1
|
Liu R, Zhang J, Chen S, Xiao Y, Hu J, Zhou Z, Xie L. Intestinal mucosal immunity and type 1 diabetes: Non-negligible communication between gut and pancreas. Diabetes Obes Metab 2025; 27:1045-1064. [PMID: 39618164 PMCID: PMC11802406 DOI: 10.1111/dom.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 02/08/2025]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated pancreatic β cell loss, resulting in lifelong absolute insulin deficiency and hyperglycaemia. Environmental factors are recognized as a key contributor to the development of T1D, with the gut serving as a primary interface for environmental stimuli. Recent studies have revealed that the alterations in the intestinal microenvironment profoundly affect host immune responses, contributing to the aetiology and pathogenesis of T1D. However, the dominant intestinal immune cells and the underlying mechanisms remain incompletely elucidated. In this review, we provide an overview of the possible mechanisms of the intestinal mucosal system that underpin the pathogenesis of T1D, shedding light on the roles of both non-classical and classical immune cells in T1D. Our goal is to gain insights into how modulating these immune components may hold potential implications for T1D prevention and provide novel perspectives for immune-mediated therapy.
Collapse
Affiliation(s)
- Ruonan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jing Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life ScienceHunan Normal UniversityChangshaChina
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and EndocrinologyThe Second Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
2
|
Blok L, Hanssen N, Nieuwdorp M, Rampanelli E. From Microbes to Metabolites: Advances in Gut Microbiome Research in Type 1 Diabetes. Metabolites 2025; 15:138. [PMID: 39997763 PMCID: PMC11857261 DOI: 10.3390/metabo15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Type 1 diabetes (T1D) is a severe chronic T-cell mediated autoimmune disease that attacks the insulin-producing beta cells of the pancreas. The multifactorial nature of T1D involves both genetic and environmental components, with recent research focusing on the gut microbiome as a crucial environmental factor in T1D pathogenesis. The gut microbiome and its metabolites play an important role in modulating immunity and autoimmunity. In recent years, studies have revealed significant alterations in the taxonomic and functional composition of the gut microbiome associated with the development of islet autoimmunity and T1D. These changes include reduced production of short-chain fatty acids, altered bile acid and tryptophan metabolism, and increased intestinal permeability with consequent perturbations of host (auto)immune responses. Methods/Results: In this review, we summarize and discuss recent observational, mechanistic and etiological studies investigating the gut microbiome in T1D and elucidating the intricate role of gut microbes in T1D pathogenesis. Moreover, we highlight the recent advances in intervention studies targeting the microbiota for the prevention or treatment of human T1D. Conclusions: A deeper understanding of the evolution of the gut microbiome before and after T1D onset and of the microbial signals conditioning host immunity may provide us with essential insights for exploiting the microbiome as a prognostic and therapeutic tool.
Collapse
Affiliation(s)
- Lente Blok
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Nordin Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, 1105 AZ Amsterdam, The Netherlands; (N.H.); (M.N.)
