as the mice aged. CONCLUSIONS The findings suggest that NOD/SCID mice aged 32 weeks and 43 weeks effectively model pulmonary fibrosis in an elderly context, with the disease pathogenesis likely driven by age-associated inflammation and oxidative stress.
Collapse
Affiliation(s)
- Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Jianxiu Sun
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, 650101, China
| | - Zhen Wu
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd, Shenzhen, 518048, Guangdong, China
| | - Shu Liang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Yunhui Zhao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, 650101, China
| | - Jinmei Yang
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, 650101, China
| | - Shijun Yue
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| |
Collapse
|
29
|
Ngule C, Shi R, Ren X, Jia H, Oyelami F, Li D, Park Y, Kim J, Hemati H, Zhang Y, Xiong X, Shinkle A, Vanderford NL, Bachert S, Zhou BP, Wang J, Song J, Liu X, Yang JM. NAC1 promotes stemness and regulates myeloid-derived cell status in triple-negative breast cancer. Mol Cancer 2024; 23:188. [PMID: 39243032 PMCID: PMC11378519 DOI: 10.1186/s12943-024-02102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Triple negative breast cancer (TNBC) is a particularly lethal breast cancer (BC) subtype driven by cancer stem cells (CSCs) and an immunosuppressive microenvironment. Our study reveals that nucleus accumbens associated protein 1 (NAC1), a member of the BTB/POZ gene family, plays a crucial role in TNBC by maintaining tumor stemness and influencing myeloid-derived suppressor cells (MDSCs). High NAC1 expression correlates with worse TNBC prognosis. NAC1 knockdown reduced CSC markers and tumor cell proliferation, migration, and invasion. Additionally, NAC1 affects oncogenic pathways such as the CD44-JAK1-STAT3 axis and immunosuppressive signals (TGFβ, IL-6). Intriguingly, the impact of NAC1 on tumor growth varies with the host immune status, showing diminished tumorigenicity in natural killer (NK) cell-competent mice but increased tumorigenicity in NK cell-deficient ones. This highlights the important role of the host immune system in TNBC progression. In addition, high NAC1 level in MDSCs also supports TNBC stemness. Together, this study implies NAC1 as a promising therapeutic target able to simultaneously eradicate CSCs and mitigate immune evasion.
Collapse
Affiliation(s)
- Chrispus Ngule
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Ruyi Shi
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Present Address: Department of Cell Biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Hongyan Jia
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Present Address: Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Felix Oyelami
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Dong Li
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Younhee Park
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jinhwan Kim
- Department of Biochemistry, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Yi Zhang
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
- Present Address: Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Andrew Shinkle
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Nathan L Vanderford
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Sara Bachert
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Binhua P Zhou
- Department of Biochemistry, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| | - Xia Liu
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, Department of Pharmacology and Nutritional Science, and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
30
|
Pocaterra A, Citro A, Gnasso C, Canu T, Tosi A, Rosato A, Esposito A, Piemonti L, Mondino A. A preclinical mouse model of hepatic metastasis to instruct effective treatment modalities. Methods Cell Biol 2024; 190:133-150. [PMID: 39515877 DOI: 10.1016/bs.mcb.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Arianna Pocaterra
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Antonio Citro
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gnasso
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Canu
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Antonio Esposito
- Vita-Salute San Raffaele University, Milan, Italy; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy; Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
31
|
Han R, Su L, Cheng L. Advancing Human Vaccine Development Using Humanized Mouse Models. Vaccines (Basel) 2024; 12:1012. [PMID: 39340042 PMCID: PMC11436046 DOI: 10.3390/vaccines12091012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The development of effective vaccines against infectious diseases remains a critical challenge in global health. Animal models play a crucial role in vaccine development by providing valuable insights into the efficacy, safety, and mechanisms of immune response induction, which guide the design and formulation of vaccines. However, traditional animal models often inadequately recapitulate human immune responses. Humanized mice (hu-mice) models with a functional human immune system have emerged as invaluable tools in bridging the translational gap between preclinical research and clinical trials for human vaccine development. This review summarizes commonly used hu-mice models and advances in optimizing them to improve human immune responses. We review the application of humanized mice for human vaccine development with a focus on HIV-1 vaccines. We also discuss the remaining challenges and improvements needed for the currently available hu-mice models to better facilitate the development and testing of human vaccines for infectious diseases.
Collapse
Affiliation(s)
- Runpeng Han
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Center for AIDS Research, Wuhan University, Wuhan 430071, China
| | - Lishan Su
- Laboratory of Viral Pathogenesis and Immunotherapy, Institute of Human Virology, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 02121, USA
| | - Liang Cheng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Center for AIDS Research, Wuhan University, Wuhan 430071, China
| |
Collapse
|
32
|
Li Z, Hu L, Wang Y, Liu Q, Liu J, Long H, Li Q, Luo L, Peng Y. Local administration of mRNA encoding cytokine cocktail confers potent anti-tumor immunity. Front Immunol 2024; 15:1455019. [PMID: 39290693 PMCID: PMC11406011 DOI: 10.3389/fimmu.2024.1455019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Immunotherapy using inflammatory cytokines, such as interleukin (IL)-2 and interferon (IFN)-α, has been clinically validated in treating various cancers. However, systemic immunocytokine-based therapies are limited by the short half-life of recombinant proteins and severe dose-limiting toxicities. In this study, we exploited local immunotherapy by intratumoral administration of lipid nanoparticle (LNP)-encapsulated mRNA cocktail encoding cytokines IL-12, IL-7, and IFN-α. The cytokine mRNA cocktail induced tumor regression in multiple syngeneic mouse models and anti-tumor immune memory in one syngeneic mouse model. Additionally, immune checkpoint blockade further enhanced the anti-tumor efficacy of the cytokine mRNAs. Furthermore, human cytokine mRNAs exhibited robust anti-tumor efficacy in humanized mouse tumor models. Mechanistically, cytokine mRNAs induced tumor microenvironment inflammation, characterized by robust T cell infiltration and significant inflammatory cytokine and chemokine production.
Collapse
Affiliation(s)
- Zhigang Li
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Ling Hu
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Yi Wang
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Qi Liu
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Jun Liu
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Haiyan Long
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Qi Li
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Liping Luo
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| | - Yucai Peng
- Department of Research and Development, Liverna Therapeutics Inc., Zhuhai, China
| |
Collapse
|
33
|
Wang Q, Han J, Wei M, Miao H, Zhang M, Wu B, Chen Y, Zheng Y, Gale RP, Yin B. Multi-Walled Carbon Nanotubes Accelerate Leukaemia Development in a Mouse Model. TOXICS 2024; 12:646. [PMID: 39330574 PMCID: PMC11435454 DOI: 10.3390/toxics12090646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Inflammation is associated with an increased risk of developing various cancers in both animals and humans, primarily solid tumors but also myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Multi-walled carbon nanotubes (MWCNTs), a type of carbon nanotubes (CNTs) increasingly used in medical research and other fields, are leading to a rising human exposure. Our study demonstrated that exposing mice to MWCNTs accelerated the progression of spontaneous MOL4070LTR virus-induced leukemia. Additionally, similar exposures elevated pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α and induced reactive oxygen species (ROS) in a murine macrophage cell line. These effects were significantly reduced in immunodeficient mice and when mice were treated with methoxypolyethylene glycol amine (PEG)-modified MWCNTs. These findings underscore the necessity of evaluating the safety of MWCNTs, particularly for those with hematologic cancers.
Collapse
Affiliation(s)
- Qingqing Wang
- Clinical Medical Research Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China; (Q.W.); (J.H.); (M.W.)
| | - Jingdan Han
- Clinical Medical Research Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China; (Q.W.); (J.H.); (M.W.)
| | - Mujia Wei
- Clinical Medical Research Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China; (Q.W.); (J.H.); (M.W.)
| | - Huikai Miao
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Min Zhang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Biao Wu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Yao Chen
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Yanwen Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China;
| | - Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK;
| | - Bin Yin
- Clinical Medical Research Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China; (Q.W.); (J.H.); (M.W.)
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China;
| |
Collapse
|
34
|
Kametani Y, Ito R, Manabe Y, Kulski JK, Seki T, Ishimoto H, Shiina T. PBMC-engrafted humanized mice models for evaluating immune-related and anticancer drug delivery systems. Front Mol Biosci 2024; 11:1447315. [PMID: 39228913 PMCID: PMC11368775 DOI: 10.3389/fmolb.2024.1447315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Immune-related drug delivery systems (DDSs) in humanized mouse models are at the forefront of cancer research and serve as bridges between preclinical studies and clinical applications. These systems offer unique platforms for exploring new therapies and understanding their interactions with human cells and the immune system. Here, we focus on a DDS and a peripheral blood mononuclear cell (PBMC)-engrafted humanized mouse model that we recently developed, and consider some of the key components, challenges, and applications to advance these systems towards better cancer treatment on the basis of a better understanding of the immune response. Our DDS is unique and has a dual function, an anticancer effect and a capacity to fine-tune the immune reaction. The PBL-NOG-hIL-4-Tg mouse system is superior to other available humanized mouse systems for the development of such multifunctional DDSs because it supports the rapid reconstruction of an individual donor's immunity and avoids the onset of graft-versus-host disease.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| | - Ryoji Ito
- Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA, Australia
| | - Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| |
Collapse
|
35
|
Piotin A, Oulehri W, Charles AL, Tacquard C, Collange O, Mertes PM, Geny B. Oxidative Stress and Mitochondria Are Involved in Anaphylaxis and Mast Cell Degranulation: A Systematic Review. Antioxidants (Basel) 2024; 13:920. [PMID: 39199166 PMCID: PMC11352116 DOI: 10.3390/antiox13080920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Anaphylaxis, an allergic reaction caused by the massive release of active mediators, can lead to anaphylactic shock (AS), the most severe and potentially life-threatening form of anaphylactic reaction. Nevertheless, understanding of its pathophysiology to support new therapies still needs to be improved. We performed a systematic review, assessing the role and the complex cellular interplay of mitochondria and oxidative stress during anaphylaxis, mast cell metabolism and degranulation. After presenting the main characteristics of anaphylaxis, the oxidant/antioxidant balance and mitochondrial functions, we focused this review on the involvement of mitochondria and oxidative stress in anaphylaxis. Then, we discussed the role of oxidative stress and mitochondria following mast cell stimulation by allergens, leading to degranulation, in order to further elucidate mechanistic pathways. Finally, we considered potential therapeutic interventions implementing these findings for the treatment of anaphylaxis. Experimental studies evaluated mainly cardiomyocyte metabolism during AS. Cardiac dysfunction was associated with left ventricle mitochondrial impairment and lipid peroxidation. Studies evaluating in vitro mast cell degranulation, following Immunoglobulin E (IgE) or non-IgE stimulation, revealed that mitochondrial respiratory complex integrity and membrane potential are crucial for mast cell degranulation. Antigen stimulation raises reactive oxygen species (ROS) production from nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria, leading to mast cell degranulation. Moreover, mast cell activation involved mitochondrial morphological changes and mitochondrial translocation to the cell surface near exocytosis sites. Interestingly, antioxidant administration reduced degranulation by lowering ROS levels. Altogether, these results highlight the crucial role of oxidative stress and mitochondria during anaphylaxis and mast cell degranulation. New therapeutics against anaphylaxis should probably target oxidative stress and mitochondria, in order to decrease anaphylaxis-induced systemic and major organ deleterious effects.