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| |
Collapse
|
3
|
Li X, Sun B, Qin Y, Yue F, Lü X. Amelioration of Obesity-Related Disorders in High-Fat Diet-Fed C57BL/6 Mice Following Fecal Microbiota Transplantation From DL-Norvaline-Dosed Mice. Mol Nutr Food Res 2025; 69:e202400577. [PMID: 39791141 DOI: 10.1002/mnfr.202400577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated. In this study, DL-norvaline-mediated FMT upregulated the beneficial bacteria (Clostridia_UCG_014, Christensenellales, Bacilli, Ileibacterium, Dubosiella, Lactobacillus, Muribaculaceae, and Bacteroidaceae) and downregulated the harmful bacteria (Tuzzerella and Marinifilaceae), further intestinal inflammation, oxidative stress, and intestinal barrier were alleviated as well as short chain fatty acids levels were increased, thus alleviating glucose and insulin metabolism, improving biochemical indexes and energy metabolism and decreasing body weight gain and tissue weight. However, heat-inactivated FMT did not demonstrate any of those improvements in obese mice. Notably, both DL-norvaline-mediated FMT and heat-inactivated FMT increased Bacteroidaceae and Muribaculaceae, this being a signature of alterations to the gut microbiota marker caused by DL-norvaline. Therefore, the beneficial effects of DL-norvaline were transmissible via FMT. This study highlighted the pivotal involvement of the gut microbiota in the development of obesity and provided a novel insight into the underlying mechanisms of FMT, thereby potentially enhancing the efficacy and refinement of FMT utilization.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Bohan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanting Qin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Lou Y, Wen X, Song S, Zeng Y, Huang L, Xie Z, Shao T, Wen C. Dietary pectin and inulin: A promising adjuvant supplement for collagen-induced arthritis through gut microbiome restoration and CD4 + T cell reconstitution. J Nutr Biochem 2024; 133:109699. [PMID: 38972609 DOI: 10.1016/j.jnutbio.2024.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Dietary strategies rich in fiber have been demonstrated to offer benefits to individuals afflicted with rheumatoid arthritis (RA). However, the specific mechanisms through which a high-fiber diet (HFD) mitigates RA's autoimmunity remain elusive. Herein, we investigate the influence of pectin- and inulin-rich HFD on collagen-induced arthritis (CIA). We establish that HFD significantly alleviates arthritis in CIA mice by regulating the Th17/Treg balance. The rectification of aberrant T cell differentiation by the HFD is linked to the modulation of gut microbiota, augmenting the abundance of butyrate in feces. Concurrently, adding butyrate to the drinking water mirrors the HFD's impact on ameliorating CIA, encompassing arthritis mitigation, regulating intestinal barrier integrity, and restoring the Th17/Treg equilibrium. Butyrate reshapes the metabolic profile of CD4+ T cells in an AMPK-dependent manner. Our research underscores the importance of dietary interventions in rectifying gut microbiota for RA management and offers an explanation of how diet-derived microbial metabolites influence RA's immune-inflammatory-reaction.
Collapse
Affiliation(s)
- Yu Lou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianghui Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyue Song
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zeng
- Department of Clinical Medicine, The 2ND Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Huang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiejuan Shao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chengping Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Nguyen HTM, Gunathilake M, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. A higher dietary alpha-linolenic acid intake is associated with lower colorectal cancer risk based on MUC4 rs2246901 variant among Korean adults. Nutr Res 2024; 131:71-82. [PMID: 39369551 DOI: 10.1016/j.nutres.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Alpha-linolenic acid (C18:3n-3 [ALA]) intake may have a beneficial effect in reducing cancer risk; however, its association with colorectal cancer (CRC) risk remains conflicted. Additionally, ALA was emphasized as being associated with mucins, an important glycoproteins family within the intestine. Thus, we hypothesized that a higher dietary ALA intake may reduce the risk of CRC and this preventive effect has an interaction with mucin 4 (MUC4) rs2246901. We conducted a case-control study at the National Cancer Center in Korea, involving 1039 cases and 1982 controls, aiming to determine the interaction of the MUC4 rs2246901 polymorphism and ALA intake in CRC risk. Dietary ALA intake was collected via semiquantitative food frequency questionnaire (SQFFQ), categorizing by 4 quartiles. We evaluated the odds ratios (ORs) and 95% confidence intervals (CIs) through unconditional logistic regression models. Higher dietary ALA intake was found to be inversely associated with CRC risk (adjusted OR = 0.58; 95% CI, 0.45-0.75, P for trend < .001). No significant association between MUC4 rs2246901 polymorphism and CRC risk was found. In a recessive model, MUC4 rs2246901 seemed to modify this association; participants with at least 1 major allele and higher ALA intake had a significantly lower CRC risk than those who had a lower intake (adjusted OR = 0.56; 95% CI, 0.43-0.72; P interaction = .047). A higher dietary ALA was proposed as a potential protective nutrient against CRC. Moreover, this association might be influenced by presence of the MUC4 rs2246901 polymorphism.