Collapse
Affiliation(s)
- Anays Piotin
- Physiology and Functional Exploration Service, Strasbourg University Hospital, 67000 Strasbourg, France;
- Division of Asthma and Allergy, Chest Diseases Department, Strasbourg University Hospital, 67000 Strasbourg, France
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| | - Walid Oulehri
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Anne-Laure Charles
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| | - Charles Tacquard
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
- Établissement Français du Sang (EFS) Grand Est, French National Institute of Health and Medical Research), (INSERM) BPPS UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, 67000 Strasbourg, France
| | - Olivier Collange
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Paul-Michel Mertes
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
- Department of Anesthesia and Intensive Care, Strasbourg University Hospital, 67000 Strasbourg, France;
| | - Bernard Geny
- Physiology and Functional Exploration Service, Strasbourg University Hospital, 67000 Strasbourg, France;
- Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, Translational Medicine Federation of Strasbourg (FMTS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (W.O.); (A.-L.C.); (O.C.); (P.-M.M.)
| |
Collapse
|
36
|
McDonald K, Rodriguez A, Muthukrishnan G. Humanized Mouse Models of Bacterial Infections. Antibiotics (Basel) 2024; 13:640. [PMID: 39061322 PMCID: PMC11273811 DOI: 10.3390/antibiotics13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial infections continue to represent a significant healthcare burden worldwide, causing considerable mortality and morbidity every year. The emergence of multidrug-resistant bacterial strains continues to rise, posing serious risks to controlling global disease outbreaks. To develop novel and more effective treatment and vaccination programs, there is a need for clinically relevant small animal models. Since multiple bacterial species have human-specific tropism for numerous virulence factors and toxins, conventional mouse models do not fully represent human disease. Several human disease characteristic phenotypes, such as lung granulomas in the case of Mycobacterium tuberculosis infections, are absent in standard mouse models. Alternatively, certain pathogens, such as Salmonella enterica serovar typhi and Staphylococcus aureus, can be well tolerated in mice and cleared quickly. To address this, multiple groups have developed humanized mouse models and observed enhanced susceptibility to infection and a more faithful recapitulation of human disease. In the last two decades, multiple humanized mouse models have been developed to attempt to recapitulate the human immune system in a small animal model. In this review, we first discuss the history of immunodeficient mice that has enabled the engraftment of human tissue and the engraftment methods currently used in the field. We then highlight how humanized mouse models successfully uncovered critical human immune responses to various bacterial infections, including Salmonella enterica serovar Typhi, Mycobacterium tuberculosis, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Katya McDonald
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Adryiana Rodriguez
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
37
|
Luo W, Hoang H, Miller KE, Zhu H, Xu S, Mo X, Garfinkle EAR, Costello H, Wijeratne S, Chemnitz W, Gandhi R, Liao Y, Ayello J, Gardenswartz A, Rosenblum JM, Cassady KA, Mardis ER, Lee DA, Cripe TP, Cairo MS. Combinatorial macrophage induced innate immunotherapy against Ewing sarcoma: Turning "Two Keys" simultaneously. J Exp Clin Cancer Res 2024; 43:193. [PMID: 38992659 PMCID: PMC11238356 DOI: 10.1186/s13046-024-03093-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Macrophages play important roles in phagocytosing tumor cells. However, tumors escape macrophage phagocytosis in part through the expression of anti-phagocytic signals, most commonly CD47. In Ewing sarcoma (ES), we found that tumor cells utilize dual mechanisms to evade macrophage clearance by simultaneously over-expressing CD47 and down-regulating cell surface calreticulin (csCRT), the pro-phagocytic signal. Here, we investigate the combination of a CD47 blockade (magrolimab, MAG) to inhibit the anti-phagocytic signal and a chemotherapy regimen (doxorubicin, DOX) to enhance the pro-phagocytic signal to induce macrophage phagocytosis of ES cells in vitro and inhibit tumor growth and metastasis in vivo. METHODS Macrophages were derived from human peripheral blood monocytes by granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Flow cytometry- and microscopy-based in-vitro phagocytosis assays were performed to evaluate macrophage phagocytosis of ES cells. Annexin-V assay was performed to evaluate apoptosis. CD47 was knocked out by CRISPR/Cas9 approach. ES cell-based and patient-derived-xenograft (PDX)-based mouse models were utilized to assess the effects of MAG and/or DOX on ES tumor development and animal survival. RNA-Seq combined with CIBERSORTx analysis was utilized to identify changes in tumor cell transcriptome and tumor infiltrating immune cell profiling in MAG and/or DOX treated xenograft tumors. RESULTS We found that MAG significantly increased macrophage phagocytosis of ES cells in vitro (p < 0.01) and had significant effect on reducing tumor burden (p < 0.01) and increasing survival in NSG mouse model (p < 0.001). The csCRT level on ES cells was significantly enhanced by DOX in a dose- and time-dependent manner (p < 0.01). Importantly, DOX combined with MAG significantly enhanced macrophage phagocytosis of ES cells in vitro (p < 0.01) and significantly decreased tumor burden (p < 0.01) and lung metastasis (p < 0.0001) and extended animal survival in vivo in two different mouse models of ES (p < 0.0001). Furthermore, we identified CD38, CD209, CD163 and CD206 as potential markers for ES-phagocytic macrophages. Moreover, we found increased M2 macrophage infiltration and decreased expression of Cd209 in the tumor microenvironment of MAG and DOX combinatorial therapy treated tumors. CONCLUSIONS By turning "two keys" simultaneously to reactivate macrophage phagocytic activity, our data demonstrated an effective and highly translatable alternative therapeutic approach utilizing innate (tumor associated macrophages) immunotherapy against high-risk metastatic ES.
Collapse
Affiliation(s)
- Wen Luo
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Hai Hoang
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Katherine E Miller
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Hongwen Zhu
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Serena Xu
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Elizabeth A R Garfinkle
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Heather Costello
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Saranga Wijeratne
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Wiebke Chemnitz
- Department of Medicine, New York Medical College, Valhalla, NY, USA
| | | | - Yanling Liao
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Aliza Gardenswartz
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA
| | - Kevin A Cassady
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University, Columbus, OH, USA
| | - Dean A Lee
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Timothy P Cripe
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, 15 Dana Road, Valhalla, NY, 10595, USA.
- Department of Pathology, Immunology and Microbiology, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Medicine, New York Medical College, Valhalla, NY, USA.
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
38
|
Luo F, Cao J, Chen Q, Liu L, Yang T, Bai X, Ma W, Lin C, Zhou T, Zhan J, Huang Y, Yang Y, Zhao H, Zhang L. HDL-cholesterol confers sensitivity of immunotherapy in nasopharyngeal carcinoma via remodeling tumor-associated macrophages towards the M1 phenotype. J Immunother Cancer 2024; 12:e008146. [PMID: 38871480 DOI: 10.1136/jitc-2023-008146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The sustained effectiveness of anti-programmed cell death protein-1/programmed death-ligand 1 treatment is limited to a subgroup of patients with advanced nasopharyngeal carcinoma (NPC), and the specific biomarker determining the response to immunotherapy in NPC remains uncertain. METHODS We assessed the associations between pre-immunotherapy and post-immunotherapy serum lipoproteins and survival in a training cohort (N=160) and corroborated these findings in a validation cohort (N=100). Animal studies were performed to explore the underlying mechanisms. Additionally, the relationship between high-density lipoprotein-cholesterol (HDL-C) levels and M1/M2-like macrophages, as well as activated CD8+T cells in tumor tissues from patients with NPC who received immunotherapy, was investigated. RESULTS The lipoproteins cholesterol, HDL-C, low-density lipoprotein-cholesterol, triglycerides, apolipoprotein A-1 (ApoA1), and apolipoprotein B, were significantly altered after immunotherapy. Patients with higher baseline HDL-C or ApoA1, or those with increased HDL-C or ApoA1 after immunotherapy had longer progression-free survival, a finding verified in the validation cohort (p<0.05). Multivariate analysis revealed that baseline HDL-C and elevated HDL-C post-immunotherapy were independent predictors of superior PFS (p<0.05). Furthermore, we discovered that L-4F, an ApoA1 mimetic, could inhibit tumor growth in NPC xenografts. This effect was associated with L-4F's ability to polarize M2-like macrophages towards an M1-like phenotype via the activation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65, thereby alleviating immunosuppression in the tumor microenvironment. Importantly, in patients with NPC with high plasma HDL-C levels, the number of M2-like macrophages was significantly decreased, while M1-like macrophages and activated CD8+T cells were notably increased in those with high HDL-C levels. CONCLUSION Higher baseline HDL-C levels or an increase in HDL-C post-immunotherapy can enhance immunotherapeutic responses in patients with NPC by reprogramming M2-like macrophages towards the M1 phenotype. This suggests a potential role for prospectively exploring ApoA1 mimetics as adjuvant agents in combination with immunotherapy.