Collapse
Affiliation(s)
- Ha Thi Mien Nguyen
- Department of Cancer Control & Population Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Korea
| | - Madhawa Gunathilake
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Korea
| | - Jeonghee Lee
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Dae Kyung Sohn
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Jongno-gu, Seoul, South Korea
| | - Jeongseon Kim
- Department of Cancer AI & Digital Health, Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Korea.
| |
Collapse
|
6
|
Haneishi Y, Treppiccione L, Maurano F, Luongo D, Miyamoto J, Rossi M. High Fat Diet-Wheat Gliadin Interaction and its Implication for Obesity and Celiac Disease Onset: In Vivo Studies. Mol Nutr Food Res 2024; 68:e2300779. [PMID: 38632845 DOI: 10.1002/mnfr.202300779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/03/2024] [Indexed: 04/19/2024]
Abstract
The intestinal immune system plays a crucial role in obesity and insulin resistance. An altered intestinal immunity is associated with changes to the gut microbiota, barrier function, and tolerance to luminal antigens. Lipid metabolism and its unbalance can also contribute to acute and chronic inflammation in different conditions. In celiac disease (CD), the serum phospholipid profile in infants who developed CD is dramatically different when compared to that of infants at risk of CD not developing the disease. In a mouse model of gluten sensitivity, oral wheat gliadin challenge in connection with inhibition of the metabolism of arachidonic acid, an omega-6 polyunsaturated fatty acid, specifically induces the enteropathy. Recent evidence suggests that gluten may play a role also for development of life-style related diseases in populations on a high fat diet (HFD). However, the mechanisms behind these effects are not yet understood. Exploratory studies in mice feed HFD show that wheat gliadin consumption affects glucose and lipid metabolic homeostasis, alters the gut microbiota, and the immune cell profile in liver.
Collapse
Affiliation(s)
- Yuri Haneishi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | | | - Francesco Maurano
- Institute of Food Sciences, CNR, via Roma 64, Avellino, 83100, Italy
| | - Diomira Luongo
- Institute of Food Sciences, CNR, via Roma 64, Avellino, 83100, Italy
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mauro Rossi
- Institute of Food Sciences, CNR, via Roma 64, Avellino, 83100, Italy
| |
Collapse
|
7
|
Sarkar S, Deiter C, Kyle JE, Guney MA, Sarbaugh D, Yin R, Li X, Cui Y, Ramos-Rodriguez M, Nicora CD, Syed F, Juan-Mateu J, Muralidharan C, Pasquali L, Evans-Molina C, Eizirik DL, Webb-Robertson BJM, Burnum-Johnson K, Orr G, Laskin J, Metz TO, Mirmira RG, Sussel L, Ansong C, Nakayasu ES. Regulation of β-cell death by ADP-ribosylhydrolase ARH3 via lipid signaling in insulitis. Cell Commun Signal 2024; 22:141. [PMID: 38383396 PMCID: PMC10880366 DOI: 10.1186/s12964-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Lipids are regulators of insulitis and β-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate β-cell death. METHODS We performed lipidomics using three models of insulitis: human islets and EndoC-βH1 β cells treated with the pro-inflammatory cytokines interlukine-1β and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced β-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS Our data provide insights into the change of lipidomics landscape in β cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cailin Deiter
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michelle A Guney
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Xiangtang Li
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Yi Cui
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- NanoString Technologies, Seattle, WA, 98109, USA
| | - Mireia Ramos-Rodriguez
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jonas Juan-Mateu
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Charanya Muralidharan
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lorenzo Pasquali
- Endocrine Regulatory Genomics, Department of Experimental & Health Sciences, University Pompeu Fabra, 08003, Barcelona, Spain
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Bobbie-Jo M Webb-Robertson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Kristin Burnum-Johnson
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Galya Orr