Collapse
Affiliation(s)
- Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lusha Liu
- Department of Radiotherapy, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ting Yang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xue Bai
- Department of Radiotherapy, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenjuan Ma
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaozhuo Lin
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Zhan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
39
|
Bose D, Saha P, Roy S, Trivedi A, More M, Klimas N, Tuteja A, Chatterjee S. A Double-Humanized Mouse Model for Studying Host Gut Microbiome-Immune Interactions in Gulf War Illness. Int J Mol Sci 2024; 25:6093. [PMID: 38892281 PMCID: PMC11172868 DOI: 10.3390/ijms25116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Unraveling the multisymptomatic Gulf War Illness (GWI) pathology and finding an effective cure have eluded researchers for decades. The chronic symptom persistence and limitations for studying the etiologies in mouse models that differ significantly from those in humans pose challenges for drug discovery and finding effective therapeutic regimens. The GWI exposome differs significantly in the study cohorts, and the above makes it difficult to recreate a model closely resembling the GWI symptom pathology. We have used a double engraftment strategy for reconstituting a human immune system coupled with human microbiome transfer to create a humanized-mouse model for GWI. Using whole-genome shotgun sequencing and blood immune cytokine enzyme linked immunosorbent assay (ELISA), we show that our double humanized mice treated with Gulf War (GW) chemicals show significantly altered gut microbiomes, similar to those reported in a Veteran cohort of GWI. The results also showed similar cytokine profiles, such as increased levels of IL-1β, IL-6, and TNF R-1, in the double humanized model, as found previously in a human cohort. Further, a novel GWI Veteran fecal microbiota transfer was used to create a second alternative model that closely resembled the microbiome and immune-system-associated pathology of a GWI Veteran. A GWI Veteran microbiota transplant in humanized mice showed a human microbiome reconstitution and a systemic inflammatory pathology, as reflected by increases in interleukins 1β, 6, 8 (IL-1β, IL-6, IL-8), tumor necrosis factor receptor 1 (TNF R-1), and endotoxemia. In conclusion, though preliminary, we report a novel in vivo model with a human microbiome reconstitution and an engrafted human immune phenotype that may help to better understand gut-immune interactions in GWI.
Collapse
Affiliation(s)
- Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Ashok Tuteja
- Division of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA; (D.B.); (P.S.); (S.R.); (A.T.); (M.M.)
- Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92697, USA
- VA Research and Development, VA Long Beach Health Care, Long Beach, CA 90822, USA
| |
Collapse
|
40
|
Gordon GL, Raybould MIJ, Wong A, Deane CM. Prospects for the computational humanization of antibodies and nanobodies. Front Immunol 2024; 15:1399438. [PMID: 38812514 PMCID: PMC11133524 DOI: 10.3389/fimmu.2024.1399438] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
To be viable therapeutics, antibodies must be tolerated by the human immune system. Rational approaches to reduce the risk of unwanted immunogenicity involve maximizing the 'humanness' of the candidate drug. However, despite the emergence of new discovery technologies, many of which start from entirely human gene fragments, most antibody therapeutics continue to be derived from non-human sources with concomitant humanization to increase their human compatibility. Early experimental humanization strategies that focus on CDR loop grafting onto human frameworks have been critical to the dominance of this discovery route but do not consider the context of each antibody sequence, impacting their success rate. Other challenges include the simultaneous optimization of other drug-like properties alongside humanness and the humanization of fundamentally non-human modalities such as nanobodies. Significant efforts have been made to develop in silico methodologies able to address these issues, most recently incorporating machine learning techniques. Here, we outline these recent advancements in antibody and nanobody humanization, focusing on computational strategies that make use of the increasing volume of sequence and structural data available and the validation of these tools. We highlight that structural distinctions between antibodies and nanobodies make the application of antibody-focused in silico tools to nanobody humanization non-trivial. Furthermore, we discuss the effects of humanizing mutations on other essential drug-like properties such as binding affinity and developability, and methods that aim to tackle this multi-parameter optimization problem.
Collapse
Affiliation(s)
| | | | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Siemionow M, Chambily L, Brodowska S. Efficacy of Engraftment and Safety of Human Umbilical Di-Chimeric Cell (HUDC) Therapy after Systemic Intraosseous Administration in an Experimental Model. Biomedicines 2024; 12:1064. [PMID: 38791026 PMCID: PMC11117770 DOI: 10.3390/biomedicines12051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Cell-based therapies hold promise for novel therapeutic strategies in regenerative medicine. We previously characterized in vitro human umbilical di-chimeric cells (HUDCs) created via the ex vivo fusion of human umbilical cord blood (UCB) cells derived from two unrelated donors. In this in vivo study, we assessed HUDC safety and biodistribution in the NOD SCID mouse model at 90 days following the systemic intraosseous administration of HUDCs. Twelve NOD SCID mice (n = 6/group) received intraosseous injection of donor UCB cells (3.0 × 106) in Group 1, or HUDCs (3.0 × 106) in Group 2, without immunosuppression. Flow cytometry assessed hematopoietic cell surface markers in peripheral blood and the presence of HLA-ABC class I antigens in lymphoid and non-lymphoid organs. HUDC safety was assessed by weekly evaluations, magnetic resonance imaging (MRI), and at autopsy for tumorigenicity. At 90 days after intraosseous cell administration, the comparable expression of HLA-ABC class I antigens in selected organs was found in UCB control and HUDC therapy groups. MRI and autopsy confirmed safety by no signs of tumor growth. This study confirmed HUDC biodistribution to selected lymphoid organs following intraosseous administration, without immunosuppression. These data introduce HUDCs as a novel promising approach for immunomodulation in transplantation.