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Center, Aurora, CO, 80045, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
8
|
Zhang H, Wu J, Li N, Wu R, Chen W. Microbial influence on triggering and treatment of host cancer: An intestinal barrier perspective. Biochim Biophys Acta Rev Cancer 2023; 1878:188989. [PMID: 37742727 DOI: 10.1016/j.bbcan.2023.188989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Inflammatory bowel disease (IBD) is associated with complex complications that may lead to tumors. However, research on the mechanisms underlying susceptibility to chronic immune diseases and cancer pathogenesis triggered by the inflammatory environment remains limited. An imbalance in the host gut microbiota often accompanies intestinal inflammation. The delayed recovery of the dysregulated intestinal microbiota may exacerbate systemic inflammatory responses, multiorgan pathology, and metabolic disorders. This delay may also facilitate bacterial translocation. This review examined the relationship between gut barrier disruption and unbalanced microbial translocation and their impact on the brain, liver, and lungs. We also explored their potential roles in tumor initiation. Notably, the role of the intestinal microbiota in the development of inflammation is linked to the immune surveillance function of the small intestine and the repair status of the intestinal barrier. Moreover, adherence to a partially anti-inflammatory diet can aid in preventing the malignant transformation of inflammation by repairing the intestinal barrier and significantly reducing inflammation. In conclusion, enhancing intestinal barrier function may be a novel strategy for preventing and treating chronic malignancies in the intestine and other body areas.
Collapse
Affiliation(s)
- Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Engineering Research Center of Food Fermentation Technology, Shenyang 110161, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Liaoning 110866, PR China
| | - Na Li
- Children's Neurorehabilitation Laboratory, Shenyang Children's Hospital, Shenyang, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Engineering Research Center of Food Fermentation Technology, Shenyang 110161, PR China.
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
9
|
Manchester AC, Dow S, Chow L, Gagne J, Lappin MR. Efficacy of an elemental diet in achieving clinical remission in dogs with chronic enteropathy. J Vet Intern Med 2023; 37:2322-2333. [PMID: 37681584 PMCID: PMC10658491 DOI: 10.1111/jvim.16846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Diet may induce clinical remission in dogs with chronic enteropathy (CE). Elemental diets (EDs), providing protein as amino acids, modulate intestinal immunity and microbiome in rodents and humans. HYPOTHESIS Evaluate the impact of an amino acid-based kibble (EL) on CE clinical activity and gastrointestinal (GI)-relevant variables. ANIMALS Client-owned dogs (n = 23) with inadequately controlled CE. METHODS Prospective, uncontrolled clinical trial. Diagnostic evaluation including upper and lower GI endoscopy was performed before study entry. Canine chronic enteropathy clinical activity index (CCECAI), serum biomarkers, and fecal microbiome were evaluated before and after 2 weeks of EL. Dogs with stable or improved CE remained in the study for another 6 weeks. Pre- and post-EL clinical and microbiological variables were compared statistically using a mixed model. RESULTS After 2 weeks of EL, 15 of 22 dogs (68%; 95% confidence interval [CI], 47%-84%) consuming the diet were classified as responders with a median (range) decrease in CCECAI from 6 (3-12) to 2 (0-9; P < .001). Fourteen of 15 responders and 2/7 nonresponders at 2 weeks completed the trial; all 16 were experiencing adequate control at week 8 with a median CCECAI of 2 (0-3). In total, 16/23 dogs (70%; 95% CI, 49%-84%) were responders. Feeding EL caused shifts in fecal bacterial communities, which differed between responders and nonresponders. Serum biomarker concentrations were unchanged throughout the study apart from serum alkaline phosphatase activity. CONCLUSIONS Exclusive feeding of EL improved clinical signs in 16 of 23 dogs with uncontrolled CE. Fecal microbiome shifts were associated with response to diet and may represent a mechanism for clinical improvement.