Collapse
Affiliation(s)
- Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
- Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
| | - Sonia Brodowska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (L.C.); (S.B.)
| |
Collapse
|
42
|
Hennion N, Chenivesse C, Humez S, Gottrand F, Desseyn JL, Gouyer V. [Idiopathic pulmonary fibrosis: Desperately seeking a model]. Rev Mal Respir 2024; 41:274-278. [PMID: 38480096 DOI: 10.1016/j.rmr.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 04/15/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal lung disease of which the origin and development mechanisms remain unknown. The few available pharmacological treatments can only slow the progression of the disease. The development of curative treatments is hampered by the absence of experimental models that can mimic the specific pathophysiological mechanisms of IPF. The aim of this mini-review is to provide an overview of the most commonly used experimental animal models in the study of IPF and to underline the urgent need to seek out new, more satisfactory models.
Collapse
Affiliation(s)
- N Hennion
- Inserm, U1286 - Infinite, Université de Lille, CHU de Lille, 59000 Lille, France
| | - C Chenivesse
- Inserm, CNRS, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Centre de Référence Constitutif des Maladies Pulmonaires Rares, Université de Lille, CHU de Lille, Lille, France
| | - S Humez
- Department of Pathology, Université de Lille, CHU de Lille, Lille, France; Inserm, CNRS, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Université de Lille, CHU de Lille, Lille, France
| | - F Gottrand
- Inserm, U1286 - Infinite, Université de Lille, CHU de Lille, 59000 Lille, France
| | - J-L Desseyn
- Inserm, U1286 - Infinite, Université de Lille, CHU de Lille, 59000 Lille, France.
| | - V Gouyer
- Inserm, U1286 - Infinite, Université de Lille, CHU de Lille, 59000 Lille, France
| |
Collapse
|
43
|
Friend NE, Beamish JA, Margolis EA, Schott NG, Stegemann JP, Putnam AJ. Pre-cultured, cell-encapsulating fibrin microbeads for the vascularization of ischemic tissues. J Biomed Mater Res A 2024; 112:549-561. [PMID: 37326361 PMCID: PMC10724379 DOI: 10.1002/jbm.a.37580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
There is a significant clinical need to develop effective vascularization strategies for tissue engineering and the treatment of ischemic pathologies. In patients afflicted with critical limb ischemia, comorbidities may limit common revascularization strategies. Cell-encapsulating modular microbeads possess a variety of advantageous properties, including the ability to support prevascularization in vitro while retaining the ability to be injected in a minimally invasive manner in vivo. Here, fibrin microbeads containing human umbilical vein endothelial cells (HUVEC) and bone marrow-derived mesenchymal stromal cells (MSC) were cultured in suspension for 3 days (D3 PC microbeads) before being implanted within intramuscular pockets in a SCID mouse model of hindlimb ischemia. By 14 days post-surgery, animals treated with D3 PC microbeads showed increased macroscopic reperfusion of ischemic foot pads and improved limb salvage compared to the cellular controls. Delivery of HUVEC and MSC via microbeads led to the formation of extensive microvascular networks throughout the implants. Engineered vessels of human origins showed evidence of inosculation with host vasculature, as indicated by erythrocytes present in hCD31+ vessels. Over time, the total number of human-derived vessels within the implant region decreased as networks remodeled and an increase in mature, pericyte-supported vascular structures was observed. Our findings highlight the potential therapeutic benefit of developing modular, prevascularized microbeads as a minimally invasive therapeutic for treating ischemic tissues.
Collapse
Affiliation(s)
- Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Jeffrey A. Beamish
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Emily A. Margolis
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | | | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor
| |
Collapse
|
44
|
Deng D, Hao T, Lu L, Yang M, Zeng Z, Lovell JF, Liu Y, Jin H. Applications of Intravital Imaging in Cancer Immunotherapy. Bioengineering (Basel) 2024; 11:264. [PMID: 38534538 DOI: 10.3390/bioengineering11030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Currently, immunotherapy is one of the most effective treatment strategies for cancer. However, the efficacy of any specific anti-tumor immunotherapy can vary based on the dynamic characteristics of immune cells, such as their rate of migration and cell-to-cell interactions. Therefore, understanding the dynamics among cells involved in the immune response can inform the optimization and improvement of existing immunotherapy strategies. In vivo imaging technologies use optical microscopy techniques to visualize the movement and behavior of cells in vivo, including cells involved in the immune response, thereby showing great potential for application in the field of cancer immunotherapy. In this review, we briefly introduce the technical aspects required for in vivo imaging, such as fluorescent protein labeling, the construction of transgenic mice, and various window chamber models. Then, we discuss the elucidation of new phenomena and mechanisms relating to tumor immunotherapy that has been made possible by the application of in vivo imaging technology. Specifically, in vivo imaging has supported the characterization of the movement of T cells during immune checkpoint inhibitor therapy and the kinetic analysis of dendritic cell migration in tumor vaccine therapy. Finally, we provide a perspective on the challenges and future research directions for the use of in vivo imaging technology in cancer immunotherapy.