Collapse
Affiliation(s)
- Alison C. Manchester
- Department of Clinical Sciences, Center for Companion Animal StudiesColorado State UniversityFort CollisColoradoUSA
| | - Steven Dow
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
| | - Lyndah Chow
- Flint Animal Cancer CenterColorado State UniversityFort CollinsColoradoUSA
| | | | - Michael R. Lappin
- Department of Clinical Sciences, Center for Companion Animal StudiesColorado State UniversityFort CollisColoradoUSA
| |
Collapse
|
10
|
Li MY, Duan JQ, Wang XH, Liu M, Yang QY, Li Y, Cheng K, Liu HQ, Wang F. Inulin Inhibits the Inflammatory Response through Modulating Enteric Glial Cell Function in Type 2 Diabetic Mellitus Mice by Reshaping Intestinal Flora. ACS OMEGA 2023; 8:36729-36743. [PMID: 37841129 PMCID: PMC10568710 DOI: 10.1021/acsomega.3c03055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Inulin, a commonly used dietary fiber supplement, is capable of modulating the gut microbiome. Chronic inflammation resulting from metabolic abnormalities and gut flora dysfunction plays a significant role in the development of type 2 diabetes mellitus (T2DM). Our research has demonstrated that inulin administration effectively reduced colonic inflammation in T2DM mice by inducing changes in the gut microbiota and increasing the concentration of butyric acid, which in turn modulated the function of enteric glial cells (EGCs). Experiments conducted on T2DM mice revealed that inulin administration led to an increase in the Bacteroidetes/Firmicutes ratio and the concentration of butyric acid in the colon. The anti-inflammatory effects of altered gastrointestinal flora and its metabolites were further confirmed through fecal microbiota transplantation. Butyric acid was found to inhibit the activation of the κB inhibitor kinase β/nuclear factor κB pathway, regulate the expression levels of interleukin-6 and tumor necrosis factor-α, suppress the abnormal activation of EGCs, and prevent the release of inflammatory factors by EGCs. Similar results were observed in vitro experiments with butyric acid. Our findings demonstrate that inulin, by influencing the intestinal flora, modifies the activity of EGCs to effectively reduce colonic inflammation in T2DM mice.
Collapse
Affiliation(s)
- Meng-Ying Li
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
- Department
of Endocrinology, Xijing Hospital, Air Force
Medical University, West
Changle Road No. 127, Xi’an, Shaanxi 710032, China
| | - Jia-Qi Duan
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Xiao-Hui Wang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Meng Liu
- School
of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Middle of Yanta Road No. 13, Xi’an 710055, China
| | - Qiao-Yi Yang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Yan Li
- Department
of Anatomy, Histology and Embryology and K. K. Leung Brain Research
Centre, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Kun Cheng
- Department
of Endocrinology, Xijing Hospital, Air Force
Medical University, West
Changle Road No. 127, Xi’an, Shaanxi 710032, China
| | - Han-Qiang Liu
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| | - Feng Wang
- The
Ministry of Education Key Lab of Hazard Assessment and Control in
Special Operational Environment, The Shaanxi Provincial Key Laboratory
of Environmental Health Hazard Assessment and Protection, The Shaanxi
Provincial Key Laboratory of Free Radical Biology and Medicine, Department
of Health Education and Management, School of Preventive Medicine, Air Force Medical University, West Changle Road No. 169, Xi’an, Shaanxi 710032, China
| |
Collapse
|
11
|
Sheng W, Ji G, Zhang L. Immunomodulatory effects of inulin and its intestinal metabolites. Front Immunol 2023; 14:1224092. [PMID: 37638034 PMCID: PMC10449545 DOI: 10.3389/fimmu.2023.1224092] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
"Dietary fiber" (DF) refers to a type of carbohydrate that cannot be digested fully. DF is not an essential nutrient, but it plays an important part in enhancing digestive capacity and maintaining intestinal health. Therefore, DF supplementation in the daily diet is highly recommended. Inulin is a soluble DF, and commonly added to foods. Recently, several studies have found that dietary supplementation of inulin can improve metabolic function and regulate intestinal immunity. Inulin is fermented in the colon by the gut microbiota and a series of metabolites is generated. Among these metabolites, short-chain fatty acids provide energy to intestinal epithelial cells and participate in regulating the differentiation of immune cells. Inulin and its intestinal metabolites contribute to host immunity. This review summarizes the effect of inulin and its metabolites on intestinal immunity, and the underlying mechanisms of inulin in preventing diseases such as type 2 diabetes mellitus, inflammatory bowel disease, chronic kidney disease, and certain cancer types.