Collapse
Affiliation(s)
- Deqiang Deng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianli Hao
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muyang Yang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Zeng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Silva EE, Moioffer SJ, Hassert M, Berton RR, Smith MG, van de Wall S, Meyerholz DK, Griffith TS, Harty JT, Badovinac VP. Defining Parameters That Modulate Susceptibility and Protection to Respiratory Murine Coronavirus MHV1 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:563-575. [PMID: 38149923 PMCID: PMC10872354 DOI: 10.4049/jimmunol.2300434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Patients infected with SARS-CoV-2 experience variable disease susceptibility, and patients with comorbidities such as sepsis are often hospitalized for COVID-19 complications. However, the extent to which initial infectious inoculum dose determines disease outcomes and whether this can be used for immunological priming in a genetically susceptible host has not been completely defined. We used an established SARS-like murine model in which responses to primary and/or secondary challenges with murine hepatitis virus type 1 (MHV-1) were analyzed. We compared the response to infection in genetically susceptible C3H/HeJ mice, genetically resistant C57BL/6J mice, and genetically diverse, variably susceptible outbred Swiss Webster mice. Although defined as genetically susceptible to MHV-1, C3H/HeJ mice displayed decreasing dose-dependent pathological changes in disease severity and lung infiltrate/edema, as well as lymphopenia. Importantly, an asymptomatic dose (500 PFU) was identified that yielded no measurable morbidity/mortality postinfection in C3H/HeJ mice. Polymicrobial sepsis induced via cecal ligation and puncture converted asymptomatic infections in C3H/HeJ and C57BL/6J mice to more pronounced disease, modeling the impact of sepsis as a comorbidity to β-coronavirus infection. We then used low-dose infection as an immunological priming event in C3H/HeJ mice, which provided neutralizing Ab-dependent, but not circulating CD4/CD8 T cell-dependent, protection against a high-dose MHV-1 early rechallenge. Together, these data define how infection dose, immunological status, and comorbidities modulate outcomes of primary and secondary β-coronavirus infections in hosts with variable susceptibility.
Collapse
Affiliation(s)
- Elvia E Silva
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | - Mariah Hassert
- Department of Pathology, University of Iowa, Iowa City, IA
| | - Roger R Berton
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Matthew G Smith
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | | | | | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA
| |
Collapse
|
46
|
Bin Y, Wei S, Chen R, Zhang H, Ren J, Liu P, Xin Z, Zhang T, Yang H, Wang K, Feng Z, Sun X, Chen Z, Zhang H. Dclre1c-Mutation-Induced Immunocompromised Mice Are a Novel Model for Human Xenograft Research. Biomolecules 2024; 14:180. [PMID: 38397417 PMCID: PMC10887050 DOI: 10.3390/biom14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Severe combined immunodeficient (SCID) mice serve as a critical model for human xenotransplantation studies, yet they often suffer from low engraftment rates and susceptibility to graft-versus-host disease (GVHD). Moreover, certain SCID strains demonstrate 'immune leakage', underscoring the need for novel model development. Here, we introduce an SCID mouse model with a targeted disruption of the dclre1c gene, encoding Artemis, which is essential for V(D)J recombination and DNA repair during T cell receptor (TCR) and B cell receptor (BCR) assembly. Artemis deficiency precipitates a profound immunodeficiency syndrome, marked by radiosensitivity and compromised T and B lymphocyte functionality. Utilizing CRISPR/Cas9-mediated gene editing, we generated dclre1c-deficient mice with an NOD genetic background. These mice exhibited a radiosensitive SCID phenotype, with pronounced DNA damage and defective thymic, splenic and lymph node development, culminating in reduced T and B lymphocyte populations. Notably, both cell lines and patient-derived tumor xenografts were successfully engrafted into these mice. Furthermore, the human immune system was effectively rebuilt following peripheral blood mononuclear cells (PBMCs) transplantation. The dclre1c-knockout NOD mice described herein represent a promising addition to the armamentarium of models for xenotransplantation, offering a valuable platform for advancing human immunobiological research.
Collapse
Affiliation(s)
- Yixiao Bin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Sanhua Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Tang Du Hospital, Fourth Military Medical University, Xi’an 710038, China;
| | - Ruo Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Haowei Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an 710032, China;
| | - Jing Ren
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Peijuan Liu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhiqian Xin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Ke Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhuan Feng
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Xiuxuan Sun
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an 710032, China; (Y.B.); (R.C.); (J.R.); (P.L.); (Z.X.); (T.Z.); (H.Y.); (K.W.); (Z.F.); (X.S.)
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
47
|
Liao Y, Zhang Z, Ouyang L, Mi B, Liu G. Engineered Extracellular Vesicles in Wound Healing: Design, Paradigms, and Clinical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307058. [PMID: 37806763 DOI: 10.1002/smll.202307058] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Indexed: 10/10/2023]
Abstract
The severe quality of life and economic burden imposed by non-healing skin wounds, infection risks, and treatment costs are affecting millions of patients worldwide. To mitigate these challenges, scientists are relentlessly seeking effective treatment measures. In recent years, extracellular vesicles (EVs) have emerged as a promising cell-free therapy strategy, attracting extensive attention from researchers. EVs mediate intercellular communication, possessing excellent biocompatibility and stability. These features make EVs a potential tool for treating a plethora of diseases, including those related to wound repair. However, there is a growing focus on the engineering of EVs to overcome inherent limitations such as low production, relatively fixed content, and targeting capabilities of natural EVs. This engineering could improve both the effectiveness and specificity of EVs in wound repair treatments. In light of this, the present review will introduce the latest progress in the design methods and experimental paradigms of engineered EVs applied in wound repair. Furthermore, it will comprehensively analyze the current clinical research status and prospects of engineered EVs within this field.
Collapse
Affiliation(s)
- Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
48
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
49
|
Hasham MG, Sargent JK, Warner MA, Farley SR, Hoffmann BR, Stodola TJ, Brunton CJ, Munger SC. Methods to study xenografted human cancer in genetically diverse mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576906. [PMID: 38328145 PMCID: PMC10849620 DOI: 10.1101/2024.01.23.576906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Xenografting human cancer tissues into mice to test new cures against cancers is critical for understanding and treating the disease. However, only a few inbred strains of mice are used to study cancers, and derivatives of mainly one strain, mostly NOD/ShiLtJ, are used for therapy efficacy studies. As it has been demonstrated when human cancer cell lines or patient-derived tissues (PDX) are xenografted into mice, the neoplastic cells are human but the supporting cells that comprise the tumor (the stroma) are from the mouse. Therefore, results of studies of xenografted tissues are influenced by the host strain. We previously published that when the same neoplastic cells are xenografted into different mouse strains, the pattern of tumor growth, histology of the tumor, number of immune cells infiltrating the tumor, and types of circulating cytokines differ depending on the strain. Therefore, to better comprehend the behavior of cancer in vivo, one must xenograft multiple mouse strains. Here we describe and report a series of methods that we used to reveal the genes and proteins expressed when the same cancer cell line, MDA-MB-231, is xenografted in different hosts. First, using proteomic analysis, we show how to use the same cell line in vivo to reveal the protein changes in the neoplastic cell that help it adapt to its host. Then, we show how different hosts respond molecularly to the same cell line. We also find that using multiple strains can reveal a more suitable host than those traditionally used for a "difficult to xenograft" PDX. In addition, using complex trait genetics, we illustrate a feasible method for uncovering the alleles of the host that support tumor growth. Finally, we demonstrate that Diversity Outbred mice, the epitome of a model of mouse-strain genetic diversity, can be xenografted with human cell lines or PDX using 2-deoxy-D-glucose treatment.
Collapse
|
50
|
Ma M, Ge JY, Nie YZ, Li YM, Zheng YW. Developing Humanized Animal Models with Transplantable Human iPSC-Derived Cells. FRONT BIOSCI-LANDMRK 2024; 29:34. [PMID: 38287837 DOI: 10.31083/j.fbl2901034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Establishing reliable and reproducible animal models for disease modelling, drug screening and the understanding of disease susceptibility and pathogenesis is critical. However, traditional animal models differ significantly from humans in terms of physiology, immune response, and pathogenesis. As a result, it is difficult to translate laboratory findings into biomedical applications. Although several animal models with human chimeric genes, organs or systems have been developed in the past, their limited engraftment rate and physiological functions are a major obstacle to realize convincing models of humans. The lack of human transplantation resources and insufficient immune tolerance of recipient animals are the main challenges that need to be overcome to generate fully humanized animals. Recent advances in gene editing and pluripotent stem cell-based xenotransplantation technologies offer opportunities to create more accessible human-like models for biomedical research. In this article, we have combined our laboratory expertise to summarize humanized animal models, with a focus on hematopoietic/immune system and liver. We discuss their generation strategies and the potential donor cell sources, with particular attention given to human pluripotent stem cells. In particular, we discuss the advantages, limitations and emerging trends in their clinical and pharmaceutical applications. By providing insights into the current state of humanized animal models and their potential for biomedical applications, this article aims to advance the development of more accurate and reliable animal models for disease modeling and drug screening.
Collapse
Affiliation(s)
- Min Ma
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
| | - Yun-Zhong Nie
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212001 Zhenjiang, Jiangsu, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, 529020 Jiangmen, Guangdong, China
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, 108-8639 Tokyo, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 278-8510 Noda, Japan
| |
Collapse
|