Collapse
Affiliation(s)
| | | | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Ludovico ID, Sarkar S, Elliott E, Virtanen SM, Erlund I, Ramanadham S, Mirmira RG, Metz TO, Nakayasu ES. Fatty acid-mediated signaling as a target for developing type 1 diabetes therapies. Expert Opin Ther Targets 2023; 27:793-806. [PMID: 37706269 PMCID: PMC10591803 DOI: 10.1080/14728222.2023.2259099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is an autoimmune disease in which pro-inflammatory and cytotoxic signaling drive the death of the insulin-producing β cells. This complex signaling is regulated in part by fatty acids and their bioproducts, making them excellent therapeutic targets. AREAS COVERED We provide an overview of the fatty acid actions on β cells by discussing how they can cause lipotoxicity or regulate inflammatory response during insulitis. We also discuss how diet can affect the availability of fatty acids and disease development. Finally, we discuss development avenues that need further exploration. EXPERT OPINION Fatty acids, such as hydroxyl fatty acids, ω-3 fatty acids, and their downstream products, are druggable candidates that promote protective signaling. Inhibitors and antagonists of enzymes and receptors of arachidonic acid and free fatty acids, along with their derived metabolites, which cause pro-inflammatory and cytotoxic responses, have the potential to be developed as therapeutic targets also. Further, because diet is the main source of fatty acid intake in humans, balancing protective and pro-inflammatory/cytotoxic fatty acid levels through dietary therapy may have beneficial effects, delaying T1D progression. Therefore, therapeutic interventions targeting fatty acid signaling hold potential as avenues to treat T1D.
Collapse
Affiliation(s)
- Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily Elliott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Suvi M. Virtanen
- Health and Well-Being Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Faculty of Social Sciences, Unit of Health Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Iris Erlund
- Department of Governmental Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, and Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
13
|
Shaikh SR, Bazinet RP. Heterogeneity in the response to n-3 polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care 2023; 26:284-287. [PMID: 36943155 PMCID: PMC10794042 DOI: 10.1097/mco.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW A central goal in the study of long chain n-3 polyunsaturated fatty acids (PUFA) is to translate findings from the basic sciences to the population level to improve human health and prevent chronic diseases. A tenet of this vision is to think in terms of precision medicine and nutrition, that is, stratification of individuals into differing groups that will have different needs across the lifespan for n-3 PUFAs. Therefore, there is a critical need to identify the sources of heterogeneity in the human population in the dietary response to n-3 PUFA intervention. RECENT FINDINGS We briefly review key sources of heterogeneity in the response to intake of long chain n-3 PUFAs. These include background diet, host genome, composition of the gut microbiome, and sex. We also discuss the need to integrate data from newer rodent models (e.g. population-based approaches), multi -omics, and analyses of big data using machine learning and data-driven cluster analyses. SUMMARY Accounting for vast heterogeneity in the human population, particularly with the use of big data integrated with preclinical evidence, will drive the next generation of precision nutrition studies and randomized clinical trials with long-chain n-3 PUFAs.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health & School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